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Abstract—1In this article, we study closed-loop digital
predistortion (DPD) systems and associated learning algorithms.
Specifically, we propose various low-complexity approaches to
estimate and manipulate the inverse of the input data covari-
ance matrix (CM) and combine them with the so-called self-
orthogonalized (SO) learning rule. The inherent simplicity of
the SO algorithm, combined with the proposed solutions, allows
for remarkably reduced complexity in the DPD system while
maintaining similar linearization performance compared to other
state-of-the-art methods. This is demonstrated with thorough
over-the-air (OTA) mmW measurement results at 28 GHz,
incorporating a state-of-the-art 64-element active antenna array,
and very wide channel bandwidths up to 8§00 MHz. In addi-
tion, complexity analyses are carried out, which together with
the measured linearization performance demonstrates favorable
performance—complexity tradeoffs in linearizing mmW active
array transmitters through the proposed solutions. The tech-
niques can find application in systems where the power ampli-
fier (PA) nonlinearities are time-varying and thus frequent or
even constant updating of the DPD is required, good examples
being mmW adaptive antenna arrays as well as terminal trans-
mitters in 5G and beyond networks.

Index Terms— Array transmitters, autocorrelation function,
Bussgang theorem, closed-loop systems, covariance matrix (CM),
digital predistortion, Gauss—-Newton (GN), parameter learning,
power amplifier (PA), self-orthogonalization.

I. INTRODUCTION

ONTEMPORARY radio communication systems, such

as the recently introduced 5G new radio (NR) mobile
networks, build on multicarrier modulation—most notably
orthogonal frequency-division multiplexing (OFDM). Multi-
carrier modulations are known to provide spectrally efficient
waveforms but also possess high peak-to-average power ratio
(PAPR) [1], [2], which complicates the operation of power
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amplifiers (PAs) close to saturation. In order to control the
quality of the transmit waveform while ensuring high power
efficiency in the transmit chain, digital predistortion (DPD) is
a well-known technical approach—see, e.g., [1], [3]-[5], and
the references therein. DPD aims to suppress the unwanted
out-of-band (OoB) emissions and in-band nonlinear distortion
by applying specific nonlinear preprocessing to the digital
transmit waveform. Especially in combination with efficient
PAPR mitigation methods [6], DPD can significantly improve
the transmitter power efficiency while maintaining at the same
time low levels of unwanted nonlinear distortions.

A particularly timely DPD application is the linearization
of active antenna arrays, being an essential technology for
instance in the emerging 5G NR base stations and mobile
devices, especially at the millimeter-wave (mmW) bands.
These operating frequencies are also referred to as the so-
called frequency range 2 (FR-2) [7] in the 3GPP terminology.
Timely examples of articles focusing on this topic include,
e.g., [8]-[13]. In such systems, the nonlinear distortion is
known to be beam-dependent, stemming from the load-
modulation phenomenon [8]. Fast DPD adaptation is thus
required such that the nonlinear distortions can be suppressed,
while the beam is steered. This issue, along with the extremely
high processing rates and channel bandwidths at mmW fre-
quencies, calls for reduced complexity DPD approaches and
associated parameter learning algorithms.

Another relatively new DPD use case is mobile device
linearization. In general, mobile device power efficiency is
very important, which is why the PA is typically operated
close to saturation. Thus, despite the more relaxed linearity
requirements compared to base-station transmitters, lineariza-
tion can be pursued for maximum power efficiency. Further-
more, in mobile devices, the transmitted waveforms are very
dynamic, as the resource block allocation and output power
can change on a per-slot basis [14]. On the other hand, the
computational resources in mobile devices are much more
limited than in base stations. Thus overall, both the adapt-
ability and the complexity of the DPD system are becoming
increasingly important in mobile devices, forming one main
motivation for this work and the methods described in this
article.

A wide range of DPD models can be found in the exist-
ing literature, with some of the most common approaches

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-4987-6500
https://orcid.org/0000-0001-6672-1474
https://orcid.org/0000-0002-0908-9094
https://orcid.org/0000-0002-3354-8887
https://orcid.org/0000-0003-0361-0800

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
DPD main path
x[n] I Tx
b chain
«
_(:; ¥ P am’3 Y
Calculate _0——’| Am,5 ‘
—> .
BFs () . « | : X
} Co-phasing |
: ; ; and combining :
S N B A : or [
Calculate H . . |
— 1M (R1) —O—I CL learning equations OTA feedback :
i DPD leamningpath o+ T
Fig. 1. Illustration of the considered closed-loop MP DPD scheme, with special emphasis on mmW active array linearization with R antenna elements and

PA units. The learning signal can be obtained by either co-phasing and combining the individual PA output signals or, alternatively, by using an OTA ORX.

being the memory polynomial (MP) [1], [5], [15] and the
generalized MP (GMP) [3], [15], [16]. These approaches can
be seen as subsets of the Volterra series [17], [18]. In such
methods, the DPD coefficients are usually estimated by using
block-based regression algorithms, such as least squares (LS)
or Gauss—Newton (GN) [4], [19]. These learning solutions
provide reliable coefficient estimation, but they also involve
relatively high computational complexity—especially if on-
chip estimation were pursued. Alternatively, adaptive filtering
algorithms can be used, such as least mean squares (LMS) or
some of its variants [20]. The input data basis functions (BFs),
however, need to be typically prewhitened or orthogonalized
before the actual processing since the elements of the input
data are highly correlated, leading to large eigenvalue spread
of the input signal covariance matrix (CM) [21].

Literature targeting explicitly low-complexity DPD
approaches and associated learning methods is, in turn,
somewhat less common. Techniques aiming at this direction
are, for instance, [21]-[27]. In [22], a closed-loop MP DPD
model was presented, where the model coefficients were
estimated with damped GN in combination with a signed
regressor algorithm (SRA). However, the signed CM in the
SRA suffered from rank-deficiencies, and additional Walsh-
Hadamard matrix transformations were required, further
increasing the computational complexity. In [21] and [23],
a block-adaptive LMS-type algorithm was proposed. However,
additional BF orthogonalization or prewhitening had to be
applied to ensure fast and reliable convergence. In [27],
an SO solution was applied and demonstrated to achieve
a similar performance as other state-of-the-art techniques.
However, the CM was assumed fixed, and the computational
cost of its recalculation was high. In [24]-[26] and [28],
cascaded Hammerstein and Wiener structures were proposed.
Such approaches typically have less free parameters, leading
to solutions with lower associated complexity. However, they
are best applied in scenarios where physical knowledge of
the system under study is available, which is not always the
case. Finally, works in [29] and [30] presented lookup table

(LUT)-based approaches. The LUTs aimed at substituting
the high-order polynomials in the DPD model, relaxing the
overall complexity. Nonetheless, their modeling capabilities
are somewhat limited, depending on the size of the LUTs.
To enhance the performance, the LUT sizes can be increased
to better describe the nonlinear characteristics, but this leads
to higher memory requirements and slower convergence
speeds.

In this article, we adopt a closed-loop MP structure in
combination with a modified version of the SO learning
to update the DPD model coefficients. We adopt the MP
structure, in contrast to other more complex solutions, due
to the relaxed linearity requirements of the mmW NR FR-2
systems [7], [14] and also because its reduced complex-
ity makes it appealing for various DPD applications, such
as the terminal PA linearization. The overall DPD struc-
ture is shown in Fig. 1, in the context of mmW active
arrays.

