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Meta-analyses identify DNA methylation
associated with kidney function and damage

Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-

creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic

kidney disease. To extend the knowledge on regulatory mechanisms related to kidney

function and disease, we conducted a blood-based epigenome-wide association study for

estimated glomerular filtration rate (n= 33,605) and urinary albumin-to-creatinine ratio

(n= 15,068) and detected 69 and seven CpG sites where DNA methylation was associated

with the respective trait. The majority of these findings showed directionally consistent

associations with the respective clinical outcomes chronic kidney disease and moderately

increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs

at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1

and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways

related to hemostasis and blood cell migration for estimated glomerular filtration rate, and

immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.
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Chronic kidney disease (CKD) is a major public health
burden. It affects more than 10% of adults worldwide and
more than 40% of persons aged 70 years and older1,2.

CKD is a leading cause of death worldwide3, and is a major
contributor to cardiovascular morbidity and mortality2,4,5. CKD
is defined as the sustained presence of abnormalities of kidney
structure or function. The kidney function measures most com-
monly used are the glomerular filtration rate, usually estimated
from serum creatinine concentrations (eGFR), and the urinary
albumin-to-creatinine ratio (UACR)6.

Elevated UACR is a measure of kidney damage, used to diag-
nose and stage CKD7, and is associated with diabetic and
hypertensive kidney disease8. Even moderately elevated UACR is
a risk factor for cardiovascular diseases, independently of other
kidney function markers such as eGFR9.

Familial aggregation studies of CKD and eGFR revealed a
substantial heritable component of up to 54%9–11. Only a small
part of this heritability is attributed to classical monogenic dis-
eases. Rather, CKD susceptibility is influenced by DNA sequence
variants in many genes, environmental factors, and their inter-
actions. Genome-wide association studies (GWAS) have suc-
cessfully identified common variants at >400 genetic loci that are
associated with kidney function10,12,13. The index variants at
known eGFR-associated loci explain an estimated 8.9% of eGFR
variance12.

A recent GWAS meta-analysis of eGFR integrated open
chromatin regions with small sets of single nucleotide poly-
morphisms (SNPs)10. The results from this study support the
importance of altered transcriptional regulation as a mechanism
contributing to CKD. To investigate DNA methylation, with
respect to kidney function, epigenome-wide association studies
(EWAS) of eGFR and CKD have been carried out. As a key
regulator of transcription that can be assessed in a cost-efficient
and high-throughput manner, DNA methylation has been stu-
died at CpG sites (CpGs) with single-base resolution. We pre-
viously conducted an EWAS including 4859 adults from two
population-based studies and identified 18 validated, differentially
methylated sites in whole blood associated with eGFR14.
Although this study revealed insights into gene regulatory
mechanisms of kidney function, the associated CpGs explained
only 1.2% of the eGFR variance. Other previous studies were
focused on CKD patients and/or patients with diabetes or patients
with Human Immunodeficiency Virus infection, or were limited
by small sample size, lack of replication, missing adjustment for
potential confounders, or a combination thereof14–19. Other

studies focused on DNA methylation patterns of diabetic kidney
disease (DKD) patients20–22.

Here, we conducted an EWAS of kidney function traits to
identify additional CpGs related to gene regulatory mechanisms
of potential importance to CKD. We extended the former EWAS
for eGFR and CKD by substantially increasing the sample size to
33,605 individuals. Moreover, we included UACR and moderately
increased albuminuria (microalbuminuria) as additional traits.
The EWAS were conducted in predominantly population-based
studies adjusting for sex, age, diabetes, hypertension, body mass
index (BMI), smoking status, and the most abundant white blood
cell proportions. We replicated our EWAS results in separate
samples, related the CpG sites to gene expression levels in dif-
ferent tissues, applied the findings to clinical outcomes, and
assessed causality between DNA methylation and kidney function
(Supplementary Fig. 1).

Results
Study sample characteristics. In this investigation, 36 studies
with a total of 33,605 participants contributed to EWAS of eGFR
and 15,068 to EWAS of UACR. Their pooled characteristics are
shown in Table 1, and the individual study descriptions are
provided in Supplementary Data 1 and 2.

EWAS of eGFR and UACR. We investigated the association of
kidney traits with DNA methylation in blood at up to 441,870
CpGs, the overlap of CpGs covered by the Illumina Methylatio-
nEPIC BeadChip and the Illumina HumanMethylation450
BeadChip array, which were used for measurement by all but one
study (Supplementary Data 3). All studies performed array data
cleaning and applied centrally developed scripts for the pre-
paration of the kidney trait values, which were subsequently
related to DNA methylation using covariate-adjusted linear
regression models with methylation β-values as the dependent
variable following pre-specified study protocols (see Methods).
We observed no or little inflation in study-specific EWAS (eGFR
mean inflation= 1.00, UACR mean inflation= 1.00, Supple-
mentary Data 1 and 2).

In a multivariable-adjusted trans-ethnic EWAS, 69 CpGs were
significantly associated with eGFR and replicated (Fig. 1A,
Supplementary Data 4, see Methods), including previously
reported ones14. The replicated sites showed a clear pattern of
lower methylation (60 CpGs, pbinom= 2.2E−10; Fig. 1A).

Table 1 Pooled characteristics of the discovery and replication samples.

EWAS Trait eGFR UACR

EWAS stage Discovery Replication Discovery Replication

Ancestries included AA, EA, HIS, SA, SSA AA, EA AA, EA, HIS, SSA AA, EA, AI
Sample sizea 22,318 11,359 11,579 3611
Age, mean (SD) 56.8 (12.5) 56.0 (15.7) 59.2 (12.2) 58.0 (10.6)
Male, % (n) 48.6 (10855) 44.6 (5071) 47.3 (5472) 42.9 (1550)
Diabetes, % (n) 12.6 (2813) 8.3 (948) 12.9 (1492) 32.5 (1175)
Hypertension, % (n) 44.3 (9888) 48.2 (5480) 49.5 (5729) 49.0 (1770)
BMI (kg/m2), mean (SD) 27.8 (5.2) 27.6 (5.7) 28.2 (5.3) 30.3 (6.3)
Current smoking, % (n) 14.5 (3236) 16.1 (1832) 13.3 (1538) 28.6 (1032)
eGFR, mean (SD), mL/min/1.73m2 87.4 (19.4) 91.2 (20.3) 86.4 (19.5) 93.9 (19.1)
UACR, median (1st, 3rd quartile), mg/g NA NA 6.5 (4.0, 12.3) 7.7 (3.8, 20.3)
CKD, % (n) 7.8 (1741) 7.4 (842) NA NA
microalbuminuria, % (n) NA NA 10.4 (1207) 18.4 (666)

AA African American ancestry, AI American Indian ancestry, EA European ancestry, HIS Hispanics, SA South Asian ancestry, SSA Sub-Saharan African ancestry, NA not assessed, EWAS epigenome-wide
association study, SD standard deviation, eGFR estimated glomerular filtration rate, UACR urinary albumin-to-creatinine ratio, CKD chronic kidney disease.
aThe maximum sample size of the EWAS is lower due to missing methylation values for individual CpG sites.
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In the meta-analysis, the lowest P-values were observed for
known eGFR associations including cg17944885 (ZNF788,
β=−1.75E−04, P-value= 8.7E−41), cg23597162 (JAZF1,
β=−1.48E−04, P-value= 3.2E−24), and cg06158227
(ZSCAN29, β=−1.08E−04, P-value= 8.7E−20)14, followed by
a new finding at cg20777437 (CDCP2, β=−8.28E−05, P-
value= 1.1E−17). The 69 replicated eGFR-associated CpGs alone
explained 15.7% of the eGFR variation in a separate study sample
of 1888 participants (see Methods). When adding all covariates
(sex, age, diabetes, hypertension, BMI, smoking, and white blood
cell proportions) to the association model, the total proportion of
explained variance in eGFR increased to 36.3%, with 2.4%
variation attributed to the 69 CpGs independently of the other
covariates.

