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ABSTRACT

JUDGING from the massive impact wireless communications made during the past
decades, there is little doubt that it will still be one of the major foundations of

contemporary society also in the future. In the context of modern radio networks,
two main goals are currently pursued. First, a more efficient usage of the extremely
scarce radio spectrum, with the aim of really exploiting the usable frequency ranges.
Second, an improved cost-effective trade-off of the physical transmitters, with the
aim of minimizing the size and cost of the involved circuitry, and also to facilitate
more power-efficient solutions which will reduce the overall expenses of wireless
networks and also aid in the reduction of carbon emissions.

In order to improve the system spectral efficiency and transmitter energy effi-
ciency, digital predistortion (DPD) and digital self-interference (SI) cancellation tech-
niques have been widely proposed in the literature, however, research in associated
low-complexity solutions is more scarce. With reduced-complexity algorithms be-
ing a new trend in 5G and beyond networks, it becomes crucial to explore solutions
which minimize the computational complexities that are involved. This claim is
motivated by the following three trends. First, the utilized signal bandwidths are
becoming wider and wider in emerging networks, thus also increasing DPD pro-
cessing rates. Second, it is a clear new preference to have a smaller base station (BS)
configuration, thus also the available power budget dedicated for front-end digital
processing techniques is reduced. Third, many solutions require fast adaptation of
the model coefficients, such as the SI channel in in-band full duplex (IBFD), or the
DPD coefficient estimation in mmW beam-steered antenna array systems.

To this end, this thesis firstly concentrates on providing several low-complexity
modeling solutions which are applicable for both DPD and IBFD applications. In
particular, four cascaded structures are proposed and combined with a complex injec-
tion-based spline-interpolation scheme, which is able to provide accurate modeling
of the PA-induced nonlinearity. Additional memory effects are modeled by elemen-
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tary linear time-invariant adaptive filters. The cascaded structures also incorporate
efficient gradient-descent-based algorithms to adaptively update the model parame-
ters. Furthermore, a look-up table-based memory polynomial (MP) structure is pro-
posed, which alternatively models the memory through a MP-like parallel branched
structure. This approach provides richer modeling capabilities, and it does not re-
quire any physical knowledge of the system under study. In the context of DPD,
three reduced-complexity signed closed-loop techniques are devised to reduce the
complexity of the learning path. Additionally, different inverse covariance matrix
estimation methods are presented in the context of a self-orthogonalized learning
system, which reduce its computational complexity even further.

Secondly, this thesis presents exhaustive and comprehensive RF verification and
validation, which, together with detailed complexity analyses, allow assessment of
the performance-complexity trade-offs of the proposed methods. In the context of
DPD, the proposed solutions are tested with two different frequency range 1 (FR-
1) and frequency range 2 (FR-2) RF measurement environments, considering also
different off-the-shelf PA systems. In all cases, it is shown how the proposed methods
enhance the energy efficiency of the transmitter, while keeping the unwanted in-
band and out-of-band distortion under the levels specified in the latest 3GPP 5G NR
Release 15. In the context of IBFD, corresponding evaluations are carried out with
two actual real-life IBFD prototypes, showing that the proposed techniques achieve
a similar cancellation to other state-of-the-art techniques, regardless of the drastic
complexity reductions.

Altogether, the strong mathematical foundations of the developed solutions, to-
gether with the obtained results, show that more efficient yet reliable transmitters
can be achieved through the proposed DPD methods, allowing for the minimization
of cost and size of the circuitry involved, and improving the energy efficiency of the
transmitter. Additionally, this thesis verifies the commercial feasibility of IBFD,
considering that the SI is suppressed. SI suppression is achieved by the proposed
methods, which bring IBFD one step closer to commercially feasible implementa-
tions.
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Ẋn Diagonal matrix containing the signal regression of x[n]

y[n] Complete output signal of a digital signal model
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1 INTRODUCTION

1.1 Thesis Motivation and Scope

DURING recent decades, there has undoubtedly been a massive increase in the
usage of wireless communications. A vast majority of devices surrounding us

