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Abstract—Rock breaking using a top hammer drill is 
achieved with a combination of four distinct hydraulically 
driven functions; percussion, feed, rotation and flushing the 
hole. Percussion, feed and rotation are applied to the drill string 
outside the drill hole. Flushing water or another flushing 
medium is pumped through the drill string to the bit. 
Controlling top hammer drill rigs in varying rock conditions is 
an important task, as non-optimal control can damage drilling 
equipment and waste energy. Damage occur especially when 
percussion-induced stress waves are not optimally transmitted 
to the rock and are thus reflected from the drill bit–rock 
interface to the drill. Therefore, to design an adaptive control 
system to manage drilling in all rock conditions, it is meaningful 
to develop a simulator that can produce data comparable to 
real-life drilling. This paper presents a rock drill simulator 
designed in MATLAB/Simulink environment. The rock drill 
model has hydraulic feed and rotation circuits, and drill string 
is modeled as a finite element beam having three degrees of 
freedom per node and two nodes per element. A total of 90 
elements were used for the drill string modeling. The simulation 
also includes a rock model that can be modified to emulate 
varying rock conditions. By modifying the parameters of the 
rock model and boundary conditions, penetration rate changes 
and the simulated strain from the drill string varies. 

Keywords—Top hammer drill, stress wave, rock model, 
simulation. 

I. INTRODUCTION  

Modern lifestyles have created a growing need for 
efficient ore extraction. One method for ore extraction is 
drilling and blasting in underground mines. Nowadays, 
blasthole drilling is mainly done with hydraulic drilling rigs. 
Pneumatic rock drills found a competitor when hydraulic 
percussive drills were introduced in the early 1970s [1]. These 
new rock drills doubled rock drilling capacities compared with 
pneumatic drills. Hydraulic top hammer drills mainly use 
impact energy for rock breaking; however, reasonable 
parameter values for feed, rotation and flushing in relation to 
percussion power are also needed for efficient drilling. The 
output power of the percussion circuit depends on both  
pressure and the flow rate. To ensure that the drill bit remains  
attached to the rock, the feed force must be sufficient. The bit 
is rotated between blows to provide fresh rock under the bit 
buttons. [1] Hydraulic rock drilling has led to enhancements 
in drilling accuracy and automation. However, there is still a 
need for adaptive control in varying rock conditions. 

Hydraulic percussive drilling has been widely studied over 
the past few years [2]–[11]. Most studies have concentrated 
on rock mechanics and the modeling of impulsive forces in 
the bit–rock interactions. However, in these studies, either the 
drill models are focused on a single percussive blow or the 
rock models are very complex. Impulsive forces exerted on 
the drill rod outside the hole generate rapid stress waves. 
These waves travel through the drill string to the drill bit and 
should be transmitted to the rock as efficiently as possible. 
Otherwise, regenerative reflected forces can cause damage to 
the drilling equipment and loss of energy. Effective stress 
wave transmission can be achieved by controlling the 
percussion cylinder stroke length or frequency, which 
typically is about 100 Hz, along with the feed and rotation 
parameters. The challenge of implementing such control is 
that the mobile hydraulic valve-controlled feed and rotation 
circuits have rather slow dynamics, in the order of a few hertz. 

Pettersson [12] constructed a multi-domain simulation 
model of a hydraulic rock drill divided into five parts: a rock 
drill machine model, a rod model, a penetration model, a 
loading system model and a supply system model. Stress-
wave propagation in the rod was studied through analogies to 
a transmission line and described as a four pole equation. 
However, study did not concentrate on the stress wave shapes 
at varying rock conditions.  

Drill string models are introduced especially in the case of 
drilling boreholes in oil and gas industry [13], [14], where, 
penetration into the rock is achieved by the rotary motion only. 
Aarsnes and Wouw [13] modelled the bit–rock interaction to 
include cutting and frictional effects. 

