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Abstract

Plasmonic metasurfaces are promising as enablers of nanoscale nonlinear optics and

flat nonlinear optical components. Nonlinear optical responses of such metasurfaces
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are determined by the nonlinear optical properties of individual nanostructured plas-

monic meta-atoms, which are the building blocks of the metasurfaces. Unfortunately,

no simple methods exist to determine the nonlinear coefficients (hyperpolarizabilities)

of the meta-atoms hindering designing of nonlinear metasurfaces. Here, we develop

the equivalent RLC circuit model of such meta-atoms to estimate their second-order

nonlinear optical parameter i.e. the first-order hyperpolarizability in the optical spec-

tral range. In parallel, we extract from second-harmonic generation experiments the

spectrum of the 1st-order hyperpolarizabilities of individual meta-atoms consisting of

asymmetrically shaped (elongated) plasmonic nanoprisms. Moreover, we verify our

results using nonlinear hydrodynamic-FDTD and with calculations based on nonlinear

scattering theory. All three approaches: analytical, experimental, and computational,

yield results that agree very well. Our empirical RLC model can thus be used as a

simple tool to enable efficient design of nonlinear plasmonic metasurfaces.

Photonic metamaterials are artificial 2D structures exhibiting optical properties that in nat-

ural materials are either very weak or entirely lacking. Among these properties are opti-

cal magnetism, strong chirality and epsilon-near-zero behavior.1–3 In addition, there is a

growing interest in understanding and harnessing the nonlinear optical responses of meta-

surfaces.4–9 This is due to the fact that many photonic applications including frequency

conversion, ultrashort-pulse generation, photon-pair generation, all-optical switching and

frequency-comb generation10–13 rely on nonlinear optics occurring in large bulky devices

where one must contend with phase mismatching. In contrast, the small footprint of meta-

surfaces virtually guarantees phase matching, and moreover, the nonlinear emission can be

precisely controlled.1

Nonlinear plasmonic metasurfaces have recently emerged as a promising candidate for

enabling nanoscale nonlinear optics.4 The optical responses of plasmonic meta-atoms serving

as unit cells of metasurfaces are dictated by the collective movement of the conduction

electrons giving rise to localized surface plasmons (LSPs). Therefore, it is imperative to

investigate the conduction electron dynamics and the nonlinear response of the constituting
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meta-atoms. Such investigations can be performed, for example, by using the hydrodynamic

plasma model,14–17 and the nonlinear scattering theory.18 However, relying on computational

tools is not always convenient due to their complexity and the large amount of computational

resources they often require.

Linear and nonlinear optical responses of plasmonic meta-atoms can also be predicted by

using a simpler model based on an equivalent RLC circuit theory.19–23 This approach has

been demonstrated to correctly describe the nonlinear and magnetic responses of split-ring

resonators operating at microwave frequencies.24 Nevertheless, it remained unclear whether

the RLC approach could describe conduction electron dynamics occurring in plasmonic

meta-atoms adequately enough to allow for accurate predictions of their nonlinear responses

at optical wavelengths as well. In this letter, we empirically derive the first-order hyperpolar-

izability of individual plasmonic meta-atoms by adapting the equivalent RLC model that we

find can, indeed, be used to easily and quickly predict the nature of collective second-order

nonlinear responses of large metasurface arrays. First, we derive an expression for the first-

order hyperpolarizability for an unknown nonlinear coefficient a that represents the strength

of the nonlinear charge oscillation in an individual meta-atom. The goal of this work is to

determine the value of this unknown coefficient through physical arguments, and to validate

this approach through rigorous experiments and numerical calculations. Next, we describe

our second-harmonic generation (SHG) experiments, where we measured SHG emission from

metasurfaces consisting of randomly arranged gold elongated nanoprism meta-atoms. From

these measurements, we extract the spectrum of their first-order hyperpolarizability. This

experimental result is then validated by two sets of finite-difference time domain (FDTD)

calculations. In the first set, the material nonlinearities are directly implemented within the

code via a nonlinear hydrodynamic plasma model. The second set is based on nonlinear

scattering theory where the experimentally-determined second-order nonlinear permittivity

of gold is used.