have some sort of wireless data transmission, from our personal phone to our re-
frigerator, which automatically orders food by itself when the reserves are low. The
exponential demand for new applications, higher peak data rates, reliability, and a
massive number of devices connected together call for new technological solutions
which utilize more efficiently the available radio spectrum and energy resources. On
the one hand, increasing the spectral efficiency is a key aspect which has been given
special focus in recent years [10], [11], [30], [59], and this is particularly so due to
the physical limitation wireless communications suffer from. This means that the
available radio spectrum has a certain range of frequencies which can be utilized
for wireless transmission, especially for wide-area networks, and a time will come
when all these usable frequencies will have been filled. It is thus crucial to really ex-
ploit each frequency band to provide the services future society will require. On the
other hand, however, increasing the energy efficiency of the transmitters drastically
reduces the circuitry operational costs and production size. Firstly, decreasing the
associated costs benefits the telecommunication operators and component manufac-
turers, who are able to offer their products at a more reduced prize. This further
eases the deployment of machine-to-machine (M2M) communication, particularly
sought within modern fifth generation (5G) networks [61], [121], [216], facilitating
having a massive number of machine-type communication (MTC) nodes connected
together. Additionally, this also helps to connect people at an inter-personal level.
Secondly, reducing the size of the circuitry involved reduces the carbon footprint,
helping the environmental sustainability of our planet. The overall objective of this
thesis is then to provide several solutions which can potentially bring more efficient

1



spectrum utilization and more efficient transmitters one step closer to commercially
feasible implementations.

In terms of energy efficiency of any transmitter, the clear bottleneck is typically
found in the transmit power amplifier (PA). In order to ideally achieve maximum
energy efficiency from such a component, it needs to be operated in a highly sat-
urated region, or equivalently, by providing maximum output power. This, how-
ever, is not feasible in reality, as any PA presents a nonlinear input-output power re-
sponse that heavily distorts its output signal. This is particularly problematic with
modern radio communication systems, which typically build on multicarrier mod-
ulations, for instance, orthogonal frequency division multiplexing (OFDM) [131],
[237], [269]. Such waveforms are known to contain high values of peak-to-average
power ratio (PAPR), which further complicates the use of highly saturated PAs, as
the high powered peaks of the signal fall into the saturated region, producing non-
linear distortion at the PA output [247]. Any PA typically creates three main types
of nonlinear distortion: i) in-band distortion, which affects the quality of the sig-
nal itself and degrades the normalized mean square error (NMSE) and error vector
magnitude (EVM); ii) out-of-band (OoB) distortion, which is seen as a spectral re-
growth overlapping the adjacent channels in the frequency spectrum, and degrades
the adjacent channel leakage ratio (ACLR), or the ACLR measured with the total
radiated power (TRP) approach [1]; and iii) spurious emissions, which may fall over
other bands of interest beyond the adjacent channel. The maximum allowed levels
of these unwanted emissions are enforced by several associations at national and in-
ternational levels, such as the 3rd generation partnership project (3GPP) or the inter-
national telecommunications union (ITU), among others. Any commercial wireless
transceiver needs to comply with these regulations, hence exploring ways of mini-
mizing unwanted emissions is of great importance.

One plausible solution to reduce these types of unwanted distortion is to back
off the PA, or in other words, to operate it in a less saturated region, thus reduc-
ing its output power. Doing so, however, will noticeably decrease the energy ef-
ficiency of the PA, thus this is not considered as an attractive approach at all. A
more appealing solution would be to use some kind of PA linearization method,
which ensures that a high power efficiency is maintained in the PA while keeping
the unwanted in-band and OoB distortion below specified thresholds. Digital pre-
distortion (DPD) is a well-known and a widely applied PA linearization technique,
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which has been utilized since the early 90s, and has been proven to provide reliable
and flexible performance [91], [193], [237]. DPD aims at applying a digital nonlin-
ear pre-compensation to the transmit PA waveform that compensates the nonlinear
response of the PA. Many DPD algorithms have been proposed by the scientific
community, however, the research into low-complexity DPD is more scarce.

Low complexity DPD algorithms are particularly sought after in modern 5G NR
networks [10], [48], [90], and this is particularly motivated by the following facts.
First, the signal bandwidths in 5G are substantially higher compared to long-term
evolution-advanced (LTE-A) [60], [120], [123]. 5G NR considers bandwidths up to
100 MHz in frequency range 1 (FR-1) (below 6 GHz bands), and up to 400 MHz
in frequency range 2 (FR-2) (24-40 GHz bands) [1], [44], [196], which radically in-
creases also the associated DPD processing rates. Second, small base station (BS) con-
figurations, such as medium range or local area BSs, constitute a new trend in modern
networks, with associated reduced transmit powers. This translates also to a reduced
power budget for the required front-end signal processing techniques. Third, in mod-
ern FR-2 systems, the ACLR and TRP ACLR OoB emission requirements are largely
relaxed, facilitating the deployment of simpler DPD solutions. Fourth and final, so-
lutions providing continuous parameter tracking are frequently pursued, [30], [85],
[138], [207], especially in FR-2 systems and other millimeter wave (mmW) beam-
steered multi-active antenna arrays, thus reducing the complexity of the parameter
learning stage also becomes important.

