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Abstract

Typical clustering analysis for large-scale genomics data combines two unsupervised learning techniques: dimensionality
reduction and clustering (DR-CL) methods. It has been demonstrated that transforming gene expression to pathway-level
information can improve the robustness and interpretability of disease grouping results. This approach, referred to as
biological knowledge-driven clustering (BK-CL) approach, is often neglected, due to a lack of tools enabling systematic
comparisons with more established DR-based methods. Moreover, classic clustering metrics based on group separability
tend to favor the DR-CL paradigm, which may increase the risk of identifying less actionable disease subtypes that have
ambiguous biological and clinical explanations. Hence, there is a need for developing metrics that assess biological and
clinical relevance. To facilitate the systematic analysis of BK-CL methods, we propose a computational protocol for
quantitative analysis of clustering results derived from both DR-CL and BK-CL methods. Moreover, we propose a new BK-CL
method that combines prior knowledge of disease relevant genes, network diffusion algorithms and gene set enrichment
analysis to generate robust pathway-level information. Benchmarking studies were conducted to compare the grouping
results from different DR-CL and BK-CL approaches with respect to standard clustering evaluation metrics, concordance
with known subtypes, association with clinical outcomes and disease modules in co-expression networks of genes. No
single approach dominated every metric, showing the importance multi-objective evaluation in clustering analysis.
However, we demonstrated that, on gene expression data sets derived from TCGA samples, the BK-CL approach can find
groupings that provide significant prognostic value in both breast and prostate cancers.
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Introduction

High-throughput sequencing technologies and next generation
omics platforms have enabled molecular profiling of disease at
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an unprecedented level. Transcriptomics data obtained from
RNA-Seq have been successfully used to identify clinically
relevant subtypes of a number of cancer types, including
breast cancer [21], colon cancer [45], glioma [62], melanoma
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[53] and lung cancer [12]. However, technical noise in omics
data can lead to false discoveries and missed genes which can
dramatically affect disease subtyping results [37]. Commonly
used hierarchical clustering (HC) algorithms can perform well
with adequate feature selection via differential expression
analysis or any other univariate analysis aiming to find disease-
relevant genes. Other common methods such as k-means [42]
may not be applicable to high-dimensional data due to the
‘curse of dimensionality’ which states that as the number of
dimensions increases data points tend to become sparser with
respect to most distance metrics [69]. Computing time is also
significantly increased for high dimensional data, which is
an issue when systematically testing multiple methods with
different hyper-parameter settings. As a result of these two
issues, the use of dimensionality reduction (DR) techniques
is commonplace when applying clustering algorithms to
high-dimensional data. Principal component analysis (PCA)
[56], t-SNE [41] and UMAP [8] are popular approaches to reduce
high-dimensional transcriptomic data into low-dimensional
representations. However, the combined use of DR and clus-
tering methods, which is referred to as DR-CL approach, can
still fail to efficiently cluster patients due to the challenges
imposed by high-throughput data and its nonlinearity [44].
Integration of prior biological knowledge (BK) and molecular
networks can overcome the consequences of technical noise in
transcriptomics data and increase the robustness of grouping
results. On the other hand, the sources of prior BK could be
incomplete, inaccurate or biased toward established subtype
classifications.

Pathway-based approaches such as GSVA [22] and DiffRank
[63] are attractive to the subtype discovery task since they can
transform gene-expression profiles to pathway-based profiles
without any prior subgroup definition or additional informa-
tion other than gene sets or functional annotations. Such pro-
files can then be used to compile robust patient stratification
results [40, 67]. Another interesting approach for pathway-based
clustering analysis is integrating (transcript-)omics data with
molecular networks to characterize biological pathway activ-
ity. For instance, gene co-expression networks are often used
to highlight patient-centric subnetworks, while protein–protein
interaction (PPI) networks have been successfully used for con-
structing biological pathways [19]. In contrast to the methods
applying gene statistics to profile pathway activity, the network-
based approach does not ignore the complex topology of func-
tional relations existing among genes or proteins [4]. These rela-
tions can highlight genes that are closely linked to differentially
expressed or dysregulated genes but whose signal is otherwise
lost in the noisy omics profiles.

Although pathway- and network-based approaches may lead
to better patient stratification results in cancer, there is cur-
rently no protocol to support a systematic comparative analysis
between DR-CL and biological knowledge-driven clustering (BK-
CL) approaches. In this study, we aim at filling this gap by
providing a computational framework which implements exist-
ing DR-CL and BK-CL approaches and a novel network analysis
and pathway enrichment method based on a combination of
random walk with restart (RWR) and gene set enrichment anal-
ysis (GSEA). Disease subtyping techniques are systematically
evaluated through different criteria, which include (1) inter-
nal evaluation metrics [e.g. silhouette score (SS)]; (2) external
evaluation metrics, which are based on association with known
disease subtypes and batch effects; (3) functional relevance; and
(4) clinical utility. Separability is important for identifying clearly
distinct molecular patterns, but assessing the other criteria may

be more important in order to obtain more actionable subtyping
results. In this study, we decided to apply survival analysis for
assessing clinical differences of the clusters. Moreover, we pro-
pose a novel disease module-based score which verifies that the
clusters correlate with different network-driven gene modules.
Many basic machine learning methods have been benchmarked
on TCGA data (e.g. [61]). Therefore, we decided to conduct our
benchmarking analysis using gene expression data from two
TCGA cancer data sets: invasive breast carcinoma (BRCA) and
prostate adenocarcinoma (PRAD).

Materials and methods
TCGA RNA-Seq data processing

Normalized RNA-Seq data for BRCA and PRAD was downloaded
with the curatedTCGAData [57] R-package. The retrieved data
consisted of upper-quartile-normalized TPM values from the
RSEM method [38] which were log-transformed before entering
the clustering analysis. Genes with near zero variance were
identified and removed by using the caret-package [33].

Selection of gold-standard subtypes BRCA and PRAD

Subtypes and other clinical and technical variables were
retrieved with TCGAbiolinks [14] and curatedTCGAData. The
molecular subtypes in BRCA are based on the PAM50 assay
[55]. TCGAbiolinks PAM50 subtypes are sourced from [10]. Two
samples with missing subtype data were excluded. Moreover,
we removed 40 patients with the normal-like subtype, which is
not as well defined as the Luminal A, Luminal B, Her2 over-
expressed and basal-like subtypes [16, 55]. Prostate cancer
subtypes are poorly understood in terms of gene expression,
although subtypes based on somatic mutations have been
identified [28, 54]. Therefore, we used the Gleason score to
define subtypes for evaluation in PRAD. More specifically, we
used four different Gleason score categories based on primary
and secondary Gleason scores: <7, 3+4, 4+3 and >7. The 3+4 and
4+3 categories have been suggested to have different prognoses
[68]. The tumor samples were acquired prior to treatment, with
the exception of three breast cancer patients who had received
prior treatment.

