
Software Quality for AI: Where we are now?

Valentina Lenarduzzi1, Francesco Lomio2, Sergio Moreschini2, Davide Taibi2,
and Damian Andrew Tamburri3

1 LUT University, Lahti, Finland
valentina.lenarduzzi@lut.fi,

2 Tampere University, Tampere, Finland
[francesco.lomio;sergio.moreschini;davide.taibi]@tuni.fi,

3 Eindhoven University of Technology - JADS, ’s-Hertogenbosch, The Netherlands
d.a.tamburri@tue.nl

Abstract. Artificial Intelligence is getting more and more popular, be-
ing adopted in a large number of applications and technology we use on
a daily basis. However, a large number of Artificial Intelligence appli-
cations are produced by developers without proper training on software
quality practices or processes, and in general, lack in-depth knowledge
regarding software engineering processes. The main reason is due to the
fact that the machine-learning engineer profession has been born very
recently, and currently there is a very limited number of training or
guidelines on issues (such as code quality or testing) for machine learn-
ing and applications using machine learning code. In this work, we aim
at highlighting the main software quality issues of Artificial Intelligence
systems, with a central focus on machine learning code, based on the
experience of our four research groups. Moreover, we aim at defining a
shared research road map, that we would like to discuss and to follow
in collaboration with the workshop participants. As a result, the soft-
ware quality of AI-enabled systems is often poorly tested and of very
low quality.
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1 Introduction

The term Artificial Intelligence (AI) commonly indicates a software system that
is capable of mimicking human intelligence [27]. AI systems are capable of per-
forming actions thanks to underlying algorithms that can learn from the data
without being specifically programmed. The set of these algorithms are referred
to as Machine Learning (ML) algorithms [21].

As any software system, AI systems require attention attaining quality as-
surance, and in particular to their code quality [26]. Conversely, current devel-
opment processes, and in particular agile models, enable companies to decide
the technologies to adopt in their system in a later stage and it becomes hard to
anticipate if a system, or if a data pipeline is used for Machine-Learning (ML)
produces high-quality models [23].
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The need for considering the quality of AI-enabled systems was highlighted
already even more than 30 years ago [31] [26]. For the time being, different
approaches have been proposed to evaluate the quality of the AI-models but
little in the way of AI code quality itself (e.g. [15] and [8]).

Conversely, as already mentioned, the overall quality of the AI-enabled sys-
tems, and in particular the ML code has never been investigated systematically
so far if not anecdotally. For example, a report from Informatics Europe4 and
the ACM Europe Council5, as well as the Networked European Software and
Services Initiative6, highlighted the importance of assessing the quality of AI-
related code [16] [23]. The EU has also proposed a whitepaper discussing a
high-level approach to the regulatory compliance of AI, but did not focus on
code quality issues at all [12] .

AI code needs to be maintained. Therefore, developers need to take care of
the quality of their code, and keep the technical debt [6] under control [28].

The goal of this paper is to highlight the quality-related issues of AI software,
as well as possible solutions that can be adopted to solve them. The identification
of such quality issues is based on the experience of our four research groups: (1)
the Software Engineering group of the LUT University, (2) the Machine Learn-
ing and (3) Software Engineering groups of the Tampere University, and the
(4) Jheronimus Academy Data and Engineering (JADE) lab of the Jheronimus
Academy of Data Science.

The insights in this paper enable researchers to understand possible problems
on the quality of AI-enabled systems opening new research topics and allows
companies to understand how to better address quality issues in their systems.

The remainder of this paper is structured as follows. Section 2 presents Re-
lated works. Section 3 described the current issues on code quality of AI-enabled
systems, Section 4 proposes our shared road map while Section 5 draws conclu-
sions.

2 Related Work

As any software system, AI-enabled software, and in general ML code, require
to pay attention to quality assurance, and in particular to the code quality.
Current development processes, and in particular agile models, enable companies
to decide the technologies to adopt in their system in a later stage. Therefore, it
is hard to anticipate if a system, or if a data pipeline used for ML will produce
high-quality models [23].

A limited number of peer-reviewed works highlighted the quality issue in
AI-enabled software.

