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ABSTRACT

The objective of the thesis is to develop techniques that optimize the per-
formances of sound event detection and classification systems at minimal su-
pervision cost. The state-of-the-art sound event detection and classification
systems use acoustic models developed using machine learning techniques.
The training of acoustic models typically relies on a large amount of labeled
audio data. Manually assigning labels to audio data is often the most time-
consuming part in a model development process. Unlabeled data is abundant
in many practical cases, but the amount of annotations that can be made is
limited. Thus, the practical problem is optimizing the accuracies of acoustic
models with a limited amount of annotations.

In this thesis, we started with the idea of clustering unlabeled audio data.
Clustering results can be used to derive propagated labels from a single label
assignment; meanwhile, clustering itself does not require labeled data. Based
on this idea, an active learning method was proposed and evaluated for sound
classification. In the experiments, the proposed active learning method based
on k-medoids clustering outperformed reference methods based on random
sampling and uncertainty sampling. In order to optimize the sample selec-
tion after annotating the k medoids, mismatch-first farthest-traversal was pro-
posed. The active learning performances were further improved according to
the experimental results.

The active learning method proposed for sound classification was extended
to sound event detection. Sound segments were generated based on change
point detection within each recording. The sound segments were selected
for annotation based on mismatch-first farthest-traversal. During the train-
ing of acoustic models, each recording was used as an input of a recurrent
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convolutional neural network. The training loss was derived from frames
corresponding to only annotated segments. In the experiments on a dataset
where sound events are rare, the proposed active learning method required
annotating only 2% of the training data to achieve similar accuracy, with re-
spect to annotating all the training data.

In addition to active learning, we investigated using cluster analysis to
group recordings with similar recording conditions. Feature normalization
according to cluster statistics was used to bridge the distribution shift due
to mismatched recording conditions. The achieved performance clearly out-
performed feature normalization based on global statistics and statistics per
recording.

The proposed active learning methods enable efficient labeling on large-
scale audio datasets, potentially saving a large amount of annotation effort
in the development of acoustic models. In addition, core ideas behind the
proposed methods are generic and they can be extended to other problems
such as natural language processing, as is investigated in [8].
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1 INTRODUCTION

The perception of sounds is the fundamental of various human functionali-
ties, such as communication and sensing dangers. Thus, computational anal-
ysis of sounds potentially helps automate many real-world tasks. Sound event
detection and classification is a research area that deals with the problem of au-
tomatically recognizing sounds in audio signals. It has various applications,
including health monitoring [34], road monitoring [30, 67] and machine in-
spection [55, 80].

The state-of-the-art approaches of sound event detection and classification
depend on acoustic models developed using machine learning. The perfor-
mance of a learned acoustic model largely depends on the training material, a
collection of annotated audio signals. In most cases, capturing audio is easy,
but annotating is time-consuming. Thus, the practical problem is to optimize
the performance of learned acoustic models, with a limited amount of anno-
tations being made. From another perspective, the problem is to minimize
the supervision effort needed to achieve a reliable model. Reduced labor cost
in model development potentially allows sound event detection and classi-
fication techniques to be deployed in more applications, where a sufficient
number of labels for supervised learning are currently too expensive to ob-
tain.

1.1 Objective of the thesis

The objective of the thesis is to develop techniques that optimize sound event
detection and classification performance at minimal supervision cost. The
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starting point is to perform cluster analysis on audio data, grouping similar
sounds into clusters. The utilization of clustering results is investigated in
two approaches. The first approach is active learning, which aims at select-
ing samples that are most beneficial to annotate. The idea of utilizing clus-
tering results to help labeling large dataset is briefly introduced in Section
3.2, and the developed active learning methods following the idea are pre-
sented in detail in Chapter 4 and Chapter 5. The second approach is feature
normalization. It is used to learn acoustic models using audio recorded un-
der mismatched recording conditions, and the metadata about the recording
conditions is not available. The method is introduced in Section 3.3.

Sound event detection and classification As a broad definition, a sound
event refers to an audio segment that can be associated with a concept. The
task of automatic sound event detection (SED) is to temporally locate the
target sound events from an audio signal and associate a class label with each
individual event. The target sound events can be largely different according
to the specific applications. For example, clapping, coughing, knocking, and
phone ringing are detected for health care monitoring in [34]. Speech recog-
nition and music transcription can be considered as special cases of sound
event detection. However, as the convention in the audio signal processing
community, recognition of speech and musical notes are not referred to as
sound event detection. Compared to SED, sound classification is relatively
simple. It associates exactly one class to an audio signal, in case of single-label
classification [42]. In case of multi-label classification [11], an audio signal
could be associated with multiple classes. Multi-label sound classification is
also called audio tagging [31].

Clustering analysis Cluster analysis or clustering is commonly used to
find hidden structures in a dataset. This can be achieved with various al-
gorithms such as K-means [51], K-medoids [81] and single-linkage cluster-
ing [94]. This thesis investigated using clustering methods to group similar
sounds. Based on the clustering results, active learning and feature normal-
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ization were investigated to minimize the supervision effort required to learn
acoustic models.

Active learning The term active learning [90] is defined from the perspec-
tive of the learning algorithm. An active learning algorithm actively partici-
pates in the data collection process: the learning algorithm is allowed to select
the data it learns from and make queries to a teacher, typically a human anno-
tator. Active learning is typically used for optimizing learned models when
unlabeled data is abundant, but the amount of annotations that can be made
is limited. When affordable annotation effort can provide labels to only a
small portion of unlabeled data, the selection of the subset may largely affect
the performance of the learned model. Ideally, the active learning system
learns from diverse training material that is relevant to the target problems.

Research questions In order to optimize the accuracy of a learned model
with a limited amount of annotations, this study addresses the following re-
search questions:

1. When only a limited number of labels can be assigned to abundant un-
labeled data, how to evaluate the effectiveness of a machine learning
method that deals with this problem?

2. How to measure audio similarity and perform cluster analysis based on
it?

3. What is the most efficient way of utilizing clustering results in the de-
velopment of acoustic models, in terms of minimizing supervision ef-
fort?

4. When a few segments are labeled in each recording, how to utilize the
temporal information of the original recordings to learn acoustic mod-
els?

15



1.2 Main results of the thesis

The main results and contributions of the publications leading to this thesis
are as follows.

Publication I: Environmental Noise Monitoring Using Source Classifi-
cation in Sensors In publication [I], sound source classification was intro-
duced to noise measurement sensors. In the first case study, the accuracy
and computation time using the Gaussian mixture model and the neural net-
work was analyzed. In the second case study, a clustering method was used
to analyze a large amount of industrial noise data from a harbor. K-means
clustering was performed on sound segments represented by means of their
corresponding MFCC vectors. An annotator was used to examine randomly
sampled sound segments within each cluster. When sampled sounds were
from different event classes in a cluster, the cluster was split into smaller ones.
When the sounds in a cluster belonged to the same class, sounds in the cluster
were collectively annotated.

Publication II: Active Learning for Sound Event Classification by Clus-
tering Unlabeled Data In publication [II], an active learning method was
proposed for sound event classification based on K-medoids clustering. The
distance measurement was based on Kullback-Leibler divergence between seg-
ments represented by the Gaussian distribution of MFCCs. The clustering
analysis used in publication [I] sometimes requires a considerable amount
of annotation effort to verify whether the clusters contain mixed classes of
sounds. The active learning algorithm proposed in publication [II] used rather
small clusters, and the sounds in a cluster were always assumed to belong to
the same class. Medoids, the centers of each cluster, were selected for manual
annotation. An annotated label associated with a medoid was propagated to
other members of its cluster. Both the annotated labels and propagated la-
bels were used for model training. The experimental results showed that the
active learning algorithm proposed in publication [II] saved 50%-60% anno-
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tation effort, with respect to the best reference method, on an environmental
sound classification dataset.

Publication III: Learning Vocal Mode Classifiers from Heterogeneous
Data Sources In publication [III], a feature normalization method was pro-
posed for utilizing multiple external data sources to learn sound classification
models when no training data is available for the target problem. The study
suggested that the model directly learned from different datasets was not reli-
able. The distribution of log-mel band energies largely varies among different
datasets, due to the difference in audio capturing setups, which has different
frequency responses. The performance of the learned model was largely im-
proved by normalizing the features to zero mean and unit variance for each
dataset. In some of the datasets, multiple capturing setups were used. The
study proposed using clustering to divide a dataset into subdatasets, each of
which was normalized according to its distribution.

Publication IV: An Active Learning Method Using Clustering and Com-
mittee-based Sample Selection for Sound Event Classification In pub-
lication [IV], an active learning algorithm was proposed improving on the
basis of publication [II]. After annotating the medoids, the sample selec-
tion continued with mismatch-first farthest-traversal. The primary selec-
tion criterion was the prediction mismatch on unlabeled sound segments be-
tween model prediction and label propagation. Counterexamples were se-
lected from either the predictions of an existing model or the labels propa-
gated from the medoids. The second criterion was the distance to previously
selected segments. It aimed at maximizing the diversity of selected data. The
experimental results on the same dataset showed that the accuracy of learned
models clearly outperforms the methods presented in publication [II], when
the labeling budget was larger than the number of medoids.

Publication V: Active Learning for Sound Event Detection In Publi-
cation [V], an active learning algorithm was proposed for sound event de-
tection. In comparison to previous publications, the system takes original
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recordings as input instead of short sound segments. The system comprises
three main parts. Variable-length sound segments are generated as selection
candidates based on a change point detection approach. Mismatch-first farthest-
traversal proposed in publication [IV] is used to select sound segments for
manual annotation. The distance measurement is based on the cosine dis-
tance between embedding vectors extracted with a pre-trained model. Weak
labels are required in the annotation to indicate the sound event classes present
in selected sound segments. During the model training, each original record-
ing is used as an input, and the loss is derived from only the frames corre-
sponding to annotated segments. Experimental results showed that the pro-
posed system effectively saved annotation effort for two datasets. Particu-
larly, the proposed system required annotating only 2% of the training set to
achieve the same performance as annotating the whole training set.

1.3 Outline and structure of thesis

The organization of the rest of this thesis is as follows.

Chapter 2 introduces fundamental concepts in sound event detection and
classification, including acoustic feature extraction and acoustic models. It
also introduces the techniques that minimize the supervision costs in learning
acoustic models.

Chapter 3 presents two studies, publication [I] and publication [III], that
perform cluster analysis on audio datasets. In publication [I], clustering re-
sults are used to explore and annotate a noise monitoring dataset. When no
information is initially available about an audio dataset, data exploration is
referred to the process that the annotator understands the general character-
istics and discovers the existing sound event classes in the dataset. In publica-
tion [III], clustering is used to group recordings that are captured in similar
recording conditions. Feature normalization, according to cluster statistics,
is used to bridge the feature distribution shift caused by mismatched record-
ing conditions.

Chapter 4 presents two proposed methods that address the problem of ac-

18



tive learning for sound classification. Publication [II] presents an active learn-
ing algorithm based on K-medoids clustering. Publication [IV] proposes a
mismatch-first farthest-traversal algorithm for active learning.

Chapter 5 presents publication [V] that extends the mismatch-first farthest-
traversal algorithm to sound event detection, integrating with a weakly super-
vised learning method.

The discussion and conclusion of the thesis are given in Chapter 6 and
Chapter 7, respectively.
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2 BACKGROUND

The main objective of the thesis is to minimize supervision effort in learning
acoustic models for sound event detection and classification, utilizing cluster
analysis. This chapter gives the background information in three sections.
The first section introduces the fundamentals of the machine learning ap-
proaches for sound event detection and classification. The second section
introduces the techniques that are used to minimize the supervision effort in
machine learning. The third section introduces techniques of cluster analy-
sis, since the main objective of the thesis is to investigate using clustering to
minimize supervision effort in the development of acoustic models for sound
event detection and classification.

2.1 Sound event detection and classification

The task of automatic sound event detection (SED) [73] is to temporally lo-
cate sound events from an audio signal and associate each individual sound
event to a class. A sound event is a recognizable acoustic activity [72], and
sound event classes are terms used to describe sound events, such as “door
slam”, “door barking”, and “water drops”.

Compared to SED, the definition of sound classification [42] is relatively
simple. In single-label classification, exactly one class is associated with each
audio signal. The classes are defined to be mutually exclusive; thus, multiple
classes cannot be present simultaneously. In multi-label classificatoin [11], or
audio tagging [31], an audio signal is associated with a set of classes, whose
cardinality can be zero, one or more. In some cases [78, 85], an audio signal
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is assumed to contain only one isolated sound event. The term sound recog-
nition has been previously used for sound classification in [18]. The thesis
uses the term sound classification for clarity.

2.1.1 Acoustic feature extraction

An audio signal is captured by a transducer that converts the time-varying
pressure of a sound wave into electrical voltages, which are further sampled
and quantized. The content analysis of audio signals is rarely performed on
raw audio signals. In most cases, audio signals are transformed into compact
and interpretable representations, called acoustic features. Commonly used
acoustic features used for SED include mel frequency cepstral coefficients
(MFCCs) [22], mel band energies [11], fundamental frequency [16], and em-
bedding vectors [60].

Spectrum Spectrum is a frequency domain representation of an audio sig-
nal. Most audio content analysis methods are based on time-frequency rep-
resentations [88], motivated by the structure of the human auditory system.
In human ears, sound pressure fluctuation is transduced by hair cells that
have different receptive frequency ranges, depending on their positions in
cochlea [29]. The starting point of spectrum computation is typically dis-
crete Fourier transform (DFT), which transforms a time series into a fre-
quency domain. Since audio signals change over time in each recording,
DFT is performed on the audio signals in short time frames, for example,
23 ms in [54]. As a result, a 1-D times series is transformed to a 2-D time-
frequency representation. The outputs of DFT are complex values, and the
magnitudes are commonly used for audio content analysis. The choice of the
frame length is a trade-off between frequency resolution and time resolution.
In a time frame, a windowing function such as Hanning window is typically
used to smooth the signal at the ends of both sides. A time frame usually
overlaps with the adjacent ones by 50% or 75% in sound event detection and
classification.
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Log-mel spectrum and mel frequency cepstral coefficients The results
of DFT correspond to frequencies on a linear scale. However, according to a
subjective listening test [95], the perceptual distance between two pitches is
non-linear as the function of the frequency difference in hertz. Mel-scale (mel
from melody) is a perceptually determined scale that measures the relative
pitch differences. The Bark scale is another non-linear frequency scale based
on subjective loudness [109]. It is more recently proposed but less popular
in the field of audio content analysis.

In order to convert a linear scale spectrum into mel scale, triangular fil-
terbanks are used. The amplitude of a filter peaks at the central frequency
and linearly decreases along with the distance to the central frequency. The
central frequencies of the triangular filters increase linearly in the mel-scale
from low frequency to high frequency. As a result, mel band energies are a
compressed representation of the linear scale spectrum, more densely com-
pressed on a higher frequency. The logarithm operation is performed on mel
band energies to reduce the dynamic range. The log-mel band energies are
commonly used acoustic features for audio content analysis.

Log-mel band energies can be further processed into mel-frequency Cep-
stral coefficients (MFCCs) [22], more compact representations widely used
in speech recognition [84], and sound classification [18]. To obtain MFCCs,
discrete cosine transform (DCT) is performed on log-mel band energies, and
the 0th coefficients are often discarded to obtain amplitude-invariant repre-
sentations.

Embedding vectors Some recent studies [4, 21, 43, 60] show that time-
frequency representations can be further processed into more distinctive and
noise-robust representations based on machine learning. These types of rep-
resentations are called embedding vectors. Embedding methods are used to
represent data objects in a vector space [45]. One of the examples is word em-
beddings, representing each word as a vector [61]. Publicly available audio
embedding extractors include SoundNet [4], VGGish [43] and OpenL3 [21].
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2.1.2 Acoustic models

An acoustic model is a parametric model that maps acoustic features into
predicted outputs, such as the class labels of present sound events. Previously,
various types of acoustic models have been investigated, including Gaussian
mixture model [18], support vector machine (SVM) [4, 85], random forest
[85], and neural networks [11, 12, 69]. This section briefly introduces SVM
and neural networks since they are used in the publications contributing to
this thesis.

2.1.2.1 Support vector machine

SVM has been widely used for classification problems [13, 85, 98]. It consists
of a set of binary classifiers, each of which constructs a hyperplane separating
a pair of classes [63]. A hyperplane is optimized to separate the two classes
and maximize the margin between the hyperplane and its nearest instances.
SVM has been investigated for sound classification problems in [4, 78, 85]. It
requires each sound to be represented as a high-dimensional vector. In [78,
85], a sound is represented by the statistics of MFCCs, such as mean and
variance. In [4], a sound is represented by an embedding vector, extracted
using a convolutional neural network.

The training process of SVM is deterministic since the optimization of
SVM is a convex problem, and the global optima are unique. Due to this
property, SVM is often used as a baseline system for sound classification,
such as in [85]. However, SVM does not natively support multi-label clas-
sification.

2.1.2.2 Neural networks

A neural network is constructed by connecting artificial neurons, which are
conceptually derived from biological synapses. Each artificial neuron has
multiple inputs and produces a single output. By connecting artificial neu-
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rons, neural networks can be used to approximate non-linear relationships
between variables. Due to the flexibility in modeling, neural networks have
been used in a wide range of problems, such as regression [10], classification
[19], and dimensionality reduction [7]. The state-of-the-art SED models are
based on convolutional recurrent neural networks (CRNN) [12]. One of
the CRNN networks has been used in [V]. A CRNN consists of three types
of neural networks as substructures: fully-connected network [64], convolu-
tional neural network [6], and recurrent neural network [47].

Fully-connected neural networks A fully-connected network (FNN) [64,
69] consists of only fully-connected layers, where each neuron is connected
with all the input variables, or hidden variables produced by the previous
layer, as

h= σ(W · x+b), (2.1)

where the input is a vector x and the output is a vector h. The matrix W is
called weights and the vector b is called bias, or offset. A non-linear activa-
tion function is denoted as σ , which is an element-wise operation. Typical
activation functions include rectified linear unit, sigmoid function and hy-
perbolic tangent. Sigmoid function is a monotonic function that maps a real
number to between 0 and 1.

The learnable parameters, weights and biases, are initialized at the begin-
ning of a training process and are iteratively optimized to match the model
outputs with training targets. The number of learnable parameters of a fully
connected network is large with high-dimensional input data. As a result,
fully connected neural networks easily overfit some types of data, due to the
excessively large number of parameters.

Convolutional neural networks A convolutional neural network (CNN)
[6] consists of a series of convolutional layers. The input of a convolutional
layer can be a vector, a matrix, or a tensor. Assuming the inputs are matrices,
a small number of kernels are convolved with the input matrices in each con-
volutional layer. The convolution output with each kernel is called a channel.
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Given an input matrix X and a kernel W, the output of the corresponding
channel is computed as

Hi , j = σ(b +
∑︂

m

∑︂

n

Wm,n ·Xi−m,i−n) (2.2)

where σ is the activation function, typically rectified linear unit, and b is
the bias of the convolutional kernel W. Since a small number of convolu-
tional kernels are shared over the entire input matrices, a CNN typically
requires much fewer parameters to process a large matrix in comparison to
using FNN. Max-pooling is commonly used between two convolutional lay-
ers. It downsamples the representation in each channel. This reduces the
representation size while the information upstreams from bottom to top lay-
ers. Due to the nature of max-pooling, representations learned by CNNs are
shift-invariant: delay or pitch shift on a sound event has minimal impact on
its CNN representations.

Recurrent neural networks Recurrent neural network (RNN) [17, 47]
consists of recurrent units. It is typically used to model sequential data.
Given a sequence of N vectors as input X = [x1,x2, ...,xN ], each recurrent
unit produces an output of the current time step ht , based on the input vec-
tor of current timestep xt and the output of the previous time step ht−1. The
output of recurrent units may carry information of previous timesteps and
propagate the information forward. This enables RNNs to model the tempo-
ral patterns of sound events in long term. RNN has many variations, among
which gated recurrent units (GRUs) [17] are used in [V]. With a GRU, the
output corresponding to a timestep ht is computed as

gater e s e t = σ(W0 · xt +U0 ·ht−1+b0) (2.3a)

gateu pdat e = σ(W1 · xt +U1 ·ht−1+b1) (2.3b)
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ht =(1− gateu pdat e)⊙ t anh(W2 · xt + gater e s e t ⊙ (U2 ·ht−1)+b2)

+ gateu pdat e ⊙ht−1,
(2.3c)

where {Wi |i = 0,1,2}, {Ui |i = 0,1,2} and {bi |i = 0,1,2} are the weight
matrices and bias vectors. Element-wise multiplication is denoted with ⊙.
The reset gate and update gate are computed as in Equation 2.3a and Equa-
tion 2.3b, respectively. The reset gate decides what information is to be used
from the previous timestep. The update gate decides what past information
to propagate forward. As can be seen from Equation 2.3c, the information
retained with the update gate can be interpreted as long-term memory, and
the reset gate decides if the memory is taken into account when processing
the current timestep.

Covolutional recurrent neural networks Convolutional recurrent neural
networks (CRNNs) have been commonly used for audio tagging and SED in
recent studies [12, 14]. CNNs are used to process time-frequency represen-
tations, typically log-mel band energies, into one or more sequences of latent
representations. The latent representations are processed by RNNs to model
long-term temporal patterns. The outputs of RNNs in each time step are fur-
ther mapped into class probabilities using one or more FNNs.

2.2 Minimizing supervision effort

Acoustic models are typically developed based on supervised learning, where
labeled audio data is used as training examples. Labels are typically obtained
by annotation, manually assigning desired prediction outputs to audio sig-
nals. It is often the most time-consuming part in the model development
process. In order to develop acoustic models with minimal cost of anno-
tation effort, various techniques have been studied including domain adapta-
tion [32], semi-supervised learning [108], active learning [II, IV], and weakly
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supervised learning [68]. Domain adaptation allows utilizing labeled data
that are already available in a source domain, developing acoustic models with
none or few annotations made in a target domain. Semi-supervised learning
deals with a partially labeled dataset. It utilizes not only labeled data but also
unlabeled data in learning acoustic models. Active learning starts from an
unlabeled dataset, aiming at selecting the optimal subset of the dataset for
annotation, maximizing the learned acoustic model at the cost of a limited
annotation effort. Weakly supervised learning utilizes annotations with less
detailed information, typically referred to as training SED models with only
presence/absence labels in recording level. This chapter describes and dis-
cusses these machine learning techniques that aim at minimizing supervision
effort. The problem setups of these techniques are summarized in Table 2.1.

Domain
adaptation

Semi-supervised
learning

Active
learning

Weakly supervised
learning

Utilizes data from external sources Yes No No No
Utilizes unlabeled data Yes Yes Yes No
Algorithm selects training data No No Yes No
Annotation with less details No No No Yes

Table 2.1 A summary of machine learning techniques that minimize annotation effort.

2.2.1 Domain adaptation

Domain adaptation [32] deals with the problem of distribution shift between
training and testing datasets (domains). The distribution of a training dataset
is called a source domain, whereas the distribution of the test dataset is called
a target domain. By utilizing available data in source domains, domain adap-
tation can largely save the number of annotations required on a target do-
main. In the DCASE 2020 task 4, domain adaptation methods [104] have
been shown effective in exploiting external synthetic data to improve the
SED performance on a test dataset containing real-life recordings.

Feature normalization is a traditional approach to bridge the distribution
differences. It has previously been investigated for robust speech recognition,
for example, in [74], where the mean and variance of each feature variable is
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estimated for each dataset, and the features in each recording are normalized
to zero-mean and unit-variance according to the statistics of the dataset.

Recent studies [24, 104] perform domain adaptation using adversarial learn-
ing, which is widely used to disentangle confounding factors. The core idea
is to train separate feature extractors for each domain. Thus the features ex-
tracted from different domains follow similar distributions. During the train-
ing, the extracted features from different domains are fed to a scene classifier
and a domain classifier. The training target is to minimize the prediction loss
from the scene classifier and maximize the prediction loss from the domain
classifier.

2.2.2 Semi-supervised learning

In many cases, unlabeled data is abundant, but the amount of labeled data
is rather limited. Semi-supervised learning techniques are used to optimize
learned models by utilizing unlabeled data. An early attempt of semi-supervised
learning on sound event detection [108] suggests that the performance of the
learned model can be improved by simply using predicted labels as a training
target for unlabeled data, although the improvement in performance is rather
small. The semi-supervised learning method uses an iterative re-training pro-
cess. In the first iteration, a teacher model is trained with labeled data, and
the teacher model generates predicted labels to unlabeled data in the training
set. A student model is trained using both the labeled data and unlabeled data
with predicted labels. In the next iteration, the student model is used as the
teacher, and a new student model is obtained.

Recently the challenge of DCASE 2018-2019 task 4 has attracted increas-
ing research interest on semi-supervised learning for sound event detection.
The top-performing system [103] is based on the mean-teacher method [96].
Compared to [108], the mean-teacher model is not obtained through re-training.
It is obtained by taking the exponential moving average weights of previous
student models. In addition, the unlabeled data is given a regularization role.
A consistency cost is computed between the classification output on origi-
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nal unlabeled data and unlabeled data imposed with noise. Since the ground
truth labels should not change along with additive noises, the unlabeled data
can help the trained model to be robust with noises. The original mean-
teacher study [96] on an image classification dataset, CIFAR-10, shows that
the performance training using 4000 labeled data can be achieved by using
only 1000 labeled data with the mean-teacher method. The mean-teacher
method has also been shown to achieve clearly better performance than us-
ing only labeled data in audio tagging [103].

2.2.3 Active learning

Similar to semi-supervised learning, active learning [20] also deals with abun-
dant unlabeled data, given a limited number of labels that can be assigned.
The main difference compared to semi-supervised learning is that an active
learning algorithm is allowed to choose the data to be labeled, whereas the
learning algorithm does not select the data to be annotated under a typical
semi-supervised learning setup. The selection of the labeled subset may have
a big impact on the performance of learned models. As an extreme case,
nothing can be learned when select data all belong to the same class.