Selection of disease-relevant genes for BRCA and PRAD

The available tumor-control sample pairs were used to perform
a differential expression analysis by using the negative binomial
generalized log-linear model method implemented in TCGAbi-
olinks. Differentially expressed genes (DEGs) were identified by
BH-adjusted [9] P <0.01 and log-fold change greater than 1.0.
Open Targets platform (OTP) [32] was used to retrieve known
disease-gene associations which we intersected with the DEGs
to obtain a small set of highly relevant genes for each cancer
type. OTP provides scores based on multiple evidence categories
and we primarily used the genetic association score which is
based on genome wide association studies (GWASs). We found
that the intersection of DEGs and OTP genes yielded the best
results from BK-CL approaches; hence, the presented results
(including results for DR-CL) will use the intersection unless
indicated otherwise. The set of genetically associated genes
for PRAD in the OTP database had low overlap with DEGs and
yielded poor results for pathway enrichment-based workflows,
which is why the overall association score was used for PRAD
instead. Supplementary Tables S1 and S2 provide a summary and
numerical detail of the data used.
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Dimensionality reduction methods

Gene expression data was transformed into low-dimensional
representations by using various dimensionality reduction tech-
niques in order to efficiently test different clustering algorithms.
We used four different methods: PCA [56], t-SNE [41], UMAP
[8] and the Variational Autoencoder (VAE) [31]. PCA, t-SNE and
UMAP are commonly used in exploratory data analysis. PCA
factorizes data into linear components while the latter two are
based on manifold learning and transform the data nonlinearly
into a low-dimensional embedding where distances between
data points are approximately preserved at the local level which
can improve clustering performance [3]. The analysis of dimen-
sionality reduction results can lead to selecting different number
of dimensions. We evaluated all clustering results for two to ten
dimensions for both PCA and UMAP. We then chose the best
number of dimensions based on the average of the sum of SS,
stability, batch effect, functional relevance and clinical relevance
across different clustering methods and different number of
clusters. Two principal components were selected for both BRCA
and PRAD, while five latent UMAP dimensions were selected for
BRCA and two for PRAD. On the other hand, t-SNE only supports
two or three dimensions [41] and two were used for both data
sets. We also tested different hyper-parameter values for t-SNE
perplexity and UMAP number of neighbors. For t-SNE perplexity
45 was found to be the most consistent value between 15 and
45 that we tested, while 20 was the most consistent number of
neighbors for UMAP based on testing values between 10 and 30.
We also tested a VAE which is a variational-Bayes extension of
autoencoders. The autoencoder is an unsupervised deep learn-
ing method that uses multiple layers of nonlinear functions to
transform input data into a low-dimensional representation and
then aims to reconstruct the original data from this embedding.
The VAE embedding is probabilistic which could help address
the heterogeneity of cancer data [65]. A detailed description of
the VAE-based approach can be found in the Supplementary
Methods and Results file.

Pathway enrichment

GSVA [22] and DiffRank [63] were used to transform the gene
expression profiles of each sample into pathway enrichment
scores. These methods are based on gene statistics that are
computed for each sample based on the empirical distribution
of each gene within samples. They summarize the statistics
of gene sets derived from functional annotations in order to
estimate the activity of the corresponding pathway with a single
value. Functional annotations including KEGG pathways [29],
REACTOME pathways [26] and Gene Ontology biological process
(GO-BP) terms [6] and cancer hallmark gene sets were retrieved
from MSigDB version 7.2 by using the msigdbr-package [39].

A network-driven pathway enrichment approach for
feature extraction in omics datasets

Next, we outline a novel topology enhanced pathway enrich-
ment method for patient stratification. Supplementary Figure
S1 illustrates the workflow of the implemented approach which
takes as input a gene expression matrix, a gene-network as
well as functional annotations, i.e. gene sets. As described
above, we first identify a small set of relevant genes that
are differentially expressed between tumor-control pairs and
identified as disease-associated in the OTP database. The genes
are split into up- and down-regulated lists based on the sign of
the fold change. Genes in each list are ranked based on the gene

expression profiles of each patient sample. Then, in order to
define patient-driven sets of dysregulated genes, the top-ranked
genes are selected in both up- and down-regulated gene lists. In
the second part of the proposed pipeline, the patient-based gene
sets are utilized as starting points (i.e. seeds) of a RWR procedure.
RWR is a type of network diffusion algorithm that can be used to
boost the discovery of disease-relevant genes [49]. The resulting
gene affinities, i.e. the probabilities corresponding to the gene
network RWR stationary distribution, correspond to extended
sets of dysregulated genes and are finally given in input to the
fast pre-ranked GSEA (FGSEA) method in order to determine
significantly enriched pathways and to generate normalized
enrichment scores (NESs) [60]. Next, NESs were multiplied
by the logarithm of the corresponding P-values to produce
sparse embeddings. These adjusted pathway enrichment scores
were finally used as patient-based features in the downstream
clustering analysis. In the RWR-FGSEA approach, the number
of top-ranked genes to be selected from patient-driven gene
rankings was systematically tuned by considering different cut-
offs (between 10% and 50% of ranked genes). The best results
were obtained by using 50 top-ranked genes, corresponding
to approximately 30% of the intersection of differentially
expressed and disease-associated genes, for both BRCA and
PRAD data sets. The dnet-package [17] was used to implement
RWR. In more detail, restart probability was set to 0.75 and a
normalized Laplacian matrix was generated from the adjacency
matrix and used to compute the random walk affinities. We
applied the RWR on both a manually curated PPI network,
which can be retrieved from [13], and gene co-expression
networks (GCNs) generated from the data by using WGCNA
[34]. The retrieved PPI network was directed and unweighted
while WGCNA is typically used to generate undirected and
weighted networks. However, in order to keep the methods
consistent, we used unweighted and undirected networks. For
PPI, the directed edges were simply redefined as undirected,
and for GCNs, we used the hard-threshold WGCNA method.
More specifically, a threshold value was applied to absolute
values of Spearman correlation between genes to yield an
unweighted adjacency matrix. The threshold was tuned based
on the scale-free topology criterion of the resulting network [34].
For BRCA, we selected 0.475 as the threshold, while for PRAD, we
selected 0.525.