In this study, the hydraulic feed and rotation circuits of 
hydraulic rotary–percussive drilling were modelled. 
Information about percussion was used both for the rock 
model to estimate the penetration rate and for the simulation 
of the stress wave generation in the drill string. Rock was 
modelled as a mass–damper system with additional 
parameters to roughly estimate the drill’s the penetration rate. 
Flushing is presumed to be sufficient for this simulation. The 
drill string was modeled as a Euler–Bernoulli beam with two–
node elements and three degrees of freedom per node: 
forward/backward, up/down and roll. A total of 90 elements 
were used for the drill string modeling. Stress wave shapes 
under varying boundary conditions were illustrated and 
compared with real stress wave measurements. The goal was 



to develop a drilling simulator for testing different control 
system designs under varying rock conditions. 

II. MODELING OF DRILL FUNCTIONS 

The feed and rotation circuits of the top hammer drill were 
modelled as in [15]. Both circuits have a pressure- 
compensated proportional directional control valve 
(PCPDCV) and a variable displacement pump, as illustrated 
in Fig. 1. A hydraulic circuit of a PCPDCV is shown in Fig. 2. 
Rotation of the drill rod is achieved with the use of a constant 
displacement motor, and pressure is controlled with pressure 
reducing valves (PRVs) 

A. Axial Piston Pump 

The axial piston pump is controlled by a constant pressure 
control strategy. The pump produces flow QP as follows: 

 QPnPVPCPpS  (1) 

where nP is the rotational speed (rad/s), VP is the pump 
volumetric displacement (m3/rad), ε is the pump angle [0...1], 
CP is the leakage coefficient [m3/(s·Pa)], and pS is the pump 
supply pressure (Pa). The pump angle is a function of the 
pressure difference between the requested supply pressure pRS 
and the supply pressure pS [16]–[18]. 

 s pRS - pS s 

where time constants τ1, and τ2 define the dynamics between 
the pump angle and the pressure difference. The derivative of 
the pump feed pressure is 

 ṗS = BH (QP – QLS – QH) / VH  (3) 

where BH and VH are the bulk modulus and the volume of the 
pressure line, respectively, QLS is the flow to an actuator, and 
QH is the flow to the pressure relief valve. 

B. Pressure Compensator 

Changes in the load pressure cause a variable flow rate 
through the valve without pressure compensation. The 
pressure-compensated valve changes its opening to maintain 
a constant flow rate. The opening of the pressure compensator 
is defined as follows [19]: 

 uC = (pLS + p0 + KC – pC)/KC (4)

where pLS is the load pressure (Pa), p0 is the pre-compression 
pressure of the pressure compensator spring (Pa), KC is the 
normalized spring stiffness (Pa), and pC is the compensated 
pressure (Pa). The opening of the pressure compensator uC is 
dimensionless and is limited to the interval [0,1]. 

The flow through the valve can be either laminar or 
turbulent. To achieve a smooth transition between laminar and 
turbulent flow, the formula proposed by Ellman and Piché 
[20] is used in this simulator. The flow through the pressure 
compensator is  

   

where pTR is the pressure limit, which determines the flow type 
as either turbulent or laminar, and CC is the flow coefficient of 
the valve. 

The pressure differential ṗC can be calculated as 

 ṗC = Beff (QC – QLS)/Vpc (6) 

where Beff is the bulk modulus, Vpc is the volume between the 
pressure compensator and the directional valve, and QLS is the 
flow to the load [19]. 

The load pressure pLS is controlled by the PRV, and it is 
inputted into (4). In this simulation, the Lookup Table 
Dynamic block is used to model the valve opening area. The 
inputs to the block are the pressure values for the initial, full 
and saturation opening, and the output is the valve opening 
area. The  valve opening area is zero before the initial opening 
pressure is reached. The opening area then grows linearly until 
reaching full area when full opening pressure is reached. The 
flow into the tank is determined using (5). 

C. Proportional Directional Valve 

In this simulation, the proportional directional valves for 
both modelled hydraulic circuits are 4/3 spool valves. The 
flow through a flow channel depends on the pressure 
difference across the flow path and is calculated as 

  

 
Fig. 1.   Diagram of the feed and rotation functions of a hydraulic 
drill [15] 

 
Fig. 2.   Hydraulic diagram of the PCPDV valve. [15] 



where Kv and u are the flow coefficient and the opening of the 
valve, respectively. The value of the u is limited to the interval 
[0,1], and |p1 − p2| is the absolute pressure difference across 
the flow path [20]. In this simulation, the 4/3 proportional 
directional spool valves consist of four different flow paths: 
two flow paths from the pump side of the valve to the load and 
two flow paths back to the tank. The flows to the load are 
presented as 

 

where pP is the pressure on the pump side of the valve, pA is 
the pressure on the actuator side A, pT is the tank pressure, pB 
is the pressure on the actuator side B, and Q(.,.) is a flow 
through a flow path defined in (7). 