Previously, various active learning algorithms have been proposed for prob-
lems such as text classification [98] and speech recognition [37]. Uncertainty
sampling [20] selects the samples that are classified with low confidence ac-
cording to an existing model. Committee-based sampling [91] selects samples
with a low level of prediction agreement among a group of models as a deci-
sion committee. These two methods attempt to select the samples where one
or more existing models make mistakes, assuming counterexamples are more
beneficial to improve an existing model. Diversity-oriented active learning
[75] aims at high diversity in selected data points, covering local distributions
in the dataset.
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2.2.4 Weakly supervised learning

A SED model predicts each individual sound event, including the onset, off-
set and sound event class in each recording. Ideally, the labels should contain
the same level of details. Labels of this type are called strong labels. In prac-
tice, precisely annotating the onset and offset of each individual sound event
in an audio recording is time-consuming and sometimes difficult. In order to
reduce the required annotation effort, weakly supervised learning techniques
[58, 68] have been studied to utilize labels with lower levels of details. Two
types of weak audio labeling have been identified in [102]. The first type is
absence/presence labeling, which indicates the presence of each target sound
event in each recording. The second type is sequential labeling, which indi-
cates the order of present sound events without timestamps.

Most recent research has been done on the exploitation of absence/pres-
ence labeling since sequential labeling is not common in an existing audio
dataset. An attention pooling [58] and an adaptive pooling method [68]
based on softmax pooling have been shown effective. Attention pooling [58]
methods learn to predict pooling weights, along with predicted probabilities
for each frame. The weighted average of the class probabilities is used as the
prediction for a sound segment. In [68], a learnable hyper-parameter is intro-
duced to softmax pooling. Both methods achieved similar SED performance
using weak labels compared to using strong labels.

2.3 Cluster analysis

Cluster analysis [53] is a general task of generating partitions in data. The aim
of clustering is to achieve internal cohesion and external isolation according
to a matter of interest [25]. Most clustering algorithms are based on inter-
instance similarities, distances, or connectivities. The general term proxim-
ity is used for similarities, distances, or connectivities [25]. Cluster analysis
has been previously used in a wide range of applications, including bioinfor-
matics [101], astronomy [26], image classification [75], and community de-

31



tection in social network [28]. The clustering results are used for predicting
local modularity structures [101] , building taxonomy [26], and minimizing
suprevision effort in training classifiers [75].

A large variety of clustering algorithms have been previously developed.
The algorithms have their own advantages and disadvantages, and the choice
of the algorithm depends on the type of data and the usage of the cluster-
ing results. One category of clustering algorithms is based on optimization,
either minimizing or maximizing a numeric criterion. Another category is
hierarchical clustering, which generates a series of partitions, with smaller
clusters merging into larger ones.

2.3.1 Clustering by optimizing objectives

A large number of clustering algorithms are based on optimizing a criterion,
typically in terms of internal cohesion, or external isolation [25]. The clus-
tering criteria are derived from either vector representations of each instance
[23, 65] or a proximity matrix containing the dissimilarity values between
each inter-instance pair [53, 76, 87].

K-means clustering is a widely used clustering criterion derived from vec-
tor representations. Based on the vector representations, each instance is re-
garded as a data point x in a vector space. K-means clustering divides the n
data points into k clusters. The mean value µi of the data points in the i th
cluster Si is regarded as the cluster centroid. The optimization objective is to
minimize the sum of Euclidean distances from each data point to its cluster
centroid, as

argmin
P

k
∑︂

i=1

∑︂

x∈Si

∥x−µi∥
2 . (2.4)

A partition with k clusters is denoted P = {S1,S2,S3...Sk}. The time
complexity of the stardard K-means algorithm, Lloyd’s algorithm [65], is
O(knd ), where the k, n, d are the number of clusters, the number of in-
stances and the dimensionality of the vector representations.
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In many cases, instances are not represented as vectors, and only a prox-
imity matrix, or an adjacency matrix in the case of graph data, is available.
K-medoids clustering is a commonly used clustering criterion derived from a
proximity matrix. It generates a partition of k clusters, each of which has an
examplar instance as the cluster centroid. The examplar instances are called
medoids, and each individual instance in the dataset is assigned to the cluster
of its nearest medoid. The optimization objective is to minimize the sum of
dissimilarities from each individual instance to its nearest medoid, as

argmin
M

n
∑︂

i=1

mi n{d (xi , m j )|m j ∈ {M}, (2.5)

where M = {m1, m2, ...mk} are the medoids of the k clusters. The time com-
plexity of the standard optimization algorithm [53] is O(n2k2). An improved
algorithm can reduce the runtime to O(n2) [87].

The proximity matrix can be derived from vector representations by com-
puting the proximity values based on a distance or a similarity function, such
as Euclidean distance, cosine similarity, or a machine-learned similarity met-
ric. This allows the choice of an arbitrary distance or similarity function that
works well for a specific problem. Inversely, a proximity matrix can also be
used to derive vector representations. In [41], each instance is represented by
the corresponding row vector in the proximity matrix.

2.3.2 Hierarchical clustering

A hierarchical clustering algorithm generates a series of partitions instead of a
single one. In each step, a partition is generated by either merging or splitting
clusters obtained in the previous step. With a typical agglomerative hierar-
chical clustering, each individual instance is initialized as a cluster, and some
of the clusters are merged in each step according to a rule, for example, single
linkage [94]. To the opposite of agglomerative clustering, divisive clustering
algorithms [35] start with a single cluster containing all the instances, and
the clusters are divided into smaller clusters in each step.
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Typically, hierarchical clustering is used to derive a dendrogram from an-
alyzing a set of instances [25]. The dendrogram structure can be used for in-
teractive data exploration [49, 89]. In comparison to K-means or K-medoids,
hierarchical clustering does not optimize an objective. As a problem, the par-
tition generated in any step of hierarchical clustering may not meet an objec-
tive at all, and what was done in previous steps could never be repaired [53].
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3 CLUSTERING ANALYSIS FOR

AUDIO DATASETS

Unlabeled data can be easily captured in an environment, where a sound clas-
sifier aims to operate. However, it requires a large amount of time to un-
derstand and annotate the data. Cluster analysis is commonly used for data
exploration, or initial data analysis, by which an annotator can understand
basic information about the dataset, including the correctness of the data and
the general distribution of present sound events. In [I], clustering is used to
explore noise monitoring data and to help annotating the noise sources in
audio signals.

Clustering is used for sound event classification in a different approach
in [II]. It is used to group recordings captured in similar conditions, when
the labels of recording setups are unavailable. Then, feature normalization
is performed according to cluster statistics to bridge the feature distribution
shift caused by different recording conditions.

3.1 Related works

3.1.1 Audio similarity measurement

A clustering algorithm requires a method of similarity measurement. The
similarity measurement is essential for the performance of clustering. Simi-
larity measurement methods are commonly evaluated using information re-
trieval metrics such as mean average precision [70] and area under receiver
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operating curve [27]. Three types of methods have been commonly used for
the measurement of similarity between two sounds. One of the metrics is
to measure the divergence between the distributions of MFCCs within each
sound [66]. This similarity metric is referred to as MFCC-Gaussian-KL in
this thesis. Another audio similarity measurement is based on dynamic time
warping [79], which is an algorithm that measures the similarity between
a pair of temporal sequences. Recent studies [50] achieve good audio infor-
mation retrieval performances using cosine similarities between embeddings
extracted by pre-trained models.

The requirement for the similarity measurement is similar to sound infor-
mation retrieval [105] tasks. Ideally, the dissimilarities between inter-class
pairs should be large, while the dissimilarities between intra-class pairs should
be relatively small. Kullback-Leibler (KL) divergence between MFCC distri-
butions is used to measure the dissimilarity between two sound segments in
[II]. A sequence of MFCCs is extracted for each sound segment, and a sound
is represented as a multi-variate Gaussian distribution based on the mean and
variance of the corresponding MFCCs and their first and second-order deltas.
The KL divergence between two Gaussian distributions P0 and P1 is calcu-
lated as

DKL(P0∥P1) =
1
2
(tr(Σ−1

1 Σ0)

+ (µ1 −µ0)
⊤Σ−1

1 (µ1 −µ0)

+ ln(
detΣ1

detΣ0

)− k),

(3.1)

where µ0 and µ1, Σ0 and Σ1 represent the means and the covariance matrices
of two distributions, respectively. The sum of diagonal values of a matrix, or
called the trace of a matrix, is denoted as tr. KL divergence is not commuta-
tive, thus DKL(P0∥P1) does not equal to DKL(P1∥P0). The average of both
way KL divergence is commonly used to measure the dissimilarity between
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two segments as

D(P0∥P1) =D(P1∥P0) =
DKL(P0∥P1)+DKL(P1∥P0)

2
. (3.2)

The short-term temporal information is kept in the deltas of MFCCs;
however, the long-term temporal information is lost using KL divergence.
The combination of KL divergence and dynamic time warping (DTW) leads
to an improvement in sound information retrieval performance compared to
using only KL divergence in [105]. DTW is a method that calculates an opti-
mal match between two sequences with possibly different lengths. It has also
been widely used to measure the similarities for speech [38], and satellite im-
ages [77]. Recently, using cosine distance between embeddings extracted by
a neural network pre-trained using very large-scale YouTube data has been
shown effective in general sound retrieval tasks [50]. This similarity mea-
surement is used in [IV].

3.2 Investigating noise monitoring data with cluster

analysis

Environmental noise monitoring systems continuously measure sound lev-
els. Publication [I] proposed a concept of automatically assigning measured
sound levels to different noise sources, by running sound classification algo-
rithms in a wireless sensor. Two case studies were made monitoring a rock
crushing station and a harbor.

3.2.1 Acoustic model development using traditional

supervised learning

In one case study, environmental noise was monitored near a rock crushing
site using wireless sensors. A binary sound event classifier was used to predict
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whether the noise source was from the rock crushing site in each recording,
which has a duration of one minute. Within each recording, an annotator is
used to mark the onset and offset of rock crushing machine sounds. Acoustic
models are trained to predict the probability of the target noise source being
active, per frame.

Traditional supervised learning was used to learn acoustic models in this
study case. Two days of data were manually annotated. The annotated data
was used for two-fold validation, swapping the data of day 1 and day 2 for
training and testing. One of the trained acoustic models was deployed in
wireless sensors for the concept pilot. The prediction results from the acous-
tic model well matched with the working schedule of the rock crushing site
in general. This case study is not described in detail since it is not relevant to
the main topic of this thesis.

3.2.2 Acoustic model development with interactive

clustering

In the second case study, environmental noise was monitored at a few lo-
cations in a harbor. Continuous recordings had been collected for months,
and prior knowledge about the harbor was unavailable to the annotator. The
target was to analyze the types of noise sources in the environment and to de-
velop acoustic models for the identified noise sources. A clustering approach
was used to analyze the initially unlabeled dataset. The recordings were first
split into audio segments based on Bayesian information criterion [59], and
the segments were partitioned into ten clusters based on K -means clustering.

In k-means clustering, each instance is represented as a feature vector, and
arbitrary points in the feature space can be used as centroids. MFCCs of a
sound is a sequence of vectors; thus, it cannot be directly used for k-means
clustering. In [41], a dissimilarity matrix is generated based on MFCC-Gaussian-
KL [66], and each row vector in a dissimilarity matrix is used as a vector rep-
resentation of the corresponding instance. This approach has been used in
[I] and [II]. The weakness is the computation cost for large datasets. The

38



time complexity of k-means is O(knd ), and it is O(kn2), when row vectors
of dissimilarity matrix are used as the vector representations of the instances.

In each cluster, audio segments were randomly sampled, and the samples
were presented to an annotator. The annotator listened to a small fraction of
sound segments randomly sampled from each cluster. When the samples in a
cluster were found to belong to the same class, the whole cluster was collec-
tively annotated as the samples’ majority class. When the samples in a cluster
were from multiple classes, the annotator would decide whether the cluster
was further partitioned into 10 clusters or skipped. The annotated segments
were used to develop acoustic models as was used in traditional supervised
learning.

Due to the lack of ground truth labels, careful evaluation could not be
made with the noise monitoring data. Following the idea of utilizing clus-
tering results in the development of acoustic models, the problem of active
learning for sound classification was formalized and studied in [II] and [IV].

3.3 Cluster analysis for feature normalization

The distribution of acoustic features largely depends on the recording setups,
including the recording device, the acoustic space, and the background noises.
The distribution shift of acoustic features caused by mismatched recording se-
tups has been previously dealt with various techniques such as domain adap-
tation [32], which have been studied to apply models trained in a source do-
main to a target domain. However, a dataset may contain recordings that
are captured under multiple recording setups, and the information about the
recording setup of each recording is not available. To deal with these cases,
[II] proposes to divide a dataset into clusters and perform feature normaliza-
tion according to the feature statistics of each cluster.
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3.3.1 A problem of vocal mode classification

A vocal mode classification problem is studied in [II], where the target is to
distinguish singing from speech. It is expensive to collect speech and singing
data using the specific recording setup of the target application scenario. Thus,
it would be of great importance to utilize a large amount of speech and singing
data that are publicly available. Many speech recognition datasets are pub-
licly available, including [5, 36, 56]. Singing recordings are publicly avail-
able in the vocal tracks in some multitrack music datasets, including [9, 52].
The problem is to learn vocal model classification models utilizing audio data
from multiple datasets and apply the models for target recording setups.

3.3.2 Featrue normalization techniques

The distributions of acoustic features, mel-band energies, of two speech recog-
nition datasets are visualized in Figure 3.1. Both datasets have balanced speaker
genders and balanced phonemes used in the utterances. As can be seen, an en-
ergy level of a band can be relatively low in one of the datasets but high in
another.

In order to bridge the distribution shift, feature normalization is used ac-
cording to the dataset statistics. Two feature normalization method mean-
variance normalization [100] and quantile equalization [44] has been inves-
tigated. In mean-variance normalization, the mean µ and variance σ2 are
computed for each dataset. An acoustic feature x is shifted by the mean and
scaled according to the variance, as

xno r m =
x−µ
σ

. (3.3)

Quantile equalization [44] estimates a transformation function for each
feature coefficient based on the quantile statistics. Quartiles are a group of
quantiles, consisting of the minimum, 25th percentile, median, 75th per-
centile, and maximum values of a feature coefficient, denoted as Q0, Q1, Q2,
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Figure 3.1 Feature distribution in CHiME2010 and Arctic dataset,illustrated in green and blue
lines, respectively. The visualized features are log-mel band energies from nine dif-
ferent bands. The histogram plots are obtained by dividing the interval [−4σ , 4σ]
of each feature coefficient into 50 bins. ©2017 IEEE.

Q3, Q4, respectively. They divide the range of a feature coefficient value into
four bins: B0 = [Q0,Q1], B1 = (Q1,Q2], B2 = (Q2,Q3], B3 = (Q3,Q4].
In [II], quantile equalization is used to normalize the features based on the
quartiles, using the transformation function

xno r m = Q̂k +(x −Qk)
Q̂k+1 − Q̂k

Qk+1 −Qk

x ∈Bk , (3.4)

where x is the original feature coefficient value that falls into Bk , and the
normalized feature coefficient value is denoted as xno r m. The kth quartile
of the source distribution is denoted as Qk , and the kth quartile of the target
distribution is denoted as Q̂k . In order to bridge the distribution shift, feature
vectors from different source distributions are transformed to have the same
target distribution.
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3.3.3 Feature normalization according to cluster statistics

In some cases, multiple recording setups might be used in a dataset. As is
shown in Figure 3.2, the two recordings from Arctic speech recognition dataset
[56] seems to have different cut-off frequencies and different levels of back-
ground noises. In these cases, feature normalization according to dataset
statistics would be less effective. A straightforward approach is to normalize
the features according to the statistics of each recording. However, the diver-
sity of sounds in a single recording is limited, and the feature distribution in
a recording is mainly affected by the sound sources instead of the recording
setup.

Figure 3.2 The spectrograms of two recordings in Arctic dataset.

In order to have a larger data scope for the feature normalization, K-means
clustering [51] is used to divide each dataset into clusters, aiming at grouping
the recordings based on the recording setups. Feature normalization is then
performed according to cluster statistics. The number of clusters is defined
proportionally to the total duration of each dataset, about two hours of non-
silent audio per cluster.
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3.3.4 Experimental results

A dataset TUT-vocal-2016 containing both speech and singing was collected.
The dataset contains 80 pieces of singing recordings, from 20 volunteers. The
lyric of each piece of singing is read out by the volunteer. The total duration
was three hours and 15 minutes. The test dataset was split into four folds,
and cross-validation was performed to evaluate the performance of acoustic
models learned with in-domain data, recorded with matched condition with
test data. The obtained accuracy across the four folds was 95.5%.

In order to evaluate the performance of acoustic models learned using
only external training material, seven publicly available datasets, four speech
datasets, and three singing datasets, about 35 hours in total, were used for
training. Before learning acoustic models, feature normalization was per-
formed based on the feature statistics. Since the results obtained with mean-
variance normalization and quantile equalization were similar, only the re-
sults using mean-variance normalization are mentioned below. When the
global statistics were used for feature normalization, the accuracy was only
69.6%. The accuracy was improved to 81.1%, when the acoustic features were
normalized according to dataset statistics. When datasets were divided into
clusters and feature normalization was performed according to cluster statis-
tics, the accuracy was further improved to 96.8%. When the feature normal-
ization was performed according to the feature statistics of each recording,
the achieved accuracy was 72.7%. The diversity of a single recording is lim-
ited, and the feature statistics can hardly be used to estimate the distribution
shift between recording setups.

Compared to 95.5% accuracy obtained by using in-domain data, similar
performance (96.8%) is achieved using only external data with the proposed
feature normalization method. It shows that, in some cases, the proposed
method enables learning acoustic models from different data domains with-
out requiring domain labels. The limitation of the method is that it requires
a sufficient amount of data under each recording setup to estimate the distri-
bution shift between recording setups.
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4 ACTIVE LEARNING FOR SOUND

CLASSIFICATION

Active learning is a special case of machine learning, where the learning algo-
rithm is allowed to choose the data from which it learns [90]. In most cases,
active learning targets the situation where unlabeled data is abundant, but the
amount of annotations that can be done is limited. Previously, active learning
has been studied for text classification [48, 98], speech recognition [37], and
image classification [75]. This chapter describes the active learning methods
proposed for sound classification in [II, IV], and the evaluation results on the
two methods are collectively presented.

4.1 Problem definition

In general, three problem scenarios have been outlined for active learning:
membership query synthesis [3], stream-based selective sampling [20] and
pool-based sampling [62]. In the scenario of membership query synthesis, a
learning algorithm is allowed to query for labels on an arbitrary point in a fea-
ture space. The learning algorithm should be able to generate data instances
for annotation, corresponding to the selected data point. This is reasonable
for some types of data, such as text [107]; however, it is not always possible to
generate realistic sounds based on an arbitrary type of feature vector. Stream-
based selective sampling assumes that data is continuously collected, and the
learning algorithm decides whether to learn from each data instance on the
fly. A data instance is either selected for annotation or discarded. A typi-
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cal scenario is to improve a model that operates on a large scale of incoming
data such as Tweet data streams in [99]. Among the three problem scenarios,
pool-based sampling is the most widely studied. In pool-based sampling, a
large pool of unlabeled data is provided in the beginning, and no incoming
data instance is added afterward. Data instances not being selected at a time
are not discarded, and they are used as selection candidates in the future.

In the noise monitoring scenario discussed in Section 3.2, a large amount
of unlabeled data is collected before the model development. This situation
falls into the category of pool-based sampling. In addition, most of previous
active learning studies [37, 48, 75, 98] deal with pool-based sampling. Thus,
pool-based sampling is assumed in this thesis. In principle, after a model is
developed with the initial dataset and being deployed, stream-based active
learning can be performed to further improve the model. However, this sce-
nario is not addressed in this thesis.

In pool-based sample selection, an initially unlabeled dataset containing N
sound instances is denoted as S = {s1, s2, ...sN}. A data instance is also called
a sample, and selecting samples to be annotated is called sampling. An anno-
tator is used to assign labels to the selected samples. The set of classes that can
be assigned is pre-defined as C = {c1, c2, ...cC }, where C is the total number
of classes. A label l = (s , c) ∈S ×C associates class c to the sound segment
s . The maximum number of samples that can be manually annotated is called
labeling budget. An active learning process finishes when the labeling budget
is exhausted. An acoustic model is trained using all the obtained labels. The
performance of the model is used to evaluate the outcome of the learning
process. The performance is benchmarked as a function of the labeling bud-
get; thus, different active learning algorithms can be compared either by the
performances with a given labeling budget or the labeling budget required to
achieve a given performance.

In an active learning process, annotated samples are denoted as a set A ,
and the set of samples not being annotated are denoted as U . Some active
learning algorithms [39] incorporate the idea of semi-supervised learning. In
addition to the annotated labels, predicted labels are generated to U , and the
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predicted labels are used in the training of acoustic models. In these cases,
the annotated labels are denoted as LA , and the predicted labels are denoted
as LU .

4.2 Related works

4.2.1 Uncertainty Sampling

A “query strategy” is used to define a rule of selecting data for annotation.
Uncertainty sampling is a simple and commonly used query strategy. The
idea is to query for labels on data instances where an existing model predicts
with low confidence. The sample selection process is typically in batch mode
[48]: a batch of samples is selected for annotation in each iteration, and the
existing model is re-trained with the annotated samplesA . This idea requires
a model to assign a confidence score to each prediction. The confidence mea-
surement is straightforward for probabilistic models. Confidence estimation
methods are available for many commonly used classification models such as
SVM, decision tree, and neural network.

One of the problems with uncertainty sampling is known as cold start
[92]. The estimation of certainty is not reliable unless an existing model is
trained with a decent amount of labeled data. In many cases, uncertainty
sampling does not outperform random sampling with a relatively low label-
ing budget [37, 82]. The low diversity within each selection batch is another
problem for uncertainty sampling since the samples uncertain to the same
model are often similar [86, 92].

4.2.2 Committee-based sampling

Committee-based sampling [91], or query by committee, relies on multiple
models as a decision committee. Instances are considered to contain more in-
formation value to existing models when the models make mismatched pre-
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dictions [91], since the predictions are wrong for at least some of the classi-
fiers in the committee. Typically a classifier benefits more from a counterex-
ample, where it makes mistakes, rather than an example where it succeeds.

The performance of committee-based sampling largely depends on the
choice of the committee members. In ideal cases, the committee members
should be able to correct each other. Committee-based sampling is not effec-
tive when the committee members use similar prediction mechanisms and
always make the same decisions, or some committee members are constantly
inferior to the others.

Since committee-based sampling involves training multiple classifiers, the
computation time is typically larger than uncertainty sampling. Similar to
uncertainty sampling, Committee-based sampling also has a cold start prob-
lem and the low diversity problem within each selection batch.

4.2.3 Cluster-based sampling

At the very early stage of an active learning process, labeled data is too limited
to train a reliable acoustic model. Cluster-based sampling aims at selecting the
representatives of each local distribution of a dataset. Since it does not rely
on labeled data, cluster-based sampling has no cold start problem. It has been
shown effective in image classification [75]when the labeling budget is small.

4.3 Medoid-based active learning for sound

classification

In [II], an active learning method is proposed for sound classification. The
algorithm is based on clustering results obtained with K-medoids cluster-
ing; thus, it is called medoid-based active learning (MAL). K-medoids clus-
tering is performed on an initially unlabeled dataset, producing K instances
as medoids, the centroids of K clusters. The medoids, as representatives of
each local distribution, are presented to an annotator, ordered by the size of
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clusters, largest first. The annotated label assigned to a medoid is propagated
to other cluster members. Both annotated labels LA and propagated labels
LU are used for training classifiers.

4.3.1 Sample selection based on k-medoids clustering

K-medoids clustering algorithm is commonly used to find exemplar instances,
called medoids, in a dataset. The optimization objective is to minimize the
sum of distances from each instance to its nearest medoid. In [II], the medoids
are initialized using farthest-first traversal [83], which is a commonly used
approximation of k-center problems [46]. In the preliminary study, initial-
izing the medoids with farthest-first traversal leads to more consistent and
generally better active learning performance, compared to using randomly
initialized medoids. The optimization of the medoids is based on PAM [53].

4.3.1.1 The choice of clustering method

Compared to k-means, which is used in [I, III], k-medoids clustering has two
advantages. Firstly, the centroid of each cluster is a real data instance, which
is intrinsically the exemplar instance of the whole cluster. In comparison, the
cluster centroids with k-means clustering are arbitrary points in the feature
space. Secondly, k-medoids clustering directly uses a proximity matrix as an
input, whereas k-means requires instances to be represented as vectors. In
[I,II,III,IV], the sound segments are not intrinsically represented as vectors.
The row vectors in the MFCC-Gaussian-KL dissimilarity matrix are used as
vector representations of each data instance in [I, III]. Since the dimensional-
ity of the vector representation is the number of instances, the computational
cost of k-means clustering is high for a large dataset.
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4.3.1.2 The use of the clustering results

The clusters obtained with k-medoids clustering are sorted based on the size,
from the largest to the smallest. The idea is that typical cases of each class
are first annotated, and then outliers are annotated only when the labeling
budget is large enough. The labels annotated on each medoid are propagated
to other members in its cluster to obtain propagated labels LU . When the
labeling budget is more than K , another round of clustering is performed on
U , and the labeling process is continued with medoids in the latest round
of clustering. After all the labeling budget is consumed, a classifier is trained
using both annotated labels LA and propagated labels LU .