Clustering algorithms

The data sets resulting from different feature reduction tech-
niques were then evaluated by means of clustering analysis.
In total we tested six different clustering methods: k-means
[42]; gaussian mixture model (GMM) [46]; agglomerative HC with
average, complete [25] and Ward’s linkage [64]; and divisive HC
(DIANA) [30]. Clustering algorithms are very sensitive to the dis-
tance metric used, especially when the data are very high dimen-
sional. Hence, we used Euclidean distance in the DR-CL workflow
and correlation-based distance (defined as d = 1 − cor(x, y)) in
the BK-CL workflow. Since k-means, GMM and HC with Ward’s
linkage require the use of Euclidean distance, they were only
applied in the DR-CL workflow. The k-means implementation
from ClusterR-package [51] was used with 100 random initializa-
tions based on k-means++ [5]. GMM from mclust-package [59]
was parameterized with a full unrestricted covariance matrix,
which allows the estimation of cluster density in a very flexible
manner. However, a regularizing prior was used on the means
of the mixture components with shrinkage parameter set to
0.01 in order to avoid numerical problems. For agglomerative HC
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we used the f lashClust-package [35] and for DIANA we used the
cluster-package [43].

Evaluation strategy and standard metrics

We assessed clustering performance by using external and inter-
nal validation metrics as well as clustering stability. In our
benchmarking studies, we used the normalized mutual infor-
mation (NMI) method to evaluate the agreement of a clustering
result with known class labels. NMI was also used to assess
the association between the clustering results and known batch
effects. Samples may be processed through different protocols,
depending on the practices followed by each independent lab-
oratory. Therefore, the variable indicating the different labora-
tories that processed the patient samples should be considered
as a possible source of batch effect [50]. However, all biospec-
imen corresponding to the samples in TCGA BRCA and PRAD
were sequenced at the same laboratory [52, 54]. The source of
the biospecimen (i.e. tissue source site) could be relevant due
to possible differences in sample preparation and transport to
the biospecimen storage. Another batch variable that could be
considered is the plate ID which identifies batches of samples
that were sequenced at the same time. In general, we want to
minimize association with the batch variables while maximizing
the association with subtypes. To this end, we applied the cNMI
metric which is based on the difference between phenotype
or subtype NMI and batch NMI [47]. We used the SS (a.k.a.
average silhouette width) to evaluate the internal structure of
clustering results. SS evaluates the goodness of a clustering
result by measuring the compactness of each cluster (or group)
and the separation between different clusters. Well-separated
and dense clusters tend to have high scores, while low-density
and poorly separated clusters tend to result in lower scores.
Clustering stability aims to assess the similarity of clustering
solutions obtained by applying the same clustering algorithm on
different subsets of the same data set. In this study, we used
20 repeats of 5-fold cross-validation in order to simulate 100
different data sets and compile clustering results within selected
folds. Then, several similarity metrics, such as Jaccard similarity
[24] and adjusted Rand index (ARI) [23], were used to assess the
stability of clustering results.

Survival analysis

The Cox proportional hazards (PH) model [15] was used to assess
differences in patient survival between clustering results. In
order to compare survival across different numbers of clusters
we used a likelihood ratio test (LRT) between a baseline model
and an alternative model that included an additional categori-
cal variable corresponding to cluster membership. The baseline
model was fitted using covariates selected from preliminary
analysis limited to the clinical data. TCGA BRCA survival data
consisted of 979 patients; the average survival rate was 86.7%.
Patient age and tumor stage were identified as significant covari-
ates. A total of 89 BRCA patients with follow-up times beyond
3000 days were excluded as outliers. In TCGA PRAD, biochemical
recurrence-free survival was considered as the endpoint due
to the small number of fatal cases in the data. Biochemical
recurrence data were available for 338 patients for whom the
average survival rate was 87.9%. Pre-operative prostate-specific
antigen (PSA) and tumor N-stage were identified as signifi-
cant covariates. Forty-seven PRAD patients with follow-up times
beyond 2000 days were excluded as outliers. Covariates were
selected via a model selection procedure where available clinical

variables were initially tested independently by using a Cox-PH
model. We only considered clinical variables with fewer than
20% missing values in the public data sets which were age,
stage and pathology for BRCA and PSA blood level, age, T-stage,
N-stage and Gleason score category for PRAD. Supplementary
Tables S3 and S4 list the Akaike information criterion (AIC) [2]
and Bayesian information criterion (BIC) [58] in Cox-PH models
including relevant subsets of the clinical variables. The lowest
P-value of coefficients for models corresponding to individual
variables are also shown. For BRCA, age and stage were selected
as covariates since both AIC and BIC were minimized for the
corresponding model and they had low P-values independently.
For PRAD, AIC and BIC did not agree and of the three lowest P-
values age had the highest value, which is why PSA and N-stage
were used since the corresponding model had close to minimal
AIC and BIC and both were significant predictors independently.

Gene module score

In order to assess the mechanistic relevance of clusters, we
defined a score based on gene modules derived from WGCNA.
Gene modules for each data set were identified from a weighted
gene co-expression network constructed from Spearman corre-
lations between DEGs by using the soft power method [34]. The
correlations are raised to a power selected to meet the scale-
free topology criterion. Soft power 6 was selected for BRCA and
4 was selected for PRAD. The weighted network was used to
compute a topological overlap matrix-based similarity for genes
which were then hierarchically clustered to yield gene mod-
ules and associated ‘eigen-genes’ [34]. We then defined a gene
module score based on correlations between cluster indicators
and WGCNA module eigen-genes. The purpose of the score is to
assess the mechanistic distinction between the clusters.

The module score is defined as

score = E
[

min (1, S+) + min (1, S−)
S+ + S−

]
, (1)

where

S±
i =

∑
j

δ±
(
ρ(e(i), c(j))

)
,

where ρ corresponds to spearman correlation, e(i) corresponds to
the ith column of the WGCNA eigen-gene matrix, c(j) corresponds
to the jth cluster indicator variable and

δ−(x) =
⎧⎨
⎩

1 if x ≤ −α

0 otherwise

δ+(x) =
⎧⎨
⎩

1 if x ≥ α

0 otherwise,

where α is a parameter that defines a threshold for counting
correlations.

