
Neural Networks 146 (2022) 220–229

a

b

i
t
s
N
i
R
o
i
r
&

t
i
w
s
t
r
d
t
H
p

a

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Feedforward neural networks initialization based on discriminant
learning
Kateryna Chumachenko a,∗, Alexandros Iosifidis b, Moncef Gabbouj a
Faculty of Information Technology and Communication Sciences, Tampere University, FI 33720, Tampere, Finland
Department of Electrical and Computer Engineering, Aarhus University, DK 8200, Aarhus, Denmark

a r t i c l e i n f o

Article history:
Received 12 July 2021
Received in revised form 8 October 2021
Accepted 18 November 2021
Available online 25 November 2021

Keywords:
Neural networks initialization
Discriminant learning

a b s t r a c t

In this paper, a novel data-driven method for weight initialization of Multilayer Perceptrons and
Convolutional Neural Networks based on discriminant learning is proposed. The approach relaxes
some of the limitations of competing data-driven methods, including unimodality assumptions,
limitations on the architectures related to limited maximal dimensionalities of the corresponding
projection spaces, as well as limitations related to high computational requirements due to the need
of eigendecomposition on high-dimensional data. We also consider assumptions of the method on the
data and propose a way to account for them in a form of a new normalization layer. The experiments
on three large-scale image datasets show improved accuracy of the trained models compared to
competing random-based and data-driven weight initialization methods, as well as better convergence
properties in certain cases.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, Deep Learning became the dominant paradigm
n the fields of Machine Learning and Computer Vision owing
o the availability of large public data and computational re-
ources. Multilayer Perceptrons (MLPs) and Convolutional Neural
etworks (CNNs) are being widely utilized for a variety of tasks,
ncluding object detection (Chumachenko, Männistö, Iosifidis, &
aitoharju, 2020; Duan et al., 2019; Zhao, Zheng, Xu, & Wu, 2019),
bject tracking (Yun, Choi, Yoo, Yun, & Choi, 2018), semantic
mage segmentation (Li, Xia, Yan, Luo, & Tang, 2020) and action
ecognition (Chen, Weng, Lu, Xu, & Weng, 2017; Iosifidis, Tefas,
Pitas, 2012).
With the rise of Deep Learning, methods for weight initializa-

ion in neural networks received increased attention, and weight
nitialization strategies that can accelerate the training process
hile leading to competitive performance remain an open re-
earch problem. Multiple approaches have been proposed to solve
his problem to date. Early works in the field of artificial neu-
al networks were relying on weight initialization from random
istributions, further evolving to initialization methods with con-
rolled parameters, such as Glorot (Glorot & Bengio, 2010) or
e initialization (He, Zhang, Ren, & Sun, 2015). Other methods
roposed data-driven initialization procedures (Alberti, Seuret,

∗ Corresponding author.
E-mail addresses: kateryna.chumachenko@tuni.fi (K. Chumachenko),

i@ece.au.dk (A. Iosifidis), moncef.gabbouj@tuni.fi (M. Gabbouj).
ttps://doi.org/10.1016/j.neunet.2021.11.020
893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
Pondenkandath, Ingold, & Liwicki, 2017; Chan et al., 2015; Chen,
Yang, Zhang, & Kuo, 2019; Ge, Hu, & Deng, 2017; Krähenbühl,
Doersch, Donahue, & Darrell, 2015; Kuo, Zhang, Li, Duan, & Chen,
2019), which are described in more detail in Section 2.1. The main
motivation behind the latter approach primarily stems from the
nature of training processes of neural networks: since gradient-
based optimization of non-convex functions leads to local minima
solutions, starting the optimization from a favorable point can
result in better performance and faster convergence.

Several data-driven initialization methods were proposed
based on statistical learning, primarily focusing on utilization of
Principal Component Analysis (PCA) (Duda, Hart, & Stork, 2000)
or Linear Discriminant Analysis (LDA) (Duda, Hart, & Stork, 2012)
to determine the data transformations in successive layers of the
network. Nevertheless, these methods have a number of limita-
tions: PCA only satisfies the criteria of high variance in the data
while not enforcing discriminative properties, and LDA assumes
unimodal class distributions for the data representations in all
the layers of the neural network. Here it should be noted that
while data representations at the last hidden layer of a trained
neural network equipped with softmax/linear output neurons are
expected to form unimodal classes, this is not the case for early
layers. Therefore, the assumption of class unimodality throughout
the layers of the network for weight initialization limits the
potential of the model. Another major limitation comes from the
limited dimensionality of the projection directions learnt by these
methods, thus limiting the number of neurons/weights that can
be initialized by adopting them.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2021.11.020
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.11.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kateryna.chumachenko@tuni.fi
mailto:ai@ece.au.dk
mailto:moncef.gabbouj@tuni.fi
https://doi.org/10.1016/j.neunet.2021.11.020
http://creativecommons.org/licenses/by/4.0/


K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

o
o
a
s
m
a
r
i
t
f
t

As a remedy for the above-mentioned limitations, in this pa-
per, we propose a novel data-driven weight initialization ap-
proach based on discriminant learning that allows to relax the
above-mentioned limitations. First, we relax the class unimodal-
ity assumption for the data representations at all network layers
by representing it with several subclasses and formulating the op-
timization problem for weights initialization accordingly, hence
improving the suitability of a model for real-world scenarios.
Second, the proposed approach relaxes limitations to the model
architecture, as the maximal number of initialized neurons/filters
at a certain layer relies on a controlled parameter, i.e. the total
number of subclasses forming the classification problem. Third,
the proposed approach does not rely on eigendecomposition that
becomes computationally intensive for high-dimensional data,
hence providing faster initialization especially for wide CNN ar-
chitectures, i.e., those with a large number of neurons/filters in
each layer.

The main contributions of the paper can be summarized as
follows:

• A novel weight initialization procedure for MLPs and CNNs is
proposed that leads to flexible network architecture design
and potentially better generalization due to its multi-modal
formulation. It is experimentally shown that the adoption
of the proposed initialization procedure leads to faster con-
vergence of the subsequent gradient-based training process
compared to existing approaches.
• A new normalization layer that overcomes limitations re-

lated to the assumption of mean-centered data, adopted by
the proposed method, as well as other data-driven network
initialization methods is proposed.
• Experimental results show that utilization of a small num-

ber of data samples generally suffices for effective network
initialization, hence, further reducing the computational re-
quirements for training the network.

The remainder of the paper is structured as follows. Section 2
describes the related methods utilized for weight initialization
in neural networks, Section 3 describes the proposed weight
initialization approach along with the motivation behind it, Sec-
tion 4 presents the experiments performed to assess the proposed
approach, along with the experimental results, and Section 5
provides conclusions of the work.

