

High-Level Synthesis Implementation of an

Accurate HEVC Interpolation Filter on an FPGA

Panu Sjövall, Matti Rasinen, Ari Lemmetti, Jarno Vanne

Ultra Video Group, Tampere University, Finland

{panu.sjovall, matti.rasinen, ari.lemmetti, jarno.vanne}@tuni.fi

Abstract—This paper presents the first known high-level

synthesis (HLS) implementation of an accurate interpolation

filter for High Efficiency Video Coding (HEVC). The

proposed multiplierless shift-register-based architecture is

able to interpolate effectively up to four 8×8 blocks at a time

for HEVC fractional motion estimation (FME). Our filter is

implemented on Intel Arria V and Xilinx Virtex 6 FPGAs. On

Arria V, it can operate at 270 MHz with 21.1 kALUTs.

According to our profiling results, it can filter an adequate

number of samples for FME in real-time 4K HEVC encoding

of up to 85 frames per second (fps). On Virtex 6, the respective

values are 313 MHz, 27.1 kLUTs, and 99 fps. The proposed

solution doubles the speed over any of the existing

interpolation filters for HEVC FME on an FPGA. It is also the

only interpolation filter that meets the needs of real-time 4K

HEVC encoder in practice and without any compromises in

23-bit filtering accuracy.

Keywords—High Efficiency Video Coding (HEVC),

fractional motion estimation (FME), interpolation filter, high-

level synthesis (HLS), field-programmable gate array (FPGA)

I. INTRODUCTION

High Efficiency Video Coding (HEVC/H.265) [1], [2],

is the latest widespread international video coding standard.

It is able to reduce the bitrate by almost 50% for the same

visual quality over the preceding Advanced Video Coding

(AVC/H.264) standard. HEVC coding gain stems mainly

from the new block partitioning structure and improved

motion compensated prediction (MCP) that is used to

remove temporal redundancy between video frames.

The interpolation filter is a normative coding tool of

MCP. It interpolates samples between integer pixels in

fractional-pixel precision for fractional motion estimation

(FME) and fractional-pixel sampling in general. In HEVC,

the accuracy of this filter was improved from that of AVC

by refining the filter coefficients, using longer filter taps,

and increasing the precision of filtering operations [3].

However, higher accuracy also introduces additional

complexity. For example, the HEVC interpolation was

reported to account for up to 38% of the whole encoding

complexity in HEVC test model (HM) [4]. In software

implementations, the time used for filtering can be reduced

by multithreading and vectorization [5]. Further speedup

and lower power budget are typically sought with dedicated

hardware accelerators [6]-[11].

This work proposes a real-time HEVC interpolation

filter implementation on a field-programmable gate array

(FPGA). It is designed to filter luma samples for FME in a

practical HEVC encoder. As in [12], our proposal is sped

up by interpolating samples for 9×9-sized blocks at a time

instead of producing the respective samples by filtering

four overlapping 8×8 blocks individually.

The proposed filter was written in C/C++ at behavioral

level and synthesized for an FPGA with High-level

synthesis (HLS) [13] tool called Catapult [14]. Catapult

HLS tool can automatically generate register-transfer-level

(RTL) description from C/C++ without the need to rewrite

the code with traditional hardware description languages

(HDLs) like VHDL and Verilog. Increasing the design

abstraction from RTL to behavioral level has been reported

to provide 4-6 times increase in productivity [15], mainly

because the behavioral code is more readable, design and

verification times are shorter, and the design reusability is

far better than with handwritten HDL equivalents. All these

aspects motivated us to implement the proposed

interpolation filter with an HLS tool. To the best of our

knowledge, this is also the first HLS implementation for an

accurate HEVC interpolation filter.

The rest of the paper is organized as follows. Section

II addresses the related FPGA architectures for HEVC

interpolation. Section III describes the HEVC interpolation

algorithm and section IV introduces the proposed filtering

scheme and architecture for it. In addition, the

implementation aspects of HLS are considered. Section V

compares the performance and resource consumption of the

proposed system over the related work on FPGAs and

evaluates their feasibility for real-time 4K HEVC encoding.