The dynamics between the valve control and the spool 
position in the Simulink environment are modeled by 
connecting the delay and the rate limiter blocks in a series. 
There is a static non-linear function between the opening u of 
each flow channel and the spool position. This function 
defines the valve lap; valves can be classified as zero-lapped, 
underlapped, or overlapped. 

D. Motor 

The motor of the rotation circuit is a constant displacement 
motor without external leakage. Thus, the volume flow out of 
the motor QM is calculated as 

 QM  = VM nM + CM p (9) 

where VM is the theoretical volumetric displacement of the 
motor (m3/rad), nM is the rotational speed of the motor (rad/s), 
Δp = pA − pB is the pressure difference in the motor ports, and 
CM is the motor leakage coefficient [m3/(s·Pa)]. The torque of 
the motor axle TM is modelled as 

 pVM. (10) 

The pipes from the valve to the motor and from the motor 
to the valve are modelled as volumes and denoted as Va and 
Vb, respectively. The pressure differentials at the motor ports 
A and B are calculated with (11a) and (11b). 

 

where Beff is the effective bulk modulus, and the positive flow 
direction for QB is from the valve to the motor. 

E. Feed 

The feed actuator is a double-acting single-rod cylinder 
(70/50-2700). The pressure differentials on the sides A and B 
of the cylinder are calculated with (12a) and (12b). 

 

where AA, AB are the areas of the piston sides A and B 
respectively, xc and ẋc are the position and velocity of the 
piston, respectively, L is the cylinder stroke, and V0A and V0B 

are dead volumes on the cylinder sides A and B, respectively 
[20]. 

Cylinder friction is included in the force equation of the 
cylinder. Canudas de Wit et al. [21] modelled the steady-state 
motion relation between velocity and friction force as 

 

where FC is the Coulomb friction level, FS is the stiction force 
level, vs is the Stribeck velocity, and σ2 is the viscous friction 
parameter. The signum function is denoted by sgn(). 

III. BEAM MODEL 

The drill string is modeled as a finite element beam with 
three degrees of freedom per node, as illustrated in Fig. 3. The 
forces acting on the beam are axial force, shear force and 
torsional moment. The local stiffness matrix for the ith beam 
element is given as 

 

where A is the cross-sectional area of the beam, E is Young’s 
modulus, L is the length of the element, I is the moment of 
inertia, G is the shear modulus and J is the cross-sectional 
polar moment of inertia. The local geometric stiffness matrix 
for the ith beam element is  

 

where N is axial force. 

The transformation matrix between the local and global 
coordinate system is  

 

where  is the angle between the local and global coordinate 
axes. 

The stiffness matrix of the ith element in the global coordinate 
system can be therefore calculated as 

 

 

Fig. 3. Degrees of freedom of a beam element 



The local mass matrix for the ith beam element is given as 

 

where  is density. 

 The global mass matrix is obtained by summing all the 
global element matrices as follows: 

 

where M is the global mass matrix, n is the number of finite 
elements. The same procedure is followed to construct the 
global stiffness matrix. 

 In the transient analysis for a beam with the total ndof 
degrees of freedom, the equation of motion at time t is 
formulated as a second order dynamic system: 

 ü(t) + Du̇(t) + Ku(t) = f(t) (20) 

where u(t) is the ndof dimensional displacement and rotation 
vector at time t, u̇(t) is the derivative of u(t) with respect to 
time, f(t) is the external force vector, and M, D and K represent 
the global mass, damping and stiffness matrices, respectively. 
The damping matrix D is given as 

 D  

where  and  are the mass- and stiffness-proportional 
Rayleigh damping coefficients, respectively. 