The main technical contributions of this article are the devel-
opment of several low-complexity solutions for estimating and
manipulating the inverse CM (ICM) needed in SO learning
algorithms. The ICM gathers statistical information of the
DPD input data and the corresponding BF samples, and it
is an important ingredient in the learning path to ensure good
linearization performance and convergence. This is the most
computationally heavy element in the SO learning rule and
needs to be recalculated whenever the transmit signal type
or its spectral characteristics are modified, to ensure optimal
DPD execution. Specifically, we propose the following four
methods:

1) method to efficiently modify the ICM by removing rows
and columns for a smaller DPD parameterization;

2) method to efficiently modify the ICM when the input
signal is frequency-shifted, reflecting, e.g., a change in
resource allocation inside the channel bandwidth;

3) method to estimate the ICM from the autocorrelation
function of the input data, assuming that it is a complex
proper Gaussian distributed random signal.
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4) Method to efficiently approximate the technique in 3) by

utilizing the Bussgang decomposition.
Techniques 1) and 2) can be applied to modify a previously

calculated ICM with low computational effort, while tech-
niques 3) and 4) require only an estimate of the autocorrelation
function of the input data to build the ICM. The SO learning
algorithm in combination with the proposed methods allows
for fast DPD coefficient estimation with minimal complexity in
time-varying scenarios. Hence, on-chip implementations and
continuous tracking of the DPD can become feasible.

Extensive over-the-air (OTA) RF measurement results at the
28 GHz mmW center frequency—the 5G NR band n257 [7]—
are carried out and reported in order to test and validate
the proposed solutions. All measurements feature a state-of-
the-art 64-element active antenna array and 5G NR com-
pliant OFDM waveforms, with signal bandwidths ranging
from 200 to 400 MHz. In addition, further measurements
with an aggregated signal bandwidth of 800 MHz are also
conducted, with the aim of pushing the performance bound-
aries of the considered DPD system. Altogether, the obtained
results, alongside with the complexity analyses, indicate very
favorable performance—complexity tradeoffs of the proposed
solutions when comparing against the state of the art. Finally,
we note that although the experiments in this article consider
mmW active array linearization, the developed solutions are
applicable also in any more classical single-input—single-
output DPD system and PA linearization context.

The rest of this article is organized as follows. Section II
presents the adopted MP structure and also clarifies the
assumptions taken for the mmW setup. Sections III and IV
present the proposed low-complexity methods to estimate the
ICM, needed for the SO learning rule. Complexity analyses
and comparisons are then provided in Section V. Section VI
presents the deployed 28 GHz measurement setup and the cor-
responding FR-2 RF measurement results and their analyses.
Finally, conclusions are drawn in Section VII.

Notation Used in This Article: In this article, matrices are
represented by capital boldface letters, e.g., & € C**V_ Ordi-
nary transpose, Hermitian transpose, and complex conjugation
are denoted by ()7, (), and (-)*, respectively. By default,
vectors are complex-valued column vectors, presented with
lowercase boldface letters, i.e., & € CM*! =[a; a5 -+ apu]”.
In addition, the expected value, absolute value, floor, ceil,
factorial, Hadamard product, and Kronecker product operators
are written as E{-}, |- |, [*]-, [*]-, !, o, and ®, respectively.

II. CLOSED-Loopr DPD SYSTEM

In this section, the MP DPD model utilized in this work is
described. Both the processing and learning paths are detailed,
where the actual digital predistortion and the DPD coefficient
estimation are executed. The MP model is adopted because
it is a widely used model and is known to strike a good
balance between linearization performance and computational
complexity [1], [3], [5], [21], [23]. In addition, the DPD
system builds on a closed-loop structure, where the DPD
coefficients are estimated from the input signal, x[n], and the
observed learning signal, y[n], [31] according to the notation
followed in Fig. 1.

A. DPD Main Path

The complete closed-loop MP DPD scheme is presented in
Fig. 1. Here, x[n] is the original baseband signal, xppp[n] is
the signal after predistortion, and y;(t), y2(¢), ..., ygr(t) are
the individual PA output signals to be transmitted. Following
this notation and adopting the classical MP model structure,
the input—output relation of the digital predistorter can be
written as

P
xppp[n] = Z Z O, px[n — m]|x[n — m]|P~D (1)

where M denotes the number of memory taps considered in
the model, P corresponds to the polynomial order, and a,,,,, is
the corresponding PA model coefficient for a specific memory
tap and polynomial order. Following this configuration, the
model has C = [(P/2)1M coefficients. It is noted that while
only odd orders are considered in the above model, there are
works [32], [33], which have shown that the use of both odd
and even orders can have certain benefits, such as the ability to
reduce the overall polynomial order P for given linearization
performance targets. The ICM estimation methods derived and
described in this article focus on MP systems with odd orders,
while the extension to cover also even-order polynomials is an
interesting topic for future work in this area.

Next, in order to facilitate the closed-loop processing, the
input—output relation obtained in (1) can be alternatively
expressed with matrix notation as the complex multiplication
of the MP BF matrix and the DPD coefficient vector. This
expression reads

XDpPD — Qa (2)

where @ € C*! contains the PA model coefficients and
Q e CM*C is the original monomial BF matrix with N
denoting the total number of the available input data samples.
2 can be further expressed as

Q= [X10X,1 - Xyp—1 X30 X3 -+ X3 o1 -

© Xpo Xp1occ XP,M—l] (3)

with each vector X, ,, € C¥*! being defined as

x[n = mllx[n — m]|?~!
x[n—m+ 1x[n —m + 17177}
. 4)

Xp,m =

x[n—m+N—=1]lx[n—m+ N —1]]7~!

The order of the BF terms in (3) becomes important
for the formulation taken in the methods presented in
Sections IIT and IV. We finally note that in the first DPD
iteration, the vector a is usually initialized with a one in the
first element and zeros in the rest (i.e., @ =[10---0]7) such
that only the unmodified linear term is passed through the
predistorter.

B. DPD Learning Path

In closed-loop DPD systems, the observation signal y[n]
is nonlinear in the DPD parameters. Therefore, nonlinear LS
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techniques need to be applied, such as those based on the
GN algorithm [29], [34]. At block iteration k, these iterative
algorithms build on the error vector e, = y; — X; that is
stacking the prevailing error signal samples of the current
processing block of size K. In this article, we focus on the
SO and the damped GN learning methods [21], [22], [29].
In Sections III and IV, the SO learning rule is studied in detail
and combined with different methods to reduce the involved
computational complexity, while the GN serves as a reference
solution. To this end, the SO and the GN learning rules read

s —1

a1 = ap + 1s(R) " 2 e 5
-1

@t = o+ pg (R @) ey (©)

respectively, where us and ug are the learning steps for the
updates, £, € CX*C is the BF matrix corresponding to the
DPD block iteration k, and R € C¢*€ is the CM of the input
BF vector, defined as

1 N
R = E{ylnlynl} ~ & > ylnly”(nl. ™

n=1

In above, y[n] is the instantaneous input vector at time
instant n (i.e., a row of ), and N is the total number of
available samples over which R is estimated. If the input signal
does not vary significantly within DPD iterations, the CM can
be estimated off-line and then kept fixed, avoiding repetitive
online calculations. For later purposes, we also already define
the ordinary autocorrelation function of the DPD input signal
x[n], as well as its sample estimate, as

1 N
Rx () = E{x[nlx*[n — 71} ~ ~ > xinlx*n =zl ()
n=1

In general, it is important to note that the term (Slf )~}
in the GN learning rule essentially calculates the (conjugate
of the) ICM at every DPD iteration. This provides an accurate
description of the statistics of the input signal at every iteration
but also involves heavy computational complexity. For this
reason, the GN method is considered as the baseline high-
performance solution against which the linearization perfor-
mance is compared. At the same time, the SO approach
aims at drastically reducing the computational complexity by
obtaining the ICM with different alternatives, described in
Sections IIT and IV, while still achieving a linearization perfor-
mance close to GN. We further note that the learning solutions
presented in (5) and (6) are generic learning approaches for
linear-in-parameters models and can also be applied to other
models, such as GMP [3], Volterra DDR [35], [36], or even
LUT-based solutions [29], [37].