Section VI concludes the paper.

II. RELATED WORK

The majority of the HEVC interpolation filter

complexity comes from multiply and accumulate (MAC)

operations. In the existing FPGA filter architectures, the

filtering complexity was primarily mitigated by reducing

the number of costly multiplications in MAC operations [9]

or eliminating them completely [6]-[8], [10], [11].

Another common optimization approach is to

implement an approximation of the standard 7/8-tap HEVC

interpolation filter that requires 16-bit input, 23-bit

intermediate, and 17-bit output values for full-precision

interpolation. The approximations were carried out by

reducing bit widths of intermediate interpolation values [7],

[8], [10], [11], simplifying filtering coefficients [7],

decreasing the number of filter taps [7], or reusing the

filters [8], [10], [11]. A common drawback of all these

techniques is their negative effect on coding efficiency over

the full-precision designs [6], [9].

Thirdly, majority of these existing works used either a

15×15 pixel [6], [7], [10], [11] or a 16×16 pixel [8], [9]

reference array to interpolate 8×8 output samples for FME.

However, as introduced in [12] interpolating 9×9 samples

from a 16×16-pixel array can be as efficient as four

separately interpolated 8×8 blocks.

Finally, only one [11] of these prior works was

implemented with HLS. Hence, our proposal is the second

known HLS implementation for HEVC interpolation and

the first HLS solution that operates at real-time and at full

accuracy.

III. FRACTIONAL SAMPLE INTERPOLATION ALGORITHM

 The HEVC standard [1] specifies three sets of filter

coefficients for 7/8-tap luma sample interpolation. Each of

them corresponds to a quarter-pixel displacement: +1/4 px,

+2/4 px, and +3/4 px. Here, they are respectively classified

as qfilter, hfilter, and qfilter-1 coefficients, as tabulated in

Table 1. The same weights are used for both the horizontal

and vertical steps of the filtering. Furthermore, the qfilter

and qfilter-1 coefficients are made up of the same seven

weights, but in reverse order.

Fig. 1 illustrates the HEVC interpolation scheme for

luminance samples. The qfilter coefficients are used for

calculating samples ax,y, dx,y, ex,y, fx,y, gx,y, ix,y, px,y, the hfilter

coefficients for samples bx,y, fx,y, hx,y, ix,y, jx,y, kx,y, qx,y, and

the qfilter-1 coefficients for samples cx,y, gx,y, kx,y, nx,y, px,y,

qx,y, rx,y. In Fig. 1, they are denoted as red, violet, and black

tags, respectively.

Fig. 1 also shows the decomposition of the filtering

process into horizontal, vertical, and diagonal cases based

on the HEVC specification [1]. For example, samples a0,0,

b0,0, and c0,0 are horizontally filtered from integer pixels A-

3,0 to A4,0 as

𝑎0,0 = ൭ 𝐴𝑥,0 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑥ሿ

3

𝑥=−3

൱ ≫ ሺ𝐵 − 8ሻ,

𝑏0,0 = ൭ 𝐴𝑥,0 × ℎ𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑥ሿ

4

𝑥=−3

൱ ≫ ሺ𝐵 − 8ሻ, and

𝑐0,0 = ൭ 𝐴𝑥,0 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟−1ሾ𝑥ሿ

4

𝑥=−2

൱ ≫ ሺ𝐵 − 8ሻ,

where >> denotes right shift and B equals the bit depth of

the reference samples. Vertical filtering is conducted

accordingly but with integer pixels in the vertical direction.

For example, d0,0 is filtered from integer pixels A0,-3 to A0,3.

Furthermore, diagonal samples are interpolated from

the output samples of the horizontal filtering in the vertical

direction. For example, samples e0,0, i0,0, and p0,0 are

interpolated from ax,y samples as

𝑒0,0 = ቌ 𝑎0,𝑦 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑦ሿ

3

𝑦=−3

ቍ ≫ 6,

𝑖0,0 = ቌ 𝑎0,𝑦 × ℎ𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑦ሿ

4

𝑦=−3

ቍ ≫ 6, and

𝑝0,0 = ቌ 𝑎0,𝑦 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟−1ሾ𝑦ሿ

4

𝑦=−2

ቍ ≫ 6.