2. Related work

Generally, methods for weight initialization of neural net-
works can be divided into two categories: the first is based on
initialization from a random distribution and the second follows
a data-driven process. For a long time, the most widely-used and
straightforward initialization approach was the initialization from
a random distribution: a Gaussian distribution with zero mean
and small hand-tuned standard deviation, or from a Uniform
distribution in the range of

[
−

1
√
n ,

1
√
n

]
, where n is the number

f input neurons in the corresponding layer. It has been further
bserved that such initialization often leads to poor convergence,
nd saturated activations. In Glorot and Bengio (2010), it was
hown that the commonly-used activation functions, namely, sig-
oid, hyperbolic tangent, and softsign suffer from saturation of
ctivation in the top layers of the network, when initialized from
andom uniform distribution. As a remedy, a new weight initial-
zation method was proposed, with an objective of preserving
he variance of activation vectors between the layers during the
orward propagation, and the variance of the gradients between
he layers during backward propagation. In practice, the following
 M

221
initialization approach is utilized, approximately satisfying the
above-mentioned objectives:

Wj ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
, (1)

whereWj is the weight matrix at layer j, U[·] denotes the Uniform
distribution, and nj and nj+1 denote the number of neurons at
layers j and j+1, respectively. Hereafter, we refer to this approach
as Glorot initialization (also commonly referred to as Xavier ini-
tialization) (Glorot & Bengio, 2010). Here we should note that,
in its derivation, the method assumes linear activations at the
initialization and that the input feature variances are equal.

A further step towards controlling the statistics of the distribu-
tion from which the weights are initialized was taken in He et al.
(2015), where a similar motivation to that of Glorot is utilized
for initialization. Unlike the work in Glorot and Bengio (2010), the
authors consider ReLU activation, and show that the proposed ap-
proach outperforms the Glorot initialization especially when used
for deep neural networks. The initialization is done as follows:

Wj ∼ N

[
0,

√
2
√
nj

]
, (2)

i.e., the weights of layer j are initialized from a Gaussian distribu-
tion with zero mean and variance of 2

nj
. Additionally,

fully-randomized methods based on stochastic configuration al-
gorithms have been proposed (Wang & Li, 2017).

As opposed to methods based on random initialization, multi-
ple approaches exploiting certain data properties have recently
been proposed. The most notable one is initialization by pre-
training on a larger dataset of similar domain,1 such as Ima-
geNet (Deng et al., 2009) for Computer Vision tasks. Nevertheless,
such initialization was questioned in He, Girshick, and Dollár
(2019), where it was shown that the benefits arising from weights
initialization based on pre-training generally lie in faster conver-
gence in earlier iterations, but not necessarily leading to better
performance as compared to random initialization. Other notable
data-driven approaches include initialization from cluster cen-
troids obtained by applying (spherical) clustering on whitened
data, hence capturing statistical properties of the dataset (Coates
& Ng, 2012; Krähenbühl et al., 2015; Mairal, Koniusz, Harchaoui,
& Schmid, 2014). Another method performs normalization of net-
works’ weights based on the empirical statistics of the network
activation obtained from the training data samples, as well as
its gradients (Krähenbühl et al., 2015) Notably, the approach
presented in Krähenbühl et al. (2015) applies the normalization
to both k-means and PCA initialized networks.

2.1. Weight initialization via subspace learning

A set of data-driven weight initialization methods that were
proven beneficial for weight initialization in neural networks
relies on utilization of subspace learning techniques. The early
works utilizing subspace learning for determining the weights of
neural networks include PCANet(Chan et al., 2015) and LDANet
(Ge et al., 2017). These methods focus on supervised image clas-
sification in a CNN-like manner, where a set of patches are
extracted from the training images and flattened to form a data
matrix. From this data representation, a weight matrix is ob-
tained by applying Principal Component Analysis (Duda et al.,
2000) or Linear Discriminant Analysis (Duda et al., 2012). The
resulting weight matrix is subsequently reshaped to obtain a set

1 This approach is commonly referred to as transfer learning (Rosenstein,
arx, Kaelbling, & Dietterich, 2005).



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

o
i
l
p
n
p
t
n
H
d
l

d
t
a
p
l
w
c
t
i
t
L
t
a
t
t

p
C
l
v
n
d
t
t
t
f

3

G

W

d

f convolutional filters, which are convolved with the training
mages to obtain the data representations at the output of the first
ayer. This process is applied for several layers,2 followed by a
ooling operation and an activation function. In these approaches,
o subsequent fine-tuning of the network’s parameters via back-
ropagation is performed, while the pooling operation as well as
he utilized activation function are specially designed, i.e. they are
ot among the commonly-used ones in the field of deep learning.
owever, these methods can be perceived as the first baselines
rawing the connection between the subspace learning and deep
earning methods.

Further notable attempts of linking subspace learning with
eep learning architectures include LDA-based weight initializa-
ion proposed in Alberti et al. (2017) and Seuret, Alberti, Liwicki,
nd Ingold (2017). By its nature, this work is more similar to our
roposed approach in that the weights obtained by a discriminant
earning method are used for initialization of the neural network
hich is further trained with backpropagation, instead of solely
onsidering the forward propagation scenario. LDA is employed
o initialize the weights of a layer, and each subsequent layer
s initialized from the weight matrix obtained by LDA applied
o the outputs of the preceding layer. Similarly to PCANet and
DANet, the weight matrix is learnt from patches extracted from
he outputs of the previous layer and is flattened to obtain a rect-
ngular data matrix. The last classification layer is initialized with
he discriminant matrix of LDA, and the network is subsequently
rained with backpropagation.

The authors in Chen et al. (2019) and Kuo et al. (2019) pro-
osed a feedforward design approach for initializing the layers in
NN based on data statistics from the output of their preceding
ayers. The weights in convolutional layers are obtained from a
ariant of Principal Component Analysis proposed by the authors,
amely, Subspace Approximation with Adjusted Bias (Saab). The
ense layers that are added after the convolutional layers are
rained by applying a linear regression using subclass labels ob-
ained by clustering the data. The last fully-connected layer is
rained by linear regression to true class labels. This method
ocuses on the forward propagation scenario too.

. Initialization based on discriminant learning

Let us consider a standard dense feedforward neural network.
iven a vector x ∈ RD as input, a neural network with L layers

applies a hierarchical transformation

y = f La (W
T
L f

L−1
a ( WT

L−1 ... f 1a (W
T
1x+ b1)+ bL−1)+ bL), (3)

where f la(·) is the (element-wise) activation function at layer l,
l ∈ RDl×Dl+1 is the corresponding weight matrix, and bl is

the bias term. For the sake of simplicity of notation, here we
assume that the bias terms are accounted for by using an aug-
mented version of the data representations of the network layers
and, thus, are incorporated in the corresponding weight matrices
Wl, l = 1, . . . , L. Similarly, a CNN performs a hierarchical data
transformation of the form

y = f La (ŴL ∗ f L−1a ( ŴL−1 ∗ ... ∗ f 1a (Ŵ1 ∗ x+ b1)+ bL−1)+ bL), (4)

where Ŵl is a set of convolutional filters at layer l, bl is the bias
term, and f la(·) is the activation function. For CNNs which combine
convolutional and dense layers, the corresponding data transfor-
mation is obtained by simply combining data transformations of
the form in (3) and (4) in a hierarchical manner.

2 The original LDANet and PCANet methods apply this process twice to
etermine the filters of two convolutional layers.
222
3.1. Motivation

Most of the earlier data-driven methods primarily focused
on the affine transformation of y = WT

l x
(l), where x(l) is the

representation of the input sample at the feature space defined
at layer l. To deal with the convolution operation y = Ŵl ∗ x(l)
in (4), the convolution operation is transformed to a vector-
based affine transformation by sampling patches from the input
x(l), flattening them to create vectors and determining an affine
transformation matrix Wl, which is further reshaped to form Ŵl.
Several works (Alberti et al., 2017; Ge et al., 2017) utilize LDA for
learning the matrix Wl, i.e., the projection is obtained by solving
the eigendecomposition problem of S(l)ww = λS(l)b w and selecting
eigenvectors corresponding to smallest eigenvalues, where S(l)w

and S(l)b are the within-class and between-class scatter matrices
defined on the data representations at the layer l. Others (Chan
et al., 2015; Chen et al., 2019; Kuo et al., 2019) have applied
Principal Component Analysis, i.e., the matrix W is obtained by
performing eigendecomposition on the covariance matrix of the
data representations at layer l, i.e. S(l)t .