In the trans-ethnic analysis of UACR, seven CpGs were
significantly associated and replicated (Fig. 1B, Supplementary
Data 5, see Methods). Of the findings, cg18181703 (SOCS3,
β=−2.58E−03, P-value= 2.6E−13) and cg02711608 (SLC1A5,
β=−1.63E−03, P-value= 9.9E−13) had the smallest meta-
analysis association P-values. At six of the seven CpGs, lower
methylation was associated with higher UACR. Due to the
number of replicated sites, the power of the binomial test was
limited (6 CpGs, pbinom= 0.13; Fig. 1B). The replicated CpGs
explained 3.9% and the full model 14.6% of variation in UACR

levels, with 0.07% attributed to the CpGs independently of the
other covariates.

There was a low overlap between the replicated EWAS and
previously reported GWAS loci for both eGFR (noverlap= 10 out
of 69; Supplementary Data 4) and UACR (noverlap= 1 out of 7;
Supplementary Data 5).

There was no overlap of replicated CpGs between eGFR and
UACR, indicating trait-specific DNA methylation profiles in
blood. Even among the 967 and 270 suggestive associations (P-
value < 1E−05) of a combined discovery and replication sample
meta-analysis for eGFR and UACR, respectively, only 10 sites
overlapped between both traits. The detailed results from these
meta-analyses for all suggestive associations are provided in
Supplementary Data 6 (eGFR) and 7 (UACR).

Ancestry heterogeneity and robustness of the findings. To
assess whether the association results on eGFR and UACR might
be driven by a specific ancestry, we performed ancestry-stratified
EWAS meta-analysis of European ancestry (EA) and African
American ancestry (AA) samples with results from multiple
studies contributing to these two ethnicities. Comparison of the
association results of the replicated CpGs in samples of EA
(neGFR= 23,671; nUACR= 9806) with the AA samples (neGFR=

Fig. 1 EWAS results of eGFR and UACR. Chicago plots of the epigenome-wide association study (EWAS) results for estimated glomerular filtration rate
(eGFR) (A) and urinary albumin-to-creatinine ratio (UACR) (B) using the combined discovery and replication sample. The sites are ordered by their
chromosomal position on the x-axis, with their –log10 P-value of the association Wald-test provided on the y-axis. CpGs positively correlated with the trait are
plotted in the upper part, sites with negative correlation in the lower part. The dotted horizontal lines represent the level of significance (P-value < 1.1E−7).
Novel replicates sites are colored in orange, known replicated sites are colored in turquois, and sites that were additionally associated with the respective
binary trait (chronic kidney disease [CKD]/ microalbuminuria [MA]) are marked with a cross.
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5019; nUACR= 1921) showed similar effect sizes (reGFR= 0.87,
rUACR= 0.74). The effect directions of almost all replicated CpGs
were concordant between the ancestries (Fig. 2, Supplementary
Data 4 and 5). The only exception was the UACR association
cg22304262 in SLC1A5 which, however, was not significant in AA
(P-value= 0.39, Supplementary Fig. 2). This association, as well
as the CpGs at JAZF1 and RPS10P7 for eGFR, showed significant
heterogeneity (eGFR: P-value < 0.05/69, UACR: P-value < 0.05/7)
between EA and AA association results (Fig. 2, Supplementary
Data 4 and 5).

The presence of common SNPs (minor allele frequency >0.05)
in or within 50 bp of the 69 replicated CpGs was assessed to
evaluate whether the presence of SNPs could affect probe binding.
Four probes were located near a common SNP (Supplementary
Data 4; cg10960375-rs113564504; cg11544657-rs2083577;
cg01817897-rs142643977; cg06930757-rs112223111), which, how-
ever, were not associated with any GWAS trait according to the
PhenoScanner V2 resource (accessed 02/12/2021, pGWAS < 5E−8,
including proxy SNPs with EUR r² > 0.8)23. This indicates that the
EWAS results are unlikely to be confounded by a common trait
known to relate to kidney function by nearby DNA sequence
variation. Probe-internal SNPs which were more than five bases
from the 3′-end of the probe were generally found to be of
negligible consequence24.

Relation to CKD and microalbuminuria. Of the 69 CpGs
associated with eGFR, 53 were also associated with prevalent
CKD in a meta-analysis of 25,609 individuals including 2376
cases with a consistent effect direction (P-value < 0.05/69; Sup-
plementary Data 4, Supplementary Fig. 3A). The correlation
between eGFR and CKD effects was high (r=−0.93; Fig. 3A). In
an independent cohort of 551 CKD patients, 65 CpGs were
directionally consistent with the eGFR meta-analysis and five
replicated (P-value < 0.05/69, r= 0.77; Supplementary Fig. 4,
Supplementary Data 4, see Methods). In the same cohort, eGFR-
associated CpGs cg18194850 (P-value= 1.6E−5) and cg07242931
(P-value= 2.3E−5) were also associated with time to kidney

failure or acute kidney injury (Supplementary Data 8, see
Methods).

All seven CpGs associated with UACR were also significantly
associated with microalbuminuria in a sample of 7279 individuals
including 1186 cases with the same direction of effect as for
UACR (P-value < 0.05/7, r= 0.98; Fig. 3B, Supplementary Data 5,
Supplementary Fig. 3B).

Correlation with gene expression. To obtain insights into possible
functional mechanisms of the eGFR- and UACR-associated CpGs,
we tested the correlation of their DNA methylation levels with
mRNA levels of genes encoded in cis in whole blood as well as in
blood monocytes (see Methods, Supplementary Data 9). The known
eGFR-associated cg17944885 on chromosome 19 near ZNF788 was
associated with the transcript encoded by the 240 kb distant zinc
finger protein 439 (ZNF439, Table 2). In addition, methylation of
cg04864179 at the interferon regulatory factor 5 (IRF5) was asso-
ciated with both mRNA transcripts encoded by IRF5 and the nearby
transportin 3 (TNPO3) (Supplementary Fig. 5A).

Of the UACR associations, the two replicated CpGs cg02711608
and cg22304262 at solute carrier family 1 member 5 (SLC1A5)
revealed significant associations with SLC1A5 mRNA levels, and
cg23570810 at the interferon induced transmembrane protein 1
(IFITM1) with its transcripts in cis (Table 2). All results of the
gene expression analysis are provided in Supplementary Data 9.