Samples fx,y, jx,y, and qx,y follow the same formula but are

interpolated from adjacent bx,y samples. Respectively,

samples gx,y, kx,y, and rx,y are filtered from adjacent cx,y

samples. Every sample that goes through the filtering

process is finally rounded and clipped to input bit width [1].

IV. PROPOSED INTERPOLATION FILTER ARCHITECTURE

The proposed hardware architecture is a novel

combination of the following four implementation

techniques:

1) A multiplierless filtering as in [6]-[8], [10], [11];

2) Shift-register-based filtering as in [9];

3) Simultaneous interpolation of 9×9 samples as in [12];

4) HLS design flow as in [11];

A. Multiplierless Filtering

In the multiplierless filtering algorithm, multiplications

are replaced with shift/adder structures. For example, the

original horizontal filtering operation for a sample (S) is

computed as

𝑆 = ൬
−𝑎0 + 4 × 𝑎1 − 10 × 𝑎2 + 58 × 𝑎3

+17 × 𝑎4 − 5 × 𝑎5+𝑎6
൰ ≫ 𝑆ℎ𝑖𝑓𝑡 (1)

Altogether, it contains five multiplications with qfilter

coefficients. Here the sample indices refer to x or y

coordinate depending on the filtering direction. Replacing

the multiplications with shifting and adding yields

𝑆 =

−𝑎0 + 𝑎6 − 𝑎5 + 𝑎4 + 𝑎3 ≪ 5

+ሺ𝑎3 − 𝑎2ሻ ≪ 3 + ሺ𝑎1 − 𝑎5ሻ ≪ 2

+ሺ𝑎3 − 𝑎2ሻ ≪ 1 + ሺ𝑎3 + 𝑎4ሻ ≪ 4
 ≫ 𝑆ℎ𝑖𝑓𝑡. (2)

Fig. 1. Luma integer pixel, ½ pixel, and ¼ pixel positioning.

TABLE I. FILTER COEFFICIENTS

Index i -3 -2 -1 0 1 2 3 4

qfilter -1 4 -10 58 17 -5 1

hfilter -1 4 -11 40 40 -11 4 -1

qfilter
-1

1 -5 17 58 -10 4 -1

In (1) and (2), Shift depends on the filter (see Fig. 1) so that

𝑆ℎ𝑖𝑓𝑡 = ൜
𝐵 − 8, 𝑓𝑖𝑙𝑡𝑒𝑟 ∈ ሼℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙ሽ

6, 𝑓𝑖𝑙𝑡𝑒𝑟 ∈ ሼ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙ሽ
. (3)

This ensures that shifting is done without any loss in

accuracy over the HEVC specification [1].

The multiplierless filtering approach reduces the

hardware cost of the interpolation engine significantly. In

our case, Catapult was applied to synthesize both (1) and

(2) for Arria V, and the area estimate for (2) was only 2.5%

of that of (1) with equivalent synthesis tool constraints.

B. Shift-Register-Based Filtering

Fig. 2 depicts our shift-register based filtering

architecture adopted from [9]. It is composed of vertical,

horizontal, and diagonal filters, shift register with a depth

of 16 pixels, and a round and clip unit. Contrary to [9], the

proposed implementation does not need any multipliers but

it uses parallel 8×16-shift-registers to feed the horizontal

filter. This method requires that integer pixels are received

column by column. For example, the first column includes

pixels A-4,-4, A-4,-3, … A-4,12. Both horizontal and diagonal

filters have internal latencies of 8 cycles whereas the

latency of the vertical filter is only 6 clock cycles. After

initial latency of 23 clock cycles, architecture can produce

15×9×9 samples every 16 clock cycles.