Both of these approaches have certain limitations. Being an
unsupervised method, PCA does not take advantage of the class
label information of the data. Therefore, one of its limitations
lies in the fact that the learnt subspace is only optimal in terms
of preserving the variance of the projected data; however, no
discriminative properties are enforced. Besides, PCA can only
learn a (sub)space with dimensionality at most equal number of
dimensions to that of the original space. This leads to the inability
of learning enough meaningful (i.e., those having discriminative
properties) filters/neurons, as the number of filters of the first
layers is generally significantly higher than that of dimensions in
the input data, especially in the case of CNNs.

Linear Discriminant Analysis provides a remedy to the limita-
tion of PCA related to the disregard of the class label information
of data, finding a subspace where the classes are discriminated.
However, it relies on an assumption of unimodality of data of
each class, which is rarely the case in real-world scenarios, and
especially on the earlier layers of the networks. As a result, such
an assumption leads to limitations in the learning potential of the
model. Besides, the limitation of LDA with regard to the ability
to learn a reasonable amount of meaningful neurons or filters is
even higher than that of PCA, as the dimensionality of the learnt
subspace is bounded by the rank of the between-class scatter
matrix, which is, in turn, bounded by the number of classes.
Therefore, the use of LDA for initialization only allows to obtain
a very limited number of meaningful projection dimensions, and,
consequently, a limited number of meaningful neuron weights in
the layer, putting limitations on the network architectures that
can be initialized using it.

In addition to the above-mentioned limitations, one can notice
that both LDA and PCA rely on eigendecomposition of D × D
matrices that becomes computationally intensive especially for
high-dimensional data. At the same time, especially in the case of
CNN, the data is likely to reach significantly high dimensionality:
given the data matrix is created similarly to Alberti et al. (2017),
Chan et al. (2015) and Krähenbühl et al. (2015), the dimension-
ality of the patch matrix corresponding to layer j reaches k2nj,
where k is the filter size, and nj is the number of filters. Consid-
ering commonly-used CNN models, where the number of filters
of convolutional layers generally ranges from 32 to 512, and a
commonly-used filter size of 5 pixels, this leads to dimension-
ality ranging from 800 up to 12800, which is substantially high
in terms of computational requirements of eigendecomposition-
based subspace learning methods. For example, in this case the
computational complexity of initialization based on LDA or PCA

2 2 2 3
would reach N(k nj) + (k n) (Cai, He, & Han, 2008), while for



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

t
N
I
a
c
P

3

m
w
i
r
r
o
D
a
b
a
S
s
w

S

S

w
i
i

o

he proposed approach it is proportional to Nk2njd or k2njN2 if
< k2nj and N(k2nj)2 if N > k2nj (Chumachenko, Raitoharju,

osifidis, & Gabbouj, 2020a), where N is the number of samples
nd d is the dimensionality of the learnt space, which is in either
ase less than the complexity of initialization based on LDA or
CA.

.2. Proposed approach

In this section we consider the limitations of already existing
ethods and propose steps for their relaxation. More specifically,
e consider assumptions on unimodality of data representations

n the layers of a network, limitations in the number of neu-
ons/filters that can be initialized, and the high computational
equirements in high-dimensional settings. A first step towards
vercoming these limitations can be taken by employing Subclass
iscriminant Analysis (Zhu & Martinez, 2006), that relaxes the
ssumptions on unimodality of classes. To recall, this is achieved
y expressing each class with a set of subclasses determined by
pplying some clustering algorithm on the data of each class.
imilarly to LDA, SDA optimizes the Fisher–Rao’s criterion. Con-
idering the optimization problem to be solved for initializing the
eights of the lth layer, the generalized eigenanalysis problem

S(l)t w = λS(l)b w is solved, where

(l)
t =

N∑
i=1

(x(l)i − µ(l))(x(l)i − µ(l))T , (5)

(l)
b =

C−1∑
i=1

C∑
n=i+1

Ki∑
j=1

Kn∑
h=1

p(l)ij p
(l)
nh(µ

(l)
ij − µ

(l)
nh)(µ

(l)
ij − µ

(l)
nh)

T , (6)

here C is the number of classes, Ki is the number of subclasses
n class i, µ(l) is the mean of the data representations in layer l,
and n are class labels, and j and h are subclass labels. p(l)ij and

p(l)lh are the subclass priors, i.e. p(l)ij =
Nij
N , where Nij is the number

f samples in subclass j of class i and N is the total number of
samples in X(l)

= [x(l)1 , . . . , x(l)N ] ∈ RDl×N . The matrixWl ∈ RDl×Dl+1

can be then formed by the eigenvectors corresponding to the Dl+1
smallest eigenvalues.

Such representation is particularly beneficial in the CNN case,
where each data sample constitutes a representation of a patch
from an image. Assuming that patches within the same class
corresponding to non-essential background and those represent-
ing the object of interest or certain useful features are clustered
into different subclasses, there is no penalization for them be-
ing matched far from each other in the learnt feature space.
In contrast, LDA forces all data samples belonging to the same
class to lie close to each other in the projection space, enforcing
unnecessary similarity requirements for essential features and
background patches. Moreover, by utilizing SDA the potential
dimensionality of the subspace is bounded by the total number
of subclasses forming the problem at hand. That is, the maximum
number of discriminant directions that can be determined is
increased to

∑C
i=1 Ki. The potential set of architectures is, there-

fore, significantly expanded compared to LDA. However, it is still
bounded by the dimensionality of input data. We propose to
overcome this limitation by following a process inspired by Graph
Embedding (Shuicheng et al., 2007) and Spectral Regression (Cai,
He, & Han, 2007) in the following.

The criterion function of SDA can be reformulated utilizing
Graph Embedding framework (Shuicheng et al., 2007). For data
centered at µ(l), it can be seen that

S(l)t = X(l)X(l)T , (7)

S(l) = X(l)L(l)X(l)T , (8)
b b

223
where L(l)b is the Laplacian matrix defined on the data representa-
tions at the lth layer of the network for the between-class matrix:

L(l)b (i, j) =

⎧⎪⎨⎪⎩
N−Nci
N2Nch

, if z(l)i = z(l)j = h

0, if z(l)i ̸= z(l)j , ci = cj
−

1
N2 , if ci ̸= cj,

(9)

where ci is the class label of x(l)i , and z(l)i is the subclass label of
x(l)i , Nc is the number of samples in class c and N (l)

ch is the number
of samples in subclass h of class c at layer l.

Exploiting the new formulations of S(l)b and S(l)t , and Spectral
Regression (Cai et al., 2007), the solution can be obtained by
following several steps:

1. The between-class Laplacian matrix L(l)b is created following
Eq. (9).

2. Assuming there exists such t that t = X(l)Tw, the eigen-
analysis problem L(l)b t = λt is solved and the matrix T(l) is
created out of the obtained vectors.