Finally, we present a simple empirical derivation for the unknown RLC-model nonlinear
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coefficient a, which we then use to perform an order-of-magnitude estimate of the first-order

hyperpolarizability spectrum. Our simple intuitive physical interpretation of the nonlinear

parameter a is such that the RLC circuit model we present can be extended to describe

metasurfaces with different shapes of meta-atoms without requiring a-priori experimental

validation. This simple analytical tool, capable of predicting the values of hyperpolarizabili-

ties of metamolecules based on the information about their shapes, dimensions and material

compositions, will prove indispensable in the realization of metasurfaces with tailored non-

linear optical responses.

We begin by introducing the nonlinear RLC model, which is schematically illustrated in

Fig. 1(a). We consider an incident field Ẽinc = E0 exp(−iωt), linearly polarized parallel to

the length l of the meta-atom, and assume that the field drives the RLC circuit by creating

an electromotive force ε̃ and, subsequently, a current Ĩ = ˙̃q of conduction electrons with

charge q. Throughout the text, the tilde and the over-dot notations denote time-varying

quantities and time derivatives, respectively. The dynamics of the current, damped by

electron collisions, can be described by the equation24

L ˙̃I +RĨ + ṼC(q̃) = ε̃(t) , (1)

where L is the distributed inductance, R is the distributed resistance, and ṼC is the induced

voltage due to the effective capacitance C of the circuit. ṼC is, in general, a nonlinear

function of the charge q̃. Here, we assume that the nonlinearity of the system is sufficiently

weak to allow us to write the nonlinear voltage function as a second-order polynomial24

VC(q̃) = (q̃ + aq̃2)/C. (2)

This assumption is valid for at least up to ∼10 MW/cm2 which is consistent with the

experiments we have performed.

The specific form of the electromotive force ε̃(t) depends on the oscillation direction of
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the incident field with respect to the meta-atom. In case of a nanorod-like meta-atom, if

we assume that the incident field is polarized along its length l, the electromotive force ε̃(t)

takes the form ε̃ = Ẽincl, assuming that the interaction of the meta-atom as a whole with

the incident field can be treated as an electric dipole interaction. After substituting this

expression into Eq. (1), we obtain

¨̃q + 2γ ˙̃q + ω2
0 q̃ + aω2

0 q̃
2 = Cω2

0lẼinc , (3)

where ω0 = 1/
√
LC is the resonance frequency of the circuit and γ = R/2L is the free-

electron damping constant of gold.24 These relations take into account the dispersive nature

of gold by implicitly considering a Drude model with γ in Eq. (3) and ωp in Eq. (11b) given

in the Methods section.24

When the excitation wavelengths are close to the LSP resonance of the meta-atom, the

conduction electron dynamics of the system is well described using the RLC approach.20

Eq. (3) is the master equation describing the dynamics of the conduction electrons, and

therefore, the linear and nonlinear optical response of the meta-atom. A steady-state solution

to Eq. (3) can be found by implementing perturbation theory,25 and is given by

q̃ =
Cω2

0l

D(ω)
Eince

−iωt − aC2ω6
0l

2

D2(ω)D(2ω)
E2

ince
−i2ωt , (4)

where D(ω′) = (ω2
0−ω′2−2iγω′). Next, we write the total induced dipole moment as p̃ = q̃l,

and recall that the dipole moment can be expressed in the frequency domain as25

p = ε0αEinc + ε0βE
2
inc , (5)

where α is the linear polarizability and β is the first-order hyperpolarizability of the meta-
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Figure 1: (a) An artist’s depiction of an equivalent RLC circuit diagram for the investigated
nanoprisms. The time-varying incident field Ẽinc gives rise to the current of conduction
electrons Ĩ, that is damped by electron collisions. (b) A metasurface consisting of a random
array of triangular gold nanostructures.

atom. We can now combine Eqs. (4) and (5) to obtain simple equations for α and β:

α(ω) = − Cω2
0l

2

ε0D(ω)
, (6a)

β(2ω;ω) = −a C2ω6
0l

3

ε0D(2ω)D2(ω)
. (6b)

As the lengths of the meta-atoms can be a significant fraction of the exciting wavelength,

higher-order multipoles can be excited, and one must consider this possibility in general,

especially for nonlinear emission at shorter wavelengths.26 However, in this study, our goal

is to create a model that gives an order of magnitude estimate of SHG generation, through

the determination of the nonlinear coefficient a. Thus, to simplify our approach here, we

consider only the electric dipole term, and therefore the hyperpolarizability in Eq. (6b) can

be considered an “effective” hyperpolarizability that helps us to achieve this goal.