The horizontal filter has 8×16=128 8-bit inputs and

3×16=48 16-bit outputs. It can produce a column of

horizontally filtered samples for each fractional-pixel

offset ax,y, bx,y, and cx,y (3×9 samples) per clock cycle. The

vertical filter has the same throughput, but it filters sample

columns (dx,y, hx,y, nx,y) vertically without utilizing shift-

registers. The diagonal filter produces the rest of the sample

columns at the rate of 9 columns (9×9 samples) per clock

cycle by applying vertical filtering to horizontally filtered

samples. The diagonal filter uses 16-bits for the input and

17-bits for the output.

The intermediate values may require maximum of 23

bits in extreme cases if the offsetting method is not used to

avoid possible overflow [3]. Right shifting the values by 6,

according to (3), makes it necessary to have a 17-bit output

to preserve the required full-precision. All samples are

finally rounded and clipped.

Fig. 3. Interpolation of diagonal samples. (a) 8×8. (b) 9×9.

Fig. 2. The proposed multiplierless shift-register-based architecture for HEVC interpolation (*16-bit input, shifting according to (3)).

Fig. 4. Fractional samples required by FME. (a) Initial. (b) Left. (c) Top.

(d) Top-left.

..

..

..

..

..

(a) (b)

(c) (d)

s-1,-1 s0,-1

s-1,0 s0,0

s7,7

s7,-1

s-1,7

s6,-1

s7,0s6,0

s-1,6 s0,6

s0,7

s7,6s6,6

s6,7

..

..

..

..

..

s-1,-1 s0,-1

s-1,0 s0,0

s7,7

s7,-1

s-1,7

s6,-1

s7,0s6,0

s-1,6 s0,6

s0,7

s7,6s6,6

s6,7

..

..

..

..

..

s-1,-1 s0,-1

s-1,0 s0,0

s7,7

s7,-1

s-1,7

s6,-1

s7,0s6,0

s-1,6 s0,6

s0,7

s7,6s6,6

s6,7

..

..

..

..

..

s-1,-1 s0,-1

s-1,0 s0,0

s7,7

s7,-1

s-1,7

s6,-1

s7,0s6,0

s-1,6 s0,6

s0,7

s7,6s6,6

s6,7

a0,0 b0,0 c0,0

d0,0 e0,0 f0,0 g0,0

h0,0 i0,0 j0,0 k0,0

n0,0 p0,0 q0,0 r0,0

C. Simultaneous Interpolation of 9x9 Samples

Interpolating an 8×8 block of samples with HEVC-

compliant 7/8-tap filters requires an array of 15×15

reference integer pixels. Therefore, the reference sample

block of 8×8 integer pixels needs to be extended by 3 extra

integer pixels left and upward as well as 4 extra integer

pixels right and downward as depicted in Fig. 3(a).

 In FME, the best adjacent fractional-pixel offset can

be found in any direction given by vertical (Δy) and

horizontal (Δx) quarter-pixel offsets around the sample

position of interest. Since the filter coefficients are

exclusively defined for positive fractional offsets, only the

pixels with fractional offsets to the right and downwards

can be completely interpolated from an array of 15×15

reference pixels. This is illustrated in Fig. 4(a) with a

shaded 8×8 block containing all interpolated samples.

 Instead, negative fractional offsets are derived by

adding positive fractional offsets to negative integer

offsets, such as Δx = -1/4 = -1 + 3/4. Thus, performing FME

in the remaining directions requires that the interpolation

window is moved left, up, and diagonally up-left by one

pixel to be able to interpolate all the required samples, as

shown in Fig. 4(b)-(d), respectively. At sample level, 15

fractional positions (a-r) per interpolation window position

need to be filtered around an integer sample. For an 8×8

block, it means that 4 × 15 × 8 × 8 = 3840 fractional-pixels

(s) are interpolated [6], [7], [10], [11].

As illustrated by Fig. 3(b), extending the reference

array by one extra pixel left and upward to 16×16 pixels

allows for more efficient interpolation for FME [12] since

it eliminates redundant filtering needed in the traditional

approach. The majority of the fractional samples are

anyway interpolated regardless of the interpolation window

position. When the left and above edges of a block are also

interpolated, producing blocks of 9×9 samples for each

fractional-pixel position (a-r) at a time provides all quarter-

pixel (and half-pixel) samples required for FME with a

single block interpolation pass.