The fraction is undefined when the denominator is zero
which occurs when no clusters are strongly correlated to an
eigen-gene, in which case we assign a score of β. When β is
close to zero, clustering results that do not exhibit differential
expression between clusters in each gene module are penalized.
For the results presented in this article, we used β = 0 since
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Figure 1. Workflow overview: starting from gene-expression, we transform the data using either data-driven DR methods or BK-based pathway enrichment methods

such that we acquire a lower-dimensional representation of the data for each patient. The patients were then clustered based on this representation by using common

clustering algorithms and finally evaluated with a common set of metrics. Four different DR methods and three different BK methods were tested. For BK methods, we

tested four different gene set collections and two different interaction networks (PPIs and gene co-expression networks).

we wanted to use the score to estimate the extent to which the
clusters cover different gene expression modules.

Results
Computational workflow

Figure 1 shows a graphical illustration of the comparative study
that we implemented to evaluate DR-CL and BK-CL approaches
for disease subtyping. Then, Supplementary Table S5 provides
technical details on the methods that were chosen in the present
study. The main difference between the two approaches was in
how prior BK, represented by disease-relevant genes, pathway
annotations and gene networks, was used in BK-CL to reduce
the gene expression data into pathway activity profiles corre-
sponding to a reduced set of features while in DR-CL feature
reduction was achieved by using computational methods. These
reduced profiles were then given as input to clustering algo-
rithms for patient stratification. In order to assess the added
value of pathway- and network-driven knowledge, we bench-
marked the selected DR-CL and BK-CL methods for patient strat-
ification in two RNA-Seq datasets from TCGA: invasive BRCA and
PRAD. The clustering methods were systematically evaluated
based on cluster separation, association with currently known
subtypes, batch effect, clinical relevance and disease module
association. Details on the methods, hyper-parameter settings
and biological annotations (including pathway gene sets and
the computation of disease-relevant genes) can be found in
Materials and Methods. The mean and standard deviation (SD)
of metrics for each combination of methods is available given
in Supplementary Files S2 and S3. In most cases, the SD was
significantly lower than differences between methods and was
omitted below for clarity. In the following sections, we provide a
summary of the results. A full list of results and the code used to

generate them can be found on our GitHub repository (https://gi
thub.com/vittoriofortino84/COPS/tree/benchmark).

Evaluation of internal metrics

Cluster separation and cohesion were evaluated with the SS
which is based on the difference in average distance of data
points within clusters and between clusters. Tables 1 and 2 show
the mean SS for clusters obtained from different approaches
applied on TCGA BRCA and PRAD gene expression data sets.
For each embedding, the tables only show the best clustering
algorithm which was selected based on a sum of SS, cluster-
ing stability, batch effect, module relevance and clinical rele-
vance. Well-separated and dense clusters tend to have high SS,
while low density and low separation tend to result in lower
SS. SS was computed with respect to the Euclidean distance
in DR-CL approaches while correlation distance was used in
BK-CL SS computation since it was also used in the cluster-
ing for these approaches due to the relatively high number of
dimensions. In BRCA, for two clusters the UMAP-based approach
yielded much higher SSs compared 10with other approaches,
which was apparent in visualizations based on UMAP embed-
dings where the basal subtype was very well separated from the
other subtypes (Supplementary Figure S2 and S3). However, the
basal-luminal division was retrieved by almost every DR-CL
approach, which is why we decided to exclude the two-cluster
result from our analysis. Overall, GSVA outperformed DR-CL
approaches when using KEGG-based pathways. However, in gen-
eral, other BK-CL approaches did not show better performances
than DR-CL methods. As can be observed, in most cases, average
SS decreases as the number of clusters increases. Among DR-
CL approaches, VAEs had the lowest SS in BRCA, which is most
likely due to the difference in embedding dimensions. In PRAD,
the best PCA- and VAE-based results were not far apart in terms
of SS even though VAE embeddings had 10 dimensions and PCA

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://github.com/vittoriofortino84/COPS/tree/benchmark
https://github.com/vittoriofortino84/COPS/tree/benchmark
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data


6 Rintala et al.

Table 1. Mean of average silhouette width of BRCA clusters for the best clustering algorithm for each different embedding based on the average
of the sum of SS, clustering stability, batch effect, module and clinical relevance across different number of clusters (k)

Dimensionality reduction∗ Dimensionality reduction
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

PCA k-means 0.47 0.40 0.38 0.38 PCA k-means 0.45 0.39 0.37 0.37
t-SNE k-means 0.45 0.48 0.46 0.45 t-SNE k-means 0.47 0.47 0.45 0.43
UMAP k-means 0.46 0.47 0.47 0.47 UMAP k-means 0.50 0.49 0.47 0.47
VAE k-means 0.21 0.20 0.20 0.19 – – – – –

DiffRank GSVA
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO DIANA 0.44 0.28 0.25 0.21 GO HC (avg.) 0.30 0.26 0.24 0.23
KEGG DIANA 0.29 0.27 0.23 0.19 KEGG DIANA 0.66 0.62 0.58 0.56
Reactome DIANA 0.44 0.33 0.30 0.29 Reactome DIANA 0.49 0.45 0.41 0.37
Hallmark DIANA 0.35 0.26 0.25 0.22 Hallmark DIANA 0.31 0.27 0.24 0.22

GCN RWR-FGSEA PPI RWR-FGSEA
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO DIANA 0.32 0.21 0.19 0.17 GO DIANA 0.30 0.22 0.20 0.18
KEGG DIANA 0.50 0.38 0.32 0.30 KEGG HC (avg.) 0.55 0.51 0.52 0.50
Reactome DIANA 0.26 0.22 0.21 0.20 Reactome DIANA 0.35 0.27 0.25 0.23
Hallmark DIANA 0.46 0.45 0.44 0.42 Hallmark DIANA 0.46 0.43 0.42 0.37

∗Applied on whole transcriptome (other results were obtained with DEG and disease associated gene intersection).

had 2. UMAP and t-SNE had similar SS in both cancers, although
UMAP was slightly worse than t-SNE in BRCA. However, whether
these differences between approaches correspond to differences
in the ability to find distinct biological patterns is questionable.
The fact is that SS is highly dependent on the number of dimen-
sions (Supplementary Figures S4 and S5). In fact, the effect of
dimensions is clearly visible in the BK-CL results as well: KEGG
has very few pathways while GO has the most and SS is highest
for KEGG while lowest for GO in GSVA and tied for lowest with
REACTOME in RWR-FGSEA. An exception to the pattern was the
Hallmark collection which has the fewest gene sets, but these
gene sets are significantly larger on average, which can result
in less pronounced differences in enrichment scores between
samples and may have resulted in lower SS clusters in these data
sets. Hence, SS should not be used alone for selecting the best
groupings.