In the following, we seek to determine the nonlinear coefficient a. In order to find its

value empirically, we first extract its value from performed experiments, and then validate the

result by comparing it against predictions based on two distinct implemented computational

methods.

SHG is a coherent second-order nonlinear, and therefore, it is very sensitive to the symme-

try properties of the material under investigation.25 In fact, centrosymmetric-shaped struc-
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Figure 2: (a) Representative scanning electron micrograph of a fabricated gold nanoprism.
(b) Schematic of the nonlinear SHG experimental setup (details in27).

tures e.g. rectangular nanobars exhibit very weak SHG responses that are allowed under the

electric dipole approximation of the light-matter interaction27 (see also Fig. S1 in the sup-

plementary information S1). In such centrosymmetric structures, the weak SHG response

originates due to symmetry breaking at side surfaces of the nanobars. As a result, nanostruc-

tures with low symmetry, such as split-ring resonators, L-shapes or nanoprisms, are expected

to exhibit a stronger second-order response, and consequently are especially interesting in

studies of even-order nonlinear optical effects.27–29

In this work, we study elongated triangular nanoprisms due to their simple geometri-

cal shapes. Four metasurfaces containing gold nanoprisms with the widths w = 100 nm,

thicknesses h = 20 nm and varying lengths of l = 145, 156, 167 and 178 nm were fabri-

cated on a fused silica substrate using electron beam lithography, thermal evaporation, and

a standard metal lift-off procedure.30 In order to minimize inter-particle coupling effects

occurring in periodic arrays,31–35 each metasurface consisted of 10,000 identical, randomly

positioned nanoprisms (oriented in the same direction) that were deposited into an area of

200×200 µm2. This allowed us to investigate ensemble responses that have spectral features

identical to the responses of individual meta-atoms.36 The arrangement is schematically rep-

resented in Fig. 1(b), while a representative scanning electron micrograph of an individual

nanoprism (l = 145 nm) is shown in Fig. 2(a). Alternatively, individual meta-atoms could

be investigated by using nonlinear microscopy.37

After the samples were fabricated, we measured the transmission spectra of the four

metasurfaces [see Fig. 3(a)]. To verify successful fabrication of the metasurfaces, we com-
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Figure 3: (a) Measured transmission spectra of fabricated random arrays of elongated gold
nanoprisms of different lengths l along the direction of the light polarization towards x-axis
(l = 145, 156, 167 and 178 nm). (b) FDTD calculations of the transmission spectra of
random arrays of gold nanoprisms of different lengths. (c) Detected and (d) calculated SHG
emission intensity as a function of incident wavelength for the four metasurface samples
consisting of nanoprisms of varying lengths (l = 145, 156, 167 and 178 nm).
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pared the measured spectra with the ones obtained from FDTD simulations (discussed in

the Methods section) [see Fig. 3(b)]. In order for the simulated nanoprism to closely resem-

ble the actual fabricated meta-atoms, we rounded its corners with a circle of 15-nm radius.

The LSP resonances of simulated nanoprisms for l = 145, 156, 167 and 178 nm peaked at

1030 nm, 1080 nm, 1120 nm and at 1170 nm, respectively, which are in good agreement with

the measured resonance peak positions.

We performed SHG experiments using the setup shown in Fig. 2(b) (described in detail

elsewhere27). A laser beam originating from an optical parametric oscillator (Chameleon

Compact) was used to illuminate the sample metasurfaces. The optical parametric oscillator

was pumped with a Ti:Sapphire laser (Chameleon Vision II), generating 200-fs-long pulses

with a repetition rate of 82 MHz. The average power of the signal beam was kept at 8 mW

to avoid potential sample damage via accumulative heating. The SHG emission from the

metasurfaces was detected as a function of fundamental wavelength ranging from 1000–

1300 nm using a power-calibrated photomultiplier tube [see Fig. 3(c)]. The input-beam

polarization was set to be linear and aligned with the long axes of the nanoprisms.