With this minimal increase to the reference array and

resources, the interpolation calls for FME can be reduced

from 25 to 16 for 32×32 blocks, 9 to 4 for 16×16 blocks,

and 4 to 1 for 8×8 blocks.

D. HLS Design Aspects

The C implementation of the proposed interpolation

filter was originally designed for our open-source Kvazaar

HEVC encoder [16] and then further optimized for

synthesis with Catapult HLS tool. The HLS approach sped

up the implementation phase considerably because the RTL

description was automatically generated from the C code

without any manual design phases for HDL description.

The HLS code for the vertical filter is listed in Appendix A

as an example.

Catapult calculates and modifies the throughput of the

design based on the target technology, desired clock

frequency, and other architectural constraints. It can

automatically adjust the number of combinatorial

operations per clock cycle and pipeline stages of the state

machine for the desired throughput. For example, our filter

design was optimized for speed, so Catapult was

configured to unroll all nested loops for the optimal

throughput. These loop settings could have easily been

modified for reduced area, e.g., for a smaller FPGA.

For faster verification, Catapult also uses the same C

source code for automatic testbench generation. The

testbench synchronizes with the input and output of the

design under verification, so it is tolerant of architectural

changes. In this work, the same testbench was used along

the whole design process including behavioral

functionality verification, RTL simulation, and FPGA

prototyping.

HLS also offers better design reusability over

traditional design approaches. A technology-independent

behavioral code releases the designers from addressing the

implementation details of the target technology, such as

timing, interfaces, and memory elements. In principle, the

same holds for the handwritten RTL code but the design is

usually implemented with a specific technology and

performance in mind. In this work, it was straightforward

to generate optimized RTL designs for both Intel and

Xilinx FPGAs, by only changing the target technology in

Catapult.

V. PERFORMANCE ANALYSIS

Table 2 reports the area and performance results of the

proposed interpolation architecture on Intel Arria V and

Xilinx Virtex 6 FPGAs together with the prior art. Our

proposal was synthesized with Intel Quartus Prime 18.1 for

Arria V and Mentor Precision Synthesis 2019.2.0.9 for

Virtex 6. The obtained results were benchmarked against

related HEVC interpolation implementations on FPGA.

A. Resource and Throughput Evaluation

On Arria V, the proposed architecture can operate at

270 MHz frequency and it uses 18.9 kALUTs with the

15×15 input array of reference pixels. Altogether, 15

interpolated samples are filtered per integer pixel, meaning

that a total of 15 × (8 × 8) = 960 samples are interpolated

per 8×8 block. The architecture completes a single 8×8

sample block in 15 cycles so it can output samples at a rate

of (270 MHz × 960 samples) / 15 = 17 280 Msamples/s.

Expanding the size of the input array from 15×15 to

16×16 pixels increases the resource consumption by 11.3%

to 21.1 kALUTs and latency to 16 cycles. With this

minimal overhead, our proposal can be made to output fully

interpolated 9×9 sample blocks, and the throughput

increases by 18.7% to (270 MHz × 15 × (9 × 9) samples) /

16 = 20 503 Msamples/s. The respective results on Virtex

6 are 27.1 kLUTs, 313 MHz, and 23 786 Msamples/s.

The characteristics of the proposed implementation are

superior to those of existing approaches [6]-[11]. The full-

precision architectures presented by Pastuszak [6] et al. and

Lung et al. [9] needed 36% and 5% more resources for 58%

and 80% lower throughputs than ours, respectively. The

rest of the solutions [7], [8], [10], [11] only implement

approximated interpolation functionality that reduces

accuracy over that of standard-compliant solutions, limit

their usage, and degrades coding efficiency.

B. Performance Estimation in Practical HEVC Encoder

The effective throughputs of the proposed and existing

solutions were also estimated by accommodating them to

the needs of FME in our practical Kvazaar open-source

HEVC encoder [5], [16] that was configured for real-time

low-delay HEVC encoding.