On the other hand, clustering stability may be a better metric
for comparing different DR-CL and BK-CL approaches, since it
does not deteriorate when increasing the number of features.
Tables 3 and 4 clustering stability as measured by the Jaccard
similarity between the CV-based sample subsets and the refer-
ence based on all samples. Similarly to Tables 1 and 2, only the
best clustering algorithm for each embedding is shown. PCA and
the RWR-based approach were the most stable when applied
to different subsets of the data. This is expected as PCA is the
only deterministic dimension reduction method that we tested.
T-SNE, UMAP and VAE are based on stochastic optimization
algorithms and random initialization which resulted in slightly
different embeddings every time they were run. GSVA uses an
empirical probability distribution which is based on the input
samples when computing activity scores, which means that
the pathway profile of a given patient depends on the gene-
expression of other patients included in the same input data. As
a result, GSVA-based clustering results never achieve high stabil-
ity. In DiffRank, a given profile also depends on the other input
samples, but it is rank-based which seems to make it less sensi-
tive to the other samples. RWR-FGSEA is deterministic and does

not depend on the other samples since the gene ranking step
is performed independently of other samples, which explains
the high stability it achieves. Another key factor in achieving
highly stable clustering results seems to be the clustering algo-
rithm. DIANA, average linkage HC and k-means were typically
the most stable while complete linkage HC was consistently
one of the most unstable algorithms. In summary, we found
the stability to be very poor for many methods. Considering
that we only removed one-fifth of data points, most methods
could not achieve Jaccard similarity of 0.8 with the remaining
data points. This means that low stability approaches would be
expected to perform poorly when validating results on external
data sets.

Evaluation of external metrics

The clustering results were evaluated based on external infor-
mation of patient samples (e.g. NMI between clusters and known
subtypes). Moreover, we measured how robust the grouping
results were with respect to know batch effects by compiling
the cNMI score [47]. Figure 2 shows cNMI results for both BRCA
and PRAD data sets. The constituent NMIs of the metric are
shown in Supplementary Figures S6 and S7. Computational fea-
ture reduction methods seemed to slightly outperform pathway-
based methods in this metric; although, some of the pathway-
based approaches (e.g. DiffRank and RWR-FGSEA) outperformed
DR-CL approaches in PRAD. In BRCA, batch NMI was very low
compared with subtype NMI for all methods and as a result
the plot corresponds mostly to subtype concordance. Since the
concordance with known subtypes is lower in BK-CL meth-
ods, they could be used to highlight new subtypes in cancer
diseases [7]. As expected, in BRCA, the best cNMI values in
TCGA-BRCA were obtained when selecting number of clusters
close to four, corresponding to Luminal A, Luminal B, Her2-
enriched and Basal-like subtypes. When the number of clusters
was set higher than four, the cNMI compiled over the known
subtypes and batches decreases in DR-CL methods while slightly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Table 2. Mean of average silhouette width of PRAD clusters for the best clustering algorithm for each different embedding based on the average
of the sum of SS, clustering stability, batch effect, module and clinical relevance across different number of clusters (k)

Dimensionality reduction∗ Dimensionality reduction
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

PCA k-means 0.38 0.34 0.34 0.36 PCA k-means 0.34 0.36 0.37 0.36
t-SNE k-means 0.40 0.39 0.38 0.38 t-SNE k-means 0.39 0.39 0.40 0.39
UMAP k-means 0.42 0.43 0.43 0.43 UMAP k-means 0.42 0.43 0.45 0.44
VAE HC (avg.) 0.28 0.23 0.19 0.16 – – – – –

DiffRank GSVA
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO HC (avg.) 0.49 0.43 0.36 0.30 GO DIANA 0.19 0.16 0.14 0.13
KEGG DIANA 0.28 0.26 0.24 0.23 KEGG HC (avg.) 0.68 0.68 0.66 0.66
Reactome DIANA 0.26 0.24 0.23 0.23 Reactome DIANA 0.35 0.34 0.31 0.29
Hallmark DIANA 0.22 0.21 0.20 0.20 Hallmark DIANA 0.42 0.36 0.34 0.32

GCN RWR-FGSEA PPI RWR-FGSEA
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO DIANA 0.24 0.25 0.24 0.23 GO DIANA 0.27 0.23 0.22 0.22
KEGG DIANA 0.42 0.40 0.37 0.30 KEGG HC (avg.) 0.58 0.55 0.52 0.50
Reactome DIANA 0.31 0.22 0.20 0.19 Reactome HC (avg.) 0.37 0.34 0.30 0.27
Hallmark HC (avg.) 0.56 0.53 0.46 0.42 Hallmark HC (avg.) 0.32 0.22 0.17 0.15

∗Applied on whole transcriptome (other results were obtained with DEG and disease associated gene intersection).

Table 3. Mean of clustering stability of BRCA clusters for the best clustering algorithm for each different embedding based on the average of
the sum of SS, clustering stability, batch effect, module and clinical relevance score across different number of clusters (k)

Dimensionality reduction∗ Dimensionality reduction
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

PCA k-means 0.93 0.88 0.84 0.77 PCA k-means 0.95 0.79 0.64 0.86
t-SNE k-means 0.53 0.62 0.53 0.51 t-SNE k-means 0.70 0.65 0.58 0.51
UMAP k-means 0.80 0.79 0.66 0.61 UMAP k-means 0.86 0.78 0.73 0.76
VAE k-means 0.73 0.58 0.64 0.53 – – – – –

DiffRank GSVA
Embedd. Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO DIANA 0.99 0.71 0.76 0.85 GO HC (avg.) 0.76 0.76 0.77 0.77
KEGG DIANA 0.91 0.84 0.82 0.70 KEGG DIANA 0.65 0.80 0.75 0.73
Reactome DIANA 0.97 0.89 0.92 0.93 Reactome DIANA 0.77 0.81 0.74 0.70
Hallmark DIANA 0.95 0.92 0.85 0.88 Hallmark DIANA 0.67 0.79 0.72 0.65

GCN RWR-FGSEA PPI RWR-FGSEA
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k=3 k=4 k=5 k=6