3. The regression of T(l) to W(l) is performed as

W(l)
=

(
X(l)X(l)T

+ αI
)−1 X(l)T(l)T . (10)

The matrix W(l)
∈ RDl×Dl+1 can be further orthogonalized or l2-

normalized. In practice, we observed that l2-normalization results
in better performance. Moreover, when applying l2-normalization
instead of orthogonalization, the number of projection directions
Dl+1 can be expanded beyond the dimensionality Dl of the data
representations at layer l. This is achieved by performing a class-
wise clustering process to determining

∑C
i=1 Ki > Dl+1 subclasses,

and using the eigenvectors of L(l)b corresponding to the largest Dl+1
eigenvalues to form T(l). Such an approach allows us to define
the number of neurons in layer l + 1 by controlling the total
number of subclasses in layer l, leading to the initialization of as
many meaningful neurons as is required by the architecture of
the network. Note that, due to the block structure of L(l)b , the first
C−1 dimensions are guaranteed to encode the class discriminant
information, similarly to LDA. In this sense, the layer initialized
using the proposed approach is guaranteed to have at least the
same discriminative power as using LDA.

Here we should note that the use of clustering and subse-
quent cluster label information has been previously performed
in Coates and Ng (2012) and Kuo et al. (2019). In Coates and
Ng (2012), clustering is applied to the whole dataset and the
cluster centroids are used for initialization. In Kuo et al. (2019),
clustering is applied to the whole dataset and one-hot encoded
vectors are created using the obtained cluster labels, followed
by a least-squares regression to obtain the projection matrix
used for initialization. In both of these settings, however, the
class label information is not considered. Therefore, the use of
such methods in a supervised setting is rather limited. Besides,
the proposed approach determines the projection directions in
which the data achieves optimal subclass separability, rather than
regressing directly to the cluster labels.

The proposed approach can further be extended to improve
the computational efficiency on large datasets, where eigende-
composition of L(l)b becomes infeasible. The speed-up is achieved
by observing that L(l)b has a certain block structure, therefore
its eigenvectors have a similar block structure as well. Given
that a vector of ones is an eigenvector of L(l)b , we can create
the

∑C
i=1 Ki − 1 target vectors of random values with desired

structure and orthogonalize them starting from a vector of ones.
The detailed procedure for creation of target vectors is shown
in Algorithm 1. The approach has recently been shown bene-

ficial in a conventional subspace learning setting for speeding



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

C
p
l
l
e
u
t
r

l
o
t

t
a

t
w
d
l

3

p

Algorithm 1: Discriminant target vectors calculation
Function getTargets(y, ycl , C , Z , N, D):

Input: y : N × 1 vector with class labels; ycl : N × 1 vector with the
cluster labels; Z : number of clusters in each class; C : number
of classes; N : number of elements; D : dimensionality of data;

%class-level vectors;

for i ← iterate through 1:C do
RVals = random(1, C-1)
T (l)[y == i, :] = tile(RVals, len(y==i),1)

end

S ← unique numbers of elements in each class sorted in ascending
order;

%cluster level vectors;

for s ← iterate through S do
k ← classes with s elements; m ← length(k);
RVals = random(m ∗ Z , m*(Z - 1))
for i ← iterate through k do

for j ← iterate through 1:Z do
ixs = where(y == i&ycl == j)
Tclust (l)[ixs,:]← tile(RVals, (length(ixs),1))

end
end
T (l)
← append Tclust (l) as columns on the right;

end

T (l)
← append N×1 vector of ones as a column on the left;

Orthogonalize T (l); remove first column of T (l);
return T (l)T

up eigendecomposition-based SDA (Chumachenko, Gabbouj, &
Iosifidis, 2020; Chumachenko, Raitoharju et al., 2020a), and an
incremental solution was proposed (Chumachenko, Raitoharju,
Gabbouj, & Iosifidis, 2020b). While the methods in Chumachenko,
Gabbouj et al. (2020), Chumachenko, Raitoharju et al. (2020a) and
Chumachenko et al. (2020b) were proposed for purely shallow
statistical learning, here we investigate the utilization of similar
ideas for data-driven neural network initialization. The suitability
of the proposed ideas for network initialization is dictated by a
range of advantages provided by the method in terms of account-
ing for potential multi-modality present in intermediate layers of
the network, faster initialization compared to conventional data-
driven methods, as well as absence of restrictions in terms of
width of neural network layers. At the same time we investigate
ways of addressing the limitations of the methodology in terms of
assumptions on data properties. For the sake of clarity, hereafter
we refer to the proposed initialization approach as fastSDA as
defined in Chumachenko, Gabbouj et al. (2020), Chumachenko,
Raitoharju et al. (2020a) and Chumachenko et al. (2020b) in
contrary to eigendecomposition-based SDA.

3.3. Initialization procedures

The proposed approach can be used for initializing Dense and
onvolutional layers following Eqs. (3) and (4). The initialization
rocedure starts from learning the weight matrix of the first
ayer on the input data. The data is further transformed with the
earnt matrix and transformations defined by the architecture,
.g., Activation and Pooling. The transformed data is subsequently
sed for initializing the next Dense or Convolutional layer, and
he process continues until the Output layer, which is initialized
andomly.3 After the initialization of the whole network, it is
trained with backpropagation in the conventional manner. The

3 Least-squares regression to class labels can also be applied to initialize the
ast layer. However, we observed that in most cases random initialization of the
utput layer results in better generalization performance of the models during
he subsequent training using backpropagation.
224
Algorithm 2: Initialization of lth Dense layer.
Function dense_init(X (l) , y, N_neur, C, D):

Input: X (l)
: D× N data representation at lth layer; y : N × 1 vector

with class labels; N_neur :number of neurons;

Z ←ceil(N_neur/C)
X (l)
←

X (l)
−mean(X (l))
√

var(X (l))+ϵ

ycl ← Cluster(X (l), Z)
T (l)
← getTargets(y, ycl , C , Z , N , D)

if D < N then
R← (chol(X (l)X (l)T ))−1
W (l)
← RRTX (l)T (l)T

else
R← (chol(X (l)TX (l)))−1
W (l)
← X (l)RTRT (l)T

end
W (l)
←Select first N_neur dimensions of W (l) and normalize with l2

norm
return W (l)

Algorithm 3: Initialization of lth Convolutional layer
Function VectorBNorm(X (l) , f _size):

Input: X (l)
: N × S1× S2× D data representation at lth layer; f _size :

filter size
X (l)
← Zero-pad X (l) to shape divisible by f _size

X (l)
fl ← Extract and vectorize all f _size× f _size non-overlapping
patches from X (l)

µ ← mean(X (l)
fl ); σ ← var(X (l)

fl );
for patch ← iterate through all non-overlapping f _size× f _size patches
in X (l) do

patch← flatten(patch)−µ
√

σ+ϵ

patch← Reshape patch to (f _size× f _size× D)
end
return X (l)

Function conv_init(X (l) , y, N_filt , f _size):
Input: X (l)

: N × S1× S2× D data representation at lth layer; y : N × 1
vector with class labels; N_filt :number of filters; f _size :filter
size;

Z ← ceil(N_filt/C)
X (l)
← VectorBNorm(X (l), f _size)

X (l)
fl ← Extract and vectorize all f _size× f _size non-overlapping
patches from X (l)

ycl ← Cluster(X (l)
fl , Z)

T (l)
← getTargets(y, ycl , C , Z , N , D)

if D < N then
R ← (chol(X (l)

fl X
(l)T
fl ))−1

W (l)
← RRTX (l)

fl T
(l)T

else
R ← (chol(X (l)T

fl X (l)
fl ))
−1

W (l)
← X (l)

fl R
TRT (l)T

end
W (l)
←Select first N_filt dimensions of W (l) and normalize with l2

norm
Ŵ (l)
←Reshape W (l) to (N_filt, f _size, f _size,D)

return Ŵ (l)

procedures for initializing weight matrix W(l) and filters Ŵ(l) for
he lth Dense or Convolutional layer are shown in Algorithms 2
nd 3, respectively.
In order to account for the mean-centering assumption on

he data, the input data at each layer is standardized during the
eight initialization step. Therefore, to take this into account
uring the backpropagation step, we add Batch Normalization
ayers before each of the Dense layers in the architecture.