Effects in kidney tissue. To assess whether the observed
methylation effects in blood translate to kidney tissue, we applied
a regression model to test the associations of the replicated CpGs
for significant (false discovery rate (FDR) < 0.05) and direction-
consistent association with eGFR and kidney fibrosis, respectively,
in 506 microdissected kidney tissue samples.

In these samples, kidney-tissue-based DNA methylation of
replicated eGFR-associated CpGs cg23597162 at JAZF1,
cg26099045 near PELI1, and cg12644285 at CHD2 were
significantly associated with eGFR with the same effect direction
as in blood (Supplementary Fig. 6A, Table 2, Supplementary
Data 10). Furthermore, the same CpG at PELI1 and six additional

Fig. 2 Similar effects between EA and AA-specific analyses. Comparison of effect estimates of the association Wald-test of the significantly associated
CpG sites (CpGs) for estimated glomerular filtration rate (eGFR) (A) and urinary albumin-to-creatinine ratio (UACR) (B). The effects in the European
ancestry (EA) meta-analysis epigenome-wide association study (x-axis) (neGFR= 23,671; nUACR= 9806) are compared with the corresponding effect sizes
of the African American ancestry (AA) subsample (y-axis) (neGFR= 5019; nUACR= 1921). In panel (A), sites that showed a significant P-value of the two-
sided t-test for ancestry heterogeneity (P-value < 0.05/69) are colored in blue and labeled with the closest gene name. In all panels, the dashed gray line
represents the linear regression slope between the dots, the solid gray line shows the diagonal, error bars indicate 95% CIs, and the Pearson correlation
coefficient r between the effect estimates is shown.
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sites (cg20146909 at LRRC8D, cg25767870 near FAM46C,
cg16618493 at ZBTB7B, cg10632966 near RPEL1, cg01068906 at
NOD2, and cg03297731 at GDPD3) were associated with fibrosis
in the kidney tissue samples with consistent (i.e., inverse) effect
directions (Supplementary Fig. 6B, Table 2).

Of the replicated UACR sites, the DNA methylation levels in
kidney tissue of cg00008629 at PTBP3 and cg24859433 near IER3
were associated with fibrosis and showed the same direction of
effect (Supplementary Fig. 6D, Table 2). Consistent with the
EWAS findings, no significant association of the UACR-
associated CpGs with eGFR in the kidney sample donors was
found (Supplementary Fig. 6C, Supplementary Data 10).

Causal effects between DNA methylation and kidney function
traits. To assess whether the kidney function traits causally affect
DNA methylation or vice versa, we conducted a bi-directional
two-sample Mendelian randomization (MR) analysis of the sig-
nificantly associated CpGs. The forward direction MR analysis
suggested that the CpGs cg02304370 (PHRF1), cg04460609
(LDB2), cg00501876 (CSRNP1), and cg04864179 (IRF5) causally
influence eGFR levels (Table 3). The heritability estimates of these
four CpGs varied among the three datasets from populations of
European ancestry, but were consistently higher than the mean
heritability across all CpGs assessed in each of the three studies:
0.34 (causal eGFR CpGs) vs. 0.16 (HM450K array) based on
Hannon et al.25, 0.55 vs. 0.19 for Dongen et al.26, and 0.51 vs. 0.19
for McRae et al.27. No significant causal associations were iden-
tified for any UACR-associated CpGs.

For the reverse MR, the only significant effect was that of eGFR
on cg23597162 (JAZF1) when using the primary inverse-variance
method. However, no significant effects were identified/observed
in the multiple reverse MR sensitivity analyses. Leave-one-out
analyses did not show any indication that MR results might be
driven by a single SNP. Furthermore, excluding SNPs that were
associated with type 2 diabetes mellitus being a major risk factor
for kidney disease did not result in different findings.

Results for all primary and sensitivity MR analyses are shown
in Supplementary Data 11 and 12 and Supplementary Fig. 7. The

sensitivity analyses support the primary findings of the significant
forward MR results (FDR < 0.05, see Methods) with direction-
consistent effect estimates, indicating potentially causal relation-
ships from DNA methylation to eGFR but not vice versa.

Transcription factor binding, histone mark and pathway
enrichment analyses. We performed transcription factor binding
site, histone mark and pathway enrichment analyses based on the
967 CpGs that showed suggestive association with eGFR (P-
value < 1E−05; Supplementary Data 6) and the 270 CpGs that
showed suggestive associations with UACR (P-value < 1E−5;
Supplementary Data 7) in the meta-analysis to maximize statis-
tical power of enrichment analyses (see Methods) 14.

First, we evaluated whether eGFR-associated CpGs preferentially
mapped to binding sites of 169 transcription factors (TFs) based on
chromatin immunoprecipitation DNA-sequencing (ChIP-seq) data
from the ENCODE project that was aggregated by a consensus calls
across 91 human cell types (161 TF tracks) and supplemented with
eight kidney tissue-based tracks (see Methods). After multiple
testing correction for 169 TFs, eight TFs showed significant
enrichment for eGFR-associated CpGs (FDR < 0.05; Fig. 4A,
Supplementary Data 13), including CEBPB (P-value= 1.75E−06,
cross-tissue track) and EP300 (P-value= 7.49E−09, cross-tissue
track). This is consistent with the finding from Chu et al.14 in a
smaller subset of 4859 participants of the 33,605 participants
analyzed here. UACR-associated CpGs were enriched in binding
sites of 56 TFs (Fig. 4B, Supplementary Data 14) with the strongest
association for POLR2A (P-value= 6.93E−19), FOS (P-value=
1.28E−12) and EP300 (P-value= 1.20E−10).
Kidney-function-associated CpGs were broadly enriched for

several histone marks, with 82 of 195 histone mark cell type
combinations significant (FDR q < 0.05) for eGFR (Fig. 4C, Supple-
mentary Data 15) and 79 of 195 for UACR (Fig. 4D, Supplementary
Data 16). The histone modification H3K4me1, a mark concentrated
at active and primed enhancers, was enriched for all cell types for
UACR-associated CpGs, and almost all cell types for eGFR-
associated CpGs. Whereas UACR-associated CpGs showed enrich-
ment for the promoter mark H3K4me3 in 34 cell types, only four cell

Fig. 3 Effects of eGFR-associated sites on CKD and of UACR-associated sites on Microalbuminuria. Comparison of effect estimates of the association
Wald-test of the significantly associated CpG sites for estimated glomerular filtration rate (eGFR) (n= 33,605) (A) and urinary albumin-to-creatinine ratio
(UACR) (n= 15,068) (B). The effects in the combined epigenome-wide association study (x-axis) are compared with the corresponding effect sizes (odds
ratio) for chronic kidney disease (CKD) (n= 25,609) and microalbuminuria (n= 7279), respectively (y-axis). In panel (A), sites that were not nominally
significantly associated with CKD (association test P-value≥0.05) are colored in blue and labeled with the closest gene name. In all panels, the dashed line
represents the linear regression slope between the dots, error bars indicate 95% CIs, and the Pearson correlation coefficient r between the effect estimates
is shown.
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types showed enrichment for eGFR-associated sites. Conversely, the
gene body-associated mark H3K36me3 showed a much broader
enrichment for eGFR-associated CpGs (30 cell types) than UACR-
associated CpGs (five cell types).