Finally, it is noted that one common alternative in the DPD
developments is to deploy BF orthogonalization or whiten-
ing [21], [23]. Such an approach can also facilitate utilizing
low-complexity learning algorithms, even block-LMS [22].
However, the BF whitening also implies increased DPD main
path complexity—even more so in case of dynamic input
signals, implying that also the whitening matrix should be
recalculated. Hence, in this work, we do not consider BF
whitening in the DPD main path.
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C. Observation Receiver Configuration in mmW Active Array
Systems

In the context of mmW phased-array systems, there exist
various alternatives for arranging the ORX in order to obtain
the combined learning signal—y[n] in Fig. 1—used for DPD
parameter learning. One particular approach is the hardware-
based method, in which each PA output signal is coupled,
phase-aligned, and combined in hardware [11], [12], [38].
Another plausible solution is to configure a separate ORX,
which captures the combined OTA received signal and feeds
it back to the DPD systems for DPD learning [13], [39]-[41].
These two alternatives are presented, as plausible solutions,
in Fig. 1. Both of these alternatives mimic the far-field
combined signal at a distant receiver, in case of line-of-sight
propagation.

It is important to clarify that the DPD learning solutions
and methods presented within this article do not depend on the
actual way of obtaining the combined learning signal used for
parameter estimation. It is noted, however, that the hardware-
based approach does not suffer from the common OTA-related
challenges, such as ORX misalignment and positioning chal-
lenges, environmental dependencies, and beam dependence of
radiated nonlinear distortion. We also note that there exist
several works in the literature [39]-[41], where the OTA ORX
beam misalignment challenges are studied, proposing different
solutions to provide the far-field signal in the main beam
direction. Furthermore, our adopted mmW measurement setup,
featured in Section VI, aims at mimicking the hardware-based
feedback system by carefully aligning a horn antenna in the
main beam, acting as the OTA ORX.

III. Low-COMPLEXITY METHODS FOR
MODIFYING THE ICM

If the input signal to the SO algorithm remains static,
the ICM can be precalculated off-line, saving complexity in
the DPD learning path. However, whenever the input signal
changes, the ICM needs to be estimated again in order to
provide optimal linearization performance. The process of cal-
culating the ICM—or, alternatively, the term (' €;)~! in the
GN learning rule (6)—is computationally heavy, as it involves
calculating the inverse of the product between the BF matrix
and its Hermitian transpose. The size of the BF matrix, €2,
is K x C, which is typically large in DPD implementations.
To ease this calculation, we propose in Sections III-A and IT1I-B
two methods for modifying the ICM when the input signal or
the parameterization of the DPD is changed. We finally note
that these solutions are applicable to any DPD models that are
linear in the parameters, not just the MP.

A. Reducing the Dimensionality of the ICM

The first considered method avoids the need of recal-
culating the ICM if a simpler parameterization is desired
in the DPD system. A simpler parameterization might be
adopted when lowering the transmit power or when changing
from a high-order modulation to a lower order modulation
with less stringent EVM requirements. Furthermore, in mmW
active array linearization, where the severity of the nonlinear



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PASCUAL CAMPO et al.: INVERSE CM ESTIMATION FOR LOW-COMPLEXITY CLOSED-LOOP DPD SYSTEMS 5

distortions varies as a function of the beam direction, such a
technique may be particularly useful in optimizing the power
consumption of the transmitter.

To this end, we first generate a generic ICM obtained
with a large DPD parameterization. If a smaller polynomial
order or memory depth is desired, the proposed method then
removes the appropriate rows and columns from the generic
ICM and obtains a new ICM submatrix, which corresponds
to the new chosen parameterization. The new submatrix can
then be used in the SO learning equation to estimate the new
DPD coefficients.

The proposed method can be described as follows. Let us
consider a generic ICM, Q™! = (R*)"! e CexC = (SNZHSNl)’l,
obtained from the complete set of BFs, Q. This matrix is
known and it is used to find the reduced ICM subset Q' =
R*™' € CC¢ = (R¥Q)~", as described before. The BF
matrices, £ and , are mutually related as

Q= (2 v) (10)
where v € CV*! represents a column in € that needs to be
removed. The generic CM can be now written as

o H H H
stzHﬂ:(Sv’H)(ﬂ v)=(fﬁg SV’HVV) )

and its block inverse can be directly obtained by using the
Schur complement [42] of (11) as

(12)

A= (279)" + D! (sz”sz)’lszﬂvv”sz((szﬂsz)’l)H

(13)
B = -D'(27Q) '@y, (14)
c' = -pvie(@"e)")" (15)
D! = (viv—vig(eie) o) . (16)

Finally, the system of linear equations in (13) can be directly
solved to obtain (SlH Sl)‘l, which corresponds to the desired
ICM subset, expressed as

1 B-\"

-1 -1 H - —1 —1

Q'=R) =(Q) =A"-B (F) . (7
We note that removing one column from the BF matrix, Q,

corresponds to removing one row and one column from the

ICM, Q!. The proposed method requires moving the row

and column to be removed to the end of the matrix and can

be executed iteratively to cut out more than one row/column.

In Algorithm 1, we present an example pseudocode that shows

how to remove ! rows and columns from Q7' € cexe,
obtaining the new ICM submatrix Q! e C(¢=Hx(C=),

Algorithm 1 Pseudocode showing how [/ rows and
columns can be removed from Q~' to obtain the
subset Q~!. The generic ICM, given as input data, is
conceptually presented in (12)

Data: 2, Q!
Result: Q!
Initialize: Q~' € If&cxc =1,
Afl c R(Cfl)x(cfl) — 0’
B—l c R(é—l)xl — 0’
D'=0;
fori=1,2,....,1—1,1, do
Permute row/column to the end of Q’l ;
A'=Q'(1:(C—i), 1:(C—1i));
D!'=Q ' (C—-i+1,C—i+1);
B'=Q'1:(C-i),C—-i+1);
Q' =A"-B'GD";
end

B. Frequency Shifting the ICM

In the second considered scenario, we study how to avoid
the ICM recalculation when the DPD input signal is digitally
frequency shifted. In such a case, the spectral components of
the signal are modified, and thus, its CM and ICM will no
longer be the same. In order to provide accurate linearization
performance, the new ICM needs to be estimated again by
some means. To that end, we propose a novel method that
shifts the original ICM, denoted as Q’l = (R*)’l, in the
frequency domain to obtain the resulting shifted ICM, denoted
as Q7' = (R")™!'. The computational complexity of this
method is very low compared to recalculating the whole ICM
again, as shown in Section V. A good example use case of
such frequency shifting is when the uplink spectral allocation
of a terminal/UE transmitter changes within a given channel
bandwidth.