Murphy et al. [22] proposed a testing framework for Machine Learning (ML),
introducing the concept of regression testing and an approach for ranking the cor-

4 Informatics Europe https://www.informatics-europe.org
5 ACM Europe Council https://europe.acm.org
6 The Networked European Software and Services Initiative - NESSI http://www.

nessi-europe.com



Software Quality for AI: Where Are We Now? 3

rectness of new versions of ML algorithms. Besides the proposed model, they also
highlighted conflicting technical terms with very different meanings to machine
learning experts than they do to software engineers (e.g. “testing”, “regression”,
“validation”, “model”). Moreover, they raised the problem of code quality, re-
porting that future works should address it. Related to the matter of ML testing,
Zhang et al. provided a comprehensive survey research [30]. In this work with
the term ML testing, they refer to ”any activity aimed at detecting differences
between existing and required behaviors of machine learning systems.” The work
comprehends a section related to fundamental terminology in ML which will be
referred to in Table 1.

Nakajima, in his invited talk, call the attention the product quality of ML-
based systems, identifying new challenges for quality assurance methods. He
proposed to identify new testing methods for ML-based systems, proposing to
adopt Metamorphic testing [10] is a pseudo oracle approach and uses golden
outputs as testing values.

Pimentel et al. [10] investigated the reproducibility of Jupyter notebooks,
showing that less than 50% of notebooks are reproducible, opening new ques-
tions to our community to propose advanced approaches for analyzing Jupyter
notebooks. Wang et al [29] analyzed 2.5 Million of Jupiter notebooks investigat-
ing their code quality reporting that notebooks are inundated with poor quality
code, e.g., not respecting recommended coding practices, or containing unused
variables and deprecated functions. They also report that poor coding practices,
as well as the lack of quality control, might be propagated into the next gen-
eration of developers. Hence, they argue that there is a strong need to identify
quality practices, but especially a quality culture in the ML community.

The vast majority of grey literature also focuses on the quality of the ML
models or on the data. Only a limited number of authors raised the problem
of the overall product quality or of the quality of the ML code. Vignesh [24]
proposed to continuously validate the quality of ML models considering black
boxes techniques and evaluating the performance of model post-deployment on
test data sets and new data from production scenarios. He also proposes to adopt
metamorphic testing, involving data mutation to augment test data sets used
for evaluating model performance and accuracy.

It is interesting to note that Vignesh recommends exposing models being
tested as RESTful service, instead of testing internally or manually. As for the
quality of the code of ML Models, Dhaval [20] proposes to introduce code review
processes for ML developers, adopting code reviewing techniques traditionally
adopted in SW Engineering.

Besides the model itself, the essence of a good machine learning-based soft-
ware relies on the data used to train the network. It is therefore vital to take
into account the characteristics and features that mark a specific application and
meet such qualities in the data used to develop it. Hence, some of the require-
ments that the data needs to meet are: context compatibility, incorruptibility,
and completeness. In a data-driven software scenario, it is not rare to find to
encounter a situation in which the same data set is used to train networks with
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different goals. As an example, most of the networks generated in computer vi-
sion are fine-tuned over a first tuning on ImageNET [13]. In such a situation it
is very important to take into account the compatibility between the context for
which the data has been created and the one we are trying to use the data for.
With incorruptibility we define the quality of a data set to be resistant to ex-
ternal factors that might generate errors, or undesired changes, during writing,
reading, storage, transmission, or processing.

A data set is complete, related to a specific application when it is capable of
describing and defining specific information (in the form of mono or multidimen-
sional variables) in its entirety. Related to a Machine Learning-based approach
we say that the data set is complete when it is capable of tuning the weights
to generate the desired result without any requirement for fine-tuning. As an
example, we take the MNIST data set [17] which is complete if we are training
a network to understand handwritten digits, but not in the case when we want
to train a network to understand handwriting as it does not include letters. To
this matter, an ulterior data set has been created, known as EMNIST [11].

Lwakatare et al performed the work closest to this work [19]. They discussed
software engineering challenges based on a survey conducted on four companies.
The result is a taxonomy of challenges that consider the life-cycle activities of ML
code (such as assemble data set, create model, (re)train and evaluate, deploy).
However, differently than in our work, they did not identify clear issues and
possible solutions.

3 AI Software Quality: Key Issues and Comments

Based on the collective experience of our groups and through simple self-ethnography
[9], we elicited different code quality issues commonly faced by all sorts of stake-
holders (e.g., our research assistant working for consultancy projects in AI, our
colleagues, and our students as developers of AI Software) working with AI soft-
ware. In this Section, we describe the aforementioned elicitation, also discussing
possible solutions that might be adopted to solve the emerged issues.