GO DIANA 0.92 0.74 0.74 0.72 GO DIANA 0.99 0.86 0.83 0.83
KEGG DIANA 1.00 0.84 0.84 0.79 KEGG HC (avg.) 1.00 0.98 0.98 0.97
Reactome DIANA 0.82 0.55 0.74 0.72 Reactome DIANA 0.97 0.91 0.90 0.82
Hallmark DIANA 0.95 0.98 0.96 0.94 Hallmark DIANA 0.95 0.93 0.94 0.91

∗Applied on whole transcriptome (other results were obtained with DEG and disease associated gene intersection).

increasing in BK-CL methods. This result, together with high
stability, may suggest that pathway-driven subtyping has the
tendency to identify finer subdivisions. Recent studies show that
breast cancer is a very heterogeneous disease and that more
than four subtypes can be identified by analyzing multi-omics
data [7]. Another subtype concordance metric that is commonly
reported is the ARI which is shown in Supplementary Figure
S8. Our subtype ARI aligned with other omics-based cluster-
ing results based on TCGA BRCA RNA-Seq data [11]. We also
quantified batch effects related to the plate ID for which NMI
is shown in Supplementary Figure S9. Based on our results,
batch effect seems to be very low within individual TCGA cancer

RNA-Seq data sets. TCGA Batch Effects Viewer [1] seems to
confirm this.

Mechanistic relevance of patient stratification results

We utilized co-expression driven gene modules to evaluate the
mechanistic relevance of patient clusters. Gene modules were
identified by using the WGCNA method and were used to assess
whether the patient subgroups were associated with distinct
disease-relevant gene modules. Details on the gene module
detection are reported in Gene module score. Figure 3 shows the
module scores for BRCA and PRAD. The higher the score, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Table 4. Mean of clustering stability of PRAD clusters for the best clustering algorithm for each different embedding based on the average of
the sum of SS, clustering stability, batch effect, module and clinical relevance score across different number of clusters (k)

Dimensionality reduction∗ Dimensionality reduction
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

PCA k-means 0.88 0.82 0.66 0.84 PCA k-means 0.86 0.77 0.80 0.58
t-SNE k-means 0.45 0.37 0.34 0.34 t-SNE k-means 0.53 0.43 0.52 0.49
UMAP k-means 0.47 0.52 0.53 0.52 UMAP k-means 0.73 0.58 0.65 0.56
VAE HC (avg.) 0.86 0.82 0.78 0.76 – – – – –

DiffRank GSVA
Embedd. Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO HC (avg.) 0.97 0.98 0.98 0.97 GO DIANA 0.79 0.81 0.71 0.59
KEGG DIANA 0.85 0.83 0.82 0.79 KEGG HC (avg.) 0.72 0.66 0.60 0.61
Reactome DIANA 0.63 0.51 0.53 0.52 Reactome DIANA 0.69 0.76 0.65 0.56
Hallmark DIANA 0.66 0.65 0.58 0.55 Hallmark DIANA 0.71 0.68 0.61 0.55

GCN RWR-FGSEA PPI RWR-FGSEA
Embedding Clustering k = 3 k = 4 k = 5 k = 6 Embedding Clustering k = 3 k = 4 k = 5 k = 6

GO DIANA 0.86 0.96 0.87 0.83 GO DIANA 0.89 0.98 0.96 0.94
KEGG DIANA 0.89 0.88 0.86 0.73 KEGG HC (avg.) 0.99 0.99 0.99 0.99
Reactome DIANA 0.89 0.87 0.89 0.84 Reactome HC (avg.) 0.99 0.99 0.98 0.96
Hallmark HC (avg.) 0.99 1.00 0.98 0.99 Hallmark HC (avg.) 0.99 0.96 0.89 0.83

∗Applied on whole transcriptome (other results were obtained with DEG and disease associated gene intersection).

more specific the disease-relevant gene modules were to patient
clusters. The score measures how well all modules were associ-
ated with at least one cluster while penalizing associations with
multiple clusters. DR-CL methods outperformed BK-CL methods,
with some exceptions such as DiffRank in BRCA with the Hall-
mark gene set. Surprisingly, the network-based BK-CL methods
were often outperformed by other methods. BK-CL methods
utilizing KEGG pathways also tended to underperform. Network-
driven approaches performed poorly in this metric, especially
in PRAD where they were more likely to score 0.0. This may be
due to the fact that the variation in RWR starting points, i.e.
gene seeds is much lower than variation in the gene-expression
data that they were selected from. The modules were defined
from correlations in DEGs while the seeds were selected from
disease-associated DEGs which were a tiny subset of the module
genes. Hence, it could be less probable that network-derived
clusters would be associated with many different modules since
the modules are topologically clustered in the network. We
further analyzed the genes in each disease-relevant module with
GSEA and Supplementary Figures S10–S15 show the enrichment
results.

Clinical relevance of patient stratification results

To evaluate the survival relevance of clusters we compared Cox-
regression model LRT P-values. A reference model based on
clinical covariates was compared with models with additional
cluster indicator variables. For BRCA, the selected survival model
covariates were age at diagnosis and tumor stage while for
PRAD pre-operative PSA and tumor N-stage were used. The
LRT compares the likelihoods of two competing models and it
accounts for different degrees of freedom (i.e. number of clus-
ters) between them. Figures 4 and 5 show the distribution of P-
values of survival differences between clustering results for the
resampled data sets. DiffRank and RWR-FGSEA yielded signifi-
cant survival differences when paired with KEGG pathways in
BRCA, while other BK-CL methods yielded mostly insignificant

results. However, in PRAD, the results were different: GSVA with
GO-BP pathways performed well when other BK-CL methods
did not. Interestingly, the Hallmark gene sets did not yield high
survival relevance in BRCA but in PRAD they were as relevant
as GO-BP. However, further analysis revealed these results to
be of low stability, while, in contrast, the GO-BP clusters were
relatively stable. The choice of clustering method was relevant
with DIANA yielding the most significant differences. In BRCA
DR-CL methods were often more significant than most BK-CL
methods. Also, the highest median significance in BRCA survival
was observed between four clusters derived from VAE embed-
dings with k-means. Nevertheless, the best BK-CL approaches
outperformed DR-CL approaches most of the time. In PRAD,
DR-CL did not yield any significant survival differences.