The proposed method is constructed as follows. Let us
denote the original unshifted digital input signal as X[n]
and the corresponding shifted signal as x[n]. A frequency
shift of Af, in Hz, can be mathematically expressed in the
time domain as the multiplication with a sampled complex
exponential, and thus, the shifted digital signal reads
—e jAwni [l’l]

x[n] (19)

where Aw = Qr Af)/fs denotes the normalized angular
frequency shift, while f; refers to the sample rate. The next
step is to obtain the shifted BF matrix, 2, exclusively as
a function of the unshifted signal %¥[n] and the normalized
frequency shift Aw. This can be done by substituting (19)
into (3) and (4). For simplicity, we just present the first row
of the resulting €2, shown in (9) at the bottom of the next
page, considering that |ej A(‘"’| = 1. Due to the formulation
taken in (9), Q can also be expressed as a function of
Q and a multiplying factor that depends on the frequency
shift Aw. This factor appears in the BF terms with different
delays, caused by the distinct memory terms appearing in
the BF matrix. Specifically, we observe O-sample-delay terms,
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1-sample-delay terms, and, in general, m-sample-delay terms,
appearing in the CM, expressed as

0-sample-delay: Q(i, j) = e /2“"e/2"Q(, j) = Q(, )
1 -sample-delay: Q(i, j) = e /2"/2°0=DQ(, j)
e 121Q(, j)

= e7/2"Q(, ).

The CM is generally a Hermitian—Toeplitz matrix, and
the way how the different sample delay terms are scattered
through it can also be seen from (28), where the value of ¢
within the autocorrelation function Ry (z), defined formally
in (8), indicates the corresponding delay. Hence, the zero-
delay samples correspond to the main diagonal of the M x M
submatrices within the CM, the one-delay samples correspond
to the second diagonal term of these submatrices, and so on.
From this structure, it is then relatively easy to see that the
frequency-shifted CM can be written as

Q=P"Qp

where the diagonal matrix P € C“*C applies the right shift
weights for each column of Q, and it is defined as

m -sample-delay: Q(, j) = --- (20)

21

1 ... 0 0 .. 0
0 ... efhem o ... 0

P= 0 .- 0 ... 0 22)
0 -~ 0 0 eldom |

Defining the CM as in (21) will allow for applying simple
yet efficient matrix inverse properties. As a result, the shifted

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

ICM can be directly obtained from (21) as
Q 1 (R*) 1 PAQAPH(A).

Note that only the original ICM, R™!, and the frequency
shift, Aw, are needed to obtain the final shifted ICM, R,

(23)

IV. Low-COMPLEXITY ICM ESTIMATION
FOR GAUSSIAN SIGNALS

This section presents two novel methods to estimate the
ICM in a computationally efficient manner. These methods
build on the autocorrelation function of the input signal
and provide a set of precomputed coefficients that can be
utilized to easily estimate the ICM. The first method is an
application of Reed’s theorem [43] for calculating the CM,
while the second technique utilizes the Bussgang theorem
and other stochastic analysis to provide an approximate CM.
In the latter case, the resulting CM can be shown to consist
of a specific subblock structure expressible as a Kronecker
product, allowing for efficient inversion. We note that, since
we consider complex Gaussian process theory, we assume
the Gaussian distributed input signals in this section. OFDM
signals are known to converge toward Gaussian, as the number
of subcarriers is large [44]. This claim is further substantiated
in Section VI.

A. ICM Estimation With the Autocorrelation Function

The first proposed method utilizes the moment theorem
for complex-circular Gaussian signals presented in [43].
We specifically aim at expressing the CM as a function of
the autocorrelation function of the input signal. To that end,
the autocorrelation function is first estimated over the desired
span with (8). Reed’s theorem states that all odd-order central
product moments are zero, while all even-order moments can

Q= (x[n]ejAw” o x[n]|x[n]|®~Deliten

x[n _ l]ejAa)(il—l) R

x[n — M + 1]e/A20=M+D

x[n —1]|x[n — 1]]F~Deidet=D .

x[n — M+ 1|x[n — M + 1]] P~ Del Axr=M+D) )

E{x[nlx*[n — Nlx[n — 111’} = E{x*[n — 1]x

E{x[n - l]x*[n]lx[n]lz} = E{x*[n]x[n]}E{x*[n]x[n — 1]} + E{x*[n]x[n
=2Rx(z = 0)R}(z = 1),

E{x[n]x*[n —1]|x[n
+ E{x"|
+ E{x*[
+E{x [n—1]x n]}E{x [n—1
+E{x [n—1]x n]}E{x [n]x[n

(1} E{x*[n — 11x[n — 11} + E{x*[n — 1Ix[n]} E{x*[n — 1]x[n — 1]}
= 2Rx(T = O)Rx(f = 1),

]}E{x*[n]x[n — 1]}

1PIx[n — N1*} = E{x*[nlx[n]}E{x*[n — Nx[n]} E{x*[n — 1]x[n — 11}
n x[n]}E{x [n — 1x[n]}E{x*[n — 1]x[n — 1
n — x[n]} E{x*[n)x[n]} E{x*[n — 1]x[n — 1

[ 1}
[ 1}
x[n]}E{x [n]x[n — l]}
}E{x [n—1]x[n — l]}

[ 1}

]
]
]
]

+E{x [n—1]x n]}E{x n—lx[n]}E{x [n]x[n — 1
= 4R%(t = 0)Rx(r = 1) + 2R} (t = DRy (z = 1),

E{x[n — 1x*[n]llx[n]P|x[n — 111*} =

=4R3(t = O)Ry(r = 1) +2(Rs(z = 1)) Rx(t =1)

(18)
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be obtained through sums of products of the second-order
moments, expressed in the general case as [43]

* Lk k
E{xox1 s X1 XoX1 - ~xk_1}

= Z E{xz.‘xo}E{xzfxl} e E{xz.‘xk,l}. (25)
-

Here, for notational simplicity, x,, = x[n — m], and ¢
constitutes a permutation of the set {0, 1, ..., (k—1)}. Noting
that all terms in the CM have an even order, and following the
specific BF order assumed in (3), each term in the CM can be
obtained by applying (25).

For clarity, an example of the application of Reed’s theorem
to the fourth- and sixth-order moments is presented in (18),
as shown at the bottom of the previous page, while other
higher order terms can be obtained similarly. The definition
of the autocorrelation function in (8) has been used to arrive
at the last expressions in (18). It is noted that the expression
presented in (25) allows to obtain the higher order terms
recursively. It is also noted that the specific terms of the form
E{|x[n]|*"} can be alternatively obtained as

E{Ix(n11*’} = p!E{lx[n]I*}" = plo”

which may simplify their calculation.

Once Reed’s theorem has been applied to each individual
term in the CM, we can express the CM with a specific sub-
block matrix structure. Specifically, the CM can be expressed
with a [(P/2)] x [(P/2)] submatrix structure, each of size
M x M, written as presented in (24), as shown at the bottom
of the page. Here, the submatrix Ry ; is in turn defined as

(26)

wilnly[[n] wrlnly/ (0]

Rk,l =F

Wirm—1[nly) (]
27)

Wirsm—1[nly[[n]

where the subscript in y[n] indicates the corresponding ele-
ment within the instantaneous input vector. Due to the notation
utilized in (24) and (27), such matrices can accommodate
any polynomial order, P, and memory depth, M, chosen in
the DPD system. Note that only the calculation of the upper
triangular submatrices in R is required to build the complete
CM. The CM is then inverted to generate the resulting ICM,
thereon used in the SO learning equation.