An imaginary dataset is given as an example of a pool-based sampling sce-
nario in Figure 4.1. The imaginary dataset has 120 randomly generated in-
stances from two classes. The ground truth labels are initially unknown. A
labeling budget allows the active learning algorithm to query for labels of
a limited number of samples from an annotator. Figure 4.2 visualizes the
selected samples from the imaginary dataset Figure 4.1 using the MAL algo-
rithm proposed in [II].
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Figure 4.1 An imaginary binary classification problem, with 120 randomly generated instances
on a 2-D space. The color represents the ground truth class of each instance. The
red border marks the ground truth decision boundary between the two classes.
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Figure 4.2 An illustration of the medoid-based active learning (MAL) algorithm on an imaginary
dataset, shown in Figure 4.1. Medoids, illustrated as triangles, are produced based
on k-medoids clustering. In each batch of sample selection, medoids of the largest
clusters, the top five in the example, are selected for annotation. The label annotated
to a medoid is propagated to other members in its cluster.

4.3.1.3 Choosing the number of clusters

The choice of the number of clusters K controls a trade-off between cluster
size and the accuracy of the propagated labels: the bigger the cluster size, the
more propagated labels can be derived from a single label assignment, but less
accurately. A factor M is defined as the average cluster size, as M =N/K . In
[II], M is fixed to four, based on a preliminary study on a small-scale dataset.
In [IV], the factor M is denoted as KI . Due to possible confusions with K ,
the notation is changed to M in this thesis.
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4.3.2 Limitations

MAL has been shown effective for sound classification under a low labeling
budget. However, as the labeling budget grows, the performance is subopti-
mal since repeating k-medoids clustering on unlabeled data does not utilize
previously annotated data. In addition, the number of clusters estimated in
the preliminary study is unlikely to be optimal for all the cases.

4.4 Extending medoid-based active learning with

mismatch-first farthest-traversal

In order to optimize the sample selection after annotating the medoids, mismatch-
first farthest-traversal (MFFT) is proposed in [IV]. The active learning algo-
rithm proposed in [IV] comprises two stages. The first stage is the same as
in [II]: k-medoids clustering is performed, and the medoids are selected for
annotation. After annotating all the medoids, each instance has a label, either
annotated or propagated. The sample selection in the second stage, MFFT,
aims at correcting wrong propagated labels, meanwhile maximizing the diver-
sity of the selected samples. For the sake of simplicity, the method proposed
in [II] is called MAL-R, which means medoid-based active learning, recur-
sively clustering on unlabeled data. The method proposed in [IV] is called
MAL-MF, which means medoid-based active learning, with mismatch-first
farthest traversal as second stage sample selection method.

4.4.1 Mismatch-first farthest-traversal

MAL intrinsically involves two classification mechanisms: label propagation
based on the clusters and a model-based classifier trained with labeled data.
The primary selection criterion of MFFT is the prediction mismatch be-
tween the two mechanisms. Let us denote the propagated label of a sample x
as lp(x) and the model-predicted label of x as lm(x). The set of samples with
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prediction mismatch is defined as

M = {x ∈U |lp(x) ̸= lm(x)}, (4.1)

where U is the set of samples not being annotated. The samples with pre-
diction mismatch have either wrong model-predicted labels or propagated
labels. As is assumed in committee-based sample selection, [91], a classifier
benefits more from a counterexample, where the classifier makes mistakes,
rather than an example where the classifier succeeds. Since the two classifi-
cation mechanisms are fundamentally different, they typically have a decent
number of samples with mismatched predictions to correct each other. The
secondary criterion is the distance from an instance to its nearest previously
selected sample. The selected sample s is defined as

s = argmax
x∈M

d (x,S ). (4.2)

The distance from a sample x to the set of samples S is defined as d (x,S ) =
mi ny∈S d (x, y). It aims at maximizing the diversity of selected samples.

Figure 4.3 visualizes the first selection batch with MFFT. It is based on the
imaginary dataset shown in Figure 4.1, and the clustering results are shown
in Figure 4.2. After all the medoids are annotated, a batch of five samples is
selected among the samples with prediction mismatch.

4.4.2 Estimating the number of clusters

In addition to the MAL-MF algorithm, a method of estimating the cluster
number K is proposed in [IV]. Before the clustering, the sample with median
nearest neighbor distance among the dataset is selected as a test sample. The
annotator is used to check the neighbors of the test sample, from the nearest
to the farthest, until finding a neighbor that belongs to a different class. The
number of top nearest neighbors that belong to the same class as the test
sample is an estimate of the average number of propagated labels that can be
reliably derived with a single label assignment. Thus, it is used as the average
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Figure 4.3 An illustration of mismatch-first farthest-traversal (MFFT) after all the medoids in
Figure 4.2 are annotated. Model-predicted labels are generated based on a classi-
fication model trained with annotated labels, and propagated labels are generated
based on nearest-neighbor prediction from annotated labels. A batch of samples
with mismatched predictions are selected based on farthest-first traversal. The prop-
agated labels are updated after selected samples are annotated.

cluster size M .
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4.4.3 Limitations

The method of estimating K lies in the assumption that the instances of each
class are generally balanced. In case that one of the classes comprises a very
high proportion of the dataset, for example, 99% of the dataset, the estimated
M would be very large. As a result, instances of rare classes can hardly be
selected. In addition, the proposed MFFT algorithm is restricted to single-
label classification.

4.5 Evaluating active learning algorithms in sound

event classification

4.5.1 Dataset and settings

UrbanSound8K dataset [85] is used for evaluation. It is a public environ-
mental sound dataset recorded in real urban environments. It contains 8 732
labeled sound segments, with a total duration of 8.75 hours. The sound seg-
ments are manually labeled into ten classes, including air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gunshot, jackham-
mer, siren, and street music.

The evaluation follows the 10-fold cross-validation setup originally pro-
posed in UrbanSound8K. When testing the active learning performance on
each fold, a model is trained using the other nine folds. The ground truth
labels are initially hidden to the active learning system, which is allowed to
query for labels up to the number of a pre-defined labeling budget. The an-
notated labels on queried segments are simulated according to the ground
truth. After consuming all the labeling budget, a model is trained based on
both annotated labels and propagated labels. The model is used to perform
sound classification on the fold left out for testing. The unweighted accuracy
of the predictions averaging the ten folds is used for evaluation. The classi-
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fication model and the extraction of acoustic features follow the baseline of
UrbanSound8K dataset.
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Figure 4.4 Classification accuracy as a function of labeling budget. MAL-R denotes the
medoid active learning, recursively running k-medoids clustering after annotat-
ing medoids. MAL-MF denotes medoid-based active learning and mismatch-first
farthest-traversal. ©2018 IEEE.

In order to evaluate an active learning algorithm with varying labeling
budgets, the sound classification accuracy is evaluated as a function of the la-
beling budget. M is defined as N/K , which can be interpreted as the average
size of clusters. The number of M used in [II] is 4, based on a preliminary
study on a smaller dataset, whereas the number of M used in [IV] is 12, based
on the proposed estimation method of M . In order to compare the perfor-
mances, MAL-R and MAL-MF are evaluated with both M = 4 and M = 12.
In addition to the proposed methods, random sampling and uncertainty sam-
pling are evaluated as reference methods.
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4.5.2 Experimental results

The experimental results are shown in Figure 4.4. The ceiling performance is
64.7%, when all the segments in the training dataset are annotated. MAL-R
and MAL-MF outperform random sampling and uncertainty sampling to a
large extent. Due to the cold start problem, uncertainty sampling does not
outperform random sampling with a labeling budget less than 3000, approx-
imately 38% of the training data. The MAL-R method proposed in [II] can
save 50% to 60% annotations to achieve the same accuracy, with respect to
random sampling or uncertainty sampling. The MAL-MF method proposed
in [IV] can save 50% to 80% annotations to achieve the same accuracy, with
respect to random sampling or uncertainty sampling.

Since the first stage is the same in MAL-R and MAL-MF, the performances
with a labeling budget under K are almost the same. When M = 4 is used,
the performances are very close for MAL-R and MAL-MF, since the perfor-
mance already approximates the ceiling performance when the labeling bud-
get is 2000, roughly the number of K . In order to keep clear looking in the
figure, only the results with MAL-R are presented with M = 4. When M = 12
is used, MAL-MF clearly outperforms MAL-R when the labeling budget is
over K , which is around 650.
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5 FROM SOUND CLASSIFICATION TO

SOUND EVENT DETECTION

Active learning has previously been studied for sound classification problems
in [II, IV]. It is extended to SED in [V]. There are two fundamental differ-
ences between the active learning setups in [II, IV] and in [V]. Firstly, the
learning outcome of [V] is a SED model, which predicts the onset and offset
of each individual sound event, whereas exactly one class is associated with
each sound segment in [II, IV]. Secondly, the system in [V] deals with rel-
atively long audio signals, containing an arbitrary number of sound events,
possibly overlapping in time. In comparison, [II, IV] deals with short seg-
ments, with a duration lower than four seconds, assuming each segment to
contain only one isolated sound event. However, obtaining sound segments
with only isolated events is not easy in real-life environments.

5.1 Basic ideas for minimizing supervision effort in

learning SED models

Two aspects of annotation cost are considered in learning SED models: the
duration of audio to be annotated and the difficulty of making the annota-
tions. In general, the idea is to minimize the annotation cost from these two
aspects. Following this thread, the basic ideas are introduced below.
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5.1.1 Annotation unit

An annotation unit is an audio signal, within which an annotator is instructed
to annotate target sound events. Traditionally, audio annotation is done on
each recording. Since sounds in a recording are often produced from the same
sound sources, annotating only representative segments within each record-
ing is sometimes sufficient for acoustic model training. When the labeling
budget is limited, annotating selected sound segments from different record-
ings enables higher diversity in annotated data, compared to annotating a
single recording with the same total duration. Maximizing diversity is the
pivotal sample election principle in [II, IV], and It has been shown effective
according to the experimental results. Therefore, sound segments should be
generated as an annotation unit, rather than using each recording as an anno-
tation unit.

Considering the difficulty of annotation, the sound segments should not
be too short. Otherwise, the annotation could be rather erroneous accord-
ing to the listening test made in [18], where reports that manual annotations
are clearly less accurate along with the decrease of the duration of sound seg-
ments, when the duration is below four seconds.

5.1.2 Preserving contextual information in training

The sound segments are processed independently in [II, IV], regardless of the
temporal location in the original recordings. This is hardly optimal, since
temporal information across sound segments can be potentially useful. This
has been previously discussed in [40]. Firstly, background sounds of an an-
notated event might be helpful in learning the unique characteristics of an
event out of the background. Secondly, contextual information can be used
to model the dependencies in a sequence of sounds. As an example, key rat-
tling and is often prior to a door closing sound. In order to preserve the
contextual information of annotated segments, each recording is used as a
training input, and the training losses are derived from only annotated seg-
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ments within it.

5.1.3 Using weak labels

Traditionally, SED models are trained using strong labels, which are the tar-
get outputs of SED models: the onset, offset, and class of each individual
sound event in each signal. However, strong labels are much more time-
consuming to annotate, compared to annotating weak labels, which indicate
only the presence of each target sound event in sound segments. According to
the experimental results in recent studies on weakly supervised learning [58,
68], similar accuracy can be achieved using weak labels compared to using
strong labels. Based on these results, weak labels are used in the proposed
system.

5.2 Description of the active learning system for

SED

Following the basic ideas described above, an active learning system is pro-
posed in [V]. The overview of the active learning system is visualized in fig-
ure 5.1. The active learning system involves three components: generating
sound segments from audio recordings, selecting sound segments for annota-
tion, and weakly supervised learning with annotated sound segments within
recordings.

5.2.1 Generating sound segments from audio recordings

The most straightforward approach to generating sound segments is to slice
each audio recording into fixed-length segments. As a drawback, the bound-
ary between two consecutive segments is quite often in the middle of a sound
event, dividing a single event into two separate segments. This sometimes
brings difficulties to annotators. Furthermore, a segment that contains a par-
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Figure 5.1 The overview of the active learning system proposed in [V]. ©2020 IEEE.

tial event is sometimes rather dissimilar to segments that contain full sound
events of the same class. This results in errors when inferring the presence of
sound events through similarity analysis. In order to avoid splitting events
into separate segments, change point detection is used to generate segments.

Change point detection is a problem of finding abrupt changes in sequen-
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tial data, typically caused by internal systematic change or external interfer-
ence [2]. The purpose of using change point detection is to preserve full
sound events between detected change points.

Previously, unsupervised audio segmentation methods were mostly based
on MFCCs and Bayesian information criterion (BIC) [15, 59]. Change point
detection can be considered as a problem of finding a time point where the
signal prior to it has the largest dissimilarity compared to the signal subse-
quent to it. Recent study [105, 106] suggested that learned audio embeddings
largely outperformed MFCCs for audio similarity analysis. Base on these re-
sults, the change point detection in [V] is based on embeddings extracted
using a model learned from a large-scale sound event detection dataset, Au-
dioset [33]. The embeddings are extracted per frame of mel band energies.
The likelihood of change is estimated for each time point based on the co-
sine distance between the mean of past M frames and the mean of the future
M frames. Peaks in the likelihood of change are detected as change points.
The mel-spectrum, embeddings, and likelihood of change are visualized in
Figure 5.2.

The generated sound segments are used as candidates for sample selection.
Each selected segment is presented to an annotator for annotation. The sound
event classes present in a segment x are considered as a set, denoted as Lx ,
which possibly contains zero, single, or multiple sound event classes.

5.2.2 Sample selection criterion for multi-label classification

The sample selection algorithm plays a pivotal role in the performance of an
active learning system. In [II], clustering analysis has been used in sample
selection, and evaluation shows that the proposed sample selection is effec-
tive with a limited labeling budget. K-medoids clustering is performed on
an initially unlabeled dataset, and the medoids are selected for annotation. In
[IV], after the medoids are annotated, the sample selection proceeds based on
mismatch-first farthest-traversal as the second stage. Mismatch-first farthest-
traversal aims at the points with wrong label predictions, meanwhile maxi-
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Figure 5.2 An illustration of the audio change point detecion method proposed in [V]. Panel (a)
is the log-mel spectrogram of an example audio signal, with the detected change
points marked by white vertical lines. Panel (b) visualizes the embeddings extracted
using a pre-trained model. Panel (c) illustrates the estimated likelihood of change
on each time step. The peaks in the likelihood sequence are detected as change
points, which are marked with red crosses. ©2020 IEEE.

mizing the diversity of all selected samples. Evaluation in [IV] shows that
mismatch-first farthest-traversal clearly outperforms reference sample selec-
tion methods on UrbanSound8K [85].

The K-medoids clustering in [II] and [IV] involves initialization of the
K-medoids based on farthest-first traversal and optimization of the medoids
based on partition around medoids (PAM) [53]. The time complexity of
PAM is O(k(n − k)2) [53]; thus, the clustering analysis takes a considerable
amount of time for a large scale dataset. Thus, the benefit of running PAM
is estimated in a primary study. In one setup, PAM is performed to opti-
mize the K -medoids. In another, the K medoids are directly produced us-
ing farthest-first traversal, without performing PAM. The K samples selected
in each method are then used to train a classifier, respectively. According
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to the result, the accuracy of the two classifiers has no significant difference.
Therefore, the first stage of sample selection in publication [V] performs only
the farthest-first traversal process, excluding the optimization process using
PAM. As a result, the sample selection rule is equivalent in the first stage
and in the second stage, since mismatch-first farthest-traversal is simplified
to farthest-first traversal when predicted labels do not exist in the first stage.
The overall sample selection method is then simply mismatch-first farthest-
traversal.

As is introduced in Chapter IV, model-predicted labels and propagated la-
bels are generated according to an existing model and nearest neighbor predic-
tion, respectively. The prediction mismatch is used as the primary selection
criterion. Publication [IV] deals with sound event classification where ex-
actly one class is associated with each segment. In sound event detection, the
number of present sound event classes in a segment can be possibly zero, one
or multiple. Following this setup, the labels assigned to each audio segment
is regarded as a set in [V]. The model-predicted labels are regarded as Ax ,
and the propagated labels are regarded as a set Bx . The prediction mismatch
between the two sets is measured between two sets, using Jaccard Index as

J (x) =

⎧

⎨

⎩

|Ax∩Bx |
|Ax∪Bx |

, if Ax ∪Bx ̸= ∅

1 , if Ax ∪Bx = ∅
. (5.1)

Among the sound segments that have the lowest Jaccard Index, farthest-
traversal is performed in order to maximize the diversity of selected samples,
as is introduced in chapter IV.

5.2.3 Weakly supervised learning

Neural networks are commonly used for SED. The outputs corresponding
to each frame are commonly interpreted as probabilities of sound event ac-
tivities. According to the setup in [V], the presence of sound events is an-
notated within selected sound segments. Previously, attention pooling [58]
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and linear softmax [68] have been shown effective in learning SED models
from weakly labeled audio. In the active learning setup, typically, a record-
ing consists of multiple segments, and only a small number of segments are
annotated under a small labeling budget assumption. A recording is referred
to as a partially labeled recording if annotations exist but do not cover all the
segments within it.

Previously, segments generated from a recording are processed indepen-
dently in weakly supervised learning [50], regardless of the context of an-
notated segments. The contextual information may benefit the SED perfor-
mance as is discussed in [40]; thus, publication [V] proposes to use partially
labeled recordings as training inputs. Each recording is used as an input, and
the training loss only depends on the frames corresponding to annotated seg-
ments. The signal not corresponding to an annotated segment may provide
the following two types of information. Firstly, the background sounds of
an annotated event might be helpful in learning the unique characteristics of
an event out of the background. Secondly, contextual information can be
used to model the dependencies in sound sequences. As an example, key rat-
tling and latching sound is often prior to a door closing sound event, which is
commonly used to describe the impact sound between a door and its frame.
When only the door closing is defined as a target event, the key rattling and
latching sound can help the door closing event be distinguished from other
impact sounds in a home environment.

5.3 Evaluation

Publication [V] extends the active learning algorithm proposed in [IV] to
sound event detection. Three novel components in the active learning sys-
tem are evaluated: sound segments generated based on change point detec-
tion, the sample selection method based on mismatch-first farthest-traversal,
and the weakly supervised learning method that uses full recording as train-
ing input, preserving the context for annotated segments. The evaluation of
the components is made reversely, with respect to the order of processing in
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the active learning system. Experiment A focuses on the weakly supervised
learning; Experiment B focuses on the sample selection method; Experiment
C focuses on the segmentation method based on change point detection.

5.3.1 Dataset and settings

Two SED datasets are used in the evaluation. The statistics of the two datasets
are shown in Table 5.1. The first dataset is TUT Rare Sound Events 2017 [71],
which is used in the challenge of Detection and Classification of Acoustic
Scenes and Events (DCASE) 2017, as task 2. The dataset is used to evaluate
active learning systems in scenarios where sound events are rare. The second
dataset is TAU Spatial Sound Events 2019 - Ambisonic, which is used in the
challenge of DCASE2019 [1], as task 3. The dataset is used to evaluate active
learning systems in scenarios where sound events are dense.

TUT Rare Sound Events 2017 includes a training/testing split. The train-
ing data is regarded as an initially unlabeled dataset, and the annotated la-
bels are generated to selected samples according to the ground truth. When
the amount of annotated segments reaches a benchmarked labeling budget, a
SED model is trained using annotated labels, and the model is tested using the
testing split. The following proportions of the training data as labeling bud-
gets are evaluated: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 100%.
Segment-based error rate (ER) [73] is used to evaluate the performance of
a SED model. The segment length in the segment-based evaluation is one
second, which is a common setup in sound event detection studies, such as
DCASE 2017 task 3. Spatial Sound Events 2019 includes a four-fold cross-
validation setup. In the experiments, the rotation of the training/testing split
follows the cross-validation setup, and the average of the segment-based ER
across the four folds is reported.

In order to evaluate each component in the proposed active learning sys-
tem, three experiments have been made. Experiment A focuses on the idea
of preserving context for annotated segments that are generated with the pro-
posed change point detection algorithm, and the evaluated systems are sum-
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marized in Table 5.1. Random sampling is used in experiment A. Exper-
iment B focuses on the sample selection method, comparing random sam-
pling, MFFT, and uncertainty sampling as is summarized in Table 5.2. The
weakly supervised learning setup in experiment B follows system 1 in exper-
iment A. The detailed setup of the experiments are available in the original
paper in [V].

System Annotation unit Label type Training input

Experiment A1
1 segment weak label recordings
2 segment weak label segments

Experiment A2
3 segment strong label recordings
4 recording strong label recordings

Table 5.1 A summary of experiment A. Bold font is used to highlight the investigated aspect in
each experiment.

System Sampling method

Experiment B
1 Random sampling
5 Mismatch-first farthest-traversal (proposed)
6 Uncertainty sampling

Table 5.2 A summary of experiment B on investigated sampling methods.

5.3.2 Experimental results

The experimental results from experiment A are shown in Figure 5.3. By
comparing the results obtained with system 1 and system 2, we can see pre-
serving the original recording as the context of each annotated segment clearly
improves the performance, compared to training with only annotated seg-
ments. By comparing system 3 and system 4, clearly higher accuracy can
be achieved with the same amount of annotations by annotating sound seg-
ments, compared to annotating recordings. In overall, the best performance
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Figure 5.3 Error rate of learned models as the function of labeling budget for methods that use
different training inputs and annotation units in experiment A. ©2020 IEEE.

is achieved by annotating sound segments and using original recordings as
training inputs.
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Figure 5.4 Error rate of learned models as the function of labeling budget for methods that use
different sampling method in experiment B. ©2020 IEEE.

The experimental results from experiment B are shown in Figure 5.4. The
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results show that the proposed sampling method clearly outperforms refer-
ence methods. In the experiments on the TUT Rare Sound dataset, the pro-
posed method outperforms reference methods to a large extent. Remarkably,
the proposed active learning method requires only 2% of the training data to
be annotated to achieve similar performance, compared to annotating all the
data. In the experiments on the TAU Spatial Sound dataset, the proposed
method slightly outperforms the two reference methods.
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6 DISCUSSION

This chapter first discusses the relevant research activities in the audio re-
search community and how this thesis potentially benefits the community.
Then, it discusses the situations where the proposed methods might have
problems and how to modify the proposed methods to deal with different
situations.

The field of SED has gained increasing interest in the audio research com-
munity. This can be seen from the number of participants in the DCASE
challenge, which started in 2013. The numbers of both the participating
teams and submitted systems have increased by every year. However, the
number of productized SED applications is still very limited at present, com-
pared to applications in the speech and music domain.

The cost of developing acoustic models is one of the obstacles to produc-
tizing some potential SED applications, since a SED application typically
requires its own task-specific acoustic model to perform with reliable accu-
racies. General-purpose SED systems fail in many cases due to the follow-
ing factors. Firstly, unlike phonemes or musical notes, sound event classes
can hardly be universally defined. Different acoustic properties might be as-
sociated with the same class name in different tasks. For example, a “door
closing“ class literally includes sounds produced from oven doors, cupboard
doors, sliding doors, electric doors, wooden doors, and many other types
of doors. A specific SED application might assume only one type of door,
excluding the others. Secondly, the frequency responses vastly vary among
recording devices, especially outside the human voice frequency range. As a
result, a general-purpose acoustic model may fail to produce reliable predic-
tions without optimization for specific recording devices.
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In order to reduce the cost of developing SED models, studies have been
made on the direction of minimizing supervision effort since DCASE 2017
task 4 [71]. Various techniques have been introduced to SED, including
weakly supervised learning, domain adaptation, and semi-supervised learn-
ing. These methods are used to utilize external data or unlabeled data to im-
prove the performances of learned models. However, few studies have been
made to deal with the selection of samples to be labeled. Since the selection
method can largely affect the performance of learned models in many situa-
tions, a thesis that focuses on the selection problem is expected to add good
value to the research community. Based on this expectation, the thesis is
being conducted, and the contribution to the community is summarized as
follows.

A sample selection strategy based on k-medoids clustering was proposed in
[II]. It was then improved with mismatch-first farthest-traversal as the sample
selection strategy after all the medoids being annotated. The methods were
shown effective with respect to random sampling and uncertainty sampling
as reference methods. When recordings are long, typically only a small num-
ber of representative segments in each recording are selected for annotation.
Traditionally, the labeled parts in a recording are regarded as isolated seg-
ments. To utilize the contextual information, [V] proposed to keep the orig-
inal recordings as training inputs, and training losses were derived from only
labeled parts of the recordings. The experimental results showed that the
proposed method clearly outperformed learning from annotated segments
independently. Combining the sample selection strategy proposed in [II]
and [IV], and the method of learning from partially labeled recordings in
[V], the development cost of SED applications can be potentially reduced to
a large extent. Furthermore, since the proposed active learning algorithms
are generic, they can be applied to other types of data. For instance, the ac-
tive learning method proposed in [IV] was modified and applied to a natural
language processing problem in [8].

In addition to the contribution, some observations, possible modifica-
tions to address different situations are briefly disscussed. Ideally, a cluster-
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ing method can directly group sounds according their ground truth classes.
Thus, a straightforward idea would be to produce clusters with a similar num-
ber of sound event classes. This was investigated in [I]. As an observation,
the clusters were rarely reliable to derive accurate propagated labels. Since
sound event classes are usually defined by their semantic meaning, a sound
class is typically associated with various subtypes of acoustic properties. Tak-
ing the “door closing” class discussed above as an example, wooden doors and
electric doors may sound totally different, and they can hardly be grouped
together. Instead, they may group with subtypes of other classes. As a result,
the method proposed in [I] can hardly perform well, unless different classes
can be clearly separated by their acoustic properties. In [II] and [IV], the
number of clusters is defined as proportional to the total number of sound
segments in the training dataset, much larger than the number of sound event
classes. This allows subtypes of each class to have their own clusters; thus,
clusters typically have high purities. As an observation, the propagated la-
bels were typically more accurate than the model-predicted labels until a large
proportion of the training dataset was labeled.