One possible explanation for the differences in the survival
relevance of the clusters between BRCA and PRAD could
be the set of disease-associated genes. As mentioned in
Materials and Methods, BRCA-associated genes were selected
based on a genetic association score derived from GWAS-based
evidence. In contrast, in the Open Targets database the PRAD-
associated genes were selected based on the overall score which
is derived from several sources. The quality of the set of disease-
associated genes could be different; although, based on the lack
of significant differences between DR-CL results using different
gene filters in both data sets, this might not be the case. In fact,
by using the whole transcriptome as input to DR-CL in BRCA
slightly better P-values were obtained with t-SNE and UMAP.
The number of samples in the data sets also directly affects
the P-value of the LRT, which could explain why PRAD results
were poorer overall. The difference between BK-CL approaches
could stem from the fact that GSVA and DiffRank are perhaps
more sensitive to smaller changes in gene-expression of a few
genes due to how they compute gene statistics relative to other
samples.

It is currently known that predicting an individual patients’
risk of recurrence or metastatic progression by using gene
expression data in PRAD remains challenging [27]. These

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Figure 2. Average cNMI for different feature transformations (Embeddings), clustering algorithms and number of clusters (k) in TCGA BRCA and PRAD (PAM50 subtype

NMI vs. TSS NMI and Gleason category NMI vs. TSS NMI, respectively). All values are averages from 100 resampled data subsets. While the other were obtained with

the intersection of DEGs and known associations, DR∗ corresponds to dimensionality reduction that was applied on all genes, i.e. without feature selection.

results suggest that BK-CL approaches can obtain clinically
more relevant patient subgroups. Combining known disease-
gene associations and pathway enrichment yielded significant
differences in survival between clusters. In contrast, using
the disease-associated genes in the data-driven clustering
approaches did not yield significant improvements over using all
available genes as input features. While the BK-CL approaches
performed well on these data sets under the given conditions,
it could be argued that they benefited from the fact that both
breast cancer and prostate cancer are already well studied and,
as such, the pathways and disease-associated genes were able
to highlight relevant aspects of the data. Indeed, the survival

significance of the pathway-enrichment-based BRCA clusters
tended to be higher than the known subtypes which had a LRT
P-value of 0.0056 on this data when tested in a similar way
to the clusters. Based on the metrics of our network diffusion
approach, the gene co-expression network that we inferred
from the tumor expression data performed similarly to the
PPI network. Gene-expression is not always correlated with the
corresponding protein concentrations [18], as recently shown for
both BRCA and PRAD [36, 48]. Thus, perhaps the true molecular
interactions are not captured by our method but the genes that
are loosely related to multiple affected genes are discoverable
with our method and point to pathways relevant to survival.
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Figure 3. Summaries of module scores based on association with WGCNA modules as defined in Materials and Methods for different feature transformations

(Embeddings), clustering algorithms and number of clusters (k) in TCGA BRCA and PRAD. All values are averages from 100 resampled data subsets. While the other

were obtained with the intersection of DEGs and known associations, DR∗ corresponds to dimensionality reduction that was applied on all genes, i.e. without feature

selection.

We also tested the use of RWR affinities as inputs to the DR-
CL approach, but the results were roughly equivalent to the
DR-CL results suggesting that the combination of networks and
pathways is beneficial. Another benefit of the BK-CL approaches
for determining clinical relevance is that the results are readily
interpretable.

RWR-FGSEA based breast cancer clusters

We selected one of the best clustering results for BRCA to
analyze further, by using the first Pareto frontier plot shown
in Supplementary Figure S16. The selection process is described

in more detail in the Supplementary Methods and Results file.
Figure 6A–D shows results of this best patient stratification
involving three clusters. Survival analysis of BRCA patients
belonging to the identified clusters (Figure 6A) shows that,
compared with the most common first cluster with average
prognosis, the second cluster had a more positive long-term
prognosis while the third cluster was inseparable. Figure 6B
shows medians of scaled RWR-FGSEA activity scores for
pathways exhibiting the largest differences between clusters
as identified by a BH-adjusted Kruskal–Wallis test P < 10−50.
Positive and negative RWR-FGSEA pathway activity scores are
associated with different RWR seed genes. Positive scores are

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Figure 4. Cox-regression survival LRT P-value of clusters for different pathway enrichment approaches, gene set collections, clustering algorithms and number of

clusters (k) in TCGA BRCA and PRAD. The plot is log-scaled and reversed such that lower P-values are on the top side. The box shows the 25th, 50th and 75th percentiles,

while the whiskers extend from the box to 1.5× interquartile range or the most extreme value depending on which is closest to the 25thor 75th percentile.

associated with DEGs with positive FC while negative scores
are associated with DEGs with negative FC. The results indicate
modulation of several cancer, cell cycle and metabolism-related
pathways that are shared between all the clusters. Clusters 1
and 3 differ mostly on vesicular transport-related pathways
modulating endocytosis, phagocytosis and lysosomal functions.
Interestingly, the separation of cluster two results mostly on
modulation of several immune-related pathways indicating
higher expression and activity of immunomodulatory func-
tions in tumors of this patient group with better survival.
Expression of genes in the most informative pathways is
shown in Supplementary Figure S18. Figure 6C shows the

hazard ratios of a Cox PH model based on tumor stage,
patient age and the identified clusters. Supporting the results
from the survival analysis, the second cluster was associated
with a significantly lower risk while the third cluster was
associated with higher risk when compared with the first cluster.
Supplementary Table S6 shows the clinical variable distribution
within the clusters. Figure 6D shows Spearman correlation
between clusters and disease module eigen-genes which
were identified by using WGCNA. Overall, module correlation
with specific modules was not very high, which aligns with
the mediocre module score observed in the Pareto front
(Supplementary Figure S16). Module to pathway associations

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Figure 5. Cox-regression survival LRT P-value of clusters for different dimensionality reduction techniques, clustering algorithms and number of clusters (k) in TCGA

BRCA and PRAD. The plot is log-scaled and reversed such that lower P-values are on the top side. The box shows the 25th, 50th and 75th percentiles, while the whiskers

extend from the box to 1.5× interquartile range or the most extreme value depending on which is closest to the 25th or 75thpercentile. DR results were obtained with

the intersection of DEGs and known associations, while DR∗ corresponds to dimensionality reduction that was applied on all genes, i.e. without feature selection.

based on GSEA for breast cancer are shown in Supplementary
Figures S10–S12.