B. ICM Approximation With Bussgang Coelfficients

In the second proposed method, we aim at simplifying the
previous method by using Bussgang’s decomposition. This
theorem states that the cross correlation of a Gaussian signal
x[n] and a signal y[n] = f(x[n]) that has passed through an

instantaneous nonlinear function f(-) can be expressed as the
product of the autocorrelation function of x[n] and a scaling
constant. Formally, this is expressed as

Rxy(7) = ¢Rx (1) (29)

where
Rxy(r) = E{x[nly*[n — 7]}

is the definition of the cross correlation function, while the
autocorrelation function Ry(z) reads as in (8). The Buss-
gang coefficient, ¢, is obtained through the complex proper
Gaussian probability distribution function (PDF) as

1 b 2
¢ = —4/ x*f(x)e = dx
A

where f(-) represents the nonlinear amplitude distortion and
axz is the variance of x[n].

In general, the second-order terms appearing in the CM,
on its first row, can be expressed directly as a function of
Rx(7) as

(30)

€19

R(1, 1) = Rx(r = 0) (32)
R(1,2) = Ry(r = 1) (33)
R(1, M) = Ry(z = M). (34)

The higher order terms appearing in the CM (ie.,
x[n]|x[n]|?, p=2,4,...) can be seen as nonlinear functions
of x[n] and can thus be expressed as a function of the
autocorrelation according to the Bussgang theorem [45].

Using (29), we can now express all the remaining high-order
terms in the CM uniquely as a function of Ry () as

E{x[nlx*[n]llx[n]]’} = &Rx(z =0)  (35)
E{x[nlx*[n = 1lx[n — 11} = &Rx(z = 1) (36)
E{x[nlx*[nllx[n]|*} = &Rx(z =0)  (37)
E{x[nlx*[n — Hlx[n = 1][*} = GRx(z = 1) (38)

where the coefficients &, &, ... can be obtained using (31).
By having all the terms as a function of Ry(r) and the
Bussgang coefficients, the complete CM can be expressed
through them. A concrete example is presented in (28), as
shown at the bottom of the next page, which is showing the
CM structure in the specific case of P = 3 and M = 1
while also assuming that & = 1. Each matrix element, which
depends on the input data signal, can be then obtained by using
the explicit expressions shown in (7) and (31).

We next note that the order of the BFs in the BF matrix
becomes important to replicate this particular structure. By fur-
ther studying (28), we realize that it can be formulated with a

Ry

Ry y+1

Ry p11
Ry, m41

Ris1-nmer Run (157141

Ri(r£1-nm+

Ry (1511w 4

R(re1-nymen(141-nm+
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specific subblock matrix notation that will allow for efficient
Kronecker inversion. The CM can be alternatively simplified
in M x M subblocks, which are weighted with a different
Bussgang coefficient and are propagated through R as

R, R, R, Riz| ]
R, R, R; Rz
R=| R R; Ry Rirj4
[Riz) Rizp Rz Ryiz) |

(39)

where the subscripts indicate the corresponding Bussgang
coefficients. In addition, the submatrix Ry € CM*M reads

Rx(l' :0) Rx(l' = 1) Rx(‘[ = M)
Ry(r=1) Rx(z=0) - Ry(t=M—1)
Ri = & : : :
Ry(r=M) Ri(z =M —1) Rx(z = 0)
(40)

Note that only the submatrices appearing on the first row
and the last column of (39) need to be calculated to build the
whole CM.

Finally, due to the well-structured formulation in (39),
the CM can be efficiently inverted using different matrix
inversion methods. One possible solution is to use block-
recursive matrix inverse algorithms, such as the one in [46],
which poses drastically reduced complexity when compared to
ordinary matrix inversion. An alternative and yet more efficient
solution is to use the Kronecker inversion [47], [48]. To this
end, we first note that the CM can be equivalently expressed
with the Kronecker product as

R=Z2®Rg 41)

where Z e RIP/ATXIP/DT contains the complete set of
Bussgang coefficients. Then, the ICM is directly obtained as
the inverse of its elements as

R =="@R;" (42)

The Kronecker inversion further reduces the computational
complexity of inverting R, as demonstrated in Section V.

V. COMPLEXITY ANALYSIS AND COMPARISON

In this section, we present the computational complexity
involved in the proposed DPD and ICM estimation solu-
tions. The processing complexity is divided in three differ-
ent stages—the DPD main path (Section II-A), the DPD
learning path (Section II-B), and the ICM-related calculations
(Sections III and IV). All the analyses are carried out in
terms of real multiplications per K-sized DPD iteration (i.e.,
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for one block iteration with data size of K samples). Multi-
plications constitute, in general, the most resource-intensive
operations in digital signal processing (DSP) implementa-
tions, while additions can be considered to be essentially
free [15], [49]. In this study, it is assumed that one complex-
complex multiplication is calculated with four real multi-
plications, and one real-complex multiplication is calculated
with two real multiplications. In addition, the matrix inver-
sion of an m x m matrix is assumed to cost 4 m? real
multiplications [42], [46].

As noted, the first considered stage is the DPD main path,
where the actual predistortion is applied. Here, the complete
BF matrix [i.e., £ in (3)] is first calculated from the input sig-
nal x[n], assuming its recursive calculation through previously
obtained values. Later, the actual predistortion processing is
carried out as in (2). The second considered stage is the DPD
learning path, where the closed-loop learning equations are
applied to update the DPD coefficients. Here, we consider both
the reference GN algorithm and the SO learning approach.
In this analysis, in case of SO learning, we express the
learning complexity first for a given ICM while noting the ICM
calculation complexity then separately. The GN approach,
in turn, needs to calculate the ICM estimate (Slf Slk)‘1 in
every DPD iteration—by its very definition. Finally, a com-
plexity assessment and comparison between the classical ICM
calculation and the proposed ICM estimation methods are
provided. The classical ICM estimation complexity directly
results from the calculation of (272)~'. The complexity
of the proposed ICM estimation methods, in turn, is deter-
mined following the exact processing principles presented
in Sections III and IV.

Table I gathers the obtained complexity analysis results for
the considered methods. The table presents the required real
multiplications in each stage of the DPD solution, in a general
form as a function of the modeling parameters. In addition,
the final column presents a specific numerical example when
P 9, M 4, C 20, I = 5, and K 20000,
in order to provide a concrete and representative example
of the involved complexities. Such DPD parameterization is
similar to the one chosen to perform the RF experiments
and validation in Section VI. From the numerical example,
it can be clearly observed how the computational complexity
is reduced against the reference GN method when utilizing
the SO learning solution in combination with the proposed
ICM estimation methods. In all cases, the learning com-
plexity is drastically reduced while still achieving a similar
linearization performance, as demonstrated in Section VI. The
quantitative results also demonstrate the very large reduction
in the needed multiplications, achievable through the pro-
posed ICM estimation methods, compared to the direct ICM
calculation.