As opposed to H3K3me1/3 and H3K36me3, which have all
been linked to active genes (enhancers, active promotors, active
transcription), H3K9me3 and H3K27me3, which are generally
associated with constitutive and facultative heterochromatin28–31,
were not significantly enriched for UACR-associated CpGs in any
cell type tested (Fig. 4D, Supplementary Data 16).

Enrichment of genes implicated by kidney-function-associated
CpGs was assessed in the Gene Ontology (GO), the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome
databases (see Methods)32–35. Significant enrichment was
observed for 27 terms (25 GO, one KEGG, one Reactome;
Supplementary Data 17, Fig. 5A) for eGFR, and 91 terms (87 GO,
four Reactome; Supplementary Data 18, Fig. 5B) for UACR
(Fig. 5B). Pathways related to white blood cell type specific
migration, mRNA translation, hemostasis and coagulation, as
well as insulin response showed significant enrichment for eGFR-
associated CpGs (FDR < 0.05; Fig. 5A). The pathways with the
lowest enrichment P-values for UACR-associated sites were
dominated by immune cell activation and response, and
interferon-related pathways (Fig. 5B). Additional pathways that
were enriched included white blood cell migration, as for the
eGFR results (Supplementary Data 18).

Relation to known EWAS associations with other traits. Given
the observed enrichment of immune response-related pathways,
the DNA methylation results including CpGs near genes of the
interferon pathway, and the fact that the DNA methylation status
was predominantly assessed in leukocytes, we assessed whether
our findings may be driven by confounding effects of immune
response or inflammation status. Thus, we performed a lookup of
the replicated CpGs in a large EWAS on high-sensitive serum
C-reactive protein (CRP) levels36. Only two CpGs, which were
also associated with DNA methylation and eGFR in kidney tissue,
cg09610644 at BDH1 and cg12644285 at CHD2, were among the
CRP-associated sites. Thus, a general confounding of our results
through inflammatory status as estimated by CRP seems unlikely.

Some of the kidney-function-associated CpGs identified in this
study are associated with several other traits based on published
EWAS. Twenty-one eGFR sites were associated with blood
pressure, alcohol consumption, BMI, sex, soluble tumor necrosis
factor receptor 2, and/or smoking status, and five UACR sites
were previously associated with alcohol consumption, smoking
status, BMI, educational attainment, γ-glutamyl transferase,
soluble tumor necrosis factor receptor 2, type 2 diabetes mellitus,
and/or several serum metabolites (Table 2, Supplementary
Data 19). Three of these CpGs (all UACR sites) were associated
with more than two traits, namely cg02711608 in SLC1A5 (with
γ-glutamyl transferase, γ-glutamylthreonine, BMI, alcohol con-
sumption), cg18181703 in SOCS3 (with type 2 diabetes mellitus,

smoking status, BMI, soluble tumor necrosis factor receptor 2),
and cg24859433 near IER3 (with smoking status, educational
attainment, 4-vinylphenol_sulfate).

Supplementary Fig. 5B exemplifies a CpG, cg26099045, that
was correlated with eGFR and fibrosis in kidney tissue in our
analysis, and additionally associated with sex and smoking in
previous EWAS. Finally, cg17944885 at ZNF788 was associated
also with eGFR in a sample of DKD patients22.

Discussion
In this EWAS of kidney function, we identified and replicated
blood DNA methylation levels of 69 CpGs associated with eGFR.
Of these, 60 sites were previously not reported, as were all seven
CpGs identified in association with UACR. The majority of the
eGFR- and UACR-associated CpGs were also significantly asso-
ciated with their clinical outcomes, i.e., CKD and micro-
albuminuria, and may therefore have potential for stratification of
individuals at risk.

The variance of eGFR attributed to these 69 CpGs was 2.4%—
twice that of an earlier EWAS14, and is comparable to the var-
iance explained by 29 SNPs discovered by GWAS that included
three times higher sample size for locus discovery37,38. This
suggests that differential DNA methylation at individual CpGs
quantified from blood explains more of the eGFR variance than
individual common SNPs at a given sample size. For UACR, it
seems that larger sample sizes compared to eGFR are required to
reveal a similar number of trait-associated CpGs. Given that
albumin and creatinine for UACR calculation are measured in
urine as opposed to the quantification of creatinine from serum
for the estimation of GFR, this difference is not unexpected, and it
is in line with observations from GWAS of these traits10,13.
Furthermore, genetic variation seems to affect the kidney function
traits via different pathways than changes in DNA methylation.
This is supported by the low overlap between the replicated
EWAS and GWAS sites for both eGFR and UACR.

This EWAS meta-analysis included samples of different
populations and ethnicities. We observed a high correlation of the
effect estimates obtained from the large subsample of EA indi-
viduals with the effects estimated in the AA individuals (Fig. 2).
Despite the inclusion of data from a substantial number of
individuals of non-EA ancestry, the overall results of the trans-
ethnic EWAS might be driven by data from individuals of EA
ancestry, which represented 70% (eGFR) / 65% (UACR) of our
study (Supplementary Data 3 and 4). To address this limitation,
future analyses with an increased proportion of non-EA samples
are needed for a reliable and detailed assessment of between-
ancestry heterogeneity.

The potential to translate insights from EWAS of quantitative
traits in mostly population-based studies to persons with disease
is illustrated by the fact that effect estimates at 65 of 69 eGFR-
associated CpGs were observed in the same direction in a cohort
of 551 CKD patients, pointing towards mechanisms applicable
across a broad range of eGFR levels (Fig. 3). Moreover,

Table 3 CpG sites having a potentially causal effect on eGFR as assessed by Mendelian randomization.

probeID N instruments Effect size Standard error P-value (Wald-
test)

FDR Nearest gene

cg02304370 6 4.22E−03 1.09E−03 1.11E−04 0.004 PHRF1
cg04460609 7 2.61E−03 7.63E−04 6.25E−04 0.015 LDB2
cg00501876 3 9.92E−03 3.00E−03 9.45E−04 0.019 CSRNP1
cg04864179 21 3.13E−03 9.62E−04 1.12E−03 0.020 IRF5

