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Abstract—This paper presents the first known high-level 

synthesis (HLS) implementation of an accurate interpolation 

filter for High Efficiency Video Coding (HEVC). The 

proposed multiplierless shift-register-based architecture is 

able to interpolate effectively up to four 8×8 blocks at a time 

for HEVC fractional motion estimation (FME). Our filter is 

implemented on Intel Arria V and Xilinx Virtex 6 FPGAs. On 

Arria V, it can operate at 270 MHz with 21.1 kALUTs. 

According to our profiling results, it can filter an adequate 

number of samples for FME in real-time 4K HEVC encoding 

of up to 85 frames per second (fps). On Virtex 6, the respective 

values are 313 MHz, 27.1 kLUTs, and 99 fps. The proposed 

solution doubles the speed over any of the existing 

interpolation filters for HEVC FME on an FPGA. It is also the 

only interpolation filter that meets the needs of real-time 4K 

HEVC encoder in practice and without any compromises in 

23-bit filtering accuracy. 

Keywords—High Efficiency Video Coding (HEVC), 

fractional motion estimation (FME), interpolation filter, high-
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I. INTRODUCTION 

High Efficiency Video Coding (HEVC/H.265) [1], [2], 

is the latest widespread international video coding standard. 

It is able to reduce the bitrate by almost 50% for the same 

visual quality over the preceding Advanced Video Coding 

(AVC/H.264) standard. HEVC coding gain stems mainly 

from the new block partitioning structure and improved 

motion compensated prediction (MCP) that is used to 

remove temporal redundancy between video frames.  

The interpolation filter is a normative coding tool of 

MCP. It interpolates samples between integer pixels in 

fractional-pixel precision for fractional motion estimation 

(FME) and fractional-pixel sampling in general. In HEVC, 

the accuracy of this filter was improved from that of AVC 

by refining the filter coefficients, using longer filter taps, 

and increasing the precision of filtering operations [3]. 

However, higher accuracy also introduces additional 

complexity. For example, the HEVC interpolation was 

reported to account for up to 38% of the whole encoding 

complexity in HEVC test model (HM) [4]. In software 

implementations, the time used for filtering can be reduced 

by multithreading and vectorization [5]. Further speedup 

and lower power budget are typically sought with dedicated 

hardware accelerators [6]-[11]. 

This work proposes a real-time HEVC interpolation 

filter implementation on a field-programmable gate array 

(FPGA). It is designed to filter luma samples for FME in a 

practical HEVC encoder. As in [12], our proposal is sped 

up by interpolating samples for 9×9-sized blocks at a time 

instead of producing the respective samples by filtering 

four overlapping 8×8 blocks individually. 

The proposed filter was written in C/C++ at behavioral 

level and synthesized for an FPGA with High-level 

synthesis (HLS) [13] tool called Catapult [14]. Catapult 

HLS tool can automatically generate register-transfer-level 

(RTL) description from C/C++ without the need to rewrite 

the code with traditional hardware description languages 

(HDLs) like VHDL and Verilog. Increasing the design 

abstraction from RTL to behavioral level has been reported 

to provide 4-6 times increase in productivity [15], mainly 

because the behavioral code is more readable, design and 

verification times are shorter, and the design reusability is 

far better than with handwritten HDL equivalents. All these 

aspects motivated us to implement the proposed 

interpolation filter with an HLS tool. To the best of our 

knowledge, this is also the first HLS implementation for an 

accurate HEVC interpolation filter. 

The rest of the paper is organized as follows. Section 

II addresses the related FPGA architectures for HEVC 

interpolation. Section III describes the HEVC interpolation 

algorithm and section IV introduces the proposed filtering 

scheme and architecture for it. In addition, the 

implementation aspects of HLS are considered. Section V 

compares the performance and resource consumption of the 

proposed system over the related work on FPGAs and 

evaluates their feasibility for real-time 4K HEVC encoding. 

Section VI concludes the paper. 

II. RELATED WORK 

The majority of the HEVC interpolation filter 

complexity comes from multiply and accumulate (MAC) 

operations. In the existing FPGA filter architectures, the 

filtering complexity was primarily mitigated by reducing 

the number of costly multiplications in MAC operations [9] 

or eliminating them completely [6]-[8], [10], [11]. 