After completing the SHG measurements, we verified the calibration of our setup to

provide order-of-magnitude estimates for the first-order hyperpolarizabilities β. This was

achieved by measuring SHG emission from a 0.5-mm-thick Y-cut quartz crystal and using

the model described in Ref. [ 38] to estimate the second-order susceptibility χ(2) value for

the quartz crystal. Our estimate (χ
(2)
xxx = 0.53 pm/V) was found to be in excellent agreement

with the literature values, thereby verifying the calibration.25

To estimate the values of β of the nanoprisms from the experimental data, we calculated

the macroscopic χ(2) values for the four metasurfaces using the same approach as we used

when performing the reference measurements in quartz.38 We estimated the particle number

density of the metasurfaces to be n = 10 000/(200 µm × 200 µm × 20 nm) = 1.25×1019 m−3,

then linked the detected SHG intensities to the hyperpolarizabilities using the relation β =

χ(2)/n. The extracted values of β as a function of the incident fundamental wavelength are
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plotted for the four investigated nanoprisms in Fig. 4(a).
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Figure 4: (a) Experimentally extracted values of β for the investigated nanoprism sam-
ples. The values of β, predicted by (b) Hydrodynamic-FDTD calculations, (c) the nonlinear
scattering theory and (d) the introduced nonlinear RLC model.

To further validate the experimental results, we used nonlinear hydrodynamic-FDTD sim-

ulations to calculate the SHG power and hyperpolarizability β. The hydrodynamic plasma

model14,16,17,39 was used in conjunction with the two-critical-points model40 for gold in an in-

house 3D-FDTD code.41 As the metasurface contains randomly positioned nanostructures,

periodic boundary conditions could not be used to simplify the calculation. Further, the

metasurfaces were too large for a single FDTD simulation. We therefore developed a new

method for quantitative approximation of the power. The nonlinear scattered power from

the metasurface was determined by first calculating the nonlinear scattered power in the

forward direction of a single nanoprism from a Gaussian femtosecond pulse whose duration

peak intensity matched the laser specification from the experiments. For each nanoprism

in the random metasurface, the forward-scattered power was scaled to the incident field
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amplitude “felt” by that particle. The individual powers were then incoherently summed

to estimate the total forward-emitted nonlinear power of the metasurface. These calcula-

tions were repeated for a number of pulses with central wavelengths ranging between 1000

and 1300 nm to generate the second-harmonic power spectrum, shown in Fig. 3(d). We

see excellent quantitative agreement between the FDTD simulations and the experimental

measurements.

We now estimate the values of β of the nanoprisms using the hydrodynamic plasma

model. We first calculate the nonlinear scattered power from a single nanoprism. This is

done by integrating the nonlinear scattering spectrum from a single pulse and multiplying

it by the repetition rate of the laser. If we assume that the nonlinear scattered power

PNL is purely from a dipole, we can approximate the nonlinear dipole moment by |p|2 =

12πPNL/(nc
2
0Z0k

4
0),42 where |p| is the magnitude of the nonlinear dipole moment, c0 is the

speed of light in vacuum, k0 is the wave number in vacuum, Z0 is the vacuum impedance,

and n is the refractive index of the surrounding medium. We calculate β using Eq. (5) and

plot it in Fig. 4(b). One can see excellent quantitative and qualitative agreement between

the simulation and experimental results.

As the next step, we use another numerical approach based on the nonlinear scattering

theory43,44 to calculate β. Though not as rigorous as the hydrodynamic plasma model,

nonlinear scattering theory is a simpler and more computationally efficient technique for

calculating nonlinear emission from nanostructures. Because the SHG emission was detected

only in one direction, and the detector was essentially in the far-field zone of the source of

radiation, we were able to simplify the simulations by making use of the Lorentz reciprocity

theorem.18,45 First, we obtained the local field distributions for both the fundamental and

SHG wavelengths of interest via linear simulations. The excitation field was assumed to

be a normally incident plane wave polarized along the long axis of the nanoprism. The

dimensions of the simulated nanoprism were matched with the experimental values, and the

sharp corners of the meta-atoms were rounded to mimic the actual shapes of the fabricated
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meta-atoms.