Results of the inverse-variance weighted Mendelian randomization of the DNA methylation on estimated glomerular filtration rate (eGFR) levels. The effect estimates provide the per-unit change in one
standard deviation of DNA methylation levels on natural log-transformed eGFR. FDR: false discovery rate.
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Fig. 4 Enrichment in transcription factor binding sites and histone marks. Enrichment analysis of CpG sites (CpGs) significantly associated with
estimated glomerular filtration rate (eGFR) (A) and urinary albumin-to-creatinine ratio (UACR) (B) for mapping into regions containing specific
transcription factor binding sites at Benjamini-Hochberg FDR < 0.05. Panels (C) and (D) show the corresponding results for mapping into histone marks. In
these panels, the Y-axis show the −log10(P-value) from a binomial test comparing the expected and observed numbers of significant CpGs that map into
the binding site regions for a given target. On the X-axis, the results with an FDR < 0.05 of 169 evaluated transcription factors are listed in alphabetical
order. Enrichment testing was carried out using permutation with matching for genomic localization when sampling from the background.
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cg07242931 in MAN1C1 and cg18194850 in SUCLG2 were not
only associated with eGFR, but predicted time to kidney failure or
acute kidney injury (Supplementary Data 8). Further evidence for
an involvement of SUCLG2, which encodes the β-subunit of
succinyl-CoA synthetase, in kidney disease was suggested by a
GWAS on diabetic kidney disease in American Indians (SNP=
rs4453858, P-value= 2E−6)39. The genetic variation in this gene
was also associated with urinary levels of succinyl-carnitine
(C4DC, SNP= rs115560420, P-value= 7E−15)40. C4DC is a
metabolic product from the tricarboxylic acid cycle, which is
catalyzed under involvement of succinyl-CoA synthetase, and
higher C4DC levels in blood associate with a lower eGFR41.
However, a lookup in the methylation quantitative trait loci
(meQTL) results of GoDMC (http://www.godmc.org.uk)42 did
not reveal a significant association of these two SNPs with
cg18194850, suggesting no direct link between these SNPs and
the CpG site.

As DNA methylation is a major regulator of gene expression,
we assessed the correlation of the trait-associated DNA methy-
lation sites with mRNA levels of genes in cis. Genes whose mRNA
levels significantly correlated with kidney function associated
DNA methylation sites were related to interferon pathways (both
for eGFR and UACR). Although these findings agree with the
pathway enrichment results for UACR (Fig. 5B, Supplementary
Data 18), the number of significant correlations between UACR-
associated CpGs and transcript levels is quite low. This is
unsurprising considering the relatively small sample size of 1915
individuals available for this analysis and the limited coverage of
the transcriptomics resource. Interestingly, among the significant
findings for UACR, two CpGs at the solute carrier family 1
member 5 (SLC1A5) were associated with differential gene
expression and also with blood pressure. DNA methylation at
SLC1A5, which encodes a sodium-dependent neutral amino acid
transporter, could therefore be an additional element contributing
to the known correlation between UACR and blood pressure.

Significant differentially expressed transcripts were not always
encoded by the closest gene (cg17944885 near ZNF788), or a CpG
site was correlated with multiple genes in cis (cg04864179 at
IRF5). In particular, the correlation of DNA methylation at
cg04864179 with IRF5 transcript levels is notable. Considering the
significant MR result of this CpG with eGFR, DNA methylation
at IRF5 might causally influence eGFR mediated by its gene
expression. Taking the trait transformation of the underlying
genetic associations into account (see Methods), we observed that
an increase in DNA methylation of ten standard deviations
resulted in 3.2% higher eGFR. Although this estimated effect is
very small, a causal influence of methylation patterns in blood
cells on CKD was also supported by summary-based MR with a
different meQTL dataset in a recent study, where the causal effect
was directionally consistent with our results22. By applying multi-
trait colocalization, they also showed that the genetic effects of
this locus on eGFR were mediated by IRF5 methylation and gene
expression in blood. Furthermore, colocalization of IRF5 gene
expression with eGFR was shown in both tubular and glomerular
compartments of kidney tissue43. When interpreting the causal
effect observed in our study, it should however be kept in mind
that the MR analyses for CpG cg04864179 showed significant
heterogeneity (p < 0.05) among the instruments (Supplementary
Data 11 and Supplementary Fig. 7).

IRF5 encodes a member of the interferon regulatory factor
(IRF) family. The group of IRF family members contains tran-
scription factors with different roles, such as the modulation of
immune system activity, growth and differentiation, as well as the
control of gene expression for the interferon response to viral
infections. IRF5 can influence immune cell response. Multiple
studies support that changes in IRF5 methylation might affect
kidney function via immune pathways: SNPs in IRF5 are asso-
ciated SLE via changes in IRF5 expression in blood
monocytes44–46. SLE is an autoimmune disease characterized by
an activation of the IFN pathway that can affect the kidneys as

Fig. 5 Pathway enrichment results. The enrichment results of genes implicated by estimated glomerular filtration rate (eGFR) (A) and urinary albumin-to-
creatinine ratio (UACR) (B) associated CpG sites as assessed in the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome databases are shown. The results passing a Benjamini-Hochberg FDR < 0.05 are shown but are limited to the top 27 pathways for UACR.
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lupus nephritis47. Inhibition of IRF5 hyperactivation in a mouse
model of SLE protected from lupus nephritis onset and severity,
and improved kidney function and pathology48,49. Although our
EWAS did not focus on the study of SLE patients, small effects of
IRF5 methylation on kidney-related outcomes, mediated at least
partially by its expression and subsequent IFN pathways, might
be detected as effects on eGFR in the general population.

Several of the eGFR-associated CpGs for which DNA methy-
lation was quantified from blood cells were also associated with
eGFR and kidney fibrosis when DNA methylation was quantified
from kidney tissue, although the sample size was substantially
smaller compared to the EWAS dataset. This suggests that at least
some of the findings obtained from blood can be translated to an
additional trait-specific target tissue. Here, blood and kidney are
the two main trait-specific target tissues, since the function of the
kidney is filtration of blood to remove waste.

Enrichment analyses of the kidney function associated CpGs
indicated a central role in transcriptional regulation. We found
widespread enrichment of H3K4me1/3 and H3K36me3. H3K4me1/
3 is linked to primed and active enhancers as well as active pro-
moters and H3K36me3 is tightly correlated with transcribed regions
of the genome50. The role of transcriptional regulation is further
supported by the strongest transcription factor enrichment signal of
UACR-associated CpGs, which is POLR2A, the largest subunit of
the major enzyme synthesizing mRNA in eukaryotes.

Potential limitations related to the MR analyses include that
valid instruments were not available for all CpGs for the forward
MR. Given that all instruments of a CpG were selected from cis
regions, i.e. of the same genetic region, it is likely that all
instruments of a CpG are either valid or invalid, thus limiting the
number of different MR methods that can be applied to test the
robustness of the results51. The reverse MR was limited in power
because of the small sample size available for the estimation of
SNP-DNA methylation associations. Larger meQTL studies such
as the GoDMC could not store association results for all SNPs
(i.e., above a certain association P-value cutoff) because of tech-
nical reasons, and were therefore not usable for the two-sample
reverse MR. Thus, the non-significant findings must be inter-
preted with care. In addition, an interpretation of the causal effect
size is difficult, since the underlying genetic associations are cal-
culated on the standard deviation scale of DNA methylation
levels. Another potential limitation of the study is that eGFR,
CKD, and UACR are phenotypes estimated from different
underlying parameters and have multifactorial influences. Thus,
we performed several analyses to ensure that our EWAS results
were not driven by known confounders, including type 2 diabetes,
a potential confounder of the relation between DNAm and kid-
ney function. First, the EWAS associations in each cohort were
adjusted for confounders to remove their effects within a cohort.
Second, the EWAS were performed in each cohort separately and
then meta-analyzed, which corresponds to an adjustment e.g., for
the prevalence of diabetes across cohorts. Finally, we checked for
associations of our replicated CpGs within published diabetes
EWAS studies. Of all our replicated CpG associations, only the
UACR-associated CpG cg18181703 at SOCS3 showed an asso-
ciation with type 2 diabetes. This CpG was also associated with
smoking status, BMI, and the blood levels of the soluble tumor
necrosis factor receptor 2. Taking into account that our EWAS
was also adjusted for smoking status and BMI, we assume the
effects of cg18181703 on UACR to be at least partially indepen-
dent from type 2 diabetes, BMI and smoking state. While we
controlled for several of these known factors, other factors such as
unmeasured covariates could not be explicitly adjusted for in the
analyses and may influence the findings.