Another common optimization approach is to 

implement an approximation of the standard 7/8-tap HEVC 

interpolation filter that requires 16-bit input, 23-bit 

intermediate, and 17-bit output values for full-precision 

interpolation. The approximations were carried out by 

reducing bit widths of intermediate interpolation values [7], 

[8], [10], [11], simplifying filtering coefficients [7], 

decreasing the number of filter taps [7], or reusing the 

filters [8], [10], [11]. A common drawback of all these 

techniques is their negative effect on coding efficiency over 

the full-precision designs [6], [9].  

Thirdly, majority of these existing works used either a 

15×15 pixel [6], [7], [10], [11] or a 16×16 pixel [8], [9] 

reference array to interpolate 8×8 output samples for FME. 

However, as introduced in [12] interpolating 9×9 samples 

from a 16×16-pixel array can be as efficient as four 

separately interpolated 8×8 blocks. 



Finally, only one [11] of these prior works was 

implemented with HLS. Hence, our proposal is the second 

known HLS implementation for HEVC interpolation and 

the first HLS solution that operates at real-time and at full 

accuracy. 

III. FRACTIONAL SAMPLE INTERPOLATION ALGORITHM 

 The HEVC standard [1] specifies three sets of filter 

coefficients for 7/8-tap luma sample interpolation. Each of 

them corresponds to a quarter-pixel displacement: +1/4 px, 

+2/4 px, and +3/4 px. Here, they are respectively classified 

as qfilter, hfilter, and qfilter-1 coefficients, as tabulated in 

Table 1. The same weights are used for both the horizontal 

and vertical steps of the filtering. Furthermore, the qfilter 

and qfilter-1 coefficients are made up of the same seven 

weights, but in reverse order.  

Fig. 1 illustrates the HEVC interpolation scheme for 

luminance samples. The qfilter coefficients are used for 

calculating samples ax,y, dx,y, ex,y, fx,y, gx,y, ix,y, px,y, the hfilter 

coefficients for samples bx,y, fx,y, hx,y, ix,y, jx,y, kx,y, qx,y, and 

the qfilter-1 coefficients for samples cx,y, gx,y, kx,y, nx,y, px,y, 

qx,y, rx,y. In Fig. 1, they are denoted as red, violet, and black 

tags, respectively. 

Fig. 1 also shows the decomposition of the filtering 

process into horizontal, vertical, and diagonal cases based 

on the HEVC specification [1]. For example, samples a0,0, 

b0,0, and c0,0 are horizontally filtered from integer pixels A-

3,0 to A4,0 as 

𝑎0,0 = ൭  𝐴𝑥,0 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑥ሿ

3

𝑥=−3

൱ ≫ ሺ𝐵 − 8ሻ, 

𝑏0,0 = ൭  𝐴𝑥,0 × ℎ𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑥ሿ

4

𝑥=−3

൱ ≫ ሺ𝐵 − 8ሻ, and 

𝑐0,0 = ൭  𝐴𝑥,0 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟−1ሾ𝑥ሿ

4

𝑥=−2

൱ ≫ ሺ𝐵 − 8ሻ, 

where >> denotes right shift and B equals the bit depth of 

the reference samples. Vertical filtering is conducted 

accordingly but with integer pixels in the vertical direction. 

For example, d0,0 is filtered from integer pixels A0,-3 to A0,3. 

Furthermore, diagonal samples are interpolated from 

the output samples of the horizontal filtering in the vertical 

direction. For example, samples e0,0, i0,0, and p0,0 are 

interpolated from ax,y samples as 

𝑒0,0 = ቌ  𝑎0,𝑦 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑦ሿ

3

𝑦=−3

ቍ ≫ 6, 

𝑖0,0 = ቌ  𝑎0,𝑦 × ℎ𝑓𝑖𝑙𝑡𝑒𝑟ሾ𝑦ሿ

4

𝑦=−3

ቍ ≫ 6, and 

𝑝0,0 = ቌ  𝑎0,𝑦 × 𝑞𝑓𝑖𝑙𝑡𝑒𝑟−1ሾ𝑦ሿ

4

𝑦=−2

ቍ ≫ 6. 

Samples fx,y, jx,y, and qx,y follow the same formula but are 

interpolated from adjacent bx,y samples. Respectively, 

samples gx,y, kx,y, and rx,y are filtered from adjacent cx,y 

samples. Every sample that goes through the filtering 

process is finally rounded and clipped to input bit width [1]. 