In ESC-10 and Urbansound8k datasets, the sound event classes are gener-
ally evenly distributed. With this prior knowledge, the clusters are sorted by
cluster size, largest first. The purpose is to maximize the number of obtained
propagated labels. With this cluster ranking method, instances of rare classes
are unlikely to be selected in the early stages, since an instance of a rare class
can hardly be the medoid of a large cluster. In cases that some sound event
classes are rare, the active learning performance would be poor since samples
of the rare classes are missing until a decent amount of data is labeled. When
some of the sound event classes are rare such as in TUT Rare Sound Events
2017, the medoids ranking method should be replaced by farthest-first traver-
sal, which is used in [V].

When the size of the training dataset is large, performing partition around
medoids (PAM) algorithm to optimize clustering loss can take a large amount
of time. A preliminary in [V] investigated using farthest-first traversal to ap-
proximate the medoids, without performing PAM to optimize the clustering
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loss. The obtained active learning performance was close compared to the
results using PAM. When the scale of the training dataset is too large to per-
form k-medoids clustering in practical time, using farthest-first traversal to
approximate the medoids can be considered.
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7 CONCLUSIONS AND FUTURE

WORK

7.1 Conclusions

The development of acoustic models for sound event detection and classifi-
cation requires labeled audio data. In most cases, audio data is easy to collect,
but annotating the data is time-consuming. The research question to deal
with these cases is how to evaluate the effectiveness of a machine learning
method that requires only limited labels from abundant unlabeled data. Pub-
lication [II] proposes to use the classification accuracies of learned models as a
function of labeling budget, the maximum number of labels that can be man-
ually assigned. A method is considered more effective if it achieves higher
classification accuracy with a given labeling budget or requires less labeling
budget to achieve a target classification accuracy.

In most cases, the starting point of acoustic model development is a large
amount of audio data, initially unlabeled, such as the harbor noise monitor-
ing case study in [I]. The basic idea developed in [I] was to group similar
sounds together using cluster analysis, and thereafter clustering results can
be used to derive propagated labels from annotated samples.

One of the research questions raised from this idea is how to measure the
similarities between sound pairs; thereafter, cluster analysis can be performed
based on it. The propagated labels are reliable only when similar sounds be-
long to the same class, while dissimilar sounds belong to different classes. In
preliminary studies, the audio similarity measurement methods were com-
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pared using mean average precision [70] on ESC-50 [78] dataset. Three simi-
larity measurement methods were investigated in this thesis. In [I], the simi-
larity between two sounds was computed as the Euclidean distance between
the means of corresponding MFCCs. The similarity measurement method
was improved in [II, IV], where the dissimilarity between a sound pair was
computed as the KL divergence between the statistical distributions of cor-
responding MFCCs. In [V], audio embeddings were extracted from a pre-
trained convolutional neural network. The similarity between a sound pair
was measured by the cosine similarity between their audio embeddings. This
method achieved the highest AUC among the studied methods.

Given the proximity matrix of sound pairs, k-medoids clustering is a com-
mon choice for performing cluster analysis. The medoids, as representa-
tives of each cluster, are natural choices for sample selection. In conclu-
sion, we propose to use k-medoids clustering based on the similarity matrix
generated using cosine similarities between the audio embeddings of corre-
sponding sound pairs. Since optimizing the medoids using PAM algorithm
is time-consuming, simply using farthest-first traversal to approximate the
k-medoids can be considered when the scale of the dataset is very large.

Another research question is how to efficiently use the clustering results
in terms of minimizing supervision effort. The first solution was proposed
in [I], and improved solutions were proposed in [II, IV]. In [I], sounds were
initially divided into ten clusters. In each cluster, a small number of sounds
were randomly sampled and presented to an annotator. The annotator de-
cided whether to collectively label a cluster or to further divide the cluster
into ten smaller ones. Statistically, a decent number of samples are needed to
test whether the purity of a cluster is high enough for collective labeling. The
purity of a cluster is the fraction of instances from the most frequent class in
a cluster. In [II], smaller clusters were produced using k-medoids clustering.
Only the medoid of each cluster was selected for annotation, assuming the
medoid to be the most frequent class in its cluster. The annotated label to a
medoid was propagated to other cluster members. The idea was formalized as
an active learning algorithm. In general, an active learning algorithm actively
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requires labels for selected samples according to its selection criterion, which
aims at picking the samples that are the most beneficial for model training.
The proposed method was then called medoid-based active learning (MAL).
MAL did not optimize the selection of samples after all the medoids were an-
notated. Mismatch-first farthest-traversal was proposed in [IV] as the sample
selection method after annotating all the medoids. The experimental results
showed that the active learning method proposed in [IV] required 50%-80%
fewer labels to achieve the same accuracy with respect to the reference meth-
ods based on random sampling and uncertainty sampling. In conclusion, to
minimize supervision effort based on clustering results, the most effective
approach we have developed so far is medoid-based active learning followed
by mismatch-first farthest-traversal.

Typically, only representative sounds in each recording were selected for
annotation for the sake of saving labeling budget. In these cases, the research
question was how to utilize the contextual information in the original record-
ings. In [V], each recording was used as a training input, and the loss was de-
rived from only annotated segments within it. The evaluation results showed
that preserving the context information for annotated segments clearly out-
performed using each annotated segment independently as training input. In
addition, the sample selection method, mismatch-first farthest-traversal, pro-
posed in [IV] was extended to multi-label classification in [V]. In a dataset
where sound events were rare, the overall proposed method required anno-
tating only 2% of the training data to achieve the same accuracy, with respect
to annotating all the training data.

As another direction of utilizing clustering results, cluster analysis was
investigated to group recordings with similar recording conditions. Feature
normalization according to cluster statistics was used to bridge the distribu-
tion shift when recordings were captured in different conditions. The per-
formance clearly outperformed feature normalization based on dataset-wise
statistics and recording-wise statistics.
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7.2 Future work

The sound representation is vital to different aspects of the proposed active
learning algorithms, including unsupervised segmentation, clustering and su-
pervised detection and classification. The embeddings extracted based on a
pre-trained model using Audioset in [V] outperformed approaches based on
MFCCs in [II, IV]. In the future, the development of self learning or pre-
training techniques potentially results in a big improvement in active learn-
ing performances. A recent study [93] showed that a clear improvement in
performance was achieved in the experiments of [II, IV] by replacing MFCCs
with embeddings extracted using a general-purpose pretrained audio neural
network [57].

The scale of unlabeled datasets can be very large in many cases. It is typ-
ically time-consuming to perform k-medoids clustering on large-scale sound
datasets, since partition around medoid (PAM) algorithm for k-medoids clus-
tering has a high computation complexity, O(n2k2). In the preliminary study
in [V], when the medoids are initialized using farthest-first traversal, the ac-
tive learning performance was similar, whether to run PAM to optimize the
clustering loss or not. Future studies can be made to investigate if the same
observation can be found on other datasets. In addition, The runtime of k-
medoids clustering can be largely reduced using FastPAM [87] or BanditPAM
[97], slightly comprising the clustering loss compared to PAM. It might be
worthy of investigating alternative k-medoids clustering algorithm for active
learning.

In [V], propagated labels were used only for sample selection but not for
model training. This left a space to combine the active learning method with
the semi-supervised learning methods such as mean-teacher [96]. In the fu-
ture, the optimal combination of active learning and semi-supervised learn-
ing could further optimize the accuracy of learned models when the labeling
budget is limited.
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a b s t r a c t

Environmental noise monitoring systems continuously measure sound levels without assigning these
measurements to different noise sources in the acoustic scenes, therefore incapable of identifying the
main noise source. In this paper a feasibility study is presented on a new monitoring concept in which
an acoustic pattern classification algorithm running in a wireless sensor is used to automatically assign
the measured sound level to different noise sources. A supervised noise source classifier is learned from a
small amount of manually annotated recordings and the learned classifier is used to automatically detect
the activity of target noise source in the presence of interfering noise sources. The sensor is based on an
inexpensive credit-card-sized single-board computer with a microphone and associated electronics and
wireless connectivity. The measurement results and the noise source information are transferred from
the sensors scattered around the measurement site to a cloud service and a noise portal is used to visu-
alise the measurements to users. The proposed noise monitoring concept was piloted on a rock crushing
site. The system ran reliably over 50 days on site, during which it was able to recognise more than 90% of
the noise sources correctly. The pilot study shows that the proposed noise monitoring system can reduce
the amount of required human validation of the sound level measurements when the target noise source
is clearly defined.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Environmental noise, defined as unwanted or harmful outdoor
sound created by human activities [1, Art. 3], can be generated
by traffic, industry, construction, and recreation activities [2, p.
12]. Airports, (wind) power plants, rock-crushing, shooting ranges,
and motorsport tracks are examples of noise sources for which
sound propagation over several kilometers is relevant.

One challenge in environmental noise monitoring is how to
make sufficiently comprehensive measurements both in time
domain and spatially. The changes in weather conditions have a
significant effect on monitored noise levels [3] and in order to
obtain most of the variations the noise has to be monitored for
extended periods of time [4–6]. Also, a single point noise measure-
ment is rarely representative for a whole neighbourhood and sev-
eral sensor locations are needed. Because of high costs of the
equipment and the amount of human resources needed, the relia-
bility, validity, and representativeness of environmental data is
usually unsatisfactory. Only a few reported scientific experiments

with uninterrupted noise data captured from each relevant loca-
tion over long periods of time exist [7–10].

The typical need for measurements is to monitor the noise
caused by a noise source (e.g. an airport or an industrial plant) in
a residential area. However, also other noise sources exist and
the captured noise level is usually a result of a combination of
the target and interfering sound sources: wind-generated, cars,
and birds being examples. Sound level meters used for noise mon-
itoring either capture sound levels or time domain noise data and
store the data locally – or nowadays more often – on a remote ser-
ver [11]. The most commonmethod to ensure the noise was caused
by the original source is listening through all the samples after-
wards. This requires a huge amount of resources because of a large
amount of data due to often necessary long-term measurements.
Also, if only noise levels are recorded, validation by listening is
not possible.

A considerable amount of manual work can be saved by auto-
matically validating sound sources. Furthermore, privacy issues
can be avoided and required network load can be largely reduced,
if the automatic validation algorithm is performed on the sensor
and only the measurement result is transferred. Previous valida-
tion algorithms on sensors have been limited to hand-crafted
rule-based systems [12]. However, a simple hand-crafted classifi-
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cation rule can hardly provide good accuracy in a complex environ-
ment, e.g. monitored target producing several types of sounds. As
another drawback, the design of a hand-crafted classifier requires
an expert for every noise monitoring scenario. The increased com-
putational capacity has made a sensor possible to classify noise
sources using a pattern classification algorithm, which is capable
of learning a sophisticated noise source classifier for an arbitrary
scenario, simply using relevant annotated recordings as training
material.

An pattern classification algorithm typically consists of a fea-
ture extractor and a classifier. Mel-frequency cepstral coefficients
(MFCCs) [13] are used as common features for a wide range of
acoustic pattern classification such as speech recognition [14]
and music information retrieval [15]. Gaussian mixture model
(GMM) [16] has been traditionally cooperated with MFCCs to
model different types of sounds. Specifically, the combination of
MFCCs and GMM has been used for various noise monitoring sce-
narios [17,18]. The use of artificial neural network (ANN) for acous-
tic pattern classification has been increasing with the development
of computing power and new training algorithms that allow utilis-
ing large amounts of training data. Some recent studies have
shown that ANN outperforms traditional GMM in sound event
detection [19–21].

Together with the smaller and cheaper computing capacity, the
breakthrough of wireless technology in the very beginning of
2000s have made possible to translate the physical world into
information [22] and given reason to define concepts like Internet
of Things and ubiquitous sensing [23]. The word ”smart” was first
used as an attribute to a sensor with an Internet access. Today, it is
more closely related to a sensor with own intelligence, some com-
putational capacity for data analysis and decision making [24].

The main objective of this study was to show if it would be pos-
sible to automatically capture only the noise from the original
source, by adding intelligence and human hearing-like decision
algorithms to the sensor. This would free the huge amount of
human resources needed to validate the noise data and improve
and representativeness of the results in environmental noise mea-
surements. An implementation of a noise classification algorithms
in a sensor will be introduced. The general concept of the noise
monitoring system is explained in Section 2 and the pattern
classification algorithms are given in Section 3. Additionally, an

evaluation of the performance of the algorithms in a case study
is shown (Section 4) and some discussion the requirements and
the future work in Section 5.

2. Noise monitoring

The proposed noise monitoring system comprises of smart sen-
sors which are connected through wireless uplink to the cloud ser-
vice. The overview of the system is illustrated in Fig. 1. The smart
sensor consist of a measurement microphone and a single-board
computer with a wireless transmission unit. To alleviate the pri-
vacy issues concerning the continuous audio capturing and stor-
age, the most of the analysis and processing is done already in
the sensor and only analysed data is transferred and stored in
the default setting. This approach will also lower the amount of
transferred data from a sensor to the cloud service, and enables
placing sensors to areas with lower quality wireless uplinks. In
the sensor, A-weighted 10-min equivalent sound pressure level
(Lp;A;600s) values are calculated continuously, and predominant
noise sources are detected within the measurement time segment.
This information is used to decide whether the actual acoustic sig-
nal is needed for further inspection in the cloud service. For exam-
ple, segments exceeding the legal maximum allowed sound level
can be saved for manual inspection. All the extracted measure-
ments are transmitted from the smart sensor to the cloud service
for further analysis. The cloud service stores the data in the mea-
surement database, and audio segments marked for later inspec-
tion are stored in the disk server. End-users access the
measurement data and analysis of the measurements through a
web-based portal.

2.1. Smart sensor

For the prototype, the credit-card-sized RPi (Raspberry Pi)
developed by the Raspberry Pi Foundation was selected mainly
due to its excellent support network and general usability. RPi1,
the first generation model was used in the prototype because it
was the only available model in 2012 when the implementation
was made. Additional functionality was added by an audio codec
(a 24-bit multi-bit sigma delta AD converter), a smart power

Fig. 1. Block diagram of the noise monitoring system.
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management board with an uninterruptible power supply feature,
and mobile connectivity. The selection of the microphones ended
up with two models: one covering the audible range dynamics
from 14 dB to 119 dB, and another from 20 dB to 140 dB
(A-weighted).

Based on preliminary tests, solar power was selected to allow
totally wireless sensors. The electronics and batteries were built
inside a solar panel frame (see Fig. 2). Whenever the 60 W panel
gets solar energy, the batteries start charging, system is powered
up, a secure cloud service connection is established, and pre-
processed real-time noise data flow to the online service is initi-
ated. It is also possible to access the sensor unit remotely through
the online service. The batteries, when fully charged, will keep the
system running during the dark hours. The total cost of the compo-
nents is about 150 €, the solar panel being the most expensive
component, but the price could be reduced in mass production,
or using an external power source.

The sensor continuously monitors the noise by capturing 10-
min long non-overlapping analysis segments, and the equivalent
sound pressure level Lp;A;600s values are calculated for each seg-
ment. The sound source classification is used to find the noise
source likelihoods within the analysis segment. The acoustic mea-
surement values, noise source likelihoods and time-stamps are
transmitted to the cloud service. Analysis segments having
Lp;A;600s value over the set threshold are compressed with a lossy-
audio compression (e.g. 32 kbit/s MPEG-1 Audio Layer 3) method
and transmitted to the cloud service. These can be later used to
verify the noise source more accurately either with automatic
methods or by the users.

2.2. Accessing data and visualisation

The measurements are accessible through a web-based user
interface, which combines a large amount of measurements in an
easily readable format by using data visualisation and data reports.

The sound pressure level (SPL) measurements can be filtered
based on the sound source classification results to show measure-
ments for assigned to particular sound source. In the service the
measurement data is visualised in multiple ways: calendar heat-
maps, graphs, and report tables. Example view from the portal is
shown in Fig. 3.

The calendar heat-maps are used to visualise the average SPL
values over certain time span (one day, one hour) with a colour
of a calendar cell, an example of this is shown as measurement cal-
endar in Fig. 3. The heat-map collapses SPL measurements within
one hour into one number and decodes it into colours based on
location-specific SPL limits. In preliminary studies, three colours
were observed to give sufficient visualisation of measured SPL val-
ues. For the case study (see Section 4), colours are defined in fol-
lowing manner: green colour denotes SPL values under 45 dB,
yellow denotes SPL values between 45 dB and 55 dB, and red
denotes SPL value over 55 dB, the national limit for outdoor noise
in residential areas. The limits shall be adjusted in accordance with
the national law for each target. Only measurements associated to
the targeted sound class are presented in the calendar.

The measurement graph is used to visualise the SPL values
against the measurement time-stamp, an example of this is shown
in the lower panel in Fig. 3. Three type of graphs are used to visu-
alise measurement with differently assigned data: firstly showing
all SPL measurements as such, secondly showing SPL measure-
ments and sound source probability at current time interval
denoted with colour intensity under the curve, and thirdly showing
only SPL measurements assigned for targeted sound source. The
noise monitoring location specific SPL limits (same as in calendar
heat-map) are shown in the graph with horizontal lines.

In addition to the calendar and graph based visualisations,
numerical measurement reports are used to show more exact val-
ues and analysis. The reports are used to show daily, weekly,
monthly and yearly averages of the SPL measurements. Reports
include also noise descriptors such as the day-evening-night level
Lden introduced in the END [1], to give comprehensive figure of the
noise levels over longer time segments. If needed, some higher
level noise values like unbiased annoyance (UBA) [25] can be
added to be calculated.

The portal provides different level information depending on
the user account type. The monitoring site managers (system cli-
ents) can grant access for the people living close to the monitoring
site (public users), and the services provides them easily approach-
able noise measurement summaries, and possibility to add feed-
back or comments on the measurement time-line, providing
direct connection to the monitoring site management. The site
manager or a community liaison officer can use the feedback from

Fig. 2. A prototype version back cover opened.
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the public to react noise levels and types, and reply directly to the
comments. If the commented time-stamp has a stored audio asso-
ciated to it, the site manager can also audition it in this stage. Pub-
lic access is important to make the noise monitoring transparent,
and engage the public by giving them more active role how the
monitoring results should be interpreted. This should alleviate
many negative attitudes related environmental noise and noise
monitoring. Administrative users like governmental authorities
are presented accurate measurement reports to help to follow
the average noise levels over longer time segments often used in
official noise management.

2.3. Validity of the results

Standard IEC 61672-1:2002 [26] specifies three kinds of sound
measuring instruments in two performance categories. Most of
the commercially available sound level meters conform this stan-
dard requirements. There have been attempts to integrate sound
measuring capabilities also to other instrumentation or devices,
like mobile phones [27–29]. The driving force in these studies
has been the need for spatially more representative data and fulfill-
ing the accuracy requirements of the instrumentation for standard-
ised measurements has not been addressed. The presented
approach balances between these two extremes: the goal for
design is to conform at least class 2 requirements, but still to keep
the costs low so that the number of units in any implementation
may be several times higher than using the conventional sound
level meters. The calibration of the unit is performed using a con-
ventional sound level calibrator equipped with a specially manu-
factured 1” adapter on the microphone of the unit.

Considering the uncertainty of the measurements, the fact is
that the influence of instrumentation can be considered low [30]
compared to the effect of environmental conditions [5]. The repre-
sentativeness of data increases validity of an environmental noise

measurement and this is achieved by both the increased spatial
coverage and classified noise source data.

3. Automatic detection of target sources

In the proposed automatic target source detection system,
noises are defined into two classes. Sounds propagating from the
target sources belong to a target class, whereas interfering noises
as well as silence belong to a background class. Examples of possi-
ble target sounds are plant noise and aircraft noise. Possible back-
ground noises may be caused by e.g. traffic, wind, rain, thunder,
and birds. The activity of the target sources is detected by analys-
ing continuous audio input and making binary classification
between the background and the target. The audio input is the
same as the signal used for SPL measurement, but without the A-
weighting filter.

The detection system consists of two stages: the training stage
and the monitoring stage (see Fig. 4). Acoustic models are learned
from training examples, captured audio with manual annotation,
in the training stage. The learned acoustic models are used to clas-
sify audio captured on a sensor, to detect the activity of target, in
the monitoring stage. An example of the system output is given
in Fig. 5. The training algorithm needs only annotation of target
sounds. Traffic sounds, regarded as background in 5 are annotated
to help understand the system output.

3.1. Acoustic features

Feature extraction transforms an audio signal into reduced rep-
resentation. MFCCs are used as features in the proposed system.
Mel-frequency cepstral coefficients (MFCCs) [13] have been origi-
nally proposed and widely used in speech recognition [14]. After-
wards, MFCCs have been proved to be effective in a wide range
of audio processing applications such as sound event detection

Fig. 3. Example view of the noise monitoring portal. In the upper right corner there is a calender selector with day view. By selecting a day, more detailed data of the day is
shown in a calendar view and in a graph view at left. The measurement calendar shows measurements assigned to the target source, and in the graph view target presence is
shown with intensity of the colour. An audio playback is shown in the lower right corner.
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[31–33] and speaker verification [16]. An audio signal is analysed
within short frames (e.g. 100 ms) with 50% overlap. Every frame
of signal is windowed with a Hamming window. Discrete Fourier
transformation is performed on the windowed frames to obtain
spectrum and the spectrum is wrapped into Mel scale. Logarithm
of Mel-spectrum is performed with discrete cosine transformation
to obtain Mel-cepstrum. Coefficients taken from Mel-cepstrum are
called MFCCs. The proposed method uses the same classifier for
sensors in different locations. However, the audio amplitude
changes with the distance between a source and a microphone,
which is reflected in the 0th coefficient. The 0th coefficient is usu-
ally excluded [14] to keep the features amplitude invariant. In

order to provide temporal dynamic information across adjacent
frames, deltas of MFCCs [34] are used in addition to static MFCCs.
The first-order delta (D) is called differential of MFCCs and the
second-order delta (DD) is called acceleration.

3.2. Supervised classifiers

Two types of supervised classifiers are investigated: Gaussian
mixture model (GMM) as a representative of generative classifiers
and artificial neural networks (ANN) as a representative of discrim-
inative classifiers. A GMM represents a class by a distribution of its
correspondent feature vectors [16]. The probability density func-

Fig. 4. Block diagram of the automatic target sound detection system.

Fig. 5. Example of the target detection output using the GMM classifier. The top panel shows the spectrogram and the second panel illustrates the corresponding annotation.
Traffic is regarded as background sound, whereas crusher and alarm are the target sounds. The third panel illustrates the target likelihood and decision threshold. The bottom
panel illustrates the detection result as the system output.
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tion of a GMM for an observation x is the weighted average of its
multi-variate Gaussian distribution components as

pðxjkÞ ¼
XM

i¼1

wið2pÞ�
k
2jRij�

1
2 e�

1
2ðx�liÞTR�1

i ðx�liÞ; ð1Þ

where M is the number of Gaussian components. The parameters of
the density model are collectively denoted as
k ¼ fwi;li;Ri; i ¼ 1 . . .Mg. The weight, mean and covariance matrix
of i:th Gaussian component are denoted as wi;li;Ri, respectively,

satisfying
PM

i¼1wi ¼ 1. The GMM parameters of a class are itera-
tively estimated using the training data with the expectation max-
imisation (EM) algorithm. Classification can be made using GMMs
by outputting the class whose GMM gives the highest likelihood
on a input vector x.

An ANN is used to estimate a function that yields desired out-
puts with given inputs [35]. The parameters of an ANN are esti-
mated using training examples. A training example consists of an
input feature vector x and a target vector y. When an ANN is used
as a classifier [21], the target output is typically a vector y with the
size of C, the number of classes. Given the feature vector x from
class i, the target vector entry yi is set to 1, whereas other elements
in target vector y are set to 0. Thus, the output of an optimised ANN
classifier is interpreted as the activity indications of C classes of
sound events. The activity indication is later called likelihood, since
it is used in the same way as estimated likelihood in the GMM,
though the indication is not a probability measurement. In the pro-
posed system the multilayer perceptron (MLP) [36], which is a
basic type of ANN, was used.

Let us denote input layer as h1 ¼ x and the values of kth layer as

hk. The values of the next layer hkþ1 is calculated as

gk ¼ Wkhk þ bk
; 2 6 k < L ð2Þ

hkþ1 ¼ FðgkÞ; ð3Þ

where Wk 2 RSk�Skþ1 is the weight matrix between layer k and layer
kþ 1; Sk being the number of neurons in layer k. The bias vector of

layer k is denoted as bk, which can be considered as the weights for
an additional all one’s input vector. An activation function F is the
applied element-wise on the linear transformation output. L is the
total number of layers in the ANN. In the developed system, maxout
function as activation function for hidden layers and logistic sig-
moid function for output layer was used. Maxout is an unbounded
function whereas sigmoid function ranges between 0 and 1. It has
been shown that using two maxout layers with enough neurons
can approximate any continuous functions [37]. In the optimisation,
a cost function is a measure of difference between the obtained
neural network outputs and target outputs. Kull-Leibler divergence

is used as cost function and the parameters, weight matrices (Wk)

and bias vectors (bk), are optimised using the stochastic gradient
descent algorithm.

3.3. Training and monitoring

Supervised learning requires a set of training examples, i.e.,
audio signals with manual annotations, at the training stage. Fea-
ture vectors of target class are derived from the time segments
annotated as target sounds, whereas all other frames are used to
represent background class. The extracted features (MFCCs) are
collected for each class according to the annotations. When GMM
is used, the features are used to estimate the feature distributions
of each class. When ANN is used, the target outputs are ½1; 0� and
½0;1� for feature vectors corresponding to the background class
and the target class, respectively.