Further EWAS studies with increased sample sizes and with
DNA methylation quantified from additional tissues as well as

functional analyses are needed to extend our knowledge on reg-
ulatory mechanisms of kidney function, and to ultimately
improve prediction and treatment of kidney disease. This holds
true specifically for UACR, given the lower number of observed
significant CpG associations.

In summary, this large-scale EWAS meta-analysis substantially
extended the number of CpGs reproducibly associated with eGFR
and CKD and revealed seven associations for UACR and micro-
albuminuria. DNA methylation at these sites explained a large
proportion of eGFR variance, and differential methylation at four
CpGs showed evidence for a potentially causal relationship to
eGFR. Comprehensive characterization of replicated CpGs among
patients with CKD, in kidney tissue, for differential gene expres-
sion, and for enriched pathways and epigenetic marks provide
insights into kidney function associated transcriptional regulation.

Methods
Overview. We set up a collaborative meta-analysis based on a distributive data
model and quality-control procedures. To maximize phenotype standardization
across studies, an analysis plan and a command line script (https://github.com/
genepi-freiburg/ckdgen-pheno/tree/ckdgen-ewas-pheno) were created and provided
to all participating studies (predominantly population-based studies; Supplementary
Data 1 and 2). Automatically generated summary files were checked centrally. Upon
phenotype approval, studies ran their EWAS and uploaded results and aggregated
DNA methylation information to a central server. EWAS quality control was per-
formed with custom scripts to assess inflation, positive controls, distribution of CpG
probes and compare across studies the overall distributions of effect sizes, standard
errors, and P-values. All study protocols were approved by the respective local ethics
committees. All participants in all studies provided written informed consent.

Phenotype definition. Creatinine values obtained with Jaffé assay before 2009
were calibrated by multiplying by 0.9552. Studies estimated GFR with the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation53. eGFR was
winsorized at 15 and 200 ml min−1 per 1.73 m2. CKD was defined as an eGFR
below 60ml min−1 per 1.73 m2. The UACR values measured in mg/g were natural
log transformed prior to all analyses. Microalbuminuria was defined as 1 for
UACR > 30mg/g and as 0 for UACR values < 10 mg/g.

DNA methylation quantification and quality control. For the quantification of
DNA methylation genomic DNA was extracted from peripheral blood. Levels of
DNA methylation were quantified using the Infinium MethylationEPIC BeadChip
array (EPIC), the Illumina Infinium HumanMethylation450K BeadChip array
(HM450K) or the Illumina Infinium HumanMethylation27 BeadChip array
(HM27K). DNA methylation data preprocessing was performed according to
individual study protocols including background correction, quantile normalization,
probe filtering, sample filtering, SNP matching to the SNP control probe locations,
outlier filtering and assay type correction (Supplementary Data 3). The methylation
level at each site was represented and analyzed as β-value. CpG probes overlapping
with SNPs were annotated. Each study computed mean and standard deviation of
each CpG site and these summary statistics were compared between studies for
systematic differences across CpGs and followed up with individual study analysts.

Covariate assessment. DNA methylation and covariates were measured at the
same visit/time point. Prevalent diabetes was defined as fasting plasma glucose ≥
126 mg/dl, non-fasting plasma glucose ≥ 200 mg/dl, treatment for diabetes, or self-
report of a diabetes diagnosis. Prevalent hypertension was defined as systolic blood
pressure ≥ 140 mm Hg, diastolic blood pressure ≥ 90 mm Hg, or treatment for
hypertension. If measured blood pressure was not available, hypertension was
defined by self-reporting. Current smoking status was defined using self-reported
information. BMI (kg/m2) was calculated using weight and height measurements as
assessed in each study. Age was included as continuous values in the association
models. Population structure in non-family studies was adjusted by genetic prin-
cipal components (PC). White blood cell type proportions were estimated based on
DNA methylation54. Additional technical covariates included control probe PCs55,
study center, processing batch, array sentrix ID, and sentrix position.

Statistical methods and meta-analysis. To ensure comparable power among
analyzed sites only autosomal CpGs measured by both, EPIC and HM450K, were
included in analyses. Each study performed linear regression analyses separated by
ancestry groups. For assessing the robustness of the EWAS results, the analyses
were limited to studies and subsamples of European ancestry individuals. DNA
methylation β-values were modeled as the dependent variables with trait being
either continuous eGFR or UACR values or binary CKD or microalbuminuria
variables:
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DNA methylation ~ trait + sex + age + genetic PCs + white blood cell
proportions + technical covariates + diabetes + hypertension + BMI+ current
smoking

Participants needed complete information for all variables and study summary
statistics and were included only if a minimum of 50 participants for eGFR/UACR
and 50 cases/controls for CKD/microalbuminuria were available, respectively.

Each study-specific EWAS was adjusted for inflation prior to the meta-analysis
by the BACON approach if the inflation estimate was greater or equal to one
(Supplementary Fig. 8)56. Studies were split into discovery and replication by
chronological order of contribution to the CKDGen Consortium meta-analysis
(Supplementary Data 1 and 2). A fixed effect inverse-variance weighted meta-
analysis as implemented in the R package ‘metafor’ (version 2.1-0) was performed
for discovery studies, replication studies and for the resulting effect estimates of
discovery and replication. CpGs were excluded if less than half the respective
sample size was available within either discovery or replication or if the I2

heterogeneity estimate was greater 95%. Successful replication of an associated
CpG was defined as consistent direction of the effect estimates between discovery
(neGFR disc= 22,347, nUACR disc= 11,458) and replication (neGFR repl= 11,258,
nUACR repl= 3610) meta-analysis, a Bonferroni adjusted significance of the
discovery P-value (pdisc) <1.1E−7 (#CpGs eGFR= 441,870, #CpGs
UACR= 441,854), nominal significance of the replication P-value (prepl) <0.05, and
a combined discovery and replication P-value (pcomb) <1.1E−7.

Gene expression analyses. The effects of the kidney function trait-associated
CpGs were tested for associations with gene expression in blood using two datasets:
(1) mRNA levels of monocytes from 1202 participants of the MESA study, and (2)
whole blood mRNA of 713 individuals of the KORA F4 study 57,58.