.4. Vector batch normalization

Initializing the parameters of a neural network with the pro-
osed method requires the training data to be mean-centered,



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

s
s
a
l
n
m
f
r
e
s
i
C
t
a

y

o
c
a
w
w
i
i
t
P
o
(
a
c
e
t
d
L
↕
a
f
n
l
e

p
i
u
l

uch that Eqs. (7) and (8) express the total and the between-class
catter of the training data. For initializing Dense layers, this is
ccounted by means of Batch Normalization. For Convolutional
ayers, the standard Batch Normalization does not satisfy our
eeds, since the normalization is done using the per-channel
ean and variance. Instead, we would like to normalize the

eature maps in a way that would produce the mean-centered
ectangular patch matrix. In other words, we seek to standardize
ach non-overlapping k × k × dl−1 patch with the mean and
tandard deviation of all such patches (or alternatively, all patches
n a mini-batch). Therefore, to account for mean-centering in
onvolutional layers, we introduce a new normalization layer
hat we further refer to as Vector Batch Normalization. We extract
ll non-overlapping k × k × dl−1 dimensional patches from the

input appropriately padded with zeros. Further, each patch is
flattened to a 1 × k2dl−1 vector and the mean and variance are
calculated from the resulting NNp×k2dl−1 data matrix. The feature
maps are then normalized as follows:

x̂ki =
xki − µB√
σ2
B + ϵ

, (11)

k
i = γ x̂ki + β, (12)

where xki is the ith flattened patch, µB and σ2
B are the 1 ×

k2dj−1-dimensional mean and variance vectors of the vectorized
patches in the minibatch, and γ and β are the learnt param-
eters controlling the scale and offset, initialized as 1 and 0,
respectively. Similarly to conventional Batch Normalization, mov-
ing mean and moving variance are estimated for normalization
during inference.

4. Experimental setup

In order to evaluate the proposed network initialization ap-
proach, we ran experiments on three image classification datasets:
CIFAR-10 (Krizhevsky, Hinton, et al., 2009), MNIST (Krizhevsky
et al., 2009), and Linnaeus-5 (Chaladze & Kalatozishvili, 2017).
CIFAR-10 dataset contains images of 32 × 32 pixels with 3
channels and 10 object categories: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. MNIST dataset contains
grayscale images of size 28 × 28 posing a handwritten digit
recognition problem. Linnaeus-5 dataset contains RGB images
of 32 × 32 dimensionality of 5 object categories: berry, bird,
dog, flower, and other. We use the provided train-test splits for
evaluation. In CIFAR-10 dataset, training set is split into 48,000
images used for training, and 12,000 for validation. In MNIST
dataset, training set is split into 40,000 and 10,000 images for
training and validation, respectively. In both datasets, 10,000
images are used for testing. In Linnaeus-5 datasets, 4,800 images
are used for training, 1,200 for validation, and 2,000 for testing.
Sample images from each dataset are shown in Fig. 1. Addi-
tionally, we employ two non-image datasets: CovType (Blackard
& Dean, 1999) and KDD (Stolfo, Fan, Lee, Prodromidis, & Chan,
2000). CovType poses the task of classification of forest cover type
from cartographic variables, having 7 classes with 54 attributes.
We utilize 348,612 samples for training, and 116,200 for testing
and validation. The KDD dataset poses the task of classification of
network traffic into different types of attacks. The dataset has 23
classes and 41 attributes. We utilize a subset of 296,431 samples
for training, and 98,795 for validation and testing.

In this work, we focus on settings that require small mod-
els, as well as on settings where large datasets might not be
available, and hence data-dependent initialization is especially
required for model performance. Experiments with initialization
of deeper models are therefore left for future work. We evaluate
our approach on two CNN architectures with 5 and 6 hidden
225
layers, and MLPs with 4 and 5 hidden layers. Recall that following
the proposed methodology, the maximum number of neurons in
MLPs or filters in CNNs at a certain layer is equal to

∑C
i=1 Ki,

where Ki is the number of subclasses for class i. We set Ki = Z
subclasses for all classes, leading to CZ − 1 neurons in MLPs or
filters in CNNs at a certain layer. In our experimental setup we
construct the networks starting from 16 or 32 subclasses and
reducing the number of subclasses by a factor of 2 with each
subsequent layer. This results in two architectures with the layers
having width of {319, 159, 79, 39, 19} or {159, 79, 39, 19} neu-
rons/filters for MNIST and CIFAR datasets, and {159, 79, 39, 19, 9}
or {79, 39, 19, 9} neurons/filters for Linnaeus-5 dataset. In CNN
case, another fully-connected layer of 128 neurons is added after
the last convolutional layer, initialized following Algorithm 2. The
output layer consists of 5 or 10 neurons depending on the dataset,
and a softmax activation function.

The overall architecture structure for MLPs is outlined in Fig. 2.
We apply an activation function after each Dense layer, and a
Batch Normalization layer before each Dense layer except the
output layer (assuming the input data is standardized). The over-
all structure of the CNN architectures is shown in Fig. 3. We
apply a Vector Batch Normalization layer before every convolu-
tion layer, followed by Max Pooling and Activation. After the last
convolutional block, data is flattened and Batch Normalization is
applied, followed by a Dense layer with 128 neurons, an activa-
tion function, and an output layer with softmax activation. For
all the networks we perform experiments with three commonly-
used activation functions: ReLU, LeakyReLU with α = 0.3, and
Tanh (hyperbolic tangent). The output layer is initialized ran-
domly from a Gaussian distribution with zero mean and standard
deviation equal to 0.05. In CNN, the bias terms are omitted in all
models, and in MLPs they are initialized from zeros. To obtain the
cluster labels during fastSDA initialization, mini-batch k-means
clustering is performed (Sculley, 2010).