At the monitoring stage, a detection is made in one second non-
overlapping segments. For each class, a score is computed as the
sum of log-likelihoods (the logarithm of the likelihoods) of each
frame in the corresponding second. The target likelihood in Fig. 5
is calculated as the score of target class divided by the sum score
from all classes. The target sound source is detected as being active
when the target likelihood is over a threshold (default value 0.5),
otherwise inactive. The threshold can be tuned in case that preci-
sion is more important than recall, or vice versa. The precision
and recall are later introduced in Section 4.3. Fig. 3 illustrates the
noise portal that represents the estimated target activity in long
term (1 h), taking majority vote from the activity outputs of corre-
sponding seconds.

4. A case study: rock-crushing plant

A case study was made on the noise measurement of a rock
crushing plant – a typical environmental noise assessment with
nearby habitation. The feasibility of the proposed concept was
evaluated with one sensor node next to the plant. The plant has
regular working hours, thus the reliability of the target activity
detection could be easily verified.

4.1. Measurement setup

The audio data was captured near a rock crushing plant (Fig. 6).
The location of the sensor is indicated by a red triangle. The loca-
tion of the nearest habitation house is indicated by the blue square.
The most prominent sound sources in the plant are two rock-
rushers denoted as red circles: a fixed rock-crusher and a mobile
rock-crusher. The distance between the sensor and the fixed
rock-crusher was about 280 m measured from their GPS coordi-
nates and the distance between the sensor and the mobile rock-
crusher was about 500 m. Even though the mobile rock-crusher
is able to change its position, it was stationary during the case
study. Beside the rock-crushers, another significant type of a target
sound was made by lift-trucks, which feeded rocks to the crushers
and distributed the produced stones. The sensor was located close
to a road, near a forest.

4.2. Captured noise data

Three minutes of audio was continuously captured every
10 min, making a total of 432 min for each day. All types of noise
generated by the working activity of the plant was collectively
defined as the target class, including rock crushing, lifting-truck
sounds, and alarm sounds from the machinery. On the contrary,
traffic noise coming from the road and the noise generated by
the wind and the trees were two significant types of background
sound sources. Example sound spectra of rock crushing, a car pass-
ing, and wind is given in Fig. 7.

Two days of audio data were annotated and used to develop and
evaluate the target detection system. The data was manually anno-
tated (like in Fig. 5). The rock crushing activity is rather continuous
and long-lasting, which made the annotation easy in most cases. In
a few cases, the onset and offset of the target sound were hard to
determine due to overlapping sound sources. In these cases, a 0.4
s uncertainty was associated to the onset or offset.

4.3. Evaluation setup

A quantitative evaluation was made on the target noise detec-
tion performance with temporal resolution of one second. A two-
folded validation, swapping the data of day 1 and day 2 for training
and testing, was used. A detection output, either active or inactive,
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was obtained through the proposed system for every one-second
segment. The ground truth of a one second segment was seen as
a target, when the target sound lasted longer than 0.1 s according
to the annotation, otherwise judged as background noise.

The target source detection performance was evaluated using F-
score [38], which is often used to evaluate binary classification per-
formance. The F-score is calculated as a harmonic mean of preci-
sion and recall. Precision is the fraction of the predicted target
activities that are correct, whereas recall is the fraction of the
actual target activities that are predicted.

In order to study the feasibility of real-time execution and to
find the most relevant factor to computation time, the computa-
tion time was evaluated for feature extraction and classification.
The target detection algorithm was implemented in C++ and was
run in a sensor node. The file read/write, SPL measurement, feature
extraction, and classification process takes 51 s for a one minute
signal, fast enough for real-time execution (85%). The sensor imple-
mentation was used as a benchmark and computation time of
other feature extractors and classifiers were estimated using a
Python implementation, assuming that the computation time had
always the same proportion between the implementation in the
sensor and in any other computer.

The developed classifier was imported to the sensor and it con-
tinuously performed noise measurement and source classification
for 50 days. A reliability evaluation was made by examining the
results transmitted to the web portal.

4.4. Evaluated classification systems

The acoustic features (MFCCs) from an audio signal which was
sampled at 22,055 Hz. The audio signal was further analysed at a

frame length of 100 ms with a 50% overlap between neighbouring
frames and windowed with a Hamming window. 4096 point dis-
crete Fourier transform and 40 Mel bands were used. Mel cepstral
coefficients from the first to kth were used as features. The number
of coefficients (k) was studied as a variable. In addition to static
MFCCs, the deltas were calculated using four preceding frames
and four succeeding frames to represent temporal dynamics. The
features were normalised to zero mean and unit variance was
based on the statistics of the training dataset.

A single variable was changed at a time from the default setup
to test the variable. Four variables were tested: the number of coef-
ficients, the temporal dynamic features (deltas), the time-domain
filters, and the frame length. The variable value that achieved the
best performance was used to determine the next variable. To eval-
uate the performance of the feature extraction variables, a GMM
with M ¼ 16 components was used as a classifier.

The best achieving feature extraction setup was used to evalu-
ate the classifiers. GMMs with a different number of Gaussian com-
ponents M ¼ f1;2;4;8;16;32g in Eq. (1) using diagonal covariance
matrices and ANNs with two hidden layers, each having
f10;30;50;100g neurons, were tested. Python toolboxes scikit-
learn and pylearn2 were used in the implementation of the GMM
classifier and the ANN classifier, respectively.

4.5. Results

The parts of the system were evaluated to select the features
and the classifiers. A quantitative evaluation of the results is shown
in Table 1. The selected values are shown in bold font and the com-
putational requirements for the feature extraction is expressed as a
time ratio to the estimate of real-time. Besides the detection

Fig. 6. Map of the rock crushing plant that was the target of the case study.

Fig. 7. Example sound spectra for rock crushing, a car passing, and wind from left to right.

264 P. Maijala et al. / Applied Acoustics 129 (2018) 258–267



performance, the estimated computation time (the feature extrac-
tion time) is shown for the sensor implementation compared to
real time.

A small effect to the classification performance was found by
changing the number of the cepstral coefficients. In Table 2, M
denotes the number of Gaussian components used in a mixture
model and the parameters of ANN marked as a� b means a neural
network with b hidden layers and a neurons per layer. 13 coeffi-
cients were selected, because those gave the same performance
as using 20 coefficients and a smaller number of coefficients makes
classification faster. The best performance among the studied tem-
poral dynamic feature combinations is gained by using MFCCs with
only first-order delta. Adding a second-order delta did not give any
improvement, perhaps because a rather long frame length
(100 ms) was used and the first-order deltas already covered
500 ms temporal dynamics. Based on the results, imposing time-
domain filters (a A-weighting filter [39] and a pre-emphasis filter
[16]) is not justified. The frame length is clearly the key factor con-
tributing to the computation time. The frame length of 100 ms is
the best choice, which leads to the best classification performance
and is capable in real-time execution.

ANN achieves the best F-score and takes the least time to com-
pute. However, the difference between ANN and GMM is rather
small. The estimated classification time does not largely depend
on the number of the model parameters. This suggests that it takes
the most time for overhead operations such as copying the fea-
tures, when compared to computing likelihoods with the classifier.
This computation time could be further reduced with a better
implementation.

The computation in the sensor includes reading the audio
stream, SPL measurement, feature extraction, classification, and
transmitting results. A feasible implementation would use less
than 70% of real-time for feature extraction and classification. This
has to be taken into account when choosing the features and the

classifier. The leading factor of the computation time in the source
classification algorithm is the audio analysis frame length, which
determines the number of frames to process. In comparison, the
computation time is not much affected by other the factors such
as the neural network topology.

To evaluate the reliability of the proposed system, the hour-
level measurement and detection results visualised in the web por-
tal (Fig. 3) were examined. The sensors continuously performed
noise measurement and source classification for 50 days and were
able to transmit the results of every single hour, though some
results were received with a delay of hours. It was assumed that
the work in the plant could begin one hour later and end one hour
earlier than the regular working hours (Mon-Fri, 8:00–15:00).
With this assumption, almost all the target detection results were
correct (1198/1200).

4.6. Required amount of annotated recordings

In the training material, about four hours of audio, the total
number of feature vectors was about 300 000. A reduced size of
the training material was tested by using every second or every
fourth recording in time order. The learned classifiers achieved F-
scores 0.913 and 0.924. Thus, it is sufficient to use about one hour
of annotated recordings to achieve a decent classifier. When using
the first half or the second half of a day data for training, the
learned classifier achieved less than 0.8 F-score. This suggests that
the training material should contain recordings from different
times of a day to cover the most of the variability of the environ-
mental sounds.

In environmental sound classification, a training set with a few
hours can currently be regarded as a large dataset. For example,
UrbanSound8K [40] contains one hour for each of 10 classes. As
an example of small datasets, ESC-10 [41] contains at most 200 s
audio for each of 10 classes.

In the reliability evaluation, it was shown that the system was
able to do accurate hour-level classification in varying weather
conditions by using annotated data of one day captured in good
weather conditions. However, annotated recordings in more
diverse conditions are typically required to achieve a similar accu-
racy as obtained in the quantitative evaluation with one second
temporal resolution.

5. Further analysis and future work

5.1. Selection of classifier

The performance of the classifiers GMM and ANN was practi-
cally the same in the evaluation. The selection between GMM
and ANN should be based on other aspects. Adding a new class
to the GMM classifier is easier, since statistics of the existing
classes stay unchanged when a new class is added. In contrast to
the GMM, the ANN has to re-estimate all the parameters to intro-
duce a new class. Another benefit of using the GMM is that it is
easier to adapt so that the classifier could adapt to small changes
of the environment over time, using maximum a posteriori [16]
algorithm. Typically ANN outperforms GMM when the number of
classes is large. The number of the ANN parameters does not signif-
icantly increase with the number of classes, whereas the number of
GMMs depends linearly from the number of classes. For example,
ANN and GMM used approximately the same time in the computa-
tional time test for the binary classification. If there were ten
classes in the same setup, the classification with ANN would have
been about five times faster than GMM. In the one-minute audio
test on a ten class case, it took 0.32 s for the ANN classifier and

Table 1
The results of the evaluation of the acoustic features.

Studied variable Variable value F1-score Feature extraction
time

Number of coefficients 8 0.926 0.51�
13 0.927 0.51�
20 0.927 0.51�

Temporal dynamics MFCC 0.927 0.51�
MFCC+ D 0.931 0.51�
MFCC+ D + DD 0.917 0.51�

Time-domain filter No filter 0.931 0.51�
Pre-emphasis 0.885 0.54�
A-filter 0.930 0.64�

Frame length 50 ms 0.898 0.99�
100 ms 0.931 0.51�
200 ms 0.914 0.27�

Table 2
The results of the evaluation of the classifiers.

Classifier Parameters F1-score Classification time

GMM M = 1 0.795 0.10�
M = 2 0.870 0.10�
M = 4 0.925 0.10�
M = 8 0.928 0.11�
M = 16 0.931 0.12�
M = 32 0.934 0.14�

ANN 10 � 2 0.904 0.10�
30 � 2 0.934 0.10�
50 � 2 0.938 0.11�
100 � 2 0.938 0.12�
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1.48 s for the GMM classifier using a Python implementation in a
desktop computer.

5.2. Extension to monitoring multiple target classes

The same algorithm could be used in noise measurement sce-
narios involving multiple noise types. In addition to the rock crush-
ing case study described above, a preliminary study on a set of
noise samples from the port of Dublin was made. In this case, a
classification system with multiple noise source classes was built.
There are many kind of sound sources in the port area, some of
them being also present in the neighbouring environment. The
noise data was annotated with an interactive clustering method,
by which a cluster of sounds were annotated or skipped at once.
With this method, the annotation was fast but less accurate.

Ten classes of sound sources were present in the evaluation and
the average recognition rate was 81%. The ten classes were alarm
sounds, bird chirping, mild fans, strong fans, traffic noise, engine
noise, footsteps, musical concert, raining, and wind blocking the
microphone. It should be noted that the results might be optimistic
since the segments not clearly belonging to any of the classes
might have been skipped in the annotation with interactive
clustering.

5.3. Sensor network

In the future, all the data from a large number of various net-
worked sources, already available or from the autonomous smart
sensors, will be centralised to a cloud service, where the data is
accessible to a various groups of people: public, authorities, and
to the dedicated users. The data will be made available for all the
purposes it is needed: mapping and monitoring of emissions, noise,
aerosols etc. It is possible to get accumulated standardised descrip-
tors and conventional reports for various purposes. Also, it is pos-
sible to comment the visualised, and, possibly auralised, results on
a time line to make feedback possible to the responsible party.

To increase the validity of the classification, multiple sensors
could be used to also analyse the direction of arrival of sounds
[42]. In future, the final outcome of an environmental noise assess-
ment will be an annoyance map of an area, reported with the level
of uncertainty. Further, when the needs go beyond the current leg-
islative values and limits, it is possible to calculate higher level
descriptors like unbiased noise annoyance (e.g. UBA [25]), or some
other psychoacoustical descriptors at the sensor. The solar pow-
ered sensor was optimised for average summer conditions, so that
the batteries keep the system running at the night time. However,
during a long period when the direct sunlight is limited, or does
not exist at all (e.g. winter north of Arctic Circle), external power
is needed.

6. Conclusions

It was shown that environmental noise monitoring could be
enhanced by separating between the target and interfering noise
sources and implementing this approach to the sensor level. Also,
an autonomous and a low-cost sensor implementation with a con-
nection to a cloud service was introduced.

A credit-card-sized single-board computer, Raspberry Pi, was
found to be powerful enough for automatic source classification.
A solar-powered sensor was demonstrated to allow measurements
in locations without power outlet.

The activity of the noise source was detected by making a bin-
ary classification between the target and the background. Mel-
frequency cepstral coefficients were used as acoustic features
and the classification was made using a supervised classifier
(GMM and ANN), learned from annotated audio recordings.

The performance of the developed methods was evaluated in a
rock crushing plant case study. The quantitative evaluation showed
that the noise source classification using the proposed approach
was accurate enough: on a temporal resolution of one second, F-
score of 0.938 with the best investigated classifier was achieved.
The system was run for 50 days and the results of the developed
classifier matched well with the regular working hours of the rock
crushing plant.

Also, a cloud service and a noise portal were introduced. The
sensors transmitted the results to the cloud service and the portal
was for visualisation of the results, statistical analysis, and data
archiving. This approach makes it possible to extend the system
towards noise management and, due to the minimal cost per sen-
sor unit, towards real-time noise mapping with real measured
data. By using this approach, the reliability, validity, and the spatial
coverage of environmental noise monitoring will be increased.
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ABSTRACT

This paper proposes a novel active learning method to save annota-
tion effort when preparing material to train sound event classifiers.
K-medoids clustering is performed on unlabeled sound segments,
and medoids of clusters are presented to annotators for labeling. The
annotated label for a medoid is used to derive predicted labels for
other cluster members. The obtained labels are used to build a clas-
sifier using supervised training. The accuracy of the resulted classi-
fier is used to evaluate the performance of the proposed method. The
evaluation made on a public environmental sound dataset shows that
the proposed method outperforms reference methods (random sam-
pling, certainty-based active learning and semi-supervised learning)
with all simulated labeling budgets, the number of available labeling
responses. Through all the experiments, the proposed method saves
50%-60% labeling budget to achieve the same accuracy, with respect
to the best reference method.
Index Terms: active learning, sound event classification, K-medoids
clustering

1. INTRODUCTION

Sound event classification [1] and detection [2] has many applica-
tions such as noise monitoring [3, 4, 5], surveillance [6, 7] and home
service robots [8]. The development of sound event classification
and detection applications requires annotated recordings. Record-
ings can be made continuously all day around, almost effortlessly.
However, reliable annotation takes at least the duration of a record-
ing. As a result, the annotation work is quite often the main cost to
build a sound event classifier. To aim at this situation, we attempt a
method that optimizes the classification performance with a limited
annotation effort, utilizing an abundant amount of audio data that is
much more than the amount that can be afforded to annotate.

The maximum number of labels that can be assigned is called a
labeling budget, which is used to quantify a limited annotation effort.
When labeling budget is small, there are two established techniques
to utilize the abundant amount of unlabeled data: active learning and
semi-supervised learning.

An active learning algorithm actively asks for labeling responses
on data selected by the algorithm from a set of unlabeled data. An
unlabeled data point is called a sample and the selection of sam-
ples to be labeled is called sampling; after labeling, a labeled data
point and its label constitutes a training example. Active learning
algorithms controls the sampling, in order to avoid redundant exam-
ples to optimize the efficiency of labeling effort. Though other types
of active learning methods exist, only certainty-based active learn-
ing (CRTAL) [9] has been studied in the field of acoustic pattern
recognition. It has been proposed to speech recognition in [10]. In
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certainty-based active learning methods, a small set of samples (se-
lected by the annotator or randomly) are annotated in the beginning.
The annotated labels are used to train a classifier and unlabeled sam-
ples are classified. A batch of samples with the lowest classification
certainties are presented to the annotator for labeling. The classifier
is updated after adding new labels to the training material. An ex-
periment on speech recognition has shown that the amount of labels
needed to achieve a target word accuracy can be reduced by 60%
using CRTAL [11], compared to random sampling.

Semi-supervised learning (SSL) assigns predicted labels to unla-
beled data so that unlabeled data is utilized as training examples ac-
cording to predicted labels. Expectation-maximization based semi-
supervised learning has been studied for various acoustic pattern
recognition problems such as speaker identification [12] and musical
instrument recognition [13]. These methods start by training an ini-
tial classifier with labeled data, and they iteratively update predicted
labels of either a batch or all unlabeled data. The final classifier is
obtained by training with both annotated labels and predicted labels.
Gender identification and speaker identification error rates are gener-
ally halved using semi-supervised learning with varying proportion
of labeled data [12].

All the above-mentioned methods rely on a classifier for uncer-
tainty sampling or label prediction. However, it would require much
labeling effort as an overhead to achieve a classifier that produces
reasonable classification outputs (predicted class and certainty). As
is shown in [11], as long as less than 10% (about 3000) utterances
are labeled, performance of CRTAL is behind random sampling. An
ideal way to deal with a small labeling budget is to utilize the inter-
nal structure of the dataset so that the method starts to outperform
random sampling from the very beginning of a labeling process.

We propose a method to optimize the sound event classifica-
tion performance when labeling budget is limited and only a small
portion of data can be annotated. The proposed method is called
medoid-based active learning (MAL). K-medoids clustering is per-
formed on sound segments, and the centroids of clusters (medoids)
are selected for labeling. The label assigned to a medoid is used to
derive predicted labels for other cluster members. An advantage of
MAL over traditional SSL and CRTAL is that it does not depend on a
model that would require many labels as an overhead to achieve reli-
able performance on uncerntainty sampling and label prediction. In
the evaluation, labels are produced to a training dataset through the
proposed method or reference methods, simulating a limited number
of labeling responses. A classifier is trained according to the pro-
duced labels and its classification accuracy on a test dataset is used
to evaluate the performance of the whole process. Selecting clus-
ter representatives for labeling has been originally proposed for text
classification in [14], but it does not use representatives to predict
labels. Similar studies have not been found in the field of acoustic
pattern recognition.

The proposed method is described in Section 2. The evaluation



Fig. 1. Overview of the proposed method. The shape of a geometric
drawing in data examples represents the ground truth class or label
of a segment. Ground truth classes, annotated labels and predicted
labels are represented by unfilled drawings, black filled drawings and
gray filled drawings, respectively.

of the proposed system and the discussion about the results is given
in Section 3. The conclusion is drawn in Section 4.

2. THE PROPOSED METHOD

The procedure of the proposed method is shown in Figure 1. The
proposed method takes sound segments as input and labels of seg-
ments are produced as the output. Sound segments are typically
sliced from audio recordings. The production of labels requires an
annotator who listens to presented segments and assign labels for
them. The labels are chosen from a closed set of pre-defined classes.

Segments in the dataset are originally unlabeled and marked as
unlistened. Each segment in the dataset is represented by a multi-
variate Gaussian distribution and the dissimilarity between a pair of
segments is measured by Kullback-Leibler (KL) divergence. Seg-
ments are clustered using K-medoids algorithm based on the dissim-
ilarity to each other. The medoid of each cluster is presented to an-
notators for labeling. Medoids are the representatives of local distri-
butions so that they have two useful properties. Firstly, medoids are
assured to span different local distributions, thus redundant examples
densely distributed within a small area can be avoided. Secondly, a
cluster consists of segments around the medoid, thus predicted la-
bels for other cluster members can be derived from the medoid. In
case the labeling budget is more than the number of clusters, the
annotation proceeds with another round of clustering on unlistened
segments. The details of the processing is described in more detail
in the following subsections.

2.1. Sound segment representation

Mel-frequency cepstral coefficients (MFCCs), its first-order and
second-order derivatives are used as acoustic features. A sound seg-
ment is represented by a multi-variate Gaussian distribution, based
on the mean and the covariance of the corresponding features. In
a preliminary study, using a diagonal covariance matrices gave bet-
ter performance than using full covariance matrices, thus diagonal
covariance matrices are used in this study.

2.2. Segment-to-segment dissimilarity measurement

Dissimilarity measurement between segments is needed to perform
clustering. Symmetric KL divergence is a dissimilarity measurement
between multi-variate Gaussian pairs, which has been used in vari-
ous applications such as in music information retrieval [15] and au-
dio texture creation [16]. Symmetric KL divergence is also used
in this study to measure the dissimilarity between a pair of sound
segments. The KL divergence between two multi-variate Gaussian
distributions P0 and P1 is calculated as

DKL(P0‖P1) =
1

2
(tr(Σ−1

1 Σ0)

+ (µ1 − µ0)
>Σ−1

1 (µ1 − µ0)

+ ln(
detΣ1

detΣ0
)− k),

(1)

where µ0 and Σ0 are mean and covariance of distribution P0, re-
spectively. The mean and covariance of distribution P1 are denoted
as µ1 and Σ1.

KL divergence is not a commutative operation so that
DKL(P0‖P1) is different from DKL(P1‖P0). In order to obtain a
symmetric dissimilarity matrix, the average of both way KL diver-
gence is used to measure the dissimilarity between two segments as

D(P0‖P1) = D(P1‖P0) =
DKL(P0‖P1) +DKL(P1‖P0)

2
. (2)

2.3. K-medoids clustering

K-medoids clustering algorithm [17, 18] is performed based on the
segment-to-segment distance matrix. K-medoids is a partitioning-
based clustering algorithm, similar to K-means. K-medoids uses a
data point in the dataset as a centroid whereas K-means uses an ar-
bitrary point in the coordinate space as a centroid. K-medoids typi-
cally outperforms K-means, in terms of accuracy, and the advantage
increases with the size of the dataset [19]. Furthermore, a medoid,
as the centroid of a cluster, is intuitively the best sample to estimate
the most frequent class in a cluster if only one sample can be taken.

In a bit more detail, K-medoids is performed by assigning each
segment to the nearest medoid among all k medoids. The medoids
are initialized and iteratively updated to minimize the total dis-
tance of all segments to the nearest medoids until no medoid can
be swapped to reduce the total distance.

The initialization of medoids is based on farthest-first traversal
[20]. Farthest-first traversal has been proved to give an efficient ap-
proximation of k-center problem [21]. A traversed set starts as a
singleton of a random segment. The farthest segment to the current
traversed set (the distance from a point x to a set S is defined as
d(x,S) = miny∈Sd(x, y)) is added to the traversed set until the
traversed set reaches the size of K. The traversed set is then used as
the initial medoids.



The choice of the number of clusters k gives a trade-off be-
tween bigger cluster size (more predicted labels can be derived from
a single label assignment) and better accuracy of predicted labels.
Let us denote the number of unlistened segments as n. We choose
k = n/4, which can be interpreted that the average size of clusters
is four.

2.4. Assigning labels

The medoids of clusters are presented to an annotator in a sequence
sorted by cluster size in descending order. Only one medoid is
played at a time and the annotator assign label to the medoid by
selecting a class from a list of pre-defined classes. Assigning a label
consumes labeling budget by one. The label assigned to a medoid
is seen as an annotated label. The label of the medoid is derived as
predicted labels for the rest of cluster members. Largest clusters are
labeled first so that high number of predicted labels can be derived
with low listening budget.

2.5. Recursive process

Initially, all the segments are flagged as unlistened. Once a medoid
segment is annotated, the segment is flagged as listened. The target
situation is small labeling budget so that we do not aim on an optimal
performance when the budget is more than the number of clusters. In
case all medoids are annotated, we simply perform another round of
clustering on unlistened segments and the annotation process contin-
ues with medoids in the latest round of clustering. Annotated labels
overrule predicted labels received in previous rounds.

If the listening budget is sufficient so that multiple rounds of
clustering have been performed, there would be multiple, possibly
different predicted labels given to an unlistened segment. In super-
vised learning, all the different predicted labels for an unlistened
segment are used, by taking the segment as an training example of
each labeled class.

3. EVALUATION

The performance of the proposed method is evaluated as the classi-
fication accuracy using labels produced with the proposed method.

3.1. Dataset

The goal of the proposed method is to save annotation effort. In
order to approximate the target situation, the used dataset has to be
large enough so that reducing annotation effort is worthy attempting.
In addition, a public dataset designed for sound event classification
is preferred.

We use UrbanSound8K dataset [22], a public environmental
sound dataset, consisting of 10 classes of sound events: air condi-
tioner, car horn, children playing, dog bark, drilling, engine idling,
gun shot, jackhammer, siren and street music. All the sounds in
the dataset are real field-recordings from urban environments. The
dataset includes 8 732 labeled sound segments with maximum du-
ration of 4 seconds, totaling 8.75 hours. A 10-folds division is pro-
vided by the dataset for cross validation. The division is made using
a random allocation process that keeps segments originating from
the same recordings allocated to the same fold, meanwhile trying to
balance the number of segments per fold for each sound class.

3.2. Experimental setup

MFCCs are used as frame-wise features. The audio signal is divided
into frames with 24 ms length and 50% frame overlap. We compute
1st to 25th MFCCs from 40 Mel bands between 25 Hz and 22 050
Hz. To calculate the segment-to-segment distances, the mean and
covariance of MFCCs are used as is discussed in Section 2.2. In
supervised learning, the following summary statistics of MFCCs are
used as segment-wise features: minimum, maximum, median, mean,
variance, skewness, kurtosis and the median and variance of the first
and second derivatives.