As initial step, a lookup of the CpG methylation levels with mRNA levels
available in the association results from the MESA study was performed. For this
lookup, association results with a P-value < 1E-5 were available. The analysis was
described in detail in Kennedy et al.59. Briefly, gene expression was assessed using
the Illumina HumanHT-12 v3.0 and v4.0 Expression BeadChips, and DNA
methylation by the Illumina HM450K array. Expression values were normalized
using the variance stabilizing transformation. 13,933 transcripts from the v3.0 and
v4.0 arrays, which were significantly expressed above background levels (detection
P-value < 0.01) in at least 5% of subjects. Association analyses in MESA were
performed as a linear mixed model using log-transformed gene expression values
as dependent variable, DNA methylation beta values as independent variable with
age, sex, ethnicity, and study center added as covariates into the model.

A second association test was performed in the KORA F4 dataset. The
association of the methylation level at replicated CpGs with gene expression levels
of genes within ±500 kb vicinity was calculated using the log2-transformed mRNA
levels obtained from the Illumina Human HT-12v3 gene expression array. The
gene expression values were regressed on the DNA methylation beta values
adjusted for sex and age. Prior to the analysis the technical factors as well as the
blood cell type proportions were regressed out of the mRNA and DNA methylation
levels, and its residuals were included in the final association model.

Annotation and quality control checks of the gene expression probes were based
on the table provided in Schurmann et al.60. CpG-gene expression associations in
blood that were available in the MESA results and had an association P-value<0.05
in KORA F4 with consistent effect direction were considered as significant. All gene
expression probes passed the annotation-based quality control check.

DNA methylation in kidney tissue. The analyses using DNA methylation in
kidney tissue with eGFR and fibrosis were performed using data from 506
microdissected kidney tissue samples using the Illumina EPIC BeadChip. The
kidney tissue samples were collected separately, and are distinct from the blood
samples that were analyzed in the EWAS meta-analysis. These samples were col-
lected from unaffected portions of tumor nephrectomies and prepared as described
before 61.

In brief, SeSAMe software62 was used to perform preprocessing and quality
control including low intensity-based detection, bleed-through correction in
background subtraction, nonlinear dye bias correction, control for bisulfite
conversion, calculation of beta values, and estimation of leukocyte fraction. Beta
values of CpGs associated with eGFR and UACR and clinical information were
extracted for association analysis.

A regression model was applied to test the associations of DNA methylation
betas of the final CpGs as dependent variables with eGFR and fibrosis levels,
respectively, as independent variables adjusted for sex, age, genetic PCs (1–5),
diabetes status, hypertension status, BMI, array sentrix ID, sentrix position, and
bisulfite conversion control and estimated leukocyte fraction.

Targeted investigations of eGFR probes in CKD patients. The association of the
69 eGFR-associated and validated CpGs from the general population with eGFR in
the German Chronic Kidney Disease (GCKD) study was evaluated after correcting
for the number of evaluated sites, and statistical significance was defined as P-
value < 7.2E−4 (0.05/69). The GCKD study is a prospective observational study of
patients with CKD63. Briefly, 5217 adult patients under nephrological care pro-
vided written informed consent and were enrolled from 2010 to 2012. Inclusion

criteria were eGFR between 30 and 60 ml min−1 per 1.73 m2 or an eGFR of
>60 ml min−1 per 1.73 m2 with UACR > 300 mg g−1 (or a urinary
protein–creatinine ratio of >500 mg g−1). Follow-up of the patients for clinical
endpoints is still ongoing. Study endpoints are continuously recorded in a stan-
dardized fashion based on hospital discharge letters and death certificates, and
include kidney-related events as well as death. Study design and the recruited study
population are described in more detail in previous publications63,64. The GCKD
Study was approved by local ethic committees and registered in the national reg-
istry for clinical studies (DRKS 00003971). A subset of 559 patients with CKD
attributed to systemic lupus erythematosus, membranous nephropathy, focal-
segmental glomerulosclerosis or autosomal-dominant polycystic kidney disease was
selected for DNA methylation quantification and measured using the Infinium
MethylationEPIC BeadChip array (EPIC). Association with eGFR was evaluated
analogously to the main analysis (see Statistical methods and meta-analysis), apart
from adjustment for smoking which was coded 0/1/2 for never-/ex-/current-
smoker. To evaluate the association of DNA methylation with time to kidney
failure from study entry, Cox regression models were fitted for each CpG, and
analogously for a combined endpoint of kidney failure and acute kidney injury.
Besides the DNA methylation predictor, models were adjusted for age, sex, and
CKD subtype. The Cox regression model provides estimates for cause-specific
hazard ratio (HR) in the presence of the competing events, i.e., any other death
except kidney-related death. Subdistribution hazard analyses were additionally
carried out in order to evaluate potential indirect effects via the competing event.
The proportional hazards assumption was assessed based on scaled Schoenfeld
residuals. Graphical assessment for the two associated CpGs revealed no evidence
of major violations (Supplementary Fig. 9).

Regional association plots and annotation. The plots for Supplementary Fig. 5
were created using the ‘Gviz’65 and ‘rtracklayer’66 R packages. A maximum of
40 sites within 50,000 bp upstream or downstream of the CpG site of interest were
included in the plot. If the interval contained more than the 40 sites, the plotted
region was reduced to the distance of the furthest site plus 10,000 bp. The RefSeq
Genes section is based on the UCSC NCBI RefSeq track with gene symbols from
the ‘org.Hs.eg.db’ R package, the CpG Islands section is based on the UCSC CpG
Islands track, the Roadmap chromHMM section was based on the Roadmaps 15-
state chromHMM model of the fetal kidney epigenome (Roadmap Epigenome ID:
E086)67 and the Common SNPs section is based on the UCSC Common SNPs(151)
track68. Finally, the CpG correlation plot at the bottom of the figure is based on
data of the KORA F4 study DNA methylation samples using the Illumina
HumanMethylation450 BeadChip array, with missing sites being colored light gray.

Variance explained by DNA methylation. The percentage of phenotypic variance
explained by the 69 replicated CpGs associated with eGFR was estimated using data
of 1,888 participants from the KORA FF4 study, the seven-year follow-up of the
KORA F4 study57,58. The KORA FF4 was not part of the EWAS meta-analysis.
However, 988 individuals included in the analysis of explained variance overlapped
with the KORA F4 participants of the EWAS. In this dataset, the variance
explained by all CpGs independently of the covariates was estimated as the dif-
ference in the R2 of the base model including the CpGs and the one without. The
base model was defined as kidney trait ~sex + age + white blood cell proportions
+ diabetes + hypertension + BMI+ current smoking with kidney trait repre-
senting eGFR and UACR. For two eGFR-associated CpGs (cg06008406,
cg20004659), no data was available in the KORA FF4 dataset.