Then we calculated the generated nonlinear source polarization present on the surface

of the meta-atom. In the calculation, we used the experimentally extracted local nonlinear

susceptibility values for gold.46 The local field was transformed into the surface coordinate

system by reconstructing the surface of the meta-atom by using a Delaunay triangulation

mesh and performing subsequent field interpolation onto that surface. Once the nonlinear

surface polarization was calculated, we used the Lorentz reciprocity theorem to predict the

emitted SHG field from the meta-atom (in the forward direction) by calculating the mode

overlap integral between the SHG source polarization and the local field distribution at the

SHG wavelength.18,47 The last step was to use Eq. (5) to calculate β. The values of β are

plotted in Fig. 4(c), and agree in resonance position and in the order-of-magnitude values

with the experimental and hydrodynamic plasma model results.

Now that we have obtained values of β from the experimental data and the two numerical

approaches, we can estimate the value of the nonlinear coefficient a from Eq. (6b). We find

that a ≈ 1014 C−1, and plot Eq. (6b) in Fig. 4(d).

While we are confident in the order of magnitude of this value of the nonlinear coefficient

a, it was quite labour intensive to obtain. We now present a physically intuitive derivation for

a by applying a modified version of Miller’s rule.25 According to Miller’s rule, the linear and

nonlinear restoring forces, felt by an electron in a bulk material, will be comparable when

the charge displacement is approximately equal to the size of an atom d from which one

can obtain a rough approximation for the nonlinear coefficient.25 Here we are not dealing

with a bulk material, but with a single meta-atom, where the perturbation that we are

tracking within the RLC model is the free-charge perturbation at the surface layer of the

meta-atom, q̃(t). In this case, a crude estimate of the nonlinear coefficient may be found by

assuming that the linear and nonlinear components of the induced voltage, given by Eq. (2),

are approximately equal to each other when all the free charge contained within one atomic

layer accumulates at the surface, as illustrated in Fig. 4. We call this the equilibrium free
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charge, and it is given by

qeq = Asurfdρfree , (7)

where Asurf = 100 nm×20 nm is the maximum surface area of the side wall of the nanoprism

opposite to the acute angle in Fig. 5 (where the charge builds up), and d = 0.41 nm is the

lattice constant of gold. The free charge density of gold, ρfree, can be expressed as

ρfree = −enfree , (8)

where nfree = 5.9× 1028 m−3 is the free electron number density of gold, and e is the charge

of an electron.

Setting the linear and nonlinear components of VC in Eq. (2) to be approximately equal,

we have

qeq = aq2eq , (9)

which yields

a =
1

qeq
=

−1

dAsurfenfree

= −1.3× 1014 C−1 . (10)

We thus have obtained a physically intuitive formula for a that gives the correct order

of magnitude estimate, and is in excellent agreement with experimental and both sets of

simulation results. This procedure to estimate a is valid for any bar-like nanostructure.

From Fig. 4, we see that all four approaches yield values of β within the same order of

magnitude ∼10−30 m4/V. This agreement is very encouraging because it has been notori-

ously difficult to make quantitative predictions of nonlinear optical processes occurring in

plasmonic materials.6,27 It is worth pointing out that the simpler methods (RLC and non-

linear scattering theory), though predicting the correct spectral peak positions, are missing

some features that are visible in the experiment and hydrodynamic calculation, such as the

oscillations at longer wavelengths. These features are believed to be caused by a secondary

resonance of the nanoprisms and interband transitions in gold.
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Figure 5: Free-electrons are accumulated at the gold nanoprism’s side surface (one atomic
layer of thickness d) whose area is Asurf = w × h.

Despite the great amount of previous work on nonlinear metasurfaces, only a handful of

investigations have provided order-of-magnitude estimates of meta-atom’s hyperpolarizabil-

ities.26,48–51 We note here that our calculated values of hyperpolarizability are 2–3 orders

of magnitude smaller compared to the previous estimates of somewhat similar meta-atoms.

However, this discrepancy is not unexpected, because the experimental setups, the wave-

length ranges considered, and the investigated meta-atoms have all been different in these

studies. Here, we have investigated the coherent SHG emission from meta-atoms, whereas

earlier investigations have measured incoherent hyper-Rayleigh scattering (HRS) signals, and

have estimated the values of β indirectly by comparing the HRS signals from meta-atoms

with HRS signals measured from known solvents. Furthermore, the earlier HRS experiments

have been performed at shorter excitation wavelengths than what we have used in our study.