In each round of evaluation, nine folds are used for training and
one fold is used for testing. The labels provided by the dataset are
used as ground truth. In a training set, the ground truth labels are
initially all hidden. A labeling budget m allows a learning algo-
rithm to query labeling responses for up to m segments. The labels
obtained directly through labeling responses are called annotated la-
bels, whereas other labels generated using the proposed method or
SSL are called predicted labels.

Two annotators are simulated: an oracle annotator that always
answers the ground truth and an artificial weak annotator [23] that
produces noisy labels. The labeling accuracy of our artificial weak
annotator is set to 75%, which is the lowest reported human sound
event recognition rate in found studies [5, 8, 24, 25]. The probabili-
ties that the artificial annotator mislabels a class to any other classes
are even.

Obtained labels are used to perform supervised learning. Sup-
port vector machine (SVM) with radial basis function as kernel is
used as classification model. Since this study does not aim on opti-
mal parametrization, we use default settings of Python Scikit-learn
[26]. A training example consists of a segment-wise feature vector
and a target class according to the label.

Since the distribution of classes in the dataset is not even, we use
unweighted accuracy to weigh different classes the same regardless
to the number of instances. The classification accuracy is reported
averaging the accuracy across all 10 folds. There are random ele-
ments (medoid initialization, random sampling and labeling errors
from the weak annotator) in the experiments that affect on the per-
formance. Therefore, all the experiments are repeated five times and
the averaged results are reported.

3.3. Reference methods

Random sampling is used as a baseline, where a random subset with
the size of labeling budget in the training dataset is annotated. The
purpose of random sampling is to simulate the performance of pas-
sive learning as a benchmark.

CRTAL [10] is used as the second reference method. Half of the
labeling budget is used for the initial samples that are randomly se-
lected. The other half of the labeling budget is used for uncertainty
selection. A batch size five is used so that the least confident five
samples to the current model, in each iteration, are selected for la-
beling and the model is updated after adding new labels to training
material.

SSL [12] is coupled with random sampling and CRTAL, respec-
tively, as the third and the fourth reference method. The annotated
labels are obtained though either random sampling or CRTAL. An
initial classifier is trained with annotated labels and all unlabeled
segments get predicted labels based on the classification output us-
ing the initial classifier. The predicted labels and the classifier are
updated with five iterations. This way of combining of CRTAL and
SSL is called a serial combined learner [27].
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Fig. 2. Classification accuracy as a function of labeling budget, sim-
ulated using an oracle annotator.

3.4. Results

Figure 2 illustrates the performance of the proposed method com-
pared with reference methods, simulating oracle labeling responses.
All segments in the training set get annotated labels when the label-
ing budget is 8 000. When all the segments are labeled as ground
truth, the obtained classifier achieves an accuracy about 65%, which
is the ceiling performance of all compared methods.

The proposed method (MAL) performs the best with all simu-
lated labeling budget until all methods converge to the ceiling per-
formance. Reference methods need 2-4 times of labeling budget,
compared to the proposed method, to achieve the same accuracy .
An interesting benchmark is listening budget 2 000, where each seg-
ment has received a label, either annotated or predicted using the
proposed method. We have observed that the accuracy of predicted
labels is about 97%. The high labeling accuracy makes the resulted
classifier approximates the ceiling performance.

CRTAL does not outperform the baseline until labeling bud-
get of 3 000. An active learning study on speech recognition [11]
shows a similar trend. When labeling budget is small, the most un-
certain segments selected within a batch are often similar to each
other, which makes the selected training material more redundant
than when using baseline.

The effect of SSL goes divergent along with baseline and CR-
TAL. The performance is improved when SSL is used together with
CRTAL, but similar improvement is not observed with the baseline.
Uncertain segments are labeled out with CRTAL, and there remains
confident segments to predict. As a result, the label prediction accu-
racy is much higher when CRTAL is used compared to baseline.

Figure 3 illustrates the difference in performance between the
resulted classifiers using the oracle annotator and the artificial weak
annotator. The results show that the proposed method also outper-
forms the baseline when the weak annotator is used. However, the
advantage of the proposed method is smaller compared to using the
oracle annotator: the baseline needs less than double sized labeling
budget to achieve the same accuracy. Intuitively, this phenomenon
is due to the predicted label derivation mechanism of the proposed
method. Mislabeling the medoid makes a whole cluster of segments
wrongly labeled to another class, which may lead to a strong confu-
sion between the two classes. In comparison, when the same amount
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Fig. 3. Classification accuracy as a function of labeling budget, sim-
ulated using an oracle annotator (oracle) and an artificial weak an-
notator (weak).

of wrong labels are evenly distributed to all classes, the performance
of the resulted classifier seems to be affected much less. As a sum-
mary, the proposed method might be less effective when using weak
annotators.

4. CONCLUSION

We propose a novel method, medoid-based active learning (MAL),
to improve sound event classification performance when labeling
budget is small, compared to the number of unlabeled data.

In the evaluation using an oracle annotator, when the labeling
budget was less than 10% of unlabeled data, the resulted classifier
using the proposed method gave about 8% better accuracy than us-
ing the best reference method. Furthermore, as the listening budget
grew, the proposed method kept to outperform reference methods.
Through all the experiments, the proposed method used generally
50%-60% less labeling budget to achieve the same classification ac-
curacy with respect to the best reference method.

In this study, the number of clusters k was set to a rather big
number (only four segments per cluster in average). However, the
performance of the proposed method could be potentially further im-
proved by tuning k according to the listening budget, e.g. a smaller
k for a tight budget. In preliminary experiments, the classification
accuracy with a tight listening budget (400) was further improved by
5% when k was halved.

The experiment using an artificial weak annotator shows that
the proposed method is less effective if the annotator gives too many
wrong labels. This suggests a future study about using weak anno-
tators. In case of very weak annotator, clustering may be used to
improve the labeling accuracy (listening to all segments in a clus-
ter and label the whole cluster using majority vote) instead of active
learning, which leads to another study.

As a conclusion, the proposed method can effectively improve
the sound event classification performance when the labeling budget
is small. In future, datasets with different number of segments and
possible classes can be studied. Furthermore, it would be helpful to
evaluate the performance using realistic human annotators. At last,
it would be useful to study alternative acoustic models, e.g. neural
network, to compare how they work along with less accurate labels.
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ABSTRACT

This paper targets on a generalized vocal mode classifier
(speech/singing) that works on audio data from an arbitrary data
source. Previous studies on sound classification are commonly
based on cross-validation using a single dataset, without consider-
ing training-recognition mismatch. In our study, two experimen-
tal setups are used: matched training-recognition condition and
mismatched training-recognition condition. In the matched condi-
tion setup, the classification performance is evaluated using cross-
validation on TUT-vocal-2016. In the mismatched setup, the perfor-
mance is evaluated using seven other datasets for training and TUT-
vocal-2016 for testing. The experimental results demonstrate that
the classification accuracy is much lower in mismatched condition
(69.6%), compared to that in matched condition (95.5%). Various
feature normalization methods were tested to improve the perfor-
mance in the setup of mismatched training-recognition condition.
The best performance (96.8%) was obtained using the proposed
subdataset-wise normalization.
Index Terms: sound classification, vocal mode, heterogeneous data
sources, feature normalization

1. INTRODUCTION

In this study, we aim at a generalized vocal mode (speech/singing)
classifier, working on audio data from arbitrary sources. A gener-
alized vocal mode classifier can potentially save a lot of time when
finding interesting parts in a video, along with established vocal ac-
tivity detection techniques [1, 2]. As an example, the singing part
from a talent show episode can be easily found on YouTube.

The captured audio is affected by the recording device, acoustic
space and background noises. The acoustic space and the recording
device are collectively defined as transmission channel. In practice,
the training-recognition mismatch is a significant problem: a clas-
sifier often fails when working on audio data captured using a dif-
ferent recording setup. However, majority of previous sound classi-
fication studies are based on a single dataset using cross-validation
[3, 4, 5], without considering the cases of training-recognition mis-
match. We call it a homogeneous recognition scenario, when train-
ing and testing data are from the same recording setup. We call it a
heterogeneous recognition scenario, when recognition data is from
different recording setups compared to the training data.

In previous studies, feature normalization has been shown ef-
fective to cope with training-recognition mismatch in robust speech
recognition [6, 7, 8]. Mean-variance normalization (MVN) [9]
scales features in each data source to have zero-mean and unit-
variance. Histogram equalization (HE) [7, 8] aims at a more so-
phisticated matching over the histogram from a distribution basis

Figure 1: An example of a homogeneous recognition scenario and
a heterogeneous recognition scenario.

to a distribution target. Notably, there is a significant difference
between our study and robust speech recognition. Taking the ex-
perimental framework Aurora [10] used in [7, 8] as an example,
a single clean speech dataset is used for training. The background
noises of different environment are added to clean data to be used as
testing material, thus the main mismatch is the background noises.
In our study, the training material is from a few different datasets
instead of one to cover various speech and singing styles. The main
mismatch between the datasets is in channel effect instead of back-
ground noise, since all the datasets are recorded in relatively silent
environment.

This study deals with the training-recognition mismatch when
learning vocal mode classifiers from heterogeneous data sources.
Firstly, we investigate the difference in performance between homo-
geneous recognition scenario and heterogeneous recognition sce-
nario. Secondly, we evaluate various feature normalization methods
to improve the classification performance in heterogeneous recog-
nition scenario. The main focus is the data scope to perform fea-
ture normalization, which is seldom investigated in previous stud-
ies. Besides the obvious recording-wise and dataset-wise normal-
ization, subdataset-wise normalization is proposed. The normaliza-
tion data scopes are evaluated along with MVN and HE. A new
dataset TUT-vocal-2016 is introduced to evaluate the classification
performance.

The organization of this paper is as follows. The method is
described in Section 2. The used datasets are discussed in Section
3 and the experimental results for evaluation are given in Section 4.
The conclusions are drawn in Section 5.
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Figure 2: Feature distribution in CHiME2010 and Arctic dataset,
illustrated in green and blue lines, respectively. The visualized fea-
tures are log Mel-band energies from nine different bands.

2. METHOD

A vocal mode classifier takes an audio recording as input and the
output is the predicted vocal mode corresponding to every second
in the recording. The vocal mode classifier follows an established
setup in the domain of sound classification: log-mel band energies
as features and a multilayer perceptron as the classifier [11, 12]. In
addition to the established setup, feature normalization is performed
on the log-mel band energies.

2.1. Acoustic Features

The acoustic features are calculated as follows. The audio ampli-
tude is normalized, scaling the maximum amplitude of a recording
to one. The audio signal is divided into frames with length of 30 ms
and 50% overlap. The number of Mel filter banks is 30, ranging
from 25 Hz to 8000 Hz.

In order to investigate the difference in transmission channel be-
tween different data sources, the feature distributions of two speech
datasets, CHiME2010 [13] and Arctic [14], are visualized in Fig-
ure 2. The histogram plots are obtained by dividing the interval [-
4σ, 4σ] of each feature coefficient into 50 bins. Only features from
non-silent frames are taken into account. As is shown in Figure 2,
each feature coefficient in the CHiME2010 dataset is distributed
around a single peak, similar to the normal distribution. In contrast,
most coefficients in Arctic dataset are distributed around two peaks.
Both CHiME2010 and Arctic are speech datasets containing bal-
anced English utterances recorded in relatively silent environment,
however the feature distributions are largely different, which reveals
the the difference between the two datasets in terms of channel ef-
fect.

2.2. Feature normalization

A transmission channel introduces a time-invariant distortion to the
original signal, under the assumption of linear system. It is assumed
that there exists an invariant global distribution for voice signal, be-
fore transmitting through a channel [6]. If different recording setup
is used, the global distribution becomes transformed. The global

distribution using a recording setup can be estimated using avail-
able data from the source. Feature normalization aims at removing
the noise and channel effect by matching the overall feature distri-
butions of different data sources.

Two types of feature normalization techniques are considered:
mean-variance normalization (MVN) [9] and quantile equalization
(QE) [15]. They are simple and require not too much data from a
data source to estimate the feature distribution, compared to more
complicated and elaborated methods such as full histogram equal-
ization [7], feature space rotation [16] and vocal tract length nor-
malization [17].

In practice, it is quite often unknown what recordings are from
the same recording setup. The audio data inside a recording is
surely homogeneous, however the amount of data in a single piece
of recording may not be sufficient to estimate the feature distri-
bution of the source. Another solution is dataset-wise normaliza-
tion, based on the assumption that the audio in the same dataset is
recorded under very similar condition. However, this is not always
a valid assumption. As an example, some audio datasets are col-
lected in parallel using different recording devices in different envi-
ronment. We use a term data scope, within which the feature distri-
bution is estimated and feature normalization is performed. Global
normalization, as a reference, scales all the data the same way, based
on the statistics of the whole training material.

In addition, we propose another approach, where datasets are
decomposed into sub-datasets based on K-means clustering on
recordings. The number of clusters is defined proportionally to the
data amount, with two hours of non-silent material in the dataset
corresponding to one cluster.

Overall, we consider two feature normalization techniques and
three normalization data scopes. In mean-variance normalization, a
feature vector x in a data scope X is normalized as

xnorm =
x− µ
σ

, (1)

where µ and σ is the mean and standard deviation within the data
scope X.

Quantile equalization estimates a transformation function for
each feature coefficient based on the quantile statistics of the data
scope as basis and the whole training set as target. Five critical val-
ues: minimum, 25th-percentile, median, 75-percentile and the max-
imum are used to divide the range of a feature coefficient into four
bins. The value of kth critical value for ith coefficient is denoted
as Qi

k and Q̂i
k, respectively for the basis and target distribution. A

feature coefficient xi is normalized as

xinorm = Q̂i
k + (xi −Qi

k)
Q̂i

k+1 − Q̂i
k

Qi
k+1 −Qi

k

∀xi ∈ Qi
k < x < Qi

k+1.

(2)

2.3. Supervised learning

Multilayer perceptron (MLP) [18] is a basic type of artificial neural
network, consisting of layers of nodes with each layer fully con-
nected to the next one. Feature vectors are given to the network as
input and the output corresponds to target classes. The implemen-
tation is based on Keras [19] using Theano [20] as backend.

Let us denote the node values of input layer as h1 = x and the
node values of kth layer as hk. Given the node values of k − 1th
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Name Class Duration Ref
CHiME Speech 7h 06m [13]
Arctic Speech 6h 27m [14]
CHAINS Speech 2h 19m [21]
Multitrack2013 Sing 17h 10m [22]
Marl Sing 1h 51m [23]
Tonas Flamenco Sing 0h 13m [24]
TUT-VOX Sing 0h 48m -
TUT-vocal-2016 Both 3h 15m -

Table 1: Datasets used in our experiments. Used length is the non-
silent part of used recordings in a dataset. The duration is reported
excluding silence.

layer, the node values of kth layer are calculated as

gk−1 = Wkhk−1 + bk, 2 ≤ k < M (3)

hk = F(gk−1). (4)

Eq. (3) shows the linear transformation operation on k − 1th layer
of the neural network, where Wk ∈ RSk−1×Sk is a weight matrix
between layer k − 1 and layer k. Sk is number of neurons in layer
k. A bias vector is denoted as bk. A non-linear activation function
F is applied element-wise on the linear transformation outputs. The
total number of hidden layers is two. Sigmoid function is used as
activation function for hidden layers and the output layer (h4 = y).

Context windowing is used for the neural network input: the
consecutive feature frames [x[t − R], ...,x[t], ...,x[t + R]] are
stacked together to form a single feature vector xc[t] to repre-
sent temporal dynamics, where R is number of the past and future
frames. We use Ncw = 2R + 1 = 25 to denote the total number
of frames used in a context window. In order to smooth the neu-
ral network output, mean filter is used for neural network output
as [y[t − L], ...,y[t], ...,y[t + L]]. The size of the mean filter is
Nmf = 2L+ 1 = 35.

3. DATASETS

There is not any public dataset designed for speech/singing clas-
sification. However, there are many speech datasets designed for
speech recognition and several singing datasets designed for music
research. Three speech datasets and four singing datasets are se-
lected as training material based on the variability and accessibility.
The list of used datasets is shown in Table 1. In addition, we col-
lected a new dataset TUT-vocal-2016 that contains both speech and
singing to evaluate trained classifiers.

3.1. Datasets for training

All the speech datasets contain English speech from both male and
female. CHiME dataset [13] contains speech utterances from 34
speakers with reverberation. Arctic dataset [14] is a clean speech
dataset designed for speech synthesis and speech recognition, con-
tributed by 7 speakers. CHAINS dataset is contributed by 36 speak-
ers, including normal, fast and whispered speech. Only the normal
speech and whispered speech utterances are used in this study.

Four singing databases are used. Multitrack2013 covers singing
styles of pop and pop rock [22]. Tonas Flamenco [24] contains
only Flamenco singing. The Marl dataset [23] contains pop singing

and rap. Recordings containing rapping have been excluded in our
experiments, since it is ambiguous if rapping belongs to speech or
singing. TUT-VOX is a proprietary dataset containing acappella
singing in English and Finnish.

3.2. TUT-vocal-2016

In order to make a proper evaluation for vocal mode classification,
we introduce a new dataset TUT-vocal-2016. The core idea is to
have audio where the same person is speaking and singing, prefer-
ably the same language content. The dataset is contributed by 20
volunteers, 10 females and 10 males. Each volunteer is required to
choose four songs. The volunteer is required to sing from one to one
half minutes of each song, thus all recordings weigh similarly in the
evaluation. There are 80 pieces of singing collected, from a set of
21 different songs. The lyric of the songs is read out by each volun-
teer in three types: normal speech, whispered speech and shouted
speech. The shouted speech is not used in this study since we have
found very little shouted speech as training material.

3.3. Annotation

We use frame-level voice activity annotation, by which the silent
parts in recordings are excluded for both training and testing. The
frame-level activity annotation was obtained using two automatic
approaches. The principle is to exclude all the silent frames in the
evaluation and a small part of voices annotated as silence is toler-
ated.

Speech utterances were mostly short and contained usually only
silence at the beginning and at the end of the signal. A simple
energy-based scheme was chosen for this type of signals. In the
scheme, 10% of the average RMS-energy was used as threshold to
detected non-silence (active) segments. This scheme worked best
with signals having mostly active segments and most of the energy
is also concentrated in these vocal segments.

The acappella singing contains longer silent segments and in
some cases added effects like reverberation making it hard to use
such a simple threshold. For these type of signals, a binary classifier
based approach was used [25]. In this approach, 10% of lowest en-
ergy frames within a recordings are used to train Off-class and 10%
of highest energy frames is used to train On-class. The classifier
was used to get probability of frame belonging to the On-class (ac-
tive). Classification was done by defining the probability threshold
as weighted mean between top 10% and bottom 10% of collected
probabilities. After the binary classification, short segments under
200 ms were omitted from output.

4. EVALUATION

Firstly, we evaluate the difference in classification performance
between homoogeneous recognition scenario and heterogeneous
recognition scenario. Secondly, we try to find the best feature nor-
malization method and data scope in heterogeneous recognition sce-
nario.

4.1. Setup

To evaluate the classification performances in the homogeneous
recognition scenario, we perform a 4-fold cross validation on the
TUT-vocal-2016 dataset. The evaluation results are reported aver-
aging the four folds.
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Scenario Normalization data scope MVN QETraining Testing
Heterogeneous Global Global 69.6
Homogeneous Global Global 95.5

Heterogeneous

Recording Recording 72.7 76.2
Dataset Dataset 88.1 91.6

Subdataset Subdataset 96.8 93.9
Subdataset Dataset 90.7 90.4

Dataset Recording 81.1 78.3
Subdataset Recording 81.2 81.1

Table 2: Evaluation on different data scopes using mean-variance
feature normalization (MVN) and quantile equalization (QE).

In the evaluation of the heterogeneous recognition scenario,
TUT-vocal-2016 dataset is used for testing, while the rest of the
datasets are used for training. The baseline is global feature nor-
malization, where all the feature vectors in training and testing ma-
terial are operated with the same linear transformation based on the
statistics of training material alone. Two feature normalization tech-
niques, MVN and QE are evaluated, along with three feature nor-
malization data scopes, recording-wise, dataset-wise, subdataset-
wise. Particularly, we evaluate recording-wise normalization for the
testing data, while using all the three normalization data scopes for
training data. In many practical cases, the data source is unknown
at the recognition stage, or the statistics of the whole recognition
dataset are not available.

4.2. Results

The experimental results are reported in unweighted accuracy (av-
erage recall), of the two classes. The experimental results are shown
in Table 2. MVN and QE give similar performance through all the
experiments. In contrast, the feature normalization data scope sig-
nificantly affects the classification performances. Based on that, we
can simply use the results from MVN to discuss different normal-
ization data scopes.

The obtained accuracy using subdataset-wise normalzation was
remarkably high. We investigated the clustering results of the TUT-
vocal-2016 dataset and found that the speech and singing record-
ings were clustered to different subdatasets. All of our training
datasets consist either speech or singing. The condition is more
matched, when training and testing data scope contains only just
one class, which leads to a big improvement when the testing
dataset is normalized subdataset-wise. When online application is
considered (normalization scope is recording-wise at recognition),
there is no major difference in performance between dataset-wise
and subdataset-wise normalization.

In most robust speech recognition studies [6, 8], QE gives
clearly better performance than MVN. However, this conclusion
does not hold in our study. In the robust speech recognition stud-
ies, the purpose of feature normalization is to improve the noise
robustness. In comparison, all the datasets used in our study are
recorded in close microphone scenario, thus relatively clean from
interfering sounds. Our experimental results suggests that it has no
benefit using QE compared to MVN, when the mismatch is mainly
on channel effect.

5. CONCLUSION

This paper targets on a generalized vocal mode classifier, which is
able to perform classification on signals from arbitrary data sources.
A new dataset TUT-vocal-2016, containing both speech and singing
from 20 volunteers, was collected for evaluation.

In a homogeneous recognition scenario, a four fold cross-
validation is made on TUT-vocal-2016 alone. In a heterogeneous
recognition scenario, four speech datasets and three singing datasets
are used as training material, and TUT-vocal-2016 is used for test-
ing. In the experiments, the vocal mode classifiers were based on
log-Mel band energies as features and multi-layer perceptrons as
models. The experimental results showed that the classifier gave
clearly higher accuracy 95.5% in the homogeneous recognition sce-
nario compared to heterogeneous recognition scenario (69.6%).

This result shows that the classification performance is severely
degraded by training-recognition mismatch. However, we found no
public evaluation setup for sound classification targeting on hetero-
geneous recognition scenario. A new evaluation setup should be
established to test the capability of classifiers to work on heteroge-
neous data sources.

Various feature normalization methods were tested to improve
the classification performances in the heterogeneous recognition
scenario. Subdataset-wise mean-variance normalization was found
to gave the best performance, which achieved a classification accu-
racy of 96.8%. However, the subdataset-wise normalization relies
on the knowledge of recognition data source and a sufficient amount
of data from the source is needed to estimate the feature distribution.
In case that the feature distribution can only be estimated based on
the current signal to be recognized, the best achieved accuracy was
81.2 %.

This suggested that an online application would be much more
challenging than an offline application for a heterogeneous recog-
nition scenario. In the future, studies should be made on normal-
ization methods that requires less data to improve on heterogeneous
recognition scenario.
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ABSTRACT

This paper proposes an active learning method to control a labeling
process for efficient annotation of acoustic training material, which
is used for training sound event classifiers. The proposed method
performs K-medoids clustering over an initially unlabeled dataset,
and medoids as local representatives, are presented to an annotator
for manual annotation. The annotated label on a medoid propagates
to other samples in its cluster for label prediction. After annotat-
ing the medoids, the annotation continues to the unexamined sounds
with mismatched prediction results from two classifiers, a nearest-
neighbor classifier and a model-based classifier, both trained with
annotated data. The annotation on the segments with mismatched
predictions are ordered by the distance to the nearest annotated sam-
ple, farthest first. The evaluation is made on a public environmental
sound dataset. The labels obtained through a labeling process con-
trolled by the proposed method are used to train a classifier, using
supervised learning. Only 20% of the data needs to be manually an-
notated with the proposed method, to achieve the accuracy with all
the data annotated. In addition, the proposed method clearly out-
performs other active learning algorithms proposed for sound event
classification through all the experiments, simulating varying frac-
tion of data that is manually labeled.
Index Terms: active learning, K-medoids clustering, committee-
based sample selection, sound event classification

1. INTRODUCTION

Sound event classification [1, 2] has many applications such as en-
vironmental noise monitoring [3], road surveillance [4] and remote
health care [5]. Nowadays, the majority of sound event classifica-
tion systems [6, 7] are based on supervised learning, which depends
on annotated recordings as training material. Preparing the training
material is commonly the most time-consuming part in developing
a sound event classifier and annotating audio typically costs much
more time than recording it. Similar situation has been faced in
other applications such as speech recognition [8] and recommenda-
tion systems [9], where unlabeled data is abundant but manual labels
are expensive to obtain.

The maximum number of labels can be manually assigned is
commonly called a labeling budget. In order to optimize the clas-
sification accuracy with a limited labeling budget, three techniques
have been established, including transfer learning [10], active learn-
ing [11, 12] and semi-supervised learning [13]. Transfer learning uti-
lizes an audio representation learned from other tasks, where more
labeled data is available. Active learning controls which samples
will be annotated in order to efficiently utilize the labeling budget.

Funded by European Unions H2020 Framework Programme through
ERC Grant Agreement 637422 EVERYSOUND and 737472 SMART-
SOUND.