IV. PROPOSED INTERPOLATION FILTER ARCHITECTURE 

The proposed hardware architecture is a novel 

combination of the following four implementation 

techniques: 

1) A multiplierless filtering as in [6]-[8], [10], [11]; 

2) Shift-register-based filtering as in [9]; 

3) Simultaneous interpolation of 9×9 samples as in [12];  

4) HLS design flow as in [11]; 

A. Multiplierless Filtering 

In the multiplierless filtering algorithm, multiplications 

are replaced with shift/adder structures. For example, the 

original horizontal filtering operation for a sample (S) is 

computed as 

𝑆 = ൬
−𝑎0 + 4 × 𝑎1 − 10 × 𝑎2 + 58 × 𝑎3

+17 × 𝑎4 − 5 × 𝑎5+𝑎6
൰ ≫ 𝑆ℎ𝑖𝑓𝑡 (1) 

Altogether, it contains five multiplications with qfilter 

coefficients. Here the sample indices refer to x or y 

coordinate depending on the filtering direction. Replacing 

the multiplications with shifting and adding yields 

𝑆 = 

−𝑎0 + 𝑎6 − 𝑎5 + 𝑎4 + 𝑎3 ≪ 5

+ሺ𝑎3 − 𝑎2ሻ ≪ 3 + ሺ𝑎1 − 𝑎5ሻ ≪ 2

+ሺ𝑎3 − 𝑎2ሻ ≪ 1 + ሺ𝑎3 + 𝑎4ሻ ≪ 4
 ≫ 𝑆ℎ𝑖𝑓𝑡. (2) 

  

Fig. 1. Luma integer pixel, ½ pixel, and ¼ pixel positioning. 
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Index i -3 -2 -1 0 1 2 3 4

qfilter -1 4 -10 58 17 -5 1

hfilter -1 4 -11 40 40 -11 4 -1

qfilter
-1

1 -5 17 58 -10 4 -1



In (1) and (2), Shift depends on the filter (see Fig. 1) so that 

 

𝑆ℎ𝑖𝑓𝑡 = ൜
𝐵 − 8, 𝑓𝑖𝑙𝑡𝑒𝑟 ∈ ሼℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙ሽ

6, 𝑓𝑖𝑙𝑡𝑒𝑟 ∈ ሼ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙ሽ
. (3) 

This ensures that shifting is done without any loss in 

accuracy over the HEVC specification [1]. 

The multiplierless filtering approach reduces the 

hardware cost of the interpolation engine significantly. In 

our case, Catapult was applied to synthesize both (1) and 

(2) for Arria V, and the area estimate for (2) was only 2.5% 

of that of (1) with equivalent synthesis tool constraints. 

B. Shift-Register-Based Filtering 

Fig. 2 depicts our shift-register based filtering 

architecture adopted from [9]. It is composed of vertical, 

horizontal, and diagonal filters, shift register with a depth 

of 16 pixels, and a round and clip unit. Contrary to [9], the 

proposed implementation does not need any multipliers but 

it uses parallel 8×16-shift-registers to feed the horizontal 

filter. This method requires that integer pixels are received 

column by column. For example, the first column includes 

pixels A-4,-4, A-4,-3, … A-4,12. Both horizontal and diagonal 

filters have internal latencies of 8 cycles whereas the 

latency of the vertical filter is only 6 clock cycles. After 

initial latency of 23 clock cycles, architecture can produce 

15×9×9 samples every 16 clock cycles. 

The horizontal filter has 8×16=128 8-bit inputs and 

3×16=48 16-bit outputs. It can produce a column of 

horizontally filtered samples for each fractional-pixel 

offset ax,y, bx,y, and cx,y (3×9 samples) per clock cycle. The 

vertical filter has the same throughput, but it filters sample 

columns (dx,y, hx,y, nx,y) vertically without utilizing shift-

registers. The diagonal filter produces the rest of the sample 

columns at the rate of 9 columns (9×9 samples) per clock 

cycle by applying vertical filtering to horizontally filtered 

samples. The diagonal filter uses 16-bits for the input and 

17-bits for the output.  

The intermediate values may require maximum of 23 

bits in extreme cases if the offsetting method is not used to 

avoid possible overflow [3]. Right shifting the values by 6, 

according to (3), makes it necessary to have a 17-bit output 

to preserve the required full-precision. All samples are 

finally rounded and clipped. 

  
Fig. 3. Interpolation of diagonal samples. (a) 8×8. (b) 9×9. 

        

 
Fig. 2. The proposed multiplierless shift-register-based architecture for HEVC interpolation (*16-bit input, shifting according to (3)). 