 To rewrite the original equation of motion (20) in the first- 
order form, a state-space representation is used. The state-
space representation vector u(t) and its derivative with respect 
to time u̇(t) are combined into a state vector x(t): 

   

The state matrix is constructed as in [22]: 

 

where 0[n x n] is a zero matrix and I[n × n] is an identity matrix. 
The input matrix is given as 

  

The discrete state transition matrix is given as a matrix 
exponential 

 exp(t) (25) 

where t is the discrete time step. The control matrix is given 
as 

  

where I is an identity matrix sized 2n×2n. The bit is modelled 
in the same manner as the beam but with a larger area and 
elastic modulus. 

A. Model Order Reduction 

Model order reduction is used to increase the computation 
speed. The full finite element model with ndof × ndof matrices 
is reduced using the normal modes of the conservative 
homogeneous system. The r first eigenvalues 1,...,r and 
associated elastic modes 1,...,r are solutions of the 
generalized eigenvalue problem: 

 KM 

The elastic mode vectors are united into matrix P, where 
the elastic modes are columns. 

The solution u for the equation of motion (20) is a 
superposition of the homogeneous solution uc and particular 
solution up. For the homogeneous solution f = 0, and the 
equation for the particular solution is as follows [23]: 

 rüptDru̇ptruptfr(t) (28) 

where Mr = PTMP, Dr = PTDP, Kr = PTKP, up = Pur, fr = PTf. 
For the simulation, the reduced matrices Mr, Dr, Kr are used in 
the state matrix form (23), and the number of eigenvalues is 
50.   

B. Boundary Conditions 

According to a review of drill string vibration models by 
Ghasemloonia et al. [24], the commonly used axial drill string 
boundary conditions are fixed at the top–fixed at the bottom, 
fixed at the top–free at the bottom and equivalent mass–
spring–damper at the top and sinusoidal displacement at the 
bit. The torsional boundary conditions at the top are either 
constant rotary speed or a control relationship between torque 
and the rotary speed. The lateral boundary conditions found 
by Ghasemloonia et al. are free–free; fixed–

 
Fig. 4.   Boundary conditions of the drill string 



free, fixed–fixed; deflected springs and a mass-loaded 
boundary. Oh et al. [25] used mass–spring–damper as a rock 
load model in their AMEsim simulation model.  

The drill end of the beam is fixed in the vertical direction, 
a constant rotation speed is assumed, and the impact force acts 
on the x-direction. The boundary on the bit side of the drill 
string is assumed to be a spring–damper combination as 
illustrated in Fig. 4. In practice, the spring and damping 
boundary condition values are added to the corresponding 
cells of the stiffness and damping matrices. 

C. State Space Scaling 

The achieved state space model after model order 
reduction is scaled using the MATLAB ’prescale’ function, 
which finds the optimal scaling for frequency domain 
analysis. Scaling is needed since otherwise the state space 
matrices are heterogeneous in magnitude. Heterogeneity 
causes a loss of accuracy in computations.  

D. Model Parameter Values 

The drill rod model parameter values are shown in Table 
I. The drill rod is made of steel and approximated values for 
Young’s modulus and shear modulus are used. 

TABLE I.  PARAMETERS OF THE DRILL STRING MODEL 

Variable Value Unit 

Abit 42 cm2 
Arod 17 cm2 
Lbit 0.15 m 
Lrod 3.1 m 
n 90 - 
E 210 GPa 
G 79.3 GPa 
J 1.2791∙10-6 m4 

kX, kY, kR 300 MNm 
dX, dY, dR 4.63∙106 - 

r 50 - 
 76.28∙10-8 - 
 156.06∙10-8 - 
 7850 kg/m3 

 

E. Percussion Force 

Percussive impact force and feed force act on the drill 
string outside the hole. If the feed force is not sufficient, the 
drill bit will not be in contact with the rock. Here, it is assumed 
that feed force is adequate for constant contact. 

The measured flow into the impact piston correlates with 
both the impact frequency (Fig. 5) and the impact amplitude 
(Fig. 6). These correlations can be used for the simulation of 
the percussion force amplitude and the impact frequency 
acting on the drill side of the drill rod. In the simulation, the 
percussion force profile is achieved using the Repeating 
Sequence Interpolated block. The amplitude and frequency of 
the percussion force are varied according to average 
correlations shown in Figs. 5 and 6. 