SoRx(r =0) SHRx(r=1)
R — SR (zr =1) &Rx(r=0)
CiRx(r =0) &Rx(r=1)
SRy (z=1) &Rx(r =0)

CiRx(zr =0) &Rx(r=1)
SRY(t=1) & Rx(r=0) (28)
ORx(r =0) GRx(r=1)
ORY(z=1) &HRx(r =0)
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TABLE I
COMPUTATIONAL COMPLEXITIES OF THE DPD MAIN PATH, DPD LEARNING PATH, AND THE VARIOUS ICM ESTIMATION METHODS

Numerical example with
. Amount of
Operation P=9, M=4C=20
real multiplications
=5, K = 20,000
BF generation 2K(L£]+1) 200,000
DPD main path Digital predistortion 4KC 1,600,000
Total 2K(|E]+20+1) 1,800,000
. Damped Gauss-Newton 4C(C?+CK+C+ K+ 1) 33,633,640
DPD learning path
Self-orthogonalization IC(K+C+ 1) 1,601,640
Classical ICM calculation 4C%(C + K) 32,032,000
Other: ICM Dimensionality red. ICM (Sec. III-A) 4C(C —-1) 7,600
calculation Frequency shifting ICM (Sec. III-B) (c?2-0)/2 190
(only when required)|  Autocorr. ICM est. (Sec. IV-A) (512 +3[L] +2)3M2 + 4(C3(M + 1)(K + 1)) 433,460
Bussgang’s ICM est. (Sec. IV-B) | M(4M2 +6M[L] — 3M + 4K +4) +4([£] + K +1) 401,208

For reference and comparison purposes, we also address the
complexity of a classical MP model with BF prewhitening or
orthogonalization while considering block-LMS as the DPD
coefficient update rule. With block-LMS, BF prewhitening
becomes a necessary ingredient stemming from the large
eigenvalue spread of the input signal CM. This process ensures
that reasonably fast and stable learning convergence can be
obtained by the simple LMS algorithm, which essentially
uses a diagonal matrix to approximate the ICM [22]. The BF
prewhitening is done in the DPD main path and is assumed
here to build on the well-known Cholesky decomposition-
based method [23], [42], which provides an upper triangular
orthogonalization matrix. The overall main path complexity of
such an approach is then the one presented on the fourth row
of Table I plus the extra cost of the prewhitening stage that is a
matrix—matrix product. Due to the triangular orthogonalization
matrix, the extra complexity is of the form 4K (C(C + 1)/2).
In the numerical example case of Table I, the corresponding
overall main path complexity is 18.6M real multiplications,
reflecting a substantial increase in comparison to the methods
that do not require prewhitening. On the other hand, the cost
of updating the DPD coefficients in the block-LMS learning
rule [50] is given by 4CK + 2C, which leads to 1600040
real multiplications—a number that is of the same complexity
order as the SO solution when combined with any of the
proposed ICM estimation methods. This analysis thus shows
that the main path complexity increases substantially when
BF orthogonalization is deployed, while the corresponding
decrease in the learning complexity through using block-LMS
is fairly minor when the ICM calculations in the reference SO
solutions build on the proposed methods. In addition, we note
that in these complexity calculations, the prewhitening matrix
has been considered to be precalculated off-line. However,
when considering DPD applications for example in termi-
nal transmitters, where the transmitted waveforms are very
dynamic (the resource block allocation and/or output power
can change on a per-slot basis), such an assumption may not be
feasible. This, in turn, means that in such dynamic scenarios,

also the prewhitening matrix may need to be recalculated
online during the learning procedures, further increasing the
corresponding online processing burden.

Finally, based on the results in Table I, we separate three
possible alternatives regarding the SO learning approach in

combination with the ICM estimation.
1) The SO learning rule is applied in a dynamic waveform

scenario using classical ICM calculation based on the
sample estimate of the CM in (7). The ICM is thus
calculated each time the waveform changes. If this
happens frequently, the complexity approaches that of
the GN.

2) The SO learning rule is applied in a dynamic waveform
scenario using the proposed ICM estimation methods.
Computational complexity may be drastically reduced
compared to the previous when waveform changes are
frequent.

3) The SO learning rule is applied in a static waveform
scenario. In this case, the ICM is fixed and only needs
to be computed once. Thus, the overall complexity is
the smallest.

VI. RF MEASUREMENTS

In order to test, verify, and validate the proposed meth-
ods and algorithms, an extensive set of RF measurements
is provided, in the context of an FR-2 mmW device. The
deployed system features a state-of-the-art 28 GHz 64-element
active phased array, acting as the nonlinear element which
the proposed methods aim at linearizing. The measured 1-dB
compression point of the array is +41 dBm, and the operating
FR-2 band is 5G NR band n257. Once the measurement results
are obtained, they are analyzed together with the quantitative
complexity analysis results provided in Section V, to assess the
performance—complexity tradeoffs of the proposed solutions.

In the context of mmW measurements with multiple-
element phased arrays, several issues are to be noted. First,
in an R-antenna array, there are also R parallel PAs, one
per antenna unit. Each of these amplifiers will basically have
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Fig. 2.

unique nonlinear characteristics, and hence, the predistorter
can only guarantee an efficient linearization performance in
the main beam direction. In the rest of the angles, the intrin-
sic beampattern of the array suppresses the OoB nonlinear
distortion [11]. Another concern is the load modulation of
the PAs, occurring due to coupling between the antenna
elements [8]. This makes the effective nonlinear characteristics
of the antenna array beam-dependent, thus tying the DPD
solution to the beam direction. Consequently, linearization
methods must take considered. This issue can be tackled
with, for instance, real-time DPD tracking, which is able to
estimate the DPD coefficients as the beam is steered. Since the
parameter estimation needs to be done in real time, it is crucial
to explore ways of minimizing the involved computational
complexity while at the same time being able to provide the
needed linearization performance.

In this work, the DPD performance is evaluated through
the well-known EVM [15], normalized mean square error
(NMSE) [15], and the TRP-ACLR metrics since an OTA
system is considered [7]. The TRP-ACLR measures the OoB
performance by computing the ratio between the filtered mean
power centered on the assigned channel frequency and the fil-
tered mean power centered on an adjacent channel frequency,
measured by integrating the powers over the whole beamspace
while keeping the beamforming angle fixed [7], [8].

A. 28 GHz Active Array Experimental Setup

The complete 28 GHz measurement setup is shown in
Fig. 2. The experimental setup is configured as follows. First,
a Keysight M8195A arbitrary waveform generator (AWG) is
deployed to output the modulated I/Q waveform at 2.5 GHz
intermediate frequency (IF). Then, a Keysight N5183B signal
generator provides the LO signal at 24.5 GHz that together
with a Marki Microwave T310401741 mixer further upcon-
verts the signal to the 28 GHz band. A Marki Microwave
FB3300 bandpass filter (BPF) is applied immediately after-
ward to suppress the mixer-induced image frequencies. Two
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AWG Keysight M8195A

LO Keysight N5183B and MX Marki
T310401741 for 28 GHz upconversion

Pre-amplification AD
HMC499LC4 & AD HMC1131

64-element Anokiwave
AWMF-0129 phased array

Hom Antenna acting as OTA ORX

Oscilloscope and digitizer
Keysight UXR0402AP

Host PC with Matlab for post-
processing and DPD verification

5G NR mmW/FR-2 OTA measurement setup utilized to carry out the experiments at 28 GHz.

preamplifiers, AD HMC499LC4 and AD HMCI1131, are
deployed to guarantee a sufficiently high power at the input
of the active antenna array such that it can be pushed close
toward saturation. The 64-element active array—the Anoki-
wave AWMF-0129—is then configured to transmit the signal
OTA toward the horn antenna of the ORX. Both antennas are
mounted on different electrical tripods capable of providing the
required rotation in azimuth and elevation. For DPD learning
and verification, both antennas are perfectly aligned when
transmitting/receiving, as noted in Section II-C. For simplicity,
the beamforming angle of the TX antenna array is set at 0°.
The combined learning signal captured by the ORX is then
attenuated and fed back to a Keysight UXR0402AP oscillo-
scope, which is acting as the digitizer. Finally, the digital signal
is sent to a host PC for further processing and/or performance
assessments. We note that the Anokiwave AWMF-0129 does
not allow for actual hardware-based combiners for feedback,
and hence, we adopt the carefully aligned OTA ORX to mimic
such hardware-based processing.