 
Fig. 4. Fractional samples required by FME. (a) Initial. (b) Left. (c) Top. 

(d) Top-left. 
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C. Simultaneous Interpolation of 9x9 Samples 

Interpolating an 8×8 block of samples with HEVC-

compliant 7/8-tap filters requires an array of 15×15 

reference integer pixels. Therefore, the reference sample 

block of 8×8 integer pixels needs to be extended by 3 extra 

integer pixels left and upward as well as 4 extra integer 

pixels right and downward as depicted in Fig. 3(a). 

 In FME, the best adjacent fractional-pixel offset can 

be found in any direction given by vertical (Δy) and 

horizontal (Δx) quarter-pixel offsets around the sample 

position of interest. Since the filter coefficients are 

exclusively defined for positive fractional offsets, only the 

pixels with fractional offsets to the right and downwards 

can be completely interpolated from an array of 15×15 

reference pixels. This is illustrated in Fig. 4(a) with a 

shaded 8×8 block containing all interpolated samples. 

 Instead, negative fractional offsets are derived by 

adding positive fractional offsets to negative integer 

offsets, such as Δx = -1/4 = -1 + 3/4. Thus, performing FME 

in the remaining directions requires that the interpolation 

window is moved left, up, and diagonally up-left by one 

pixel to be able to interpolate all the required samples, as 

shown in Fig. 4(b)-(d), respectively. At sample level, 15 

fractional positions (a-r) per interpolation window position 

need to be filtered around an integer sample. For an 8×8 

block, it means that 4 × 15 × 8 × 8 = 3840 fractional-pixels 

(s) are interpolated [6], [7], [10], [11].  

As illustrated by Fig. 3(b), extending the reference 

array by one extra pixel left and upward to 16×16 pixels 

allows for more efficient interpolation for FME [12] since 

it eliminates redundant filtering needed in the traditional 

approach. The majority of the fractional samples are 

anyway interpolated regardless of the interpolation window 

position. When the left and above edges of a block are also 

interpolated, producing blocks of 9×9 samples for each 

fractional-pixel position (a-r) at a time provides all quarter-

pixel (and half-pixel) samples required for FME with a 

single block interpolation pass. 

With this minimal increase to the reference array and 

resources, the interpolation calls for FME can be reduced 

from 25 to 16 for 32×32 blocks, 9 to 4 for 16×16 blocks, 

and 4 to 1 for 8×8 blocks. 

D. HLS Design Aspects 

The C implementation of the proposed interpolation 

filter was originally designed for our open-source Kvazaar 

HEVC encoder [16] and then further optimized for 

synthesis with Catapult HLS tool. The HLS approach sped 

up the implementation phase considerably because the RTL 

description was automatically generated from the C code 

without any manual design phases for HDL description. 

The HLS code for the vertical filter is listed in Appendix A 

as an example. 

Catapult calculates and modifies the throughput of the 

design based on the target technology, desired clock 

frequency, and other architectural constraints. It can 

automatically adjust the number of combinatorial 

operations per clock cycle and pipeline stages of the state 

machine for the desired throughput. For example, our filter 

design was optimized for speed, so Catapult was 

configured to unroll all nested loops for the optimal 

throughput. These loop settings could have easily been 

modified for reduced area, e.g., for a smaller FPGA. 

For faster verification, Catapult also uses the same C 

source code for automatic testbench generation. The 

testbench synchronizes with the input and output of the 

design under verification, so it is tolerant of architectural 

changes. In this work, the same testbench was used along 

the whole design process including behavioral 

functionality verification, RTL simulation, and FPGA 

prototyping.  

HLS also offers better design reusability over 

traditional design approaches. A technology-independent 

behavioral code releases the designers from addressing the 

implementation details of the target technology, such as 

timing, interfaces, and memory elements. In principle, the 

same holds for the handwritten RTL code but the design is 

usually implemented with a specific technology and 

performance in mind. In this work, it was straightforward 

to generate optimized RTL designs for both Intel and 

Xilinx FPGAs, by only changing the target technology in 

Catapult. 

V. PERFORMANCE ANALYSIS 

Table 2 reports the area and performance results of the 

proposed interpolation architecture on Intel Arria V and 

Xilinx Virtex 6 FPGAs together with the prior art. Our 

proposal was synthesized with Intel Quartus Prime 18.1 for 

Arria V and Mentor Precision Synthesis 2019.2.0.9 for 

Virtex 6. The obtained results were benchmarked against 

related HEVC interpolation implementations on FPGA. 