Table 3 details the coding parameters of Kvazaar. The

test set was made up of the eight 2160p (2160×3840 pixels)

test video sequences (CityAlley, FlowerFocus, FlowerKids,

FlowerPan, RaceNight, RiverBank, SunBath, and Twilight)

from our UVG Dataset [17]. Our profiling was carried out

by encoding the sequences at 50 frames per second (fps) to

estimate the requirements of FME processing in real-time

HEVC coding.

According to our profiling, Kvazaar FME required

samples at average throughput of 17 719 Msamples/s with

8×8 sample blocks. However, increasing the sample block

size to 9×9 reduced the throughput need by 32% to 12 055

Msamples/s if the extra interpolated area was properly used

in FME.

On Arria V, our solution is able to output 8×8 sample

blocks for Kvazaar FME at an adequate rate up to coding

speed of 49 fps. Furthermore, increasing the sample block

to 9×9 makes it possible to accelerate coding speed by 1.7×

up to 85 fps. The higher operating frequency on Virtex 6

increases the frame rate up to 99 fps. These two solutions

are 2.0× and 2.3× as fast as any of the existing solutions.

Hence, only the proposed solutions make it possible to

encode 2160p sequence in real time.

VI. CONCLUSION

This paper presented the first known HLS

implementation of an accurate HEVC interpolation filter on

FPGA. The C source code of the filter was originally

designed for the Kvazaar HEVC encoder, then optimized

for the Catapult HLS tool, and finally synthesized for Arria

V and Virtex 6 FPGAs. Our multiplierless shift-register-

based architecture can interpolate 9×9 samples from a

16×16 reference input and thereby yield four interpolated

8×8 blocks at a time for HEVC FME. This scheme was

shown to almost double the speed of HEVC interpolation

with a slight FPGA resource overhead.

According to our profiling results, the proposed two

implementations are able to filter adequate number of

samples for FME processing in practical 4K HEVC

encoding up to frame rates of 85 and 99 fps, respectively.

Our approach almost doubles the speed over any of the

existing HEVC interpolation filters on FPGA. It also uses

23-bit intermediate results to preserve accuracy with all

possible input pixel blocks. Hence, it is the only FPGA

solution that meets the needs of real-time 4K HEVC

encoder in practice and without any compromises in

filtering accuracy. Furthermore, the emerging Versatile

Video Coding (VVC/H.266) [18] standard specifies

interpolation filters similar to those of HEVC, so the

proposed techniques are suitable to accelerate VVC coding

as well.

ACKNOWLEDGMENT

This paper is part of the ADACORSA project that has

received funding within the ECSEL JU in collaboration

with the European Union's H2020 Framework Programme

(H2020/2014-2020) and National Authorities, under grant

agreement 876019.

REFERENCES

[1] High Efficiency Video Coding, document ITU-T Rec. H.265 and
ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Nov. 2019.

[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the High Efficiency Video Coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-
1668.

[3] K. Ugur, A. Alshin, E. Alshina, F. Bossen, W. Han, J. Park, and J.
Lainema, “Motion compensated prediction and interpolation filter
design in H.265/HEVC,” IEEE J. Sel. Topics Signal Process., vol.
7, no. 6, Dec. 2013, pp. 946-956

[4] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and
AVC video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol.
22, no. 12, Dec. 2012, pp. 1885-1898.

[5] A. Lemmetti, M. Viitanen, A. Mercat, and J. Vanne, “Kvazaar 2.0:
fast and efficient open-source HEVC inter encoder,” in Proc. ACM
Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[6] G. Pastuszak and M. Trochimiuk, “Architecture design of the high-
throughput compensator and interpolator for the H.265/HEVC

TABLE III. KVAZAAR PARAMETERS IN OUR EXPERIMENTS

Feature Kvazaar configuration

Preset Ultrafast

Inter Blocks 32×32 / 16×16

Intra Blocks 16×16 / 8×8

Fractional-pixel ME 1/4-pixel precision*

Biprediction Disabled*

Quantization Parameter 22

GOP Structure Low Delay P, 4 frames*

("--gop=lp-g4d3t1")