– Developers Skills and Training. Once the suitable data has been chosen
and proven to be compliant with our requirements the next step involves
coding. The machine learning engineer profession was born less than a decade
ago and therefore, no training guidelines have been outlined yet. Most of the
professionals that occupy this position have been moving from a similar
field such as mathematics, physics, or computer vision. This grouping of
different backgrounds generated ”communication problems” which reflected
in the way the code was written. We identify four open problems nested
in this macro area: code understandability, code quality guidelines, training
problems, and the absence of tools for software quality improvement. One of
the main issues of AI Developers is the lack of skills in software engineering,
and especially the lack of skills in software quality and maintenance. The
reason is that AI developers are often experts borrowed from other fields
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such as physics or mathematics. The lack of skills in software quality is then
reflected in their code. Moreover, as highlighted by Wang et al. [29], the
AI code examples often provided online by AI experts and teachers are of
low quality, mainly because they lack in software engineering skills. As a
result, these poor coding practices may further be propagated into the next
generation of developers. For these reasons, there has been a rise in the
number of courses created to instruct specific approaches related to AI in
different fields [14].

– Development Processes. Because of the aforementioned lack of skills and
training in software engineering, AI developers often lack knowledge of devel-
opment processes. As a result, in our experience, it is often hard to introduce
them into running agile processes, while it is much easier to introduce them
into a waterfall process. The main reason is their problem in segmenting
the work into smaller units or user stories, and to incrementally deliver the
results, as usually done in agile processes.

– Testing Processes. Testing AI code is usually considered for AI developers
as testing and training the machine learning algorithms. The introduction
of unit and integration testing is of paramount importance to ensure the
correct execution of software systems. However, the different testing prac-
tices, usually applied in software engineering, are not commonly applied to
the AI-related code, but only to the overall systems including them, and
the AI-specific function is not commonly part of the CI/CD pipeline. The
reason might be in the complexity of running tests, and the problem of the
non-deterministic results of the AI-algorithms. Metamorphic testing can be
a good solution, at least to run unit testing.

– Deployment confidence. Developers commonly prefer to manually test
their AI-models, and then to manually deploy the systems in production,
mainly because they are not confident in releasing every change automati-
cally. The reason is still connected to the lack of clear testing processes and
the last of integration of unit and integration tests.

– Code Quality. AI-code is often of very low quality, mainly because of the
lack of quality guidelines, quality checks, and standards. We might expect the
IDEs to highlight possible ”code smells” in the code, or to highlight possible
styling issues. However, the current support from IDEs is very limited.
Specific libraries, such as Tensorflow, refer to the document PEP-8 [25],
which is the official style guide for Python code. However, the latter does not
take into account the specific pipeline which involves the different stages of
developing AI-code. An interesting initiative is conducted by Pytorch, which
relies on Pytorch [4], a wrapper developed to organize the code in sections
and separates the research code (dataloader, optimizer, training step) from
the engineering code (i.e. training process). Even if Pytorch does not provide
clear styling guidelines, it pushes developers to adopt clear guidelines for
structuring the code.

– Incompatibility of new version of ML libraries. A well known problem
in ML, is the necessity of installing a specific version of libraries as most of
those might not be compatible with their future releases mining the success
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of the final project. This often creates inconsistency and incompatibility
of the old version of the system with newer versions [1] [2] [5].A possible
workaround is to use microservices, adopting a specific version of a library
on a service, and eventually another version of the same library on another
service. However, when the existing code needs to be executed on a newer
version of the same library, migration issues need to be considered.

– Code Portability. The rise of multiple libraries for ML training together
with the different background of the engineers generated a new ”Babel tower”
for coding. Libraries such as Pytorch or Tensorflow have a different backbone
which makes the same application look very different from one another.
Therefore, to understand and port the code from one library to the other, it
is often nontrivial.

– Terminology. AI and Software Engineering usually adopts the same terms
for different purposes. This issue usually creates misunderstandings between
developers with different backgrounds. In order to clarify the terms adopted
by both domain, in Table 1 we present and describe the most common mis-
leading terms together with their meaning in AI and in SW Engineering.
Some terms have a totally different meaning in the two domains, while oth-
ers might be used for the same purpose in different contexts. As an example,
the term ”parameter”, besides the different definitions proposed in Table 1,
is in both cases used to describe inputs or properties of objects for configura-
tion. As another example, the term ”code” can be also used in AI to describe
the set of instructions to build the different layers, to recall the input dataset,
and to perform training, test (and when necessary validation).

– Communication between AI Developers and other developers . Be-
cause of the different terminology adopted, we commonly experienced com-
munication challenges between AI and other developers. As an example, we
often had communication issues with AI developers without a software engi-
neering background, especially when discussing scalability, architectural, or
development processes related issues.