Semi-supervised learning predicts labels for unlabeled data and use
them as training material. The three techniques are not mutual exclu-
sive, and can be combined. There are two previous active learning
studies on sound event classification, semi-supervised active learn-
ing (SSAL) [11] and medoid-based active learning (MAL)[12]. Both
of them involves a sample selection mechanism to control the label-
ing process, and a label prediction mechanism for unlabeled data.

SSAL performs sample selection and label prediction based on
a classifier trained with previously labeled data. Samples with low
classification confidence are selected for annotation, whereas sam-
ples with high confidence, are assigned with the predicted labels.
The classifier relies on a decent amount of annotated data to achieve
reliable label prediction and confidence estimation. Thus it can
hardly optimize a labeling process at the very early stage when little
annotated data is available. A solution to this drawback is to utilize
the similarities between data points, which rely on no annotation.

MAL completely relies on the similarities between unlabeled
data points. It structures unlabeled data into small clusters using
K-medoids clustering. Each medoid, as a local representative, is
selected for annotation. The label of an annotated medoid is propa-
gated to the whole cluster. After all the medoids are annotated, MAL
repeats the whole process on the data that has not been annotated,
clustering the data again and presenting the medoids for annotation.
However, repeating the process does not utilize previously annotated
data, which is important for optimizing the labeling process, after a
decent amount of annotated labels are collected.

In this study, we propose an active learning method that targets
on optimizing the whole labeling process, utilizing both the similar-
ities between data points and data annotated previously in the label-
ing process. The proposed method performs clustering and presents
medoids to an annotator similarly to MAL. After annotating all the
medoids, the annotation continues to the samples with mismatched
prediction results from two classifiers: a nearest-neighbor classifier
and a model-based classifier, both trained with annotated data. A
segment with mismatched predictions is ranked by the distance to its
nearest annotated sample, farthest first. In each iteration, a batch of
top ranked samples are selected for annotation, and the rest of the
samples update their predicted labels to the labels of their nearest
annotated samples.

The structure of the paper is as follows. The problem of opti-
mizing a labeling process is described in Section 2. The proposed
active leaning algorithm is introduced in Section 3. The evaluation
of the proposed system is presented in Section 4. The conclusion is
drawn in Section 5.

2. PROBLEM STATEMENT

We state the problem of optimizing the process of labeling acoustic
training material. A set of N sound segments S = {s1, s2, ...sN}
is given, initially unlabeled. A set of M sound event classes C =
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Fig. 1. Illustration of the labeling process, controlled by the pro-
posed method. Each segment is represented with a geometric draw-
ing and the shape represents the class.

{c1, c2, ...cM} is pre-defined. A label l = (s, c) ∈ S ×C associates
a segment s with a class c.

In a labeling process, an annotator examines sound segments and
assigns labels. A label l = (s, c) is added to a label set L ⊂ S × C,
by associating a segment s to a class c. The segments that are manu-
ally examined and annotated are called annotated segments, denoted
as A. The segments that are not examined are called, unexamined
segments, and denoted as U = S \ A.

A labeling process produces a label set L, including annotated
labels (LA) on A and possibly machine-generated predicted labels
(LU ) on U . The produced label set is used to train a supervised
classifier. The problem is to optimize the labeling process that the
obtained label set results in the most accurate classifier, under a la-
beling budget.

3. THE PROPOSED METHOD

The proposed method is illustrated in Figure 1. The input is a set
of segments S, initially unlabeled. Sound segments are typically
sliced from audio recordings.A set of labels L is produced through
a labeling process, controlled by the proposed method. The labeling
process ends when all the segments are annotated or the labeling
budget runs out. After the labeling process,L are used for supervised
learning.

The proposed method has two stages. In the first stage, K-

medoids clustering is performed and the medoids, as local repre-
sentatives, are presented to an annotator for manual annotation. An
annotated label propagates to the whole cluster as predicted labels.
By the end of the first stage, each segment gets a label, either an-
notated or predicted. In the second stage, a batch of B samples are
selected for annotation in each iteration. The selection is based on
the prediction mismatch between two classifiers: nearest-neighbor
prediction based on A and a model-based classifier trained with A.
The segments are further ranked by the distance to the nearest anno-
tated segment. In the second stage, the clusters are updated, using
A as cluster centroids and assigning each unexamined segment to its
nearest annotated segment.

3.1. Distance matrix

The proposed method relies on a distance metric relevant to the target
classification problem. The distances between segments under the
same class should be generally smaller, compared to segments under
different classes. We compute a distance matrix consisting of pair-
wise distances between all the sample.

Mel-frequency cepstral coefficients (MFCCs), its first-order and
second-order derivatives are used as acoustic features. The MFCCs
within a sound segment is represented by a multi-variate Gaus-
sian distribution, based on the mean and the variance. Symmetric
Kullback–Leibler (KL) divergence is used to measure the dissimi-
larity between a segment pair. The measured dissimilarity between
two segments x and y is called distance for simplicity, and denoted
as d(x, y), though KL divergence is not distance. The distance
from a segment to itself is zero and the distance matrix DN×N is
symmetric with diagonal values being zero.

The MFCCs-Gaussian-KL as a similarity measurement has
been widely used in acoustic information retrieval [15, 16]. Besides
MFCC-Gaussian-KL as a static programmed similarity measure-
ment, there are studies on machine-learned metrics, which outper-
formed static programmed similarity metrics in problems such as
content-based music recommendation [17] and sound event query
by voice-imitated examples [18]. However, this does not suit the
targeted situation, since a learned metric itself requires labeled data
to train.

3.2. Stage one: Clusters with representatives

K-medoids clustering is performed based on the distance ma-
trix. The clustering algorithm finds a set of K medoids M =
{m1,m2, ..mk}, that minimizes the total distance from each seg-
ment to its nearest medoid, as

∑
x∈S min{d(x, y)|y ∈M}. This

can be interpreted thatM is an optimized set of segments to make
nearest-neighbor prediction to the rest. Thus, medoids are presented
to the annotator for labeling. The annotated label assigned to a
medoid propagates to the whole cluster as predicted labels. The
label propagation is equivalent to nearest neighbor prediction based
onM.

3.2.1. K-medoids clustering

K-medoids [19, 20] is a partitioning-based clustering algorithm, sim-
ilar to more widely-used K-means. The main difference is that K-
medoids uses real data point as centroids, whereas in K-means, a
cluster centers at an arbitrary data point.

The initialization of medoids is based on farthest-first traversal
[21]: a traversed set starts as a singleton of a random segment and
the farthest segment to the current traversed set (the distance from a
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point x to a set S is defined as d(x,S) = min{d(x, y)|y ∈ S}) is
iteratively added to the traversed set. Farthest-first traversal has been
proved to give an efficient approximation of k-center problem [22].

3.2.2. Choosing the number of clusters

We analyse the number of clusters K inversely, using a factor KI =
N
K

, where KI can be interpreted as the average cluster size. KI
controls the trade-off between quantity and accuracy of generated
predicted labels. In the previous MAL study [12], KI has been fixed
to four, based on a preliminary experiment on a small scale dataset.
However, the best choice of KI varies along with each dataset.

We propose a median neighborhood test method to determine
KI , estimating the largest cluster size that an annotated label can
reliably propagate to. The test needs to manually annotate a small
number of segments. Firstly, we choose a pivotal segment p, the
segment that has the median distance to its nearest neighbor among
S, targeting on a segment with average neighborhood density. A
counter i is initially set to one. The algorithm queries the label for
the ith nearest neighbor of p. The counter increments if the label of
the ith nearest neighbor matches with p. Otherwise, we settle with
KI = i and runs K-medoids clustering with it. In case KI ends up
to be one, the method will be equivalent to random sampling. This
happens when the distance metric is highly irrelevant to the target
classification problem.

3.3. Stage two: Mismatch-first farthest-search

The sample selection in the second stage is iterative. In each itera-
tion, a batch of B samples are selected for annotation, denoted as B.
The selection is based on mismatch-first farthest-search, targeting on
segments with wrong predicted labels.

Our first sample selection criteria is based on committee-based
sample selection [14]. The principle is to select samples with mis-
matched prediction results from different types of classifiers, trained
with the same material, as a decision committee. It is based on two
assumptions. The first one is that a classifier is more likely to be
wrong when another type of classifier makes a mismatched predic-
tion, compared to the case that the whole committee agrees on the
prediction. The other assumption is that a classifier benefits more
from a counter example, where the classifier makes mistakes, than
an example where the classifier succeeds. Every selected sample is a
counter example to at least one classifier in the committee, thus the
committee as a whole efficiently improves with the selected samples.

The proposed method intrinsically involves two types of clas-
sifiers: the nearest-neighbor classifier for label prediction and the
model-based classifier trained after the labeling budget runs out. The
model-based classifier is trained with LA and the prediction results
on U are compared with the LU . The prediction mismatch between
the two classifiers is the first criteria in the sample selection.

There are typically multiple unexamined segments with mis-
matched predictions. The second criteria is the distance of label
propagation, assuming that the label propagating the largest distance
is most likely to be wrong. Thus, the segments with mismatched
predictions are further ranked by the distance to its nearest anno-
tated segment. Practically, the segments with mismatched predic-
tion are added to B based on farthest-first traversal, as is defined
in Section 3.2.1, adding the sample that has the farthest distance to
A∩B to B until B reaches the size of B. In case that less than B seg-
ments have mismatched predictions, farthest-first traversal continues
to segments of matched predictions.

After annotating a batch of segments, the predicted label of each
unexamined segment is updated based on its nearest annotated seg-
ment. This is equivalent to replacingM by A as medoids and up-
dating the partition in K-medoids clustering. SinceM ⊆ A in the
second stage, the sizes of updated clusters are equal or smaller com-
pared to the first stage.

4. EVALUATION

In order to evaluate an active learning algorithm, we use the obtained
labels to train a supervised classifier, with which the classification
accuracy on a test dataset is used for evaluation. The labels obtained
with different active learning algorithms vary in terms of quantity
and accuracy, thus the resulted classifier is used for evaluation.

4.1. Dataset

Previous study on MAL used UrbanSound8K [24] for evaluation.
We use the same dataset in this study for consistency. Urban-
Sound8K is a public environmental sound dataset, based on real
field-recordings. The dataset includes 8 732 manually annotated
sound segments with maximum duration of 4 seconds, totalling 8.75
hours. The dataset includes 10 sound event classes: air conditioner,
car horn, children playing, dog bark, drilling, engine idling, gun
shot, jackhammer, siren and street music. The dataset provides a
10-folds division for cross validation.

4.2. Experimental setup

The experimental setup also follows the previous MAL study. An
active learning algorithm output training material that requires a su-
pervised classifiers to evaluate. Since the purpose of the evaluation
is not to find the best model, we simply use a support vector ma-
chine (SVM) classifier, the baseline classifier of the UrbanSound8K
dataset with radial basis function as kernel.

The acoustic feature extraction in the supervised learning also
follows the baseline in UrbanSound8K, using the following sum-
mary statistics of MFCCs in each segment: minimum, maximum,
median, mean, variance, skewness, kurtosis and the median and vari-
ance of the first and second derivatives. MFCCs used in the similar-
ity measurement and supervised learning are the same. The audio
signal is divided into frames with 24 ms length and 50% frame over-
lap. We compute 1st to 25th MFCCs from 40 Mel bands between 25
Hz and 22 050 Hz.

In each round of evaluation, nine folds are used for training and
one fold is used for testing. The labels provided by the dataset are
used as ground truth. In a training set, the ground truth labels are ini-
tially all hidden. Annotating a sound segment consumes the labeling
budget by one. The annotated labels are always simulated with the
ground truth.

Unweighted accuracy is used to evaluate the performance. It
weighs different classes the same, regardless to the number of in-
stances. The classification accuracy is reported averaging the accu-
racy across all 10 folds. Due to the random elements, medoid initial-
ization and random sampling, in the experiments, all the experiments
are repeated three times and the averaged results are reported.

4.3. Reference methods

Random sampling is commonly used as a baseline in active learning
studies [11, 12]. It presents the data to the annotator in a random
permutation.

3



Fig. 2. Classification accuracy as a function of labeling budget. The
proposed method, MAL-MF, is evaluated with SSAL [11], MAL-R
[12] and random sampling as reference methods.

SSAL [11] is used as the second reference method. In the first
stage, 200 samples are randomly selected. In the second stage, the
sample selection is iterative. In each iteration, the annotated labels
are used to train a classifier. In each iteration, the least confident 50
samples to the classifier are selected for annotation. When the label-
ing process ends, unexamined segments get predicted labels from the
classifier, and all the obtained labels are used to train a final classifier.
Originally in the SSAL study, it has a maximum confidence thresh-
old for sample selection and samples are randomly selected under
the threshold. In addition, it has a minimum confidence threshold
for label prediction. Our reference method does not use these two
thresholds, since there is not an established rule to set them.

Previous MAL [12], named here MAL-recursive (MAL-R), has
the similar procedure as the first stage of the proposed method, with
fixed KI = 4. It runs a recursive process, repeating the first stage
process on unexamined segments, after all the medoids are anno-
tated. We firstly evaluate MAL-R with KI = 4, as it has been
originally proposed. Additionally, we evaluate MAL-R with the KI
estimated using the proposed median neighborhood test.

The proposed method, medoid-based active learning with
mismatch-first farthest-search (MAL-MF) uses median neighbor-
hood test to determine KI . The batch size in the second stage is set
to 50, the same as the experimental setup on SSAL.

4.4. Results

Figure 2 illustrates the performance of the proposed method (MAL-
MF), compared to MAL-R, SSAL and random sampling. All seg-
ments in the training set get annotated labels when the labeling bud-
get is 8 000. When all the segments are labeled as ground truth,
the obtained classifier achieves an accuracy about 64.7%, which is
the ceiling performance of all compared methods. Experimentally in
some cases, a few errors in predicted labels result in a classifier with
higher accuracy. As a result, some results in the illustration may be
slightly higher than the ceiling performance. We call a result to ap-
proximate the ceiling performance when the difference in accuracy
is lower than 0.5%.

The result shows that the proposed method outperforms all the
reference methods through the experiments. The proposed method

requires only 20% of the training data to be manually annotated to
approximate the ceiling performance. In comparison, SSAL outper-
forms baseline only when the labeling budget is more than 25% of
the training data. The main reason is that the labels predicted with
SVM are much less accurate than the labels propagated from the
local representatives, when the labeling budget is low.

The proposed method and MAL-R shares the same process in
the first stage. The proposed method uses KI estimated separately
for each fold. Based on the proposed median neighborhood test, the
choice of KI ranges in [4, 16] across the ten folds, with the median
of 12. When MAL-R uses fixed KI = 4 as previously proposed,
the cluster size is relatively small,thus the purity of the clusters is
more than 97%. It approximates the ceiling performance by anno-
tating all the medoids, using 25% of unlabeled data as labeling bud-
get. The proposed method, considering the median case KI = 12,
produces labels three times fast as KI = 4, with the purity of clus-
ters dropping to 85%. The higher number of obtained labels allows
better performance on small labeling budget. The second stage pro-
cess allows the proposed method to effectively correct the errors in
predicted labels. As a result, the proposed method approximates
the ceiling performance using only 20% of unlabeled data as label-
ing budget. When MAL-R uses the same KI estimated with the
proposed median neighborhood test, it has the same performance to
MAL-MF with low labeling budget, however the accuracy of MAL-
R increases slowly as labeling budget grows, due to its non-optimal
second stage.

In order to analyse the sample selection performance in the sec-
ond stage, we observed the label prediction error rate in unexamined
segments, unexamined segments with mismatched predictions and
selected segments. From the beginning of the second stage to where
the performance approximates the ceiling, the prediction error rate
of segments with mismatched predictions is typically 1.5 times to
the error rate in all unexamined segments. The selected segments,
the segments with mismatched prediction and ranking top 50 by the
distance to the nearest annotated segment, has 3-10 times label pre-
diction error rate, compared to error rate in all unexamined segments.
Typically the ratio grows from three to ten along with the labeling
process.

5. CONCLUSIONS

This study proposes an active learning algorithm to control the la-
beling process on sound event data, to save the annotation effort to
prepare training material. The proposed method has two stages. In
the first stage, K-medoids clustering is performed on an unlabeled
dataset and the medoids are selected for annotation. The annotated
label on a medoid propagates to its cluster. In the second stage, the
selection is based on mismatch-first farthest-search, an extension and
committee-based sample selection. The predicted labels are updated
using nearest-neighbor prediction, based on the annotated data.

The evaluation is based on the classification accuracy on a test
dataset, using a support vector machine classifier, trained based on
labels obtained in the active learning process. The results show that
only 20% of the data needs to be manually annotated with the pro-
posed method, to achieve the performance with all the data anno-
tated. Furthermore, it clearly outperforms all the reference method,
SSAL and MAL-R, through all the experiments.

In the future, the proposed method can be tried to save labeling
budget to classify other media type, if there is a exists a similarity
metric that gives decent retrieval performance.
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Active Learning for Sound Event Detection
Zhao Shuyang, Toni Heittola, and Tuomas Virtanen

Abstract—This paper proposes an active learning system for
sound event detection (SED). It aims at maximizing the accuracy
of a learned SED model with limited annotation effort. The
proposed system analyzes an initially unlabeled audio dataset,
from which it selects sound segments for manual annotation.
The candidate segments are generated based on a proposed
change point detection approach, and the selection is based on the
principle of mismatch-first farthest-traversal. During the training
of SED models, recordings are used as training inputs, preserving
the long-term context for annotated segments. The proposed
system clearly outperforms reference methods in the two datasets
used for evaluation (TUT Rare Sound 2017 and TAU Spatial
Sound 2019). Training with recordings as context outperforms
training with only annotated segments. Mismatch-first farthest-
traversal outperforms reference sample selection methods based
on random sampling and uncertainty sampling. Remarkably, the
required annotation effort can be greatly reduced on the dataset
where target sound events are rare: by annotating only 2% of
the training data, the achieved SED performance is similar to
annotating all the training data.

Index Terms—Active learning, sound event detection, change
point detection, mismatch-first farthest-traversal, weakly super-
vised learning

I. INTRODUCTION

Sound event detection (SED) is a task of automatically
identifying sound events such as gunshot, glass smash, and
baby cry from an audio signal. It predicts the presence of each
target sound event and its onset/offset. SED has been applied
in various applications, including noise monitoring [1], health-
care monitoring [2], wildlife monitoring [3], urban analysis
[4], and multimedia indexing and retrieval [5].

Due to the large number and variability of sound events in
real-life acoustic environments, there does not exist a universal
SED model. Most SED applications require their own models.
The development of a SED model is commonly based on
supervised learning, which typically requires a large amount of
labeled data as training material. Compared to capturing audio,
annotating them is much more time-consuming in most cases.
Thus, a practical problem is to optimize the SED accuracy
with a limited annotation effort.

Recently, weakly supervised learning has been studied to
reduce the required annotation effort in the development of
SED models [6], [7]. Weak labels indicate the presence of
target event classes in an audio signal, without temporally
locating them. In most cases, assigning weak labels is much
simpler, compared to assigning strong labels, which requires
the onset/offset of each individual sound event.

Despite the existence of weakly supervised learning, anno-
tating a large amount of data is still time-consuming. Active

The research leading to these results has received funding from the
European Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND.

learning has been used in various machine learning problems
[8], [9], where labels are difficult, time-consuming, or expen-
sive to obtain. An active learning algorithm controls a labeling
process by selecting the data to be labeled, typically based on
an estimate of the capability to improve an existing model.
In most cases, active learning targets the situation where
unlabeled data is abundant, but the amount of annotations that
can be made is limited. The total duration of audio that can
be manually labeled is called a labeling budget.

Active learning for SED has previously not been studied,
though a few active learning studies have been made on
sound classification [10], [11], [12], [13], [14]. All of these
studies are limited to single-label classification on sound
segment datasets [15], [16], where a sound segment contains
an isolated event. However, the situation is different in SED,
which typically deals with long signals containing many sound
events, possibly overlapping in time. In this paper, we propose
an active learning system for SED. The proposed system
includes the following novelties: (i) Variable-length sound
segments are generated as selection candidates using a change
point detection approach. To the best of our knowledge,
audio change point detection has previously not been used
for active learning. Change point detection is used to avoid
generating segments that contain only a part of an event,
which is sometimes hard to recognize either manually or
automatically. (ii) The selection of candidate segments is based
on the mismatch-first farthest-traversal principle, which has
been shown effective in sound classification [14]. In this study,
the selection principle is generalized to the whole labeling
process, without clustering in the first stage as is originally
proposed. As a result, the process does not require the cluster
number as a hyper-parameter, which is sometimes hard to es-
timate. Furthermore, the sample selection method is extended
to multi-label classification. (iii) We propose to use a partial
sequence loss during the training of SED models, to preserve
the temporal context of annotated segments: each recording is
used as training input and the training loss is computed based
on only the outputs within annotated segments. Previously,
segments generated from the same recordings are processed
independently in the training, such as in UrbanSound8K [16]
and AudioSet [17].

The structure of the rest of the paper is as follows. Related
works are discussed in Section II. The proposed system is
introduced in Section III. The evaluation of the proposed
system is presented in Section IV. The conclusions are drawn
in Section V.

II. RELATED WORKS

A. Weakly supervised learning
Weakly supervised learning has recently attracted lots of

research interests in the field of SED, especially after the
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release of a large publicly available sound event dataset,
AudioSet [17], which provides only weak labels. AudioSet
has been used to learn high-level representations in [18]. The
learned representation clearly outperforms hand-crafted fea-
tures such as log-mel spectrogram in an environmental sound
classification dataset [15] and an acoustic scene classification
dataset [19]. Furthermore, weakly supervised learning can be
also used to directly learn SED models, such as in Detection
and Classification of Acoustic Scenes and Events (DCASE)
2017 task 4 subtask B [20].

Previous weakly supervised learning studies [6], [7], [18],
[21], [22] use pooling functions to aggregate frame-level class
probabilities into segment-level. Among the studied pooling
functions, attention pooling [6], [21] appears to be the most
popular one [22]. Besides the class probability, an attention
neural network [6], [21] predicts a pooling weight for each
frame. The segment-level output is based on the weighted
average of the frame-level class probabilities. Besides attention
pooling, softmax pooling has also been shown effective in
[7], [22]. An adaptive pooling method, introducing a learnable
hyper-parameter to softmax pooling [7], achieved similar SED
performances compared to using strong labels, in three SED
datasets.

B. Sample selection

There are different problem setups defined in the field of
active learning. Previous studies on sound classification follow
the setup of pool-based sampling, where a large collection
of unlabeled data is available from the very beginning of a
labeling process. Uncertainty sampling method was studied in
[10], [11], [12], where the uncertainty to classify a sample with
an existing model was used for sample selection. One of the
problems with uncertainty sampling is the unreliable certainty
estimation unless a decent amount of data is labeled. In
many cases, uncertainty sampling does not outperform random
sampling when the labeling budget is low [10], [11]. Another
problem with uncertainty sampling is the low diversity in a
selection batch, since the samples uncertain to the same model
are often similar [8], [23].

Cluster-based active learning was proposed in [13].
Segment-to-segment similarities were measured based on the
distribution of MFCCs in each sound segment in the training
dataset. K-medoids clustering was performed on the sound
segments, and the centroids of clusters (medoids) were se-
lected for annotation. The method is called medoid-based
active learning (MAL). A label assigned to a medoid was
propagated to all segments within the same cluster. When all
the medoids were annotated, another round of clustering was
performed. Both the annotated labels and the propagated labels
were used in training acoustic models. MAL relies completely
on the similarity measurement. The advantage is that it enables
good performance with a low labeling budget, since it does not
require a reliable model. However, the method is not optimal as
the labeling budget grows, since the selection of samples does
not take previously annotated samples into account. Another
problem is that the choice of the number of clusters K requires
a prior knowledge about a dataset.

As an extension of MAL, mismatch-first farthest-traversal
was proposed in [14]. It performs only one round of K-
medoids clustering as the first stage. After annotating the
medoids, the sample selection is continued with mismatch-
first farthest-traversal as the second stage. The samples with
mismatched predictions were selected as the primary criterion.
They were further selected by their distances to previously
selected samples as the secondary criterion. The target is to
maximize the diversity of selected samples. The first stage
of the method is equivalent to MAL, and the second stage,
which starts at the labeling budget of k, clearly outperforms the
original MAL and other reference methods with all evaluated
labeling budget. In addition, an approach was proposed to esti-
mate the cluster number K. However, it assumed a relatively
balanced number of instances from each sound class. This
assumption can hardly be satisfied in SED problems.

In comparison to the previous active learning studies on
sound classification [12], [13], [14], the problem setup in
this study has the following differences. Firstly, generating
segments for annotation is considered as a part of the active
learning system in this study, whereas previous studies utilize
sound segments that are already generated before the active
learning process. Secondly, this study allows a set of classes
assigned to a segment, whereas the previous studies require
exactly only one class assigned to a segment. Thirdly, this
study predicts not only the event class as the previous studies,
but also the onset and offset of each individual event.

III. THE PROPOSED METHOD

The proposed active learning system aims at optimizing the
accuracy of a learned SED model, with a limited annotation
effort. The general overview of the proposed system is illus-
trated in Figure 1. It takes a set of unlabeled audio recordings
as input and outputs a SED model. A human annotator is
required to assign labels to sound segments that the system
selects from the recordings. The SED model is trained with
annotated sound segments.

At the beginning of the active learning process, change
point detection is performed, splitting each recording into
segments. Each segment, later called a sample, is used as a
candidate for being selected to be annotated. The definition
of sample, sampling, and training example follows [13]. The
active learning process is iterative, following batch mode
active learning scheme [8]. In each iteration, a batch of
samples is selected for annotation, and a SED model is trained
with annotated samples. The sample selection is based on
mismatch-first farthest-traversal. Mismatch-first as the primary
criterion targets on the samples that are previously wrongly
predicted. Farthest-traversal as the secondary criterion aims at
maximizing the diversity of selected samples.