The modulated signals adopted in the following experiments
are 3GPP 5G NR Release-15 FR-2 compliant OFDM wave-
forms, with the subcarrier spacing (SCS) and RB allocation
specified in each particular experiment. The sampling rate of
the signals and DPD execution is 2 GHz. As an additional
ingredient, which aims at pushing the performance boundaries
of the DPD system, we also consider a wider, nonstandard-
compliant, signal bandwidth of 800 MHz in some of the
experiments. This is obtained by doubling the number of active
subcarriers and also the OFDM waveform processing FFT
size, compared to the standard-compliant 400 MHz signal.
In addition, the initial PAPR of the generated signals is
approximately 12 dB when measured at the 0.01% point of the
instantaneous PAPR complementary cumulative distribution
function (CCDF) [2]. This value is then limited through
well-known iterative clipping and filtering-based processing to
8 dB, measured also at the 0.01% point of the instantaneous
PAPR CCDF. Clipping the waveform, however, strictly speak-
ing degaussianizes the input signal distribution, as it basically
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PAPR = 8 dB, 10 Msamples

I
S

—4— |deal normal PDF
—&— Generated OFDM PDF | -

o

w

o
T

o
w
T

o

o

a1
T

o
o
T

o
o
T

°
=
T

Probability distribution function (PDF)
5

-6 ;1. -é 6 é 4 6
R(X[n]) / S(x[n])

o

Fig. 3. PDF of the generated 5G NR FR-2 OFDM waveform with 400 MHz
carrier bandwidth, including also PAPR mitigation to 8 dB through iterative
clipping and filtering. The shown PDF reflects the real part of the complex
1/Q waveform, while that of the imaginary part is essentially identical. For
reference, also the theoretical normal PDF is shown.

removes the high- and low-end values of the amplitude PDF.
The difference to the Gaussian distribution is nevertheless very
small, as can be observed through the illustration in Fig. 3,
which shows the PDF of the generated NR-compliant OFDM
signal with clipping and filtering versus an ideal Gaussian
PDFE. Finally, after the PAPR mitigation, additional time-
domain windowing is also applied to suppress the inherent
OFDM signal sidelobes.

In each DPD iteration, a block of K = 20000 pseudoran-
domly generated OFDM signal samples is circularly transmit-
ted, received, and utilized to estimate the DPD coefficients.
The K-sized closed-loop error signal vector, e, is generated
as the subtraction between the transmitted and received data
samples and essentially contains the prevailing PA distortion
samples. This term is then used as an input of (5) or (6) to
estimate the DPD coefficients. Such transmit/receive process
is then repeated until the algorithms reach convergence. In all
the experiments, the MP DPD model is configured with a
ninth-order polynomial (i.e., P = 9) and with four taps of
memory (i.e., M = 4). The DPD coefficients are initialized
as & = [10---0]7 such that just the linear term is obtained
after predistortion in the first iteration. In the measurements
where the ICM is precalculated off-line, the CM is estimated
from a 500 ksamples sequence and inverted before the DPD
processing. It will remain fixed for the rest of the iterations
unless otherwise mentioned.

B. Baseline DPD Performance

In this section, we study the linearization performance of the
SO and the reference GN learning methods. The measurement
results are carried out with both signal bandwidths of 800 MHz
(120 kHz SCS, 528 RBs) and 400 MHz (120 kHz SCS,
264 RBs), measured at a highly nonlinear operation point
of the active phased array. Specifically, this experiment is
performed with effective isotropic radiated power (EIRP) of
approximately +40.5 dBm, corresponding to an input power
of approximately —6 dBm. This leads to an initial TRP-ACLR

of approximately +22 dBc and an EVM of some 11.6%,
reflecting a highly nonlinear operation point.

First, Fig. 4(a) presents the obtained linearization results
with a signal bandwidth of 800 MHz for both SO and reference
GN learning methods. We assume for the SO method a
precalculated ICM, which is then kept fixed through the DPD
iterations. The GN learning rule, in contrast, calculates the
ICM estimate (Sl,f’ Q)" in every DPD iteration. As can be
seen from the figure, the linearization performance of the
SO method is practically matching that of the GN, with
TRP-ACLR numbers of about 432.5 dBc and EVM values
below 6%. This performance is also achieved with the SO
solution regardless of the rough ICM off-line estimation.
Secondly, Fig. 4(b) presents the results with a signal bandwidth
of 400 MHz. Similar conclusions can be drawn regarding
the behavior of the SO and GN learning methods. In this
case, the TRP-ACLR is around +35 dBc and the EVM is
below 5.5% for both SO and GN methods. What is more
important, we also include a third measurement that shows
the linearization behavior of the SO learning method when the
ICM is calculated from the previous 800 MHz signal (i.e., the
same as the one utilized in Fig. 4(a)). As shown in the figure,
the DPD performance is only slightly degraded in comparison
to the normal SO learning rule, with the TRP-ACLR and EVM
being around +34 dBc and 5.7%, respectively. This is because
the ICM has been obtained from a wider signal than the one
being transmitted. However, the SO with an ICM obtained
from the 400 MHz signal would not work to linearize the wider
800 MHz signal. We finally note that all measured methods
satisfy the TRP-ACLR limit of 428 dBc and EVM limit of
8% (for 64-QAM), as stated in 3GPP specifications [7].

C. Reducing the ICM Dimensionality

In this second experiment, we study and highlight the
obtained numerical precision of applying the method, which
removes rows/columns from the ICM to get a new covariance
set for a DPD system with reduced parameterization. We recall
that the rows/columns that are to be removed from the ICM
are shifted to the last row/column, and then, this algorithm
is repeated iteratively until all the targeted elements are
successfully removed.

To this end, we perform the following experiment. We first
generate an ICM of size 36 x 36 corresponding to P = 11 and
M = 6. We then execute the proposed algorithm described in
Section III-A iteratively until / = 16 rows and columns are
removed, leading to a final ICM of size 20 x 20 elements—
corresponding to P = 9 and M = 4. Parallel to that,
we mathematically calculate, using (7), the corresponding ICM
of size 20 x 20 (also correspondingto P =9 and M = 4) and
compare it to the estimated version. The obtained numerical
error when comparing the two versions is in the order of
10713, This order of magnitude can be considered negligible in
any DPD implementation, thus demonstrating the effectiveness
of the considered technique. A similar experiment is next
repeated for reducing the DPD parameterization down to
P = 7 and M = 3, corresponding to [ = 24.
The numerical error in this case between the ideal and
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Fig. 5. 400 MHz 5G-NR OTA linearization performance at EIRP ~ +40.5 dBm for the SO method, with emphasis on the ICM shifting technique proposed
in Section III-B, when a frequency shift of (a) —200 and (b) +400 MHz is applied. The linearization performance of the GN method is also included for
reference. Note that the “SO DPD, original ICM” and “SO DPD, est. shifted ICM” curves practically overlap.

estimated ICMs is in the order of 10~!!, reflecting again very
high accuracy. Finally, we note that no PSDs are visualized
along this experiment, as with such very low numerical errors,
the PSDs corresponding to the calculated and estimated ICMs
are essentially completely overlapping.

D. Frequency Shifting the ICM

In this third experiment, we study the linearization perfor-
mance of the SO learning rule in combination with the ICM
shifting method proposed in Section III-B. The measurements
are carried out with a signal bandwidth of 400 MHz (120-kHz
SCS, 264 RBs), while the EIRP, the array’s input power, and
thus initial TRP-ACLR and initial EVM values are maintained
as before.