Because the interband transitions of gold start playing a role at wavelengths shorter than

550 nm,52 these earlier-extracted hyperpolarizability values may have contained an additional

contribution arising from the inter-band transitions.25

In addition to the consistent calculations for the hyperpolarizabilities, our results also

demonstrate the usefulness of the nonlinear RLC approach. Although the approach is simple

and intuitive, it appears to describe the dynamics of the conduction electrons adequately

enough to allow predicting the strength of nonlinear optical responses of plasmonic meta-
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atoms. The nonlinear RLC model has earlier been found to accurately describe nonlinear

responses of metamaterials at the microwave wavelengths.24 Here, we show that the RLC ap-

proach can be adapted for optical wavelengths by properly taking into account the plasmonic

behavior of metals.

Our simple RLC framework also makes it clear that the optical nonlinearity is directly

linked to the coherent dynamics of the conduction electrons, prompting more detailed inves-

tigations on that matter. This is further justified by the excellent agreement between the

free-electron hydrodynamic calculations and the experimental measurements. One can thus

conclude that the proposed RLC model can be used to predict both linear and nonlinear

optical responses of meta-atoms.

To conclude, we have demonstrated that the nonlinear equivalent RLC circuit model can

be used to quickly and accurately predict the nonlinear optical responses of meta-atoms in the

visible and near-IR spectral ranges. We fabricated four metasurfaces consisting of randomly

positioned gold nanoprisms and characterized their second-harmonic generation emissions.

We compared the experimental results with the predictions based on the hydrodynamic

plasma model, nonlinear scattering theory, and the introduced nonlinear RLC model. All

the results were found to be in good agreement. Our RLC approach provides new insights

into understanding the nonlinear responses of meta-atoms and opens new possibilities for

quickly designing nonlinear metasurfaces.

Methods

Parameters for the Nonlinear RLC Model

Formula describing the capacitance C and the inductance L of an elongated bar-

like plasmonic nanostructure: The capacitance C and inductance L of an elongated
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nanoprism can be calculated from its geometrical dimensions using equations

C = 2πε0εr
h

2
, (11a)

L =
µ0l

2π
log

4l

h
+

µ0l
ωp

2

c02
wh

, (11b)

where the self-inductance is Lself = µ0l
2π

log 4l
h

, the kinetic-inductance is Lkinetic = µ0l
ωp2

c0
2 wh

, ε0

is the vacuum permittivity (8.85× 10−12 F/m), the relative permittivity of glass is εr ≈ 3.9,

µ0 is the vacuum permeability (1.257 × 10−6 H/m), ωp = 13.8 × 1015 rad/s is the plasma

frequency for gold in the optical regime53 and c0 = 3 × 108 m/s is the speed of light in

vacuum. A similar model was proposed for a plasmonic cylindrical nanorod in Ref. [ 20].

Due to the geometrical difference of our nanostructures, our model is based on modified

equations for the capacitance and inductance.

Simulations

Linear FDTD Simulations: Linear FDTD calculations were performed to simulate the

linear transmission spectra of the metasurface using an in-house FDTD solver.41 The spec-

tra was calculated by subtracting the absorption and back-scattering cross-sections of all the

meta-atoms on the metasurface from the total area of the metasurface. The transmission

spectrum is then: T = (Ametasurface−(Aback−scatt+Aabs))/Ametasurface. The cross-sectional data

is calculated from a single meta-atom and scaled by the number of meta-atoms on the meta-

surface. A standard total-field/scattered-field layout is used to calculate the cross-sections

and the simulation domain is truncated by convolutional perfectly matched layers. The lin-

ear Drude + 2 critical points model40 is used for the optical properties of gold and accounts

for contributions from the conduction electrons and interband transitions. A broadband

raised cosine pulse41 is used as a source excitation.

Hydrodynamic FDTD Simulations: Hydrodynamic FDTD calculations were conducted

using the same in-house FDTD solver. The simulation setup is identical to that used in
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the linear transmission spectra, except that the hydrodynamic model (solved via centered

finite differences) replaces the Drude model (in the Drude + 2 critical points model) and the

source excitation is replaced with a 200 fs Gaussian pulse centered at wavelengths ranging

from 1000 nm - 1300 nm. All simulations using the in-house FDTD solver were run on the

Graham cluster operated by Compute Canada.