Bi-directional Mendelian randomization analysis. In forward MR, using the
‘TwoSampleMR’ R package69, we investigated potential causal effects of DNA
methylation at the replicated CpGs on eGFR and UACR. MR utilizes genetic
instruments to minimize bias due to confounding and reverse causation70. Genetic
instruments for DNA methylation (meQTL) were available for 47 and five CpGs
for eGFR and UACR, respectively, as previously identified by GoDMC in up to
27,750 individuals42. European ancestry summary GWAS data on eGFR10 and
UACR13 were used as the respective outcome data. Filters were applied for meQTL
inclusion (pSNP < 1E−5 with DNA methylation in a ± 500kB cis region, linkage
disequilibrium R2 < 0.2 within a 1MB region, Steiger filtering, MAF > 0.05). We
performed inverse-variance weighted MR as well as MR sensitivity analyses (simple
mode, weighted mode, weighted median, and MR Egger), or triangulation by
estimating the Wald ratio in case only a single instrument per CpG site was
available71–73. The effect estimates obtained from MR depend on the units of the
underlying datasets, and in this case correspond to a per unit change in one
standard deviation of methylation levels on natural log-transformed eGFR, and
standard deviation of natural log-transformed UACR, respectively.

In reverse MR, we examined potential causal effects of kidney function traits on
DNA methylation, using the genome-wide significant SNPs from trans-ethnic
GWAS on eGFR10 and UACR13 as genetic instruments for eGFR and UACR,
respectively. To maximize power on outcome data, we performed a z-score meta-
analysis of SNP-CpG associations from the KORA F4 (n= 1662) and FHS
(n= 3868) studies. The combined effect estimates and their standard errors of the
meQTL included in the MR were estimated from sample size, allele frequency and
z-score74. Filters were applied for SNP inclusion (P-value < 5E−8 with kidney trait,
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one-sided P-value < 0.05 with blood urea nitrogen for eGFR instruments, ancestry
heterogeneity P-value≥0.01, Steiger filtering, MAF > 0.05). We performed inverse-
variance weighted MR with multiplicative random effects (because a sufficiently
high number of instruments from different loci was available per trait)51 and MR
sensitivity analyses (simple mode, weighted mode, weighted median, and MR
Egger)71–73. As an additional sensitivity analysis addressing pleiotropic variants, we
excluded in total 35 instruments that were associated with type 2 diabetes mellitus
in a recent GWAS75 including 898,130 individuals: eleven SNPs that had an
association P-value < 5E−8 with diabetes, and 24 additional instruments that were
in linkage disequilibrium (r2 > 0.2 within 1Mb, 1000 G EUR reference panel) with
such a diabetes-associated SNP. Linkage disequilibrium was assessed via LDlink76.
For the reverse MR, the effect estimates provide the per-unit change in natural log-
transformed eGFR, and standard deviation of natural log-transformed UACR,
respectively, on standard deviation of DNA methylation levels.

P-value multiple testing adjustment according to Benjamini–Hochberg
FDR < 0.05 was applied per kidney trait, and for forward and reverse MR
separately77. Heterogeneity P-values were obtained from Q-statistics.

Enrichment analyses. To inform the potential functional effects of the associated
CpGs, we assessed the enrichment of these CpGs in sites of DNase I or histone
modification (H3K4me1, H3K4me3, H3K9me3, H3K27me3), gene sets based on
GO terms and pathways in the KEGG and Reactome databases32–35.

TFBS enrichment analyses were performed as previously described in detail14.
Briefly, enrichment testing was assessed using eForge78 using permutation with
matching for gene- and CpG island-region localization when sampling. Data was
sourced from either the ENCODE (125 samples) or Roadmap Epigenomics
(299 samples) projects generated by the Hotspot method67,79,80. The CpGs that
were associated with eGFR and UACR, respectively, at P-value < 1E−05 in the
meta-analysis were used as input (Supplementary Data 6 and 7), and 10,000
resampling runs, an active proximity filter and considered FDR < 0.05 as significant
(Supplementary Data 13 and 14). Histone mark enrichment analyses were
performed analogously (Supplementary Data 15 and 16).

Enrichment in gene sets or pathways was assessed using the methylGSA
package and R version 3.6.181. The enrichment test method was methylglm
implementing a logistic regression adjusting for the number of probes per gene and
the autosomal background which overlaps 450k and EPIC arrays. Gene sets or
pathways with 100–500 genes were tested (default setting). We considered a gene
set or pathway to be significantly enriched at FDR < 0.05 correcting for multiple
testing within each database using the Benjamini and Hochberg method
(Supplementary Data 17 and 18)77.

Lookup for known EWAS associations with other traits. The data of the EWAS
Catalog (http://ewascatalog.org/) was downloaded on 12/09/2020 and used for
subsequent analyses82. The replicated CpGs associated with the kidney function
traits were looked-up in the EWAS Catalog dataset for known associations with
published EWAS on other traits. From the EWAS Catalog, only sites having an
association P-value below epigenome-wide significance as also applied in our study
EWAS (P-value < 1.1E−7), and traits that included solely adults with a minimum
sample size of n= 1000 were considered. In the case of multiple EWAS for similar
traits, only the one with the largest sample size was included in the lookup
(Supplementary Data 19). Because the EWAS Catalog split several studies by
discovery and replication results that differed from the replicated EWAS sites listed
in the corresponding publications, we checked the published EWAS on kidney
function and C-Reactive Protein (CRP) and thus excluded these traits from the
catalog lookup. Considering that blood pressure is a risk factor for kidney function,
we additionally performed a lookup in a recent large EWAS on blood pressure83

which was not included in the EWAS Catalog at time of access.

EPIC array only CpGs. The up to 404,339 CpGs that were quantified by the EPIC
array but not the 450k array were excluded from the analyses as the lower sample size
combined with the sample split with approximately 2/3 replication samples would
have distorted the findings and particularly the downstream analyses. To inform
potential future meta-analyses with additional EPIC samples, the meta-analysis results
of non-analyzed EPIC-specific CpG probes will be made available upon reasonable
request, in addition to the publically available results (see Data availability).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The individual participant data included in this project are generally not publically
available due to data protection laws, but can be applied from the individual studies on
reasonable request. The summary statistics from the meta-analyses are available in the
CKDGen Consortium website (https://ckdgen.imbi.uni-freiburg.de). For the lookup of
the replicated CpGs in other EWAS, the publically available data of the EWAS Catalog
(http://ewascatalog.org/, downloaded on 12/09/2020), the results of Richard et al. (PMID:
29198723), the results of Ligthart et al. (PMID: 27955697), and the results of Sheng et al.
(PMID: 33144501) were included. Lookup of the CpGs with mRNA levels was conducted

using the published dataset of Kennedy et al. (PMID: 29914364), and for meQTLs the
results provided by the GoDMC (http://www.godmc.org.uk).

Code availability
The script for generating the phenotypes used in the EWAS is available via GitHub
[https://github.com/genepi-freiburg/ckdgen-pheno-ewas]84. EWAS QC, meta-analysis
and postprocessing were implemented in R v4.0.1 using metafor v2.4.0, qqman v0.1.4,
limma v3.42.2, openxlsx v4.1.5, car v3.0.8, bacon v1.16.0, mutoss v0.1.12, methylGSA
v1.6.1, ggplot2 v3.3.3, SeSAMe v1.10.5 and rmeta v3.0.
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