With respect to enhancing spectral efficiency and/or data rates, several techniques
have been proposed. In the recently launched 3GPP’s release 15 technical specifica-
tion, a special emphasis is given to high frequency communication, where the avail-
able spectrum is still not scarce [85], [204], [212]. Another plausible approach is the
adoption of so-called multiple-input multiple-output (MIMO) transmission, which
benefits from multiple transmit/receive antennas capable of providing spatial multi-
plexing through more than one stream of useful information [6], [111], [158], [175],
[190]. An alternative solution which has gathered a lot of attention during the past
decade is the potential use of in-band full-duplex (IBFD) technology, which consti-
tutes, in part, the main topic of this thesis. An IBFD transceiver is theoretically
capable of transmitting and receiving useful information in the same frequency and
at the same time, without requiring any additional bandwidth [30], [51], [128]. This
translates to a twofold increase in terms of spectral efficiency and data rates, since the
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full-duplex transceiver can operate all the time, in contrast to a half-duplex system
where the time or frequency resource needs to be shared between transmission and
reception. This is the case in time-division duplex (TDD) or frequency-division du-
plex (FDD) systems.

IBFD is a clear candidate to be implemented in future wireless networks, but
also has associated challenges. The inherent problem of IBFD is the so-called self-
interference (SI), which occurs when the system’s own transmit signal is leaked to
the receiver chain of the IBFD system itself. This interference signal can be many
orders of magnitude stronger than the received useful signal, thus it needs to be
removed by some means in order to make IBFD commercially feasible [30], [77],
[217]. In theory, the SI can be cancelled by just removing a replica of the transmit
signal, properly scaled, from the overall received signal. However, in reality, this pro-
cess becomes much more complicated, stemming from the distortion that is injected
by all the transmitter (TX) and receiver (RX) circuitry of the transceiver, and also
stemming from the random multipath response of the coupling channel between the
transmitter and receiver. A digital SI canceller must take these effects into account,
hence these algorithms need to first model all the responses affecting the SI, to then
properly cancel its effect from the overall received signal, such that only the pure
useful signal contribution remains. Since any IBFD transceiver needs to necessarily
remove the SI contribution, it is crucial to explore ways of doing it by minimizing
the involved computational complexity.

In summary, this thesis focuses on the development of low-complexity DPD and
digital SI cancellation techniques to improve radio communication energy-efficiency
and spectral-efficiency with computationally feasible solutions. On the one hand,
DPD enables operating the PA within a highly nonlinear region, thus increasing its
power efficiency, while keeping the unwanted in-band and OoB emissions within
specified levels. On the other hand, IBFD aims at providing a twofold increase in
terms of spectral efficiency and data rates by transmitting information in the same
frequency band and at the same time, avoiding the need to share the time/frequency
resources between the transmitter and the receiver. These questions are currently
under intensive study by the scientific community, and also constitute the main top-
ics of this present thesis.
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1.2 Thesis Objectives

This thesis work focuses on both DPD and IBFD applications, but there is a common
clear objective between both, which is the design of more energy-efficient transmit-
ters, with associated lower production costs and size. These characteristics reduce
operational and production costs, and also help in reducing the carbon footprint
and hence our environment. An enhanced energy efficiency is achieved, in part, by
utilizing more efficient hardware components in the TX/RX chain of the communi-
cation devices, and more specially by using more nonlinear PAs which can provide
as high transmit powers as possible. Energy efficiency can also be achieved by op-
timizing the required algorithms which need to be executed within the device, in
order that it drains as little processing power as possible.

First, in the case of DPD, the goal is to develop novel structures and techniques
to linearize such challenging nonlinear scenarios, while minimizing the complexity.
The DPD operation can be divided in two main stages: firstly, the predistorter main
path, which needs to be continuously executed to predistort the input signal, and
thus a particularly low complexity is desired; and secondly, the DPD learning path,
which is required to perform the parameter estimation, where simple techniques are
sought in order to provide fast DPD tracking and real-time DPD running. Finally,
to fulfill this goal, the performance of the proposed reduced-complexity techniques
is analyzed through real-life radio-frequency (RF) measurements, and compared to
currently applicable regulatory requirements to show that they are indeed fulfilled,
regardless of the enhanced energy efficiency achieved in the transmit chain.