A. Resource and Throughput Evaluation 

On Arria V, the proposed architecture can operate at 

270 MHz frequency and it uses 18.9 kALUTs with the 

15×15 input array of reference pixels. Altogether, 15 

interpolated samples are filtered per integer pixel, meaning 

that a total of 15 × (8 × 8) = 960 samples are interpolated 

per 8×8 block. The architecture completes a single 8×8 

sample block in 15 cycles so it can output samples at a rate 

of (270 MHz × 960 samples) / 15 = 17 280 Msamples/s. 

Expanding the size of the input array from 15×15 to 

16×16 pixels increases the resource consumption by 11.3% 

to 21.1 kALUTs and latency to 16 cycles. With this 

minimal overhead, our proposal can be made to output fully 

interpolated 9×9 sample blocks, and the throughput 

increases by 18.7% to (270 MHz × 15 × (9 × 9) samples) / 

16 = 20 503 Msamples/s. The respective results on Virtex 

6 are 27.1 kLUTs, 313 MHz, and 23 786 Msamples/s. 

The characteristics of the proposed implementation are 

superior to those of existing approaches [6]-[11]. The full-

precision architectures presented by Pastuszak [6] et al. and 

Lung et al. [9] needed 36% and 5% more resources for 58% 

and 80% lower throughputs than ours, respectively. The 

rest of the solutions [7], [8], [10], [11] only implement 

approximated interpolation functionality that reduces 

accuracy over that of standard-compliant solutions, limit 

their usage, and degrades coding efficiency.  



B. Performance Estimation in Practical HEVC Encoder 

The effective throughputs of the proposed and existing 

solutions were also estimated by accommodating them to 

the needs of FME in our practical Kvazaar open-source 

HEVC encoder [5], [16] that was configured for real-time 

low-delay HEVC encoding. 

Table 3 details the coding parameters of Kvazaar. The 

test set was made up of the eight 2160p (2160×3840 pixels) 

test video sequences (CityAlley, FlowerFocus, FlowerKids, 

FlowerPan, RaceNight, RiverBank, SunBath, and Twilight) 

from our UVG Dataset [17]. Our profiling was carried out 

by encoding the sequences at 50 frames per second (fps) to 

estimate the requirements of FME processing in real-time 

HEVC coding. 

According to our profiling, Kvazaar FME required 

samples at average throughput of 17 719 Msamples/s with 

8×8 sample blocks. However, increasing the sample block 

size to 9×9 reduced the throughput need by 32% to 12 055 

Msamples/s if the extra interpolated area was properly used 

in FME.  

On Arria V, our solution is able to output 8×8 sample 

blocks for Kvazaar FME at an adequate rate up to coding 

speed of 49 fps. Furthermore, increasing the sample block 

to 9×9 makes it possible to accelerate coding speed by 1.7× 

up to 85 fps. The higher operating frequency on Virtex 6 

increases the frame rate up to 99 fps. These two solutions 

are 2.0× and 2.3× as fast as any of the existing solutions. 

Hence, only the proposed solutions make it possible to 

encode 2160p sequence in real time. 

VI. CONCLUSION 

This paper presented the first known HLS 

implementation of an accurate HEVC interpolation filter on 

FPGA. The C source code of the filter was originally 

designed for the Kvazaar HEVC encoder, then optimized 

for the Catapult HLS tool, and finally synthesized for Arria 

V and Virtex 6 FPGAs. Our multiplierless shift-register-

based architecture can interpolate 9×9 samples from a 

16×16 reference input and thereby yield four interpolated 

8×8 blocks at a time for HEVC FME. This scheme was 

shown to almost double the speed of HEVC interpolation 

with a slight FPGA resource overhead.  

According to our profiling results, the proposed two 

implementations are able to filter adequate number of 

samples for FME processing in practical 4K HEVC 

encoding up to frame rates of 85 and 99 fps, respectively. 