Nonlinear Scattering Theory: The nonlinear response of a meta-atom was estimated also

by using calculations based on the nonlinear scattering theory and the Lorentz reciprocity

theorem.18,47 The strength of the SHG emission in the direction of interest was evaluated

by calculating a mode overlap integral over the fundamental excitation and SHG emission

modes. The relevant field profiles for the fundamental and SHG fields were calculated using

the FDTD method, and the mode overlap integrals were calculated numerically using Matlab.

In the FDTD simulations the optical constant of gold was taken from [ 53]. The fields on

the surface of the meta-atom were estimated by using Delaunay triangulation, and only the

surface contributions were considered when calculating the nonlinear response of the gold.46

Fabrication

We used 2 cm × 2 cm fused silica chips as substrates. The chips were coated with bi-layer

electron-beam resist, consisting of 50-nm-thick PMMA with a molecular weight of 495 k

as the bottom layer and 25-nm-thick PMMA with a molecular weight of 950 k as the top

resist layer. The plasmonic nanostructures were then patterned using 30-kV Raith electron-

beam lithography system (CRPuO, uOttawa) with a dose of 550 µC/cm2. The patterned

resist was then developed for 2 minutes in 3:1 MIBK:IPA (Methyl isobutyl ketone-Isopropyl

Alcohol), followed by depositing a 20-nm layer of gold by electron-beam evaporation and,

finally, a lift-off by immersion in acetone. A computer-aided layout of a randomly arranged

elongated nanoprism array that was used to create the resist mask and a schematic of the

fabrication process flow are shown in Fig. S2 and Fig. S3, respectively, in the supplementary

information S2 and S3. More details are described in Ref. [ 30].
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Characterization

Linear Characterization: Linear transmission spectra of the samples were measured using

a collimated tungsten-halogen light source (experimental setup is shown in Fig. S4 in the

supplementary information S4). The incident polarization was controlled using a broadband

linear polarizing filter. The entire sample was illuminated, and the transmission from a single

device was measured by first using a lens to image the sample plane into an intermediate

image plane. The transmission from the correct device was then selected by a translating a

variable aperture in this image plane, and by using a second lens to guide the transmitted

light into the spectrometer.

Nonlinear Characterization: Signal beam from an optical parametric oscillator (Chameleon

Compact) was used to illuminate the sample metasurfaces using a spectral SHG setup de-

scribed in the supplementary information S5 (shown in Fig. S5). The optical parametric

oscillator was pumped using a Ti:Sapphire laser (Chameleon Vision II) generating 200-fs-

long pulses with a repetition rate of 82 MHz. The average power of the signal beam was kept

at 8 mW to avoid potential sample damage via accumulative heating. The SHG emission

from the metasurfaces was detected as a function of the fundamental wavelength ranging

between 1000 and 1300 nm using a power-calibrated photomultiplier tube (see Fig. S5 in

the supplementary information S5). The input beam polarization was set to be linear and

aligned with the long axes of the nanoprisms.
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Commun. 2015, 6, 7072.

(34) Huttunen, M. J.; Dolgaleva, K.; Törmä, P.; Boyd, R. W. Opt. Express 2016, 24, 28279.

(35) Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N. Chem. Rev. 2018,

118, 5912–5951.

(36) Shi, L.; Hakala, T. K.; Rekola, H. T.; Moerland, R. J. Phys. Rev. Lett. 2014, 112,

153002.
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Supplementary Information

Below is the supplementary information for Hyperpolarizability of plasmonic meta-atoms

in metasurfaces by M. Saad Bin-Alam, Joshua Baxter, Kashif M. Awan, Antti Kiviniemi,

Yaryna Mamchur, Antonio Calà Lesina, Kosmas L. Tsakmakidis, Mikko J. Huttunen, Lora

Ramunno, and Ksenia Dolgaleva. In Sec. S1, Fig. S1 shows a comparison between the

symmetric and non-symmetric nanostructures’ SHG response. In Sec. S2, Fig. S2 shows a

computer-aided design of the layout of the randomly oriented elongated nanoprisms prior to

the Electron-beam lithography process of the plasmonic metasurfaces. In Sec. S3, Fig. S3

shows a schematic of the fabrication process of the plasmonic metasurfaces. In Sec. S4,