In MLPs we compare the proposed initialization approach with
random initialization from Gaussian distribution with µ = 0 and
σ = 0.05 (RNorm), random initialization from uniform distri-
bution in the range

[
−

1
√
n ,

1
√
n

]
(RUni), where n is the number

f input neurons in the corresponding layers. We also provide
omparisons with Glorot initialization (Glorot & Bengio, 2010)
nd He initialization (He et al., 2015). We also compare the results
ith data-driven approaches by substituting the fastSDA step
ith either K-Means initialization (KM), LDA, or PCA. For K-Means

nitialization, we whiten the data and apply spherical clustering
nto n clusters, subsequently initializing each neuron with one of
he cluster centroids following (Coates & Ng, 2012). In LDA and
CA initialization, we initialize the neurons to the eigenvectors
f the corresponding weight matrices, similarly to Alberti et al.
2017) and Seuret et al. (2017). Since LDA and PCA can return
t maximum C − 1 and D eigenvectors, respectively, in the
ase that the number of eigenvectors corresponding to non-zero
igenvalues are lower than the number of neurons required by
he architecture, we initialize them randomly from a Gaussian
istribution with zero mean and standard deviation of 0.05. In
DA and PCA, eigenvector matrices are normalized such that the
−2 norm of each column is equal to 1, similarly to the proposed
pproach, to ensure that any difference in performance arises
rom the utilized statistical learning method rather than from
ormalization. The output layers are initialized randomly, simi-
arly to our proposed approach. All the initialization methods are
valuated on the same architectures as the proposed approach.
Similarly, in CNN, we compare the proposed initialization ap-

roach with Glorot initialization (Glorot & Bengio, 2010), He
nitialization (He et al., 2015), random Gaussian and random
niform distributions with the parameters similar to the ones uti-
ized in MLPs, K-Means initialization, and PCA initialization. We



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

u
m
o
B
m
p
i

o
s
u
a
s
t
p
s
t
(
a
a
N
p
o

l
e
s
b
t
i
r

4

m

Fig. 1. Examples of dataset images from Linnaeus-5 (top), MNIST (middle) and CIFAR-10 (bottom) datasets.
Fig. 2. Structure of fastSDA-initialized Dense network.

se the same architecture as shown in Fig. 3 for all initialization
ethods. Besides, for random initializations, He, and Glorot meth-
ds we provide the results for the architectures where Vector
atch Normalization is replaced with conventional Batch Nor-
alization, to ensure that the accuracy gain obtained with the
roposed approach does not result solely from the new normal-
zation layer.

It can be noted that the patch extraction in the initialization
f CNN results in a significant increase in the number of data
amples used to learn the projection space, which might lead to
ndesired overhead during the clustering step of the proposed
pproach. As a remedy for this, we show that a small number of
amples is generally sufficient to learn a good projection space
hat leads to competitive performance. To showcase this, we
rovide the results in which only a limited number of training
amples is used during the initialization step. Specifically, we
est the proposed approach with 200 and 500 samples per class
i.e., the total of 2000 or 5000 samples in CIFAR-10 and MNIST,
nd 1000 or 2500 samples in Linnaeus-5 dataset). Besides, we
lso evaluate the methods without utilization of any type of Batch
ormalization. In this case, normalization of data is also not
erformed during learning of the projection space initialization
f the weights, and the solution is, therefore, approximate.
We train the models with Stochastic Gradient Descent with a

earning rate of 0.001, a batch size of 32, and categorical cross-
ntropy as the loss function until the accuracy on the validation
et stops improving for 10 epochs. The model that resulted in the
est validation accuracy is then used for reporting the results on
he test set. Data in MLP experiments is standardized and images
n CNN experiments are mean-centered and rescaled to match the
ange of 0 to 1.

.1. Results

The accuracy for MLP models with different initialization
ethods is shown in Tables 1 and 2, where we report results
226
Table 1
Accuracies on MLP architectures.

Linnaeus-5

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 37.25 31.30 30.40 29.55 32.50 33.60
RUni 35.05 35.25 31.35 30.95 30.95 32.65
He 36.70 32.45 32.95 38.55 29.65 32.00
Glorot 39.55 31.35 33.90 37.00 30.60 36.25
KM 38.65 34.70 35.60 40.75 31.00 32.40
LDA 32.65 32.70 33.00 37.25 31.40 33.00
PCA 32.95 34.60 33.90 33.30 31.90 35.65
fSDA 39.10 38.10 36.80 38.60 40.35 36.50
fSDA500 37.05 38.45 37.00 37.80 37.80 37.05
fSDA200 36.30 35.30 34.40 35.20 30.20 34.05

CIFAR-10

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 47.46 45.69 39.78 47.10 43.28 38.36
RUni 45.68 42.09 36.77 45.42 42.49 38.12
He 47.26 43.89 40.30 46.72 41.65 39.00
Glorot 47.16 44.61 42.21 47.14 41.66 40.86
KM 47.15 45.81 42.35 48.47 45.44 41.81
LDA 46.09 44.59 40.44 46.44 43.46 39.69
PCA 48.85 45.04 40.66 47.29 42.91 40.24
fSDA 48.20 46.32 44.51 47.97 48.18 43.49
fSDA500 48.56 47.32 43.65 48.77 48.48 42.66
fSDA200 47.55 46.19 43.55 46.93 46.40 42.62

MNIST

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 96.54 96.44 95.78 96.42 96.26 96.06
RUni 95.85 95.11 93.59 96.33 95.70 94.46
He 96.33 96.06 95.44 96.22 95.18 95.29
Glorot 96.85 96.38 96.15 96.55 96.13 95.80
KM 96.52 96.38 96.17 96.76 96.25 96.29
LDA 96.12 95.75 95.98 96.44 95.79 95.71
PCA 96.72 96.44 96.11 96.59 96.10 95.67
fSDA 96.85 96.56 96.34 96.72 96.70 96.35
fSDA500 96.81 96.89 96.34 96.95 97.29 96.53
fSDA200 97.22 96.72 95.92 97.12 96.68 96.83

on three activation functions and two architectures, i.e., LReLU16
stands for architecture corresponding to 16 subclasses as de-
scribed earlier and Leaky ReLU activation function. Similarly, Ta-
bles 3 and 4 show the accuracies for CNNs without and with nor-
malization layers, respectively. The best accuracy is highlighted
in bold.

As can be seen from Table 1, in the majority of architec-
tures and datasets, the proposed initialization outperforms other
competing methods in terms of accuracy. In the CNN scenario,
the proposed approach often outperforms competing methods
already without considering mean-centering and the use of any
type of normalization layers. We can see that mean-centering of
the data during the initialization and the subsequent use of Vec-
torBatchNormalization layers result in improved accuracy even



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

p
a
(

Fig. 3. Structure of fastSDA-initialized CNN.
Table 2
Classification results of linear methods in COVTYPE and KDD datasets.

COVTYPE

ReLU16 LReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 58.81 60.11 63.65 57.35 52.08 52.14
RUni 59.19 59.25 60.37 54.08 59.90 56.33
He 59.61 61.48 59.15 54.84 52.22 54.37
Glorot 63.42 59.96 63.88 53.68 51.29 53.71
KM 59.80 63.01 61.46 55.91 59.35 55.05
LDA 60.68 60.20 65.07 53.42 56.01 54.27
PCA 59.89 59.24 64.13 52.51 56.10 56.91
fSDA 63.97 57.42 63.14 57.65 60.83 54.60
fSDA500 61.39 63.84 62.58 51.54 57.06 55.73
fSDA200 63.66 62.65 63.13 56.84 53.29 58.04

KDD

ReLU16 LReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 97.10 95.88 96.79 98.96 97.88 99.13
RUni 98.48 96.75 98.34 97.73 97.52 99.05
He 90.29 94.28 97.92 97.48 97.70 99.20
Glorot 96.98 96.78 98.31 97.62 97.95 9823
KM 96.88 95.99 98.68 98.43 97.70 98.00
LDA 97.12 96.05 98.36 97.92 98.12 98.94
PCA 97.19 96.63 97.73 98.85 96.64 99.17
fSDA 96.62 96.86 97.56 98.18 97.31 98.87
fSDA500 98.73 98.08 96.96 99.17 98.42 98.05
fSDA200 97.30 96.68 98.50 99.03 97.67 98.46

further in the vast majority of the scenarios. Note that such nor-
malization also leads to improved accuracy of PCA and K-Means
initialization in most of the cases.