Our approach almost doubles the speed over any of the 

existing HEVC interpolation filters on FPGA. It also uses 

23-bit intermediate results to preserve accuracy with all 

possible input pixel blocks. Hence, it is the only FPGA 

solution that meets the needs of real-time 4K HEVC 

encoder in practice and without any compromises in 

filtering accuracy. Furthermore, the emerging Versatile 

Video Coding (VVC/H.266) [18] standard specifies 

interpolation filters similar to those of HEVC, so the 

proposed techniques are suitable to accelerate VVC coding 

as well. 
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// Template data structures for passing data through channels 

template<int width> struct IntegerPixel {  

 ac_int<width,false> column[16]; 

}; 

 

template<int width, int filters, int samples> struct Filtered { 

 ac_int<width,true> pixel[filters][samples]; 

}; 

 

// Template functions for the three filter coefficients: qfilter, hfilter, and inverse qfilter  
template<int width_in, int width_out> 

ac_int<width_out,true> qfilter(ac_int<width_in, false> a[8]) { 

 ac_int<width_in,true> S = -a[0] + a[6] - a[5] + a[4] + (a[3] << 5) 

                           + ((-a[2] + a[3]) << 3) + ((a[1] - a[5]) << 2) 

                           + ((a[3] - a[2]) << 1) + ((a[3] + a[4]) << 4); 

 return S; 

} 

 

template<int width_in, int width_out> 

ac_int<width_out,true> hfilter(ac_int<width_in, false> a[8]) { 

 ac_int<width_in,true> S = -a[0] - a[7] - a[2] - a[5] - ((a[2] + a[5]) << 1)  

                           + ((a[1] + a[6]) << 2) + ((a[3] + a[4] - a[2] - a[5]) << 3)  

                           + ((a[3] + a[4]) << 5); 

 return S; 

} 

 

template<int width_in, int width_out> 

ac_int<width_out,true> qfilter_1(ac_int<width_in, false> a[8]) { 

 ac_int<width_in,true> S = -a[7] + a[1] - a[2] + a[3] + ((-a[5] + a[4]) << 3)  

                           + ((a[6] - a[2]) << 2) + ((a[4] - a[5]) << 1)  

                           + ((a[4] + a[3]) << 4) + (a[4] << 5); 

 return S; 

} 

 

// Hierarchical unit for vertical filtering using qfilter, hfilter, and inverse qfilter 

void vertical_filter(ac_channel< IntegerPixel<BIT_DEPTH> > &pixels,  

                     ac_channel<Filtered<BIT_DEPTH*2, 3, 9> > &filt_ver_full) { 

 IntegerPixel<BIT_DEPTH> pixels_in; 

 Filtered<BIT_DEPTH*2, 3, 9> filt_out; 

 pixels_in = pixels.read();    

 #pragma hls_unroll yes 

 for(uint4 x=0;x<9;x++) { 

   filt_out.pixel[0][x] = qfilter<BIT_DEPTH,BIT_DEPTH*2>(pixels_in.column + x); 

   filt_out.pixel[1][x] = hfilter<BIT_DEPTH,BIT_DEPTH*2>(pixels_in.column + x); 

   filt_out.pixel[2][x] = qfilter_1<BIT_DEPTH,BIT_DEPTH*2>(pixels_in.column + x);  

 } 

 filt_ver_full.write(filt_out); 

} 

 

// Hierarchical unit for rounding and clipping 

void ver_round_clip(ac_channel<Filtered<BIT_DEPTH*2, 3, 9> > &filt_ver_full,  

                    ac_channel<Filtered<BIT_DEPTH, 3, 9> > &filt_ver_final){ 

 Filtered<BIT_DEPTH*2, 3, 9> filt_in = filt_ver_full.read(); 

 Filtered<BIT_DEPTH,   3, 9> filt_round_clip_out;    

 #pragma hls_unroll yes 

 for(uint3 a = 0; a < 3; a++) { 

  #pragma hls_unroll yes 

  for(uint4 b = 0; b < 9; b++) { 

   // #define CLIP(low,high,value) MAX((low),MIN((high),(value))) 

   filt_round_clip_out.pixel[a][b] =  

   CLIP(PIXEL_MIN,  PIXEL_MAX, ((filt_in.pixel[a][b] + round) >> shift)); 

  }    

 } 

 filt_ver_final.write(filt_round_clip_out); 

} 

 

// Top-level unit for connecting the two hierarchical units 

void vertical_top(ac_channel<IntegerPixel<BIT_DEPTH> > &pixels,  

                  ac_channel<Filtered<BIT_DEPTH, 3, 9> > &filt_vert_final) { 

 static ac_channel<Filtered<BIT_DEPTH*2, 3, 9> > filt_ver_hier; 

 vertical_filter(pixels, filt_ver_hier); 

 vertical_round_clip(filt_ver_hier, filt_vert_final); 

} 

 