GSVA-based prostate cancer clusters

We also selected the best clustering result for PRAD to analyze
further, similarly to BRCA, by selecting one of the Pareto optimal
solutions (Supplementary Figure S18). Figure 7A–D shows results
of the best method dividing the patients into four clusters.
Survival analysis of PRAD patients corresponding to the selected
clusters (Figure 7A) indicates three clusters with insignificant

differences in biochemical recurrence, and one cluster with
significantly poorer outcome. Figure 7B shows Spearman
correlation between the clusters and GSVA enriched pathways
exhibiting the largest differences between clusters as identified
by a BH-adjusted Kruskal–Wallis test P < 10−50. GSVA scores
pathways based on differences in gene expression relative
to other tumor samples within each pathway, a higher score
corresponds to overall higher relative expression and vice versa.
Cluster three with poor outcome has implications of decreased
level of epithelial differentiation, supportive of the idea of
more aggressive tumors. Interestingly, also cluster 2, with a
trend to best survival among the clusters, also shares this

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Figure 6. TCGA BRCA clusters from GCN RWR-FGSEA and DIANA. Panel A shows a Kaplan–Meier survival plot for the clusters, B shows root mean square scaled

medians of the most informative pathway activity scores, C shows the hazard ratios of the Cox PH model including covariates, D shows correlations between clusters

and the WGCNA module eigen-genes.

downregulation of epithelial differentiation pathways while
both clusters 1 and 4 have increased activity scores on these,
supporting the idea of well-differentiated, less aggressive
tumors. Cluster 3 is distinguished by downregulation of smooth
muscle components and pathways on vascular functions.
While the first may indicate decreased amount of stroma in
more aggressive tumors, both may indicate functions related
to providing enhanced circulation and less dense supportive
structures supporting faster growth and abilities to metastasize.
Expression of genes in the most informative pathways is shown
in Supplementary Figure S19. Figure 7C shows the hazard ratios
of a Cox PH model based on tumor N-stage, pre-operative PSA
and cluster, verifying that the identified cluster number three
had a higher risk of biochemical recurrence. Supplementary

Table S7 shows the clinical variable distribution within the clus-
ters. Figure 7D shows correlation between clusters and disease
module eigen-genes generated with WGCNA. Supplementary
Figures S13–S15 show GSEA based enrichment analysis results
for the modules.

Discussion
In this study, we aimed to compare data-driven with knowledge-
driven methods for patient stratification from cancer gene
expression data. Widely used dimensionality reduction tech-
niques, such as PCA, t-SNE, UMAP and VAEs, were compared
against methods that reduce gene-level information into
pathway activation scores over a sample population. Both

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab314#supplementary-data
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Figure 7. TCGA PRAD clusters from GSVA and DIANA. Panel A shows a Kaplan–Meier survival plot for the clusters, B shows correlations between cluster indicators

and the most informative pathway activity scores, C shows the hazard ratios of the Cox PH model including covariates, D shows correlations between clusters and the

WGCNA module eigen-genes.

strategies were coupled with standard clustering algorithms,
such as agglomerative or divisive HC, Gaussian mixture models
and k-means. Metric fairness and usefulness are limitations
which we attempted to address by introducing the module score
and survival-based metrics. Different evaluation metrics were
used to assess their performance including several internal
and external validation measures, as well as scores aiming
to evaluate the clinical utility and the mechanistic relevance
of the identified patient groupings. When using the DR-CL
approach, the choice of DR method had more impact than the
choice of clustering algorithm. In terms of common clustering
metrics, such as cluster separability, cohesion and gold-standard
agreement, manifold learning methods, especially UMAP,
outperformed PCA. This might be attributed to the manifolds’

ability to preserve local as well as global structure in the data
[3]. However, in terms of clustering stability, PCA performed well
while UMAP and t-SNE had poor performance. In general, t-
SNE and UMAP are not recommended for clustering since their
primary intended use is data visualization and the distance
between data points in the embedded space is not preserved
accurately. Nevertheless, the use of t-SNE in combination
with clustering algorithms has been common in the field of
bioinformatics, even though poor stability of the result might
be expected. Our analysis showed that UMAP-based clustering
consistently achieved higher stability in comparison to t-SNE in
these two data sets.

The significance of the embedding was also apparent in
the BK-CL results: the gene set collection choice was more
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significant than the clustering algorithm in every metric. This
suggests that studying different DR and BK integration meth-
ods is relevant. BK-CL methods were outperformed by DR-CL
methods when considering SS and the gene modulation score.
With some exceptions, BK-CL had better results in stability and
clinical relevance of the compiled subtypes. Regarding the cNMI
scores, DiffRank and RWR-FGSEA methods outperformed DR-CL
methods in PRAD. In BRCA it was interesting to observe that
the cNMI score compiled for DiffRank-based solutions increases
when considering a higher number of clusters, suggesting that
pathway-driven subtyping may help the identification of finer
subdivisions in known subtypes. In both BRCA and PRAD, the
best clustering results did not adhere to the current clinical
divisions and could therefore provide additional value. It should
be noted that differences in treatment were ignored; hence,
the differences could be related to differences in efficacy of
treatments for patients in the clusters.

In summary, no single approach dominated every metric,
showing the importance of multi-objective evaluation of
clustering results. Out of the five metrics, cNMI and survival
analysis were perhaps most relevant since the SS, clustering
stability and module score were likely to be more affected by
technical choices in the methods rather than any biologically
linked reasons. Pathway-based approaches are very promising
and many different methods have been suggested [66]. Although
systematic comparison between them is complicated due to
excessive computational time requirements and inadequate
automation for systematic clustering analysis. In the future, it
would be interesting to use sub-pathways and analysis of signal
transduction within directed circuits in pathways, which could
provide more meaningful functional activity estimation and,
thus, better patient-specific pathway profiles [20]. Highly
scalable pathway enrichment methods, such as DiffRank, could
also be applied to cluster scRNA-Seq data.

Key Points
• A systematic comparison of dimensionality reduction

and biological knowledge (BK) integration methods in
clustering workflows is provided.

• A multi-objective evaluation procedure is provided for
assessing the goodness of clustering results based
on standard metrics, such as group separability and
stability measures, and metrics assessing clinical and
mechanistic significance of the identified subtypes.

• The benchmarking results showed that no single
method dominated every metric showing the impor-
tance of multi-objective evaluation.

• BK-based clustering approaches yielded results with
the highest prognostic value in both breast cancer and
prostate cancer.

• We identified clusters with significant prognostic
value that were distinct from current clinical division
in both breast cancer and prostate cancer.
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