Fig. S4 shows the experimental setup (a short description is also provided) we used to measure

the linear transmittance of the fabricated metasurfaces. In Sec. S5, we elaborately describe

the details of the experimental setup (shown in Fig. S5) used in SHG power measurement.
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S1: Effect of the Symmetric and Non-Symmetric Shapes,

and the lattice arrangement of the Nanostructures on

Second-Harmonic Generation (SHG)

Figure S1: — Dependence of SHG on Nanostructures’ Symmetric and Non-
Symmetric shapes, and the random and periodic lattice arrangement. Linear
transmission and SHG photoncount as a function of incident wavelength. (a-b) Rectangu-
lar nanobars arranged randomly, (c-d) elongated nanoprisms arranged randomly, and (e-f)
elongated nanoprisms arranged periodically in the metasurface arrays.
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S2: Computer-Aided Design (CAD) Layout of the Array

of the Randomly Arranged Elongated Nanoprism

Figure S2: — Computer-Aided Design (CAD) Image. A computer-aided layout of a
randomly arranged elongated nanoprism array that is used to create the resist mask in the
Electron-beam lithography.
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S3: Plasmonic Metasurface Fabrication Process

Figure S3: — Fabrication Process. Schematic of the fabrication process flow.

S4: Experimental Setup for Linear Transmittance Mea-

surement

Fig. S4(a) shows the schematic of the linear transmittance measurement setup. A broadband

source is collimated and is polarized using a broadband linear polarizing filter. A first iris

is optionally placed to help align the sample in the center of the beam. The beam is then

passed through the sample. The surface of the device is imaged using a lens, and a pinhole is

placed in the image plane to select the desired array. The transmitted light is collected in a

large core multimode fiber and is analyzed using an optical spectrum analyzer. Fig. S4(b-c)

shows the SEM images of a Rectangular nanobar and an elongated nanoprism. Fig. S4(d-e)

shows the corresponding transmission spectra of varying lengths (average lengths for both

shapes: l = 145, 156, 167 and 178 nm)
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Figure S4: — Linear Setup and Measurement. (a) Experimental setup for the linear
transmission measurement. (b-c) SEM images of a Rectangular nanobar and an elongated
nanoprism. (d-e) corresponding transmission spectra of varying lengths (average lengths for
both shapes: l = 145, 156, 167 and 178 nm).

S5: Details of nonlinear experimental setup

A schematic of the SHG experimental setup is illustrated in Fig. S2. A motorized achromatic

half-wave plate (HWP) and a polarizer were used to control the level of power Pω from the

OPO. Before entering the polarization-control part of the setup, the fundamental beam was

cleaned and expanded with a set of lenses and an aperture (diameter D = 25 µm). To

weakly focus the beam on the sample arrays, an achromatic lens with the focal length of
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150 mm was used, ensuring a relatively small beam waist diameter of the excitation beam

(around 100 µm) while the plane-wave approximation could still be used. To control the

input polarization, we used a high-quality polarizer and an achromatic HWP, whereas to

select the polarization of the emitted SHG light, we used a film polarizer after the sample.

Then, to pass (block) the fundamental beam, we used a 900 nm long-pass (700 nm short-

pass) filter. To efficiently collect the generated SH signal, a lens with the focal length of

16 mm was used after the sample. After being reflected by a dichroic mirror and passing

through another short-pass filter (900 nm), the SHG signal was focused on the active area of

a photomultiplier tube (PMT) module with another achromatic lens of 150 mm focal length.

For sample alignment, the light transmitted through the dichroic mirror was used to image

the sample plane with a CMOS camera and a camera lens (MVL50M23). The PMT has

been calibrated using a sensitive power meter, and the result is that 1 count/s corresponds

to 5.2 aW.

Figure S5: — Nonlinear SHG Experimental Setup. Schematic representation of the
experimental setup for measuring SHG. M mirrors, HWP motorized half-wave plates, P
polarizers, S - sample, L lenses (L1 has f = 30 mm, L2 has f = 150 mm, L3 has f=150 mm,
L4 has f=16 mm, L5 has f=150 mm, L1, L2, L3, and L5 achromats). LPF - long-pass filter
at 900 nm, SPF1 - short-pass filter at 700 nm, A film polarizer (analyzer), DM dichroic
mirror, SPF2 short-pass filter at 900 nm, PMT photomultiplier tube (PicoQuant PMA-C
192-M).
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