* overrides the preset default

TABLE II. PERFORMANCE AND AREA RESULTS OF THE PROPOSED AND RELATED HEVC INTERPOLATION FILTER ARCHITECTURES ON FPGA

Architecture FPGA Input Output Cycles Msamples/s

Proposed (HLS) Arria V 18.9 kALUT 270 MHz 15×15 8×8 15 17 280 49 fps

Proposed (HLS) Arria V 21.1 kALUT 270 MHz 16×16 9×9 16 20 503 85 fps

Pastuszak[6] Arria II 28.8 kALUT 200 MHz 15×15 8×8 15 12 800 36 fps

Penny [7] Stratix V 5.7 kALUT 239 MHz 15×15 8×8 15 15 282 43 fps

Silva [8] Cyclone 4 4.6 kALUT 76 MHz 16×16 8×8 47 1 562 4 fps

Proposed (HLS) Virtex 6 27.1 kLUT 313 MHz 16×16 9×9 16 23 768 99 fps

Lung [9] Virtex 5 28.5 kLUT 120 MHz 16×16 8×8 16 7 200 20 fps

Mert [10] Virtex 6 3.8 kLUT 233 MHz 15×15 8×8 50 4 474 13 fps

Ghani [11] (HLS) Virtex 6 14.2 kLUT 168 MHz 15×15 8×8 29 5 561 16 fps

Logic Cells Freq. Speed (2160p)

encoder,” J. Real-Time Image Process. vol. 11, no. 4, Apr. 2014, pp.
663-673.

[7] W. Penny, G. Correa, L. Agostini, D. Palomino, M. Porto, G. Nazar,
and B. Zatt, “Low-power and memory-aware approximate hardware
architecture for fractional motion estimation interpolation on
HEVC,” in Proc. IEEE Int. Symp. Circuits Syst., Sevilla, Spain, Oct.
2020.

[8] R. da Silva, Í. Siqueira, and M. Grellert, “Approximate interpolation
filters for the fractional motion estimation in HEVC encoders and
their VLSI design,” in Proc. Symp. Integ.r Circuits Syst. Des., Sao
Paulo, Brazil, Aug. 2019.

[9] C. Lung and C. Shen, “A high-throughput interpolator for fractional
motion estimation in high efficient video coding (HEVC) systems,”
in Proc. IEEE Asia Pacific Conf. Circuits Syst., Ishigaki, Japan, Nov.
2014.

[10] A. C. Mert, E. Kalali, and I. Hamzaoglu, “An HEVC fractional
interpolation hardware using memory based constant
multiplication,” in Proc. IEEE Int. Conf. Consum. Electron., Las
Vegas, Nevada, USA, Jan. 2018,

[11] F. A. Ghani, E. Kalali, and I. Hamzaoglu, “FPGA implementations
of HEVC sub-pixel interpolation using high-level synthesis,” in
Proc. Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era, Istanbul,
Turkey, Apr. 2016.

[12] G. Pastuszak and M. Trochimiuk, “Algorithm and architecture
design of the motion estimation for the H.265/HEVC 4K-UHD
encoder,” J. Real-Time Image Process., vol. 12, July 2015, pp. 663-
673.

[13] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An
introduction to high-level synthesis,” IEEE Des. Test Comput., vol.
26, no. 4, July-Aug. 2009, pp. 8-17.

[14] Catapult: HLS-verification [Online]. Available:
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/hls-
verification

[15] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 5, May 2019,
pp. 898-911.

[16] Kvazaar HEVC encoder. [Online]. Available:
https://github.com/ultravideo/kvazaar

[17] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K
sequences for video codec analysis and development,” Proc. ACM
Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[18] Versatile Video Coding, Recommendation ITU-T Rec. H.266 and
ISO/IEC 23090-3 (VVC), ITU-T and ISO/IEC JTC 1, July 2020.