Second, in the case of IBFD, any device must inevitable perform the SI cancel-
lation in order to successfully operate, hence it is key to explore different ways of
minimizing the involved complexities, while still providing sufficient levels of SI
cancellation. The objective of this thesis is then to study different architectures and
approaches capable of minimizing the involved complexity in the digital cancellation
stage, which any IBFD device must perform. The proposed solutions are evaluated
through real-life RF measurements, which involve the use of realistic IBFD proto-
types. The results suggest that the digital SI cancellation stage can be optimized in
order to reduce the involved complexity, while maintaining sufficient levels of SI
cancellation – even when operating under a energy-efficient and heavily nonlinear
transmitter power amplifier.
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1.3 Thesis Contributions and Structure

The main contributions of this thesis can be summarized as follows:

• Four different spline-interpolated cascaded modeling architectures are propo-
sed, alongside with their corresponding decoupled gradient-based adaptive lear-
ning solutions, in [P1, P3, P5, P7], and [21], [146], [155]. Three of these
architectures are used in the context of DPD and PA linearization, and the
remaining architecture is utilized in the context of digital SI cancellation.

• A linear-in-parameters spline lookup-table memory polynomial (MP-LUT)
modeling architecture is derived, alongside with its corresponding gradient
adaptive learning solution [P1, P2, P4, P6, P8]. This model incorporates a
spline interpolation scheme in each memory polynomial (MP)-like parallel
branch, thus the interpolation order can be modified as desired to result in no
interpolation, linear interpolation, or higher-order interpolation.

• A new formulation of the DPD main path injection-based processing scheme
for models based on look-up tables (LUTs) is presented in [P1-P8] and [21],
[146], [155], [200]. This scheme removes gain ambiguities in the cascaded
modeling systems, and reduces the dynamic range of the LUT in all cases [P2,
P3], as only the deviation from unit gain is coded in the LUTs.

• Several reduced-complexity closed-loop sign algorithms are applied to classical
Gauss-Newton (GN), self-orthogonalized (SO), and block-least mean squares
(BLMS) learning solutions [P2, P6]. Specifically, the sign algorithm, sign-
regressor algorithm (SRA), and sign-sign algorithm are utilized, significantly
reducing the overall learning computational complexity.

• Several low-complexity inverse covariance matrix (ICM) estimation methods
for the SO learning solution are derived [P4, P8]. These methods focus on
the i) estimation of ICM from the autocorrelation function of the input data,
ii) approximation of the ICM by using Bussgang’s coefficients, iii) reduction
of the dimensionality of the ICM, iv) estimation of the ICM by applying a
frequency shift, and v) recursive estimation of the ICM.

• Detailed complexity analyses and comprehensive real-life RF measurement re-
sults of all proposed techniques in [P1-P8] and [21], [68], [155], [200] are
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presented throughout this thesis, which offer proof and verification of the
achieved performance and complexity reductions. This also allows for extract-
ing the performance-complexity trade-offs of each proposed method.

This thesis work presents a summary of the proposed techniques in [P1-P8], thus
only essential information and results are included herein. For a more complete ex-
planation of the system models, complexity analyses, and results, the reader is kindly
referred to the aforementioned publications. For clarity and cohesion, a slightly dif-
ferent notation from the original publications is utilized within this thesis.

The thesis is organized as follows. Chapter 2 overviews modern challenges in
wireless communications, and presents the basics of DPD and IBFD. In addition, a
state-of-the art summary of both technologies is presented. Chapter 3 first develops
the complex-valued, injection-based spline interpolation scheme, and follows with
the development of all the spline-interpolated cascaded models, alongside with their
corresponding gradient-descent adaptive learning equations. Chapter 4 overviews
the spline-based MP-LUT architecture, and, in the context of linear-in-parameters
models, introduces also the classical closed-loop GN, SO, and BLMS learning equa-
tions. In addition, the reduced-complexity sign-based algorithms and ICM estima-
tion methods are reviewed. All the proposed techniques are then evaluated in Chap-
ter 5, which provides comprehensive real-life RF measurements to test and verify
the proposed solutions. Finally, the main findings of this thesis and possible future
directions are presented in Chapter 6.

1.4 Author’s Contributions to the Publications

The research field and topic ideas carried out throughout this thesis were originally
proposed by Prof. Mikko Valkama. He has collaborated in all the publications made
by the Author of this thesis (later: the Author) by sharing his expertise, not only in
the associated technical parts, but also in the writing process. In addition, Dr. Lauri
Anttila, who has co-supervised this thesis, has also widely cooperated through the
research process, providing very useful technical ideas and extensive writing feed-
back.

The publication contained in [P5] served as a starting point for this thesis work,
in which Dr. Dani Korpi taught the Author the basics of IBFD technology, in terms
of mathematical derivations and RF experimentation. Thus, this publication was
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in part written by Dr. Dani Korpi, and in part written by the Author, while Prof.
Mikko Valkama and Dr. Lauri Anttila assisted with the writing process.

In [P1, P3, P7], regarding reduced-complexity solutions for DPD and IBFD, the
Author of the thesis performed all the mathematical derivations, system simulations,
and experimental RF measurements. In [P1], Dr. Lauri Anttila provided useful ideas
regarding the injection-based method applied in