The experiments to test the proposed method are carried
out as follows. First, the input 5SG NR 400 MHz baseband
signal is generated, and then, two different example digital

frequency shifts of —200 and +400 MHz are applied to it.
This generates the resulting shifted RF signals, which are
centered at 27.8 and 28.4 GHz. We report the linearization
performance of the SO solution with: 1) the unshifted ICM;
2) the original ICM (i.e., estimated from the shifted signal);
and 3) the ICM generated with the proposed method, presented
in Section III-B. The performance of the GN solution is
also presented as a reference. As can be seen from the
obtained results in Fig. 5, the SO with the unshifted ICM
does not converge to any solution since the ICM is not able
to describe the statistics of the shifted signal. Second, the
SO with the original ICM provides the optimal linearization
performance, essentially equal to GN, since the ICM is directly
calculated from the shifted signal. Third, the SO with the
ICM estimated using the proposed method in Section III-B
also provides optimal performance, despite the substantially
lower associated complexity. The TRP-ACLR and the EVM
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Section IV, with the signal bandwidth of (a) 200, (b) 400, and (c) 800 MHz. The GN method is also measured and shown for reference.

numbers for the proposed method are in both cases maintained
above +31 dBc and below 5.6%, respectively, thus satisfying
the 3GPP standards [7] at FR-2. This performance is equal to
that of the GN method, which involves heavy complexity in
each DPD iteration. These results verify the effectiveness of
the proposed ICM shifting method in terms of linearization
performance.

E. Estimating ICM From the Autocorrelation Function

This fourth experiment validates the two novel methods
presented in Section IV, which estimates the ICM from the
autocorrelation function of the input data. These techniques
are tested with three different signal bandwidths of 200 MHz
(120 kHz SCS, 132 RBs), 400 MHz (120 kHz SCS, 264 RBs),
and 800 MHz (120 kHz, 528 RBs). In all cases, the ICM is
estimated using the proposed approach described in Section IV
and then injected in the SO learning rule. The GN method is
also measured for reference, while all the remaining system
parameters are maintained as explained before.

The obtained measurement results are presented in Fig. 6.
With a bandwidth of 200 MHz, the SO DPD with autocor-
relation ICM estimation achieves an excellent linearization
performance, very close to that of the GN approach. The
SO DPD with the Bussgang ICM estimation lies somewhat
behind but still obtains a good amount of linearization. This
difference is reduced when considering the wider bandwidths
of 400 and 800 MHz, in which the performance of the
proposed novel solutions is very close to each other and
also to the reference GN model. It is noted that there
is no direct theory-based reason why the performance gap
between the autocorrelation-based ICM estimation and the
Bussgang ICM estimation methods is largest in the case
of 200 MHz bandwidth. The difference can be stemming,
e.g., from a slight change in the hardware setup, or by a
minor movement in the position of the person handling the
measurements. In all cases, the SO solution in combination
with the methods proposed in Section IV successfully satisfies
the +28 dBc TRP-ACLR and the 8% EVM limits while
showing a remarkable complexity reduction in estimating
the ICM.

FE. Convergence Analysis

We continue the experimental results with a convergence
analysis of the proposed DPD methods in a static waveform
scenario. For this analysis, we consider the signal bandwidth
of 800 MHz (120-kHz SCS, 528 RBs, 625 ksamples) and
present the convergence behavior of the SO method when:
1) ICM is estimated normally from the input signal; 2) ICM
is estimated with the autocorrelation method presented in
Section IV-A; and 3) ICM is estimated with the Bussgang-
based method presented in Section IV-B. The convergence
speeds of the remaining methods are the same as that of 1),
and thus, they are not shown separately. The remaining DPD
parameters are maintained as stated above.

The convergence behavior of the DPD models is presented
in Fig. 7, in terms of the TRP-ACLR and the NMSE. As can
be seen from the figure, the TRP-ACLR convergence of the
GN, the SO with classical ICM calculation, and the SO with
autocorrelation-based ICM estimation is very similar, reaching
the steady-state performance in around 15 CL iterations, after
which the DPD behavior stabilizes at around 432 dBc TRP-
ACLR. The convergence speed of the SO with the Bussgang
ICM estimation is slightly slower, reaching the steady state
in around 20 block iterations. However, the final values of
TRP-ACLR are similar compared to the previous methods.
This behavior is expected since the Bussgang-based method
provides only an approximate ICM. Similar conclusions can
be drawn from the second figure, which shows that the NMSE
obtained with the different methods. These results show the
favorable performance of the proposed SO solutions, which
together with the achieved complexity reductions demonstrates
very appealing performance—complexity tradeoffs.

G. DPD Learning Complexity With Different ICM Methods

In this final subsection, we gather the quantitative DPD
learning complexity numbers obtained with the proposed ICM
estimation methods and corresponding to the DPD parameter-
ization of P =9, M =4, C =20, =5, and K = 20000.
Here, we measure the complexity in terms of average number
of real multiplications per linearized sample, assuming that
the DPD learning algorithms are executed over 15 closed-loop
iterations—which is generally the number of iterations that the
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TABLE II

AVERAGE LEARNING PATH COMPLEXITIES OF THE PROPOSED METHODS
PER LINEARIZED SAMPLE AND THE RELATIVE COMPLEXITY
REDUCTIONS WITH RESPECT TO THE REFERENCE GN APPROACH

DPD method Average learning comp. | Percentage
(real mul. per lin. sample) red. wrt. GN
Reference GN 1,681 0 %

SO + classical ICM calc. 186.85 88.9 %
SO + ICM subset 80.10 952 %
SO + freq. shift ICM 80.08 952 %
SO + autocorr. est. ICM 81.54 95.1 %
SO + Bussgang’s est. ICM 81.42 95.1 %

models need to converge, as demonstrated in the earlier sub-
sections. The obtained quantitative complexity results, building
on the expressions in Table I, together with the corresponding
relative complexity reduction with respect to the reference GN
method, are presented in Table II.

As can be seen from the table, excellent complexity sav-
ings can be obtained through the proposed solutions. In all
cases, the numerical average complexity is drastically reduced
when comparing with the reference GN method. This is also
reflected in the achieved percentage reduction, which is in
most cases larger than 90%. Keeping in mind that all the
proposed methods satisfy the 3GPP transmit waveform quality
specifications [7], as shown through the obtained results in
Section VI-B-E, the combination of efficient linearization
performance and low processing and learning complexity is
paving the way toward fast and continuous DPD adaptation
with on-chip real-time implementations in commercial sys-
tems.

VII. CONCLUSION

In this article, various methods to efficiently estimate the
inverse of the input data CM were proposed and combined
with SO closed-loop learning in a DPD-based linearization
context. The inherent low complexity of the SO learning
combined with the proposed methods, allowed for remarkably
reduced complexities in the DPD system, while maintaining
a similar linearization performance compared to state-of-the-
art solutions. To substantiate this, complexity analyses dealing

with the proposed solutions were performed, and thorough
RF measurement results at 28 GHz mmW band, featuring a
64-element active antenna array, were presented. The obtained
results, both in terms of performance and complexity, indi-
cated very favorable performance—complexity tradeoffs of the
proposed methods when comparing against the state of the
art. The proposed methods are thus promising candidates for
linearizing mmW phased-array transmitters as well as cellular
terminal transmitters, the processing complexity being a key
concern in both applications.
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the radio implementation challenges in systems such
as 5G, full-duplex radio, and large-scale antenna
systems.
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