Considering the initialization using smaller number of sam-
les, we observe that in the CNNs, both 200 and 500 samples
re often sufficient for outperforming the competing methods
in the case fSDA200 or fSDA500 outperforms competing meth-
ods except fSDA, it is underlined in the tables). Considering the
MLP initialization, the results with regard to initialization with a
smaller number of samples are rather similar to that of CNN and
the use of a small number of samples generally leads to a fair
performance. Another fact worth noticing is that in a few cases,
the use of a smaller number of samples leads to performance
improved compared to using the full dataset. A possible interpre-
tation of this is that the model trained on a smaller number of
samples overfits less to the training data, thus providing better
generalization properties.

Figs. 4 and 5 show the convergence speed of different meth-
ods, where we plot the accuracy on the validation set versus the
number of training epochs. For the sake of variety, we provide
the results on architectures corresponding to 32 subclasses and
ReLU activation function for MLP architectures, and 16 subclasses
and LeakyReLU activation function for CNN architecture. The
plots outline several essential points: we observe that fastSDA-
initialized models generally start from a higher accuracy com-
pared to other methods, and generally they also take less epochs
to converge. This is clearly seen especially on the MLP architec-
tures. In addition, we can see that utilization of a larger number
227
Table 3
CNN results without normalization.

Linnaeus-5

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 63.05 55.70 60.85 57.40 60.00 59.10
RUni 48.15 50.95 54.65 52.55 50.40 56.30
He 55.70 55.95 61.85 58.85 56.15 58.60
Glorot 61.85 61.75 60.40 61.50 60.90 62.10
KM 61.90 52.00 46.50 63.25 63.85 45.45
PCA 64.50 54.05 59.35 61.30 64.70 62.15
fSDA 64.75 48.85 62.10 64.55 61.90 63.55

CIFAR-10

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 68.54 68.29 67.08 66.35 65.40 65.67
RUni 64.02 62.02 66.53 69.01 68.65 70.92
He 68.33 67.75 70.68 68.77 69.25 72.61
Glorot 70.27 70.49 71.00 71.01 70.93 71.28
KM 70.46 69.75 70.72 72.25 71.41 70.70
PCA 70.31 70.20 70.70 71.87 70.62 71.10
fSDA 71.10 69.83 71.01 72.66 71.52 70.46

MNIST

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 98.99 98.96 99.23 98.81 98.98 99.18
RUni 98.78 99.01 99.13 98.93 99.05 99.35
He 98.85 98.92 99.24 98.91 98.86 99.30
Glorot 98.79 98.79 99.09 99.00 98.68 99.24
KM 99.03 99.02 99.21 99.01 99.14 99.10
PCA 99.01 99.13 99.27 98.97 99.08 99.18
fSDA 99.05 99.03 99.28 99.08 99.17 99.26

of samples for initialization results in a higher initial accuracy
and a faster convergence compared to using a smaller number
of samples. In CNN, we observe that the convergence properties
are not as good as in the MLP case, and our proposed methods
are mostly doing on-par with competing ones. However, this is
compensated by the fact that our methods are able to achieve
a better overall accuracy, and a more detailed investigation on
the convergence properties of CNNs is left as a future work.
Overall, these observations support our intuition that fastSDA
initialization allows to start the optimization process from a more
favorable point in the feature space.

For reference, we provide the initialization times in seconds
for larger architecture corresponding to 32 subclasses for MLPs
and CNNs in Table 5. As can be seen, the speed of initialization
depends both on dimensionality and dataset size (recall that
MNIST has 1 channel unlike CIFAR-10 and Linnaeus-5 that have
3 channels, and Linnaeus-5 is the smallest dataset). In MLPs,
the overhead created by clustering plays a bigger role compared
to dimensionality of data, leading to fastSDA with full training
data being slower than PCA. However, in CNN and when using
a smaller number of images for initialization, our approach is
generally faster.



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

T
C

w
p
l
t
o

able 4
NN results with normalization layers.

Linnaeus-5

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

BNorm

RNorm 52.55 51.45 48.80 51.75 50.10 46.15
RUni 59.00 55.25 49.65 58.50 58.30 47.70
He 55.00 52.20 50.55 57.30 53.95 50.10
Glorot 54.50 54.95 53.00 57.20 56.35 52.60

VecBNorm

RNorm 49.55 47.05 44.85 50.80 47.70 41.85
RUni 53.90 51.55 44.30 51.85 52.90 43.80
He 55.15 53.40 50.75 57.20 54.10 51.15
Glorot 56.40 52.90 53.00 58.85 57.05 52.90
KM 60.70 62.40 60.85 61.55 58.70 57.65
PCA 60.90 62.90 60.00 63.90 60.35 59.75
fSDA 64.25 62.30 61.75 59.75 62.70 61.75
fSDA500 62.00 64.35 62.10 61.45 64.20 61.70
fSDA200 60.65 62.90 59.70 60.95 64.05 59.20

CIFAR-10

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

BNorm

RNorm 66.17 63.67 59.35 64.89 62.05 63.78
RUni 69.50 69.38 62.32 71.66 70.23 64.88
He 68.49 68.74 65.89 70.18 71.34 64.57
Glorot 71.71 72.04 68.41 73.77 73.51 66.94

VecBNorm

RNorm 63.65 61.89 59.96 64.50 60.68 62.71
RUni 64.99 65.71 54.70 67.31 66.65 56.32
He 69.17 68.17 64.24 71.54 70.11 64.88
Glorot 71.45 71.75 65.79 73.73 72.88 68.56
KM 72.03 75.01 68.52 77.18 76.20 67.03
PCA 72.67 74.40 68.06 72.71 77.17 71.65
fSDA 75.02 75.36 70.59 76.66 77.79 71.87
fSDA500 74.13 74.35 69.80 71.29 76.22 72.60
fSDA200 70.32 74.57 69.35 75.71 77.33 71.39

MNIST

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

BNorm

RNorm 98.82 98.78 98.45 98.94 98.70 98.41
RUni 99.16 99.20 99.03 99.11 99.19 99.04
He 99.00 99.17 99.03 99.19 99.30 99.10
Glorot 99.10 99.30 99.23 99.22 99.35 99.24

VecBNorm

RNorm 98.76 98.35 98.30 98.76 98.63 98.19
RUni 98.99 98.81 98.49 99.10 98.92 98.58
He 99.03 99.14 98.95 99.13 99.14 98.87
Glorot 99.18 99.21 99.08 99.15 99.16 99.22
KM 99.10 99.07 99.12 99.21 99.20 99.18
PCA 98.82 99.18 99.20 99.25 99.24 99.34
fSDA 98.67 99.26 99.24 99.25 99.24 99.28
fSDA500 98.98 99.14 99.17 97.92 99.13 99.10
fSDA200 98.65 99.04 95.16 99.17 99.18 99.05

Table 5
Times for initialization in 32-subclass architecture (seconds).

MLP

KM LDA PCA fSDA fSDA500 fSDA200

CIFAR 108 1251 25 108 42 26
MNIST 73 68 3 41 11 8
LIN 23 176 23 25 16 8

CNN

KM PCA fSDA fSDA500 fSDA200

CIFAR 22020 12364 6315 807 532
MNIST 16301 6158 4516 521 294
LIN 958 1208 369 216 152

5. Conclusion

In this paper we proposed a novel data-driven approach for
eight initialization based on discriminant learning. The pro-
osed initialization was formulated for dense and convolutional
ayers appearing in Multilayer Perceptrons (MLPs) and Convolu-
ional Neural Networks (CNNs). In addition, we considered some
f the limitations of the method caused by assumptions on the
228
Fig. 4. Convergence plots on MLPs. Datasets top to bottom: Linnaeus-5,
CIFAR-10, MNIST.