4 Research Roadmap

In order to address the issues reported in Section 3, we would like to share a
collaborative research road map, that we are aiming at investigating in collabo-
ration with different groups.

– Identify the most common quality issues in AI code using traditional SW
Engineering methodologies. In this step, we are aiming at conducting a set of
empirical studies among AI-developers and end-users of AI-based systems,
intending to elicit the most important internal quality issues experienced by
the developers and the external issues perceived by the users of the same
systems.

– Identify a set of testing techniques applicable to AI-enabled systems, to allow
their execution into the CI/CD pipeline, and increase their confidence in the
deployment.
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Table 1. The terminology adopted in AI and in SW Engineering

Term Machine Learning Software Engineering
Class ”One of a set of enumerated target value

for a label” resulted from a classification
model [3]

An extensible template definition for in-
stantiating objects in object-oriented pro-
gramming.

Code The possible values of a field (variable),
also known as ”category”

The source code

Distribution Probability distribution (from statistics).
Sometimes also referred to distributed
computing or parallelism.

Distributed computing. In testing, refers
to the testing of distributed systems.

Example An entry from a dataset, composed of at
least one features and a label, that can be
used in model training and/or after train-
ing during inference. (also known as Ob-
servation)

An example system or piece of software
often found in software documentation.

Execution
Environment

The set of all the libraries which are in-
stalled, and lately imported in the com-
piler. Specifically, in reinforcement learn-
ing, is the observable world exposed to a
learning agent [3]

A system comprised of hardware and soft-
ware tools used by the developers to
build/deploy software.

Feature A characterizing variable found in the in-
put data to a machine learning model.
Predictions about the data can be made
after gaining insight from these features
(training).

A distinguishing characteristic of a soft-
ware item

Function A mathematical function, mapping pa-
rameters to a domain

In principle the same, in practice refers to
the implementation in the source code

Label In supervised learning: expected output
for a training case. For example, an email
message may be labeled as SPAM or non-
SPAM. [3]

A label refers to the name of a text field
in a form or user interface (e.g the label
of a button).

Layer A set of neurons in a neural network that
operates on input data (possibly from pre-
vious layers) and provides inputs to the
next layer(s) as their outputs. [3]

A layer in a multilayered software solu-
tion, e.g. data access layer, business logic
layer, presentation layer.

Model Output of a ML algorithm after it has
been trained from the training data, the
learning program, and frameworks [30]

Different meaning, depending on the con-
text: Development Model (process), Data
Model (Database schema), ...

Network Usually assuming Neural Network Usually assuming Computer Network
Parameter A variable in a model that is adjusted dur-

ing training to minimize loss. E.g. weights
or normalization parameters.

A variable that holds a piece of data pro-
vided to a function as an input argument.

Pattern Detecting patterns in a dataset. Design patterns or architectural patterns
Performance How well a certain model performs ac-

cording to the selected metrics, e.g. preci-
sion, recall, or false positives, after train-
ing [21].

How fast a certain piece of software exe-
cutes and/or how efficient it is.

Quality See performance Software quality, including internal (e.g.
code quality) and external quality (e.g. us-
ability, performance, ...)

Reference The baseline category used to compare
with other categories.

The variable that points to a memory ad-
dress of another variable

Regression Estimate numerical values, identifying re-
lationships, and correlations between dif-
ferent types of data [30].

Regression (Testing) is a full or partial
selection of already executed test cases
which are re-executed to ensure that a re-
cent program or code change has not ad-
versely affected existing features.

Testing The process of evaluating a network over
a set of data which has not been used for
training and/or validation

Check whether the actual results match
the expected results and to ensure that
the software system is Defect free

Training The process of tuning the weights and bi-
ased of a network recursively by making
use of labeled examples

Developer’s training

Validation The process of using data outside the
training set, known as the validation set,
to evaluate the model quality. Important
to ensure the generalization of the model
outside the training set [3]

Verification and validation is the process
of checking that a software system meets
specifications and that it fulfills its in-
tended purpose (requirements).
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– Identify a set of quality rules for the code and develop a linter for detecting
code-level issues for the most common libraries and languages, starting from
widely used tools for static code analysis [18] and technical debt analysis [7].

– Integrate into our master courses of Machine Learning a course on software
engineering, with a special focus on the maintenance and testing of the AI-
enabled applications

5 Conclusion

In this work, we highlighted the most common quality issues that our developers
face during the development of AI-enabled systems, based on the experience of
our three research groups.

Overall, the training of developers is one of the biggest lacks in AI, which
usually brings several issues related to low code quality of AI-code as well as low
long-term maintenance.
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