APPENDIX A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

// Template data structures for passing data through channels

template<int width> struct IntegerPixel {

 ac_int<width,false> column[16];

};

template<int width, int filters, int samples> struct Filtered {

 ac_int<width,true> pixel[filters][samples];

};

// Template functions for the three filter coefficients: qfilter, hfilter, and inverse qfilter
template<int width_in, int width_out>

ac_int<width_out,true> qfilter(ac_int<width_in, false> a[8]) {

 ac_int<width_in,true> S = -a[0] + a[6] - a[5] + a[4] + (a[3] << 5)

 + ((-a[2] + a[3]) << 3) + ((a[1] - a[5]) << 2)

 + ((a[3] - a[2]) << 1) + ((a[3] + a[4]) << 4);

 return S;

}

template<int width_in, int width_out>

ac_int<width_out,true> hfilter(ac_int<width_in, false> a[8]) {

 ac_int<width_in,true> S = -a[0] - a[7] - a[2] - a[5] - ((a[2] + a[5]) << 1)

 + ((a[1] + a[6]) << 2) + ((a[3] + a[4] - a[2] - a[5]) << 3)

 + ((a[3] + a[4]) << 5);

 return S;

}

template<int width_in, int width_out>

ac_int<width_out,true> qfilter_1(ac_int<width_in, false> a[8]) {

 ac_int<width_in,true> S = -a[7] + a[1] - a[2] + a[3] + ((-a[5] + a[4]) << 3)

 + ((a[6] - a[2]) << 2) + ((a[4] - a[5]) << 1)

 + ((a[4] + a[3]) << 4) + (a[4] << 5);

 return S;

}

// Hierarchical unit for vertical filtering using qfilter, hfilter, and inverse qfilter

void vertical_filter(ac_channel< IntegerPixel<BIT_DEPTH> > &pixels,

 ac_channel<Filtered<BIT_DEPTH*2, 3, 9> > &filt_ver_full) {

 IntegerPixel<BIT_DEPTH> pixels_in;

 Filtered<BIT_DEPTH*2, 3, 9> filt_out;

 pixels_in = pixels.read();

 #pragma hls_unroll yes

 for(uint4 x=0;x<9;x++) {

 filt_out.pixel[0][x] = qfilter<BIT_DEPTH,BIT_DEPTH*2>(pixels_in.column + x);

 filt_out.pixel[1][x] = hfilter<BIT_DEPTH,BIT_DEPTH*2>(pixels_in.column + x);

 filt_out.pixel[2][x] = qfilter_1<BIT_DEPTH,BIT_DEPTH*2>(pixels_in.column + x);

 }

 filt_ver_full.write(filt_out);

}

// Hierarchical unit for rounding and clipping

void ver_round_clip(ac_channel<Filtered<BIT_DEPTH*2, 3, 9> > &filt_ver_full,

 ac_channel<Filtered<BIT_DEPTH, 3, 9> > &filt_ver_final){

 Filtered<BIT_DEPTH*2, 3, 9> filt_in = filt_ver_full.read();

 Filtered<BIT_DEPTH, 3, 9> filt_round_clip_out;

 #pragma hls_unroll yes

 for(uint3 a = 0; a < 3; a++) {

 #pragma hls_unroll yes

 for(uint4 b = 0; b < 9; b++) {

 // #define CLIP(low,high,value) MAX((low),MIN((high),(value)))

 filt_round_clip_out.pixel[a][b] =

 CLIP(PIXEL_MIN, PIXEL_MAX, ((filt_in.pixel[a][b] + round) >> shift));

 }

 }

 filt_ver_final.write(filt_round_clip_out);

}

// Top-level unit for connecting the two hierarchical units

void vertical_top(ac_channel<IntegerPixel<BIT_DEPTH> > &pixels,

 ac_channel<Filtered<BIT_DEPTH, 3, 9> > &filt_vert_final) {

 static ac_channel<Filtered<BIT_DEPTH*2, 3, 9> > filt_ver_hier;

 vertical_filter(pixels, filt_ver_hier);

 vertical_round_clip(filt_ver_hier, filt_vert_final);

}