Fig. 5. Convergence plots on CNNs. Datasets top to bottom: Linnaeus-5,
CIFAR-10, MNIST.

data and proposed ways to remedy them. Experimental results
show that the proposed approach provides several benefits com-
pared to competing ones, including improved training accuracy
and initial accuracy, while achieving equal or faster convergence



K. Chumachenko, A. Iosifidis and M. Gabbouj Neural Networks 146 (2022) 220–229

a
t
i
e

D

c
t

A

V
A
H
a

R

A

B

S

S

W

Y

Z

Z

nd initialization time. In addition, we showed that the initializa-
ion time can be improved even further by applying the initial-
zation based on a small number of samples with no degrading
ffect on accuracy.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work is supported by Business Finland under project 5G
ertical Integrated Industry for Massive Automation (5G-VIIMA).
. Iosifidis acknowledges funding from the European Union’s
orizon 2020 research and innovation programme under grant
greement No 957337 (MARVEL).

eferences

lberti, M., Seuret, M., Pondenkandath, V., Ingold, R., & Liwicki, M. (2017).
Historical document image segmentation with LDA-initialized deep neural
networks. In Proceedings of the 4th international workshop on historical
document imaging and processing (pp. 95–100).

lackard, J. A., & Dean, D. J. (1999). Comparative accuracies of artificial neu-
ral networks and discriminant analysis in predicting forest cover types
from cartographic variables. Computers and Electronics in Agriculture, 24(3),
131–151.

Cai, D., He, X., & Han, J. (2007). SRDA: an efficient algorithm for large scale
discriminant analysis. IEEE Transactions on Knowledge and Data Engineering,
20, 1–12.

Cai, D., He, X., & Han, J. (2008). Training linear discriminant analysis in linear
time. In 2008 IEEE 24th international conference on data engineering (pp.
209–217). IEEE.

Chaladze, G., & Kalatozishvili, L. (2017). Linnaeus 5 dataset for machine learning:
Tech. rep., Tech. Rep.

Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple
deep learning baseline for image classification? IEEE Transactions on Image
Processing, 24(12), 5017–5032.

Chen, X., Weng, J., Lu, W., Xu, J., & Weng, J. (2017). Deep manifold learning
combined with convolutional neural networks for action recognition. IEEE
Transactions on Neural Networks and Learning Systems, 29(9), 3938–3952.

Chen, Y., Yang, Y., Zhang, M., & Kuo, C.-C. J. (2019). Semi-supervised learn-
ing via feedforward-designed convolutional neural networks. In 2019 IEEE
international conference on image processing (pp. 365–369). IEEE.

Chumachenko, K., Gabbouj, M., & Iosifidis, A. (2020). Robust fast subclass
discriminant analysis. In European signal processing conference.

Chumachenko, K., Männistö, A., Iosifidis, A., & Raitoharju, J. (2020). Machine
learning based analysis of finnish world war II photographers. IEEE Access,
8, 144184–144196.

Chumachenko, K., Raitoharju, J., Gabbouj, M., & Iosifidis, A. (2020b). Incremental
fast subclass discriminant analysis. In International conference on image
processing .

Chumachenko, K., Raitoharju, J., Iosifidis, A., & Gabbouj, M. (2020a). Speed-up and
multi-view extensions to subclass discriminant analysis. Pattern Recognition,
111(107660), 1–15.

Coates, A., & Ng, A. Y. (2012). Learning feature representations with k-means. In
Neural networks: tricks of the trade (pp. 561–580). Springer.
229
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A
Large-scale hierarchical image database. In CVPR09.

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint
triplets for object detection. In Proceedings of the IEEE international conference
on computer vision (pp. 6569–6578).

Duda, R., Hart, P., & Stork, D. (2000). Pattern classification (2nd ed.). New York,
NY, USA: Wiley.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. John Wiley &
Sons.

Ge, Y., Hu, J., & Deng, W. (2017). PCA-LDANet: A Simple feature learning
method for image classification. In 2017 4th IAPR Asian conference on pattern
recognition (pp. 370–375). IEEE.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp. 249–256).

He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-training.
In Proceedings of the IEEE international conference on computer vision (pp.
4918–4927).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision (pp. 1026–1034).

Iosifidis, A., Tefas, A., & Pitas, I. (2012). ’’View-invariant action recognition based
on Artificial Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 23(3), 412–424.

Krähenbühl, P., Doersch, C., Donahue, J., & Darrell, T. (2015). Data-dependent
initializations of convolutional neural networks. arXiv preprint arXiv:1511.
06856.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Citeseer.

Kuo, C.-C. J., Zhang, M., Li, S., Duan, J., & Chen, Y. (2019). Interpretable
convolutional neural networks via feedforward design. Journal of Visual
Communication and Image Representation, 60, 346–359.

Li, C., Xia, W., Yan, Y., Luo, B., & Tang, J. (2020). Segmenting objects in day and
night: Edge-conditioned cnn for thermal image semantic segmentation. IEEE
Transactions on Neural Networks and Learning Systems.

Mairal, J., Koniusz, P., Harchaoui, Z., & Schmid, C. (2014). Convolutional ker-
nel networks. In Advances in neural information processing systems (pp.
2627–2635).

Rosenstein, M., Marx, Z., Kaelbling, L., & Dietterich, T. (2005). To transfer or not
to transfer. In Neural information processing workshop on transfer learning (pp.
1–4).

Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th
international conference on world wide web (pp. 1177–1178).

Seuret, M., Alberti, M., Liwicki, M., & Ingold, R. (2017). PCA-initialized deep
neural networks applied to document image analysis. In 2017 14th IAPR
international conference on document analysis and recognition (vol. 01) (pp.
877–882).

huicheng, Y., Dong, X., Zhang, B., Zhang, H., Yang, Q., & Lin, S. (2007).
Graph embedding and extensions: a general framework for dimensionality
reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29,
40–51.

tolfo, J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based
modeling and evaluation for data mining with application to fraud and
intrusion detection. In Results from the JAM project by salvatore (pp. 1–15).

ang, D., & Li, M. (2017). Stochastic configuration networks: Fundamentals and
algorithms. IEEE Transactions on Cybernetics, 47(10), 3466–3479.

un, S., Choi, J., Yoo, Y., Yun, K., & Choi, J. Y. (2018). Action-driven visual
object tracking with deep reinforcement learning. IEEE Transactions on Neural
Networks and Learning Systems, 29(6), 2239–2252.

hao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object detection with deep
learning: A review. IEEE Transactions on Neural Networks and Learning
Systems, 30(11), 3212–3232.

hu, M., & Martinez, A. (2006). Subclass discriminant analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28.

http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb14
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb14
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb14
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb22
http://arxiv.org/abs/1511.06856
http://arxiv.org/abs/1511.06856
http://arxiv.org/abs/1511.06856
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00448-2/sb36

	Feedforward neural networks initialization based on discriminant learning
	Introduction
	Related work
	Weight initialization via subspace learning

	Initialization based on discriminant learning
	Motivation
	Proposed approach
	Initialization procedures
	Vector batch normalization

	Experimental setup
	Results

	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