In order to save annotation effort, the system requires
only weak labels that are assigned to individual segments.
In each recording, the annotated segments are visualized in
pink in Fig.1. During the training of SED models, original
recordings are used as training inputs, regarded as partially
labeled sequences. The training loss is derived from only the
annotated parts of each recording, and the unlabeled parts are
used to provide context information.
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Fig. 1: The overview of the proposed active learning system.
The three processing blocks correspond to the three subsec-
tions in Section II.

A. Change point detection

In the proposed system, recordings are first split into short
segments, as illustrated in Figure 2. Short segments have two
advantages over full recordings as basic units for annotation.
The temporal resolution of weak labels, indicating event pres-
ences in each recording, is sometimes insufficient to train SED
models, especially when sound events are dense. In addition,
the diversity of acoustic content in a recording is sometimes
limited, since the sounds are typically produced from the
same sources. In many cases, annotating only representative
segments within each recording is sufficient.

The segments are generated based on a change point detec-
tion approach, in order to obtain segments containing complete
sound events, since segments with only part of an event
are sometimes difficult to annotate. Aiming at discriminative
features for sound event activities, embeddings are extracted
per frame using a pre-trained model. The architecture of the
pre-trained model follows the network architecture used in
[21]. The details of the architecture is described in Section
III C. The training material and validation criterion used for
training the pre-trained model generally follows the setup in
[18]. Change point detection is performed on the embeddings
Y = [y1, ...,yT ], where each embedding vector yt corre-

Fig. 2: Panel (a) is the log-mel spectrogram of an example
audio signal, with the detected change points marked by white
vertical lines. Panel (b) visualizes the embeddings extracted
using a pre-trained model. Panel (c) illustrates the estimated
likelihood of change on each time step. The peaks in the
likelihood sequence are detected as change points, which are
marked with red crosses.

sponds to the time frame t = 1, 2, ...T . A likelihood of a
change δ(t) is measured for each time frame t by the cosine
distance between the means of the past M frames and the
future M frames. The M frames correspond to 0.5 seconds,
thus one second is the length of the analysis window for the
estimation of δ(t). Previous unsupervised audio segmentation
approaches are mostly proposed for speaker diarization [24],
[25]. These methods typically use a fixed or variable length
analysis window around two seconds, based on the expected
duration of speaker utterances [24]. This study uses an analysis
window of one second based on the expected duration of short
sound events such as gunshot or glass break.

The panel (c) in Figure 2 illustrates the likelihood of change
estimated at each frame in an example audio signal. A peak
in the likelihood is used as a change point. The change
points divide an audio signal into segments, which are used
as candidates for sample selection and annotation.

B. Sample Selection

Figure 3 illustrates the active learning process with the
generated candidate segments as samples. The sample selec-
tion method follows the principle of mismatch-first farthest-
traversal [14]. Detailed visualization of the sample selection
method is given online1.

When selecting the first batch of samples, no annotated
samples are available. In order to maximize the diversity of
selected samples, farthest-traversal is performed on the whole
training set. Farthest-traversal is explained later in this section.
An annotator assigns labels to the selected samples, with
which a SED model is trained.

Two types of predicted labels are generated for each unla-
beled sample. Based on a trained SED model, model-predicted

1https://github.com/zhao-shuyang/active_learning

https://github.com/zhao-shuyang/active_learning
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Fig. 3: A visualization of mismatch-first farthest-traversal on
an imaginary binary classification problem. In the bottom
panel, the range of label propagation is used to visualize
the area where an annotated data point propagates its label.
Farthest-traversal is first performed on samples where prop-
agated labels mismatch with model predictions, and then on
samples with matched predictions.

labels are generated. Based on the nearest neighbor prediction,
propagated labels are generated, according to a distance met-
ric. The similarity between the two types of predicted labels
is measured for each unlabeled sample. The measurement of
the prediction similarity is given in the subsection about the
mismatch-first criterion. The samples are primarily ranked by
the prediction similarities, lowest first. There are typically
multiple samples with the same prediction similarities. They

Fig. 4: An example of deriving model-predicted labels from
sound event detection output.

are further ranked by the distance to the previously selected
samples, farthest first. A batch of samples with the highest rank
is presented to the annotator and the active learning process
continues to the next iteration.

1) Mismatch-first criterion: At the beginning of each iter-
ation, except the first one, model-predicted labels and propa-
gated labels are generated for each unlabeled sample. Model-
predicted labels are derived from the SED outputs of each
recording as is illustrated in Figure 4. When a class of
sound event is detected within a candidate segment, a model-
predicted label is generated, associating the class of the sound
event to the segment. The classes associated with a sample
x according to the SED outputs are denoted as a set Ax.
Propagated labels are generated based on the nearest neighbor
prediction. Each unlabeled sample x is assigned the labels
of its nearest annotated sample. The distance between two
samples is measured by the cosine distance between the means
of embeddings within the two samples. These propagated
labels are denoted as a set Bx.

In a multi-label classification problem, the similarity be-
tween the propagated labels and the model-predicted labels
on a sample x is measured based on the Jaccard index as,

J(x) =

{
|Ax∩Bx|
|Ax∪Bx| , if Ax ∪ Bx 6= ∅
1 , if Ax ∪ Bx = ∅

. (1)

Samples are first selected within the set M, which consists
of the samples with the lowest prediction similarities among
the set of unlabeled samples.

The mismatch-first criterion is based on an assumption that
a model benefits more from a counterexample, where it makes
an error, in comparison to an example where it makes a
correct prediction. When the prediction results based on two
mechanisms mismatch, the sample is a counter example for
at least one of the mechanisms. Since the nearest neighbor
prediction and neural network prediction are two fundamen-
tally different mechanisms, their prediction results are usually
supplementary information to each other. In addition, the
two prediction mechanisms are based on different contexts.
The nearest neighbor prediction is based only on annotated
segments, whereas the SED model uses original recordings as
a context for annotated segments.

2) Farthest-traversal: Farthest-traversal aims at optimizing
the diversity of selected samples. It selects the sample farthest
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to the previously selected samples. The distance between
two samples is measured by the cosine distance between the
means of embeddings within the two samples. The previously
selected samples are denoted as a set S , which is the union of
annotated samples and the samples already selected in the cur-
rent iteration. As a result, a selected sample is neither similar to
annotated samples, nor to the ones to be annotated in the same
batch. The distance from a sample x to the set of previously
selected samples S is defined as d(x,S) = miny∈Sd(x, y).

With mismatch-first as the primary criterion and farthest-
traversal as the secondary criterion, a sample is selected as

s = argmax
x∈M

d(x,S), (2)

where M is the set of samples with the lowest prediction
similarities.

The selected samples are added one by one into a selection
batch and removed from the set of unlabeled samples until the
batch reaches a pre-defined batch size. After that, the batch
of selected samples is presented to the annotator, querying for
weak labels. Weak labels of a segment is a set of sound event
classes, that are present in the segment.

Previous active learning studies on sound classification
incorporate the idea of semi-supervised learning, where pre-
dicted labels on unlabeled data are also used in training [12],
[13], [14]. Since semi-supervised learning techniques have
been rapidly developed in recent years, this study considers
semi-supervised learning as a separate problem and focuses
only on active learning. The optimal combination with semi-
supervised learning is considered as future work.

C. Weakly supervised learning
Previous active learning studies [12], [13], [14] use support

vector machine to classify sound segments. This study uses
a neural network to perform SED, since neural networks
are commonly used for SED problems. The architecture of
the network follows an attention-based weakly supervised
learning system [21], which ranks the 1st in the audio tagging
subtask and the 2nd in SED subtask in a weakly supervised
learning challenge, DCASE 2017 task 4. In [21], each training
input is an annotated segment sliced from a YouTube video.
In comparison, this study uses each original recording as a
training input, preserving the context for annotated segments.

The network architecture is illustrated in Figure 5. The input
of the network is the log-mel spectrogram of a recording,
denoted as X = [x1, ...,xT ], where each vector xt represents
the log-mel band energies in a time frame t = 1, 2, ...T .
The target output is a vector τ , corresponding to the event
class activities. Each element in the target output vector
τ = [τ1, ..., τC ] represents the presence/absence of an event
class, 0 for absence and 1 for presence, and C denotes the
number of classes.

The network consists of six blocks of gated CNNs, each
of which consists of a linear CNN layer and a sigmoid
CNN layer. The element-wise product between the outputs
of the two CNN layers is fed to the next layer. Compared
to traditional CNNs that use rectified linear units as activa-
tion function, the gated CNNs reduce the gradient vanishing

Fig. 5: The diagram of the network architecture used in weakly
supervised learning. The frames marked red in the bidirec-
tional RNN outputs correspond to an annotated segment.

problem in a deep structure [26]. The gated CNNs transfer
the input log-mel spectrogram into a sequence of embeddings
Y = [y1, ...,yT ], where an embedding vector yt corresponds
to a time step t. In order to model a long-term temporal
context, three bi-directional gated recurrent unit (GRU) layers
are used. The GRUs process the embedding sequence, and
output a vector y′

t in each time step. A fully-connected
sigmoid layer is used to estimate the class probabilities in
each time step as pt = cla(y′

t). In parallel, a fully-connected
softmax layer estimates the pooling weights as wt = att(y′

t).
In order to derive the output for an annotated segment, the

weighted average of the class probabilities is computed across
all frames within the segment. Given the start time point of a
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segment as t and the length of it as l, the weak label output
of the segment is computed as

o =

∑t+l
i=t wi · pi∑t+l

j=t wj

, (3)

where · represents element-wise multiplication. Binary cross-
entropy is used to measure the loss between the prediction
output o and the target output τ for each annotated segment,
as

L(τ ,o) =

C∑
k=1

−(ok log(τk) + (1− ok) log(1− τk)), (4)

where C is the number of classes. The training loss for a
recording is the sum of the loss from each annotated segment
within it.

In this study, the gated CNNs that extract embeddings
are pre-trained with the balanced set of AudioSet [17]. The
embedding extraction function is considered as a general
knowledge, which can be transferred to different SED prob-
lems. During the pre-training, the GRU layers are not used,
and embedding vectors are directly fed to the fully-connected
layers. The output of the second last layer of a classification
network is used as embeddings. This follows the common
practice in previous transfer learning studies [18], [27] on
sound classification.

In the active learning process, the pre-trained embedding
extraction function e is fixed. The parameters of the GRU
layers gru, the sigmoid layer cla, and the softmax layer att are
trained with data annotated in the active learning process. With
a limited labeling budget, usually a small number of segments
are labeled in each recording. During the training, the log-
mel spectrogram of full recordings are used as input, but the
training loss is derived from only the frames corresponding
to labeled segments. When performing SED on test data, the
detection output is based on the class probabilities, the output
of cla, without using the layer att.

Previous studies [16], [17], [13], [14] use each annotated
segment as input, instead of the original recordings. As a
result, they lose the contextual information in the original
recordings. The contextual information may benefit the SED
performance from different aspects. Firstly, given background
sounds as contextual information, a model can learn the
unique characteristics of an event out of the background.
Secondly, the contextual information can be used to model
the dependencies between acoustic events and scenes. For
example, it is common to hear key rattling before door opening
and it is common to hear a bird chirping in a forest.

IV. EVALUATION

In order to evaluate the performance of the proposed system,
two sets of experiments are made on two different datasets.
The first one focuses on the training input and annotation unit.
The second one focuses on the sample selection method.

A. Datasets and settings

In order to evaluate active learning performances with
different SED scenarios, two SED datasets are used in the
evaluation. The statistics comparing the two datasets are shown
in Table I. The first dataset is TUT Rare Sound Events
2017 [20], which is used in the challenge of Detection and
Classification of Acoustic Scenes and Events (DCASE) 2017,
as task 2. The second dataset is TAU Spatial Sound Events
2019 - Ambisonic, which is used in the challenge of DCASE
2019 [28], as task 3.

Both datasets consist of synthetic mixtures created by
mixing isolated sound event clips with background sounds.
Previous sound event detection studies [29], [30] use synthetic
datasets as primary evaluation datasets, since the timestamps
of sound events in these datasets are precise and consistent.
In contrast, real-life recordings use manual annotation, where
the subjectivity may lead to inconsistency and possible errors
in the labels. The two datasets in this study are chosen to
represent scenarios with different sound event densities, which
largely affects the active learning performance.

Dataset TUT Rare
Sound Events
2017

TAU Spatial
Sound Events
2019

Total duration 25 h 6 h 40 m
Training set duration 12 h 30 m 5 h
Target event classes 3 11
EBR [-6 db, 0 db, 6 db] 30 db
Recording length 30 s 1 m
Events per minute 1 55

TABLE I: A Summary of datasets used in the evaluation,
explained in Section IV.A.

1) TUT Rare Sound Events 2017: TUT Rare Sound Events
2017 dataset, referred to as rare sound dataset later, is cre-
ated by mixing isolated target sounds from Freesound with
background audio in TUT Acoustic Scenes 2016 dataset [19].
There are three target event classes: baby cry, gunshot, and
glass breaking. Most gunshot and glass breaking sounds are
short, lasting around 200 milliseconds. In comparison, baby
cry events are longer, typically ranging from one to four
seconds. The background consists of sounds from 15 classes
of real acoustic scenes, 78 instances each class. The acoustic
scenes are bus, cafe/restaurant, car, city center, forest, grocery
store, home, lakeside beach, library, metro station, office,
residential area, train, tram, and urban park.

All the background audio tracks last 30 seconds. The
sampling rate is 44100 Hz. An audio signal in the rare
sound dataset might be either pure background or a target
event mixed with a background. The event-to-background ratio
(EBR) in dB is randomly chosen from {−6, 0, 6}, and the
positioning of the target sound in a mixture is also random.
The sound events are rare in this dataset, on average one event
per minute.

The original rare sound dataset is split into a development
training set, development test set, and evaluation set. Each split
of the dataset contains mixtures created with a separate set of
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background and target sounds. In this study, the development
training set is used for training, and the development test set
is used for evaluation. Both the training and test set contains
approximately 1500 audio signals, with 250 target events of
each class.

2) TAU Spatial Sound Events 2019: The dataset TAU
Spatial Sound Events 2019 dataset, is originally a spatial audio
dataset, which is used for sound event detection and spatial
localization task in DCASE 2019 challenge. The dataset is
synthetic, and the source of the mixtures are sound events from
11 classes, with 20 instances in each class. Each recording
in the spatial sound dataset has around one-minute duration,
which is mixed with target sound events. On average, each
minute of the signal contains 55 events, randomly positioned,
with possibly overlapping in time. The background is relatively
quiet and the EBR of the mixtures is about 30 dB.

The original sampling rate of the dataset is 48 kHz. In
the experiments, the recordings are resampled to 44.1 kHz,
to match the sampling rate of the pre-trained embedding
extraction model. The audio in this dataset has four channels,
however, only the first channel is used in this study, since this
study does not deal with multi-channel audio.

Similar to the usage of the rare sound dataset, this study
uses only the development set, ignoring the evaluation set in
the challenge. Four-fold cross-validation is used, following the
original setup of the dataset.

B. Evaluation metric

In this study, a segment-based error rate (ER) is used to
evaluate the performance of a SED model [31]. The segment
length in the segment-based evaluation is one second, which
is a common setup in sound event detection studies, such as
DCASE 2017 task 3.

The aim of active learning is to optimize the accuracy of
learned SED models with a limited labeling budget. Thus, the
active learning performance is evaluated by ER as a function
of the labeling budget, which is given in proportion to the
whole training set.

C. Basic experimental setups

Experiments are made to evaluate each component in the
proposed active learning system. This section describes com-
mon setups used through all the experiments in the evaluation.

When computing the spectrogram, the frame length is
40 ms and hop length is 20 ms. In each frame, the signal
is windowed with the Hanning window and then log-mel
energies in 128 bands are calculated. The gated CNN pre-
trained with AudioSet maps a log-mel spectrogram into an
embedding sequence with the same number of frames and
256 dimensions.

The likelihood of change is estimated for each frame based
on the past 24 frames and the future 24 frames, aggregating
to an analysis window of one second. Detected change points
can be closer than one second, for example, the second and
third change point in Fig 2. However, annotating very short
segments can be difficult in practice. The actual annotation
effort is underestimated, when the annotator needs to listen

to the extra context of a candidate segment for annotation. In
order to avoid very short segments, the change points detected
within one second to the previous ones are skipped when
generating the candidate segments. As a result, the minimum
length of the generated segments is one second.

In the simulation of the labeling process, the ground truth
labels are initially hidden to the system. Upon the label query
on a segment, annotated labels are simulated according to
the ground truth. When a ground-truth sound event overlaps
a queried candidate segment with more than 0.1 seconds, a
weak label is generated, associating the event class with the
segment. It is presumed that an event shorter than 0.1 seconds
cannot be perceived by an annotator.

A SED model is trained with simulated annotations
and the performance is benchmarked when the number
of simulated labels reaches an evaluated labeling
budget. In this study, the following proportions of
the training data as labeling budget are evaluated:
1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 100%.
During the training of a SED model in each iteration, one-
third of the labeled data is randomly chosen for validation.

The experiments on the TUT Rare Sound dataset are re-
peated five times, and the average performance is reported.
The 4-fold validation experiments on the TAU Spatial sound
dataset are repeated twice, and the average of the eight results
is reported.

In all the experiments with reported results, the same
network architecture is used. A preliminary study was made
to investigate the effect of the model complexity with low
labeling budget: we tested using a single GRU layer instead
of three when only 1% of the training data was labeled. As a
result, the performances are similar among the tested models
with different number of layers.

D. Experiments

In order to evaluate each component in the proposed active
learning system, four experiments have been made, as is
summarized in Table II.

The proposed system uses variable-length segments as can-
didate segments for annotation. In order to preserve the context
for the annotated segments, the original recordings are used
as training inputs, regarded as partially labeled sequences.
Experiment A evaluates the effect of preserving the context.
Experiment A1 investigates the training input. System 1 uses
full recordings as training inputs as is proposed, whereas
System 2 uses only annotated segments as training inputs.
Experiment A2 investigates the annotation unit. System 3 uses
variable-length segments as an annotation unit as is proposed,
whereas System 4 uses a full recording as an annotation
unit. Strong labels are used in experiment A2 since weak
labels are not informative for full recordings in the TAU
Spatial Sound dataset, where most recordings include all the
11 sound event classes. During the model training with strong
labels, the attention layer is not used and the training loss
is directly computed as the binary cross-entropy between
the target and the class probability output on a frame basis.
Random sampling is used in all the systems in Experiment A.
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System Annotation unit Label type Sample selection method Training input

Experiment A1 1 variable-length segment weak label random sampling recordings
2 variable-length segment weak label random sampling segments

Experiment A2 3 variable-length segment strong label random sampling recordings
4 recording strong label random sampling recordings

Experiment B
1 variable-length segment weak label random sampling recordings
5 variable-length segment weak label mismatch-first farthest-traversal recordings
6 variable-length segment weak label uncertainty sampling recordings

Experiment C 5 variable-length segment weak label mismatch-first farthest-traversal recordings
7 fixed-length segment weak label mismatch-first farthest-traversal recordings

TABLE II: A summary of experiments. Bold font is used to highlight the investigated aspect in each experiment.

Experiment B focuses on the sample selection method. It
compares mismatch-first farthest-traversal, with two reference
methods based on random sampling and uncertainty sampling.
Random sampling is used in System 1, which is also used
in Experiment A1. System 5 uses mismatch-first farthest-
traversal, and System 6 uses uncertainty sampling. In random
sampling, each candidate segment has an equal probability
of being selected. In uncertainty sampling, the certainty of
predicting a class c is measured as 2 × |oc − 0.5|, where oc
is the weak label output or segment-wise class probability.
The overall prediction certainty on a sample is defined as
the minimum prediction certainty over all the classes. Since
uncertainty sampling and mismatch-first farthest-traversal are
batch mode active learning, the performance depends on the
size of a selection batch. Typically a smaller batch size leads
to better accuracy, but it requires more training time. In this
experiment, the selection batch size is set to 0.5% of the whole
trained set, which is about 150 segments in the TUT Rare
Sound dataset and 60 segments in the TAU Spatial Sound
dataset. The batch size is chosen for convenience, since the
performance of the learned SED model is reported after every
two selection batches, according to the evaluated labeling
budget.

Experiment C focuses on the proposed segmentation method
based on change point detection. System 5 is a combination
of all proposed components in this study. In comparison to
System 5, System 7 uses segments with a fixed-length of two
seconds. The total number of fixed-length segments is similar
to the total number of variable-length segments generated
using change point detection.

E. Experimental results

The results of experiment A1, illustrated in Figure 6, show
that preserving original recordings as the context clearly
outperforms training with only annotated segments. In some
cases, more than 60% of the labeling budget can be saved
to achieve the same accuracy. A sound event is sometimes
detected not only based on the audio signal where the event
happens but also the difference compared to the background
sounds in the temporal context, preserved in the original
recordings. The results of experiment A2, illustrated in Fig-
ure 7, show that annotating segments is more efficient com-
pared to annotating full recordings. The segments randomly
sampled from all the recordings have typically higher diversity,
in comparison to a small amount of fully annotated recordings.
In addition, by comparing the results of System 1 and System

3, close performance is achieved by using attention pooling
with weak labels, compared to using strong labels.

The experimental results comparing the sampling methods
are illustrated in Figure 8. The results show that the proposed
method outperforms reference methods with all evaluated
labeling budgets.

In the experiments on the TUT Rare Sound dataset, the
proposed method outperforms reference methods to a large
extent. Most of the training data have little relevance to the
target problem since the target sound events are rare in this
dataset. Therefore, the annotation effort can be greatly reduced
by selective sampling, if irrelevant data can be ruled out in
the sample selection. In addition, uncertainty sampling also
outperforms random sampling to a large extent.

Remarkably, the proposed active learning method requires
only 2% of the training data to be annotated to achieve similar
performance, compared to annotating all the data. Surprisingly,
the best performance is achieved by annotating only 5% of the
training set. The sound events are rare in the dataset, and most
of the segments containing target events are selected within
the first 5% of the training set. By the time when 5% of
the training data is labeled in a typical case, the segments
containing a target event comprise 35% of the labeled data,
whereas, only 1.25% of the unlabeled data contains a target
event. Although more labeled data is available when labeling
budget increases, the high label distribution bias has a negative
effect on the accuracy of learned models. As a result, the
accuracy does not improve with increasing labeling budget.

In the experiments on the TAU Spatial Sound dataset,
The proposed method slightly outperforms the two reference
methods. In the TAU Spatial Sound dataset, target sound events
are dense. In principle, little improvement can be made with
selective sampling, when majority of the dataset are relevant
to the target SED problem. In this case, the proposed method
cannot save much annotation effort.

Combining the effect of sample selection and training with
original recordings as context, a clear improvement in perfor-
mance can be made with the proposed system. This can be
evaluated by comparing System 5 with System 2. To achieve
ER of 0.55 in the TUT Rare Sound dataset, System 2 requires
20% of the training set as a labeling budget. In comparison,
the proposed method, System 5 requires annotating only 1%
of the training set. To achieve ER of 0.5 in the TAU Spatial
Sound dataset, System 2 requires 6% of the training set as
labeling budget. In comparison, System 5 requires annotating
only 4% of the training set.

The experimental results comparing the two segmentation
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Fig. 6: Error rate of learned models as the function of labeling budget for methods that use different training inputs,
corresponding to experiment A1.
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Fig. 7: Error rate of learned models as the function of labeling budget for methods that use different annotation units,
corresponding to experiment A2.

methods are illustrated in Figure 9, when mismatch-first
farthest-traversal is used. The experiments show that variable-
length segments lead to better performance. Mismatch-first
farthest-traversal largely depends on the similarity analysis.
Since fixed-length segments often contain part of events, the
similarities between fixed-length segments are less relevant
to their labels, compared to the similarities between variable-
length segments, which is targeted to contain complete events.

V. CONCLUSION

In this study, we propose an active learning system for sound
event detection (SED), which targets on optimizing the accu-
racy of a learned SED model with limited annotation effort.
The proposed system analyzes an initially unlabeled audio
dataset, querying for weak labels on selected sound segments
from the dataset. A change point detection method is used
to generate variable-length audio segments. The segments are
selected and presented to an annotator, based on the principle
of mismatch-first farthest-traversal. During the training, full

recordings are used as input to preserve the long-term context
for annotated segments.

Experimental results show that training with original record-
ings as a context for annotated segments clearly outperforms
training with only annotated segments. Mismatch-first farthest-
traversal clearly outperforms reference sampling methods
based on random sampling and uncertainty sampling. The per-
formance of mismatch-first farthest-traversal depends on the
segmentation method that generates the candidate segments.
Variable-length segments generated by change point detection
lead to clearly better performance than fixed-length segments.

Overall, the proposed method effectively saves annotation
effort to achieve the same accuracy, with respect to reference
methods. The amount of annotation effort can be saved de-
pends on the distribution of target sound events in the training
dataset: a larger amount of annotation effort can be saved
when the target sound events are rare. On the dataset with
rare events, more than 90% of labeling budget can be saved
by using the proposed system, with respect to a system that
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Fig. 8: Error rate of learned models as the function of labeling budget for different sampling methods, corresponding to
experiment B.
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Fig. 9: Error rate of learned models as the function of labeling budget for different segmentation methods, corresponding to
experiment C.

uses random sampling and annotated segments only for model
learning. Notably, by annotating 2% of the training data, the
proposed method achieves the same accuracy as training with
all the data.

In future work, the optimal combination of active learning
and semi-supervised learning methods can be studied for
SED. Recent semi-supervised learning studies, particularly
those based on the mean-teacher method [32], have been
shown effective for SED problems in DCASE 2019 task 4
[33]. We expect that more annotation effort can be saved, by
incorporating semi-supervised learning to further utilize the
unlabeld part of the dataset.
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