IV. ROCK MODEL 

Rock is modelled as a mass-damper system with 
additional parameters, including the effect of percussion 
power and feed force, as in [15]. The cylinder plunger 
acceleration is calculated as 

 

where rbit is the radius of the bit, c1 is a parameter whose value 
depends on the radius of the bit, Qperc is the flow to the 
percussion device, pperc is the percussion pressure, pfeed is the 
pressure difference in the cylinder ports (0.005 ≤ 1/TM  ≤ 
0.024), and m1, gf1, gt1, gft are parameters. 

The rotational acceleration is modeled as follows [15]: 

 

where a1, a2, a3, a4, a5, a6 and b2 are parameters. 

The parameter values used for the simulation are displayed 
in Table II. 

 

Fig. 5.   Correlation between impact piston flow and impact 
frequency 

 
Fig. 6.   Correlation between impact piston flow and maximum 
stress wave amplitude. 



TABLE II.  ROCK MODEL PARAMETERS 

Variable Value Unit 

a1 1.8515  kg·m2  
a2 60  m  
a3 13220.8691  kg ·m·s-2 
a4 10-4 m-1 
a5 10-5 kg-2·s4 
a6 10-5 m2 
b1 4.63·106  kg · s-1 
b2 75  kg · m2· s-1 
c1 1  -  
gp1 1.5·10-5 m-1· s  
gf1 277·10-5 m2  
gt1 -180·10-5 m-1 
m1 5/3·10-5 kg · m4· s-2 

 

V. SIMULATION RESULTS 

In Fig. 7, two simulated and one measured stress waves 
are compared. The difference between two simulated stress 
waves is caused by changed boundary conditions. It is 
unnecessary to try to achieve exactly the same signal shape as 
the measured one during the period between the strikes using 
the described simplified drill string model. Nevertheless, the 
major parts of the stress wave can be fitted, and the result can 
be used for control system design purposes. The parameters 
affecting the stress wave shape are Rayleigh damping 

parameters α and β, material parameters, the area of each 
element, and boundary stiffness and damping parameters. 

The simulated stress wave during the drilling of one test 
hole is shown in Fig. 8. Boundary damping variation during 
the simulation is shown under the stress wave signal. To vary 
the simulated percussion force, true values for percussion flow 
and pressure are inputted into the simulator. The simulation 
result for the stress wave signal during one impact cycle, 
zoomed out from Fig. 8 and compared with the measurement, 
is shown in Fig. 9. On the timescale shown in Fig. 9, the bit–
rock boundary values are kX = 299.76 MNm and dX = 4.63 
·106. The effect of changing the damping value of the rock to 

 
Fig. 7.   Simulated stress waves using first lower boundary stiffness 
value k1 = 300MNm and d1 = 4.63∙106, and for the second wave k2 
= 1.05k1 and d2 = 0.9998d1. 

 
Fig. 9. Stress wave simulation versus measurement 

 
Fig.  10.   Simulation results for cylinder plunger position and velocity, 
and rotation speed when damping value fluctuates. 

 
Fig. 8.   Stress wave simulation during boundary damping 
variation  



the simulated position, velocity and rotation speed are shown 
in Fig. 10. Increasing the damping value decreases the velocity 
when the drill control parameters remain the same. As 
simulations can be run using arbitrary inputs and parameters, 
it is possible to include different controllers in the initial 
performance testing before testing with the real machine.  

VI. CONCLUSION 

Promising simulation results were obtained from 
modelling a top hammer drill as a combination of feed and 
rotation circuits, the drill rod as a finite element beam and the 
bit interaction with the rock. The boundary conditions on the 
bit side of the drill rod were assumed to be a combination of a 
spring and a damper, which is a rare choice for finite element 
modelling. Rock was modelled as a mass–damper system 
when the penetration rate was estimated. 

The next research step is to build an estimator that uses the 
stress wave signal measurement as an input and provides 
information about the bit boundary conditions. This 
information could be directly used for controlling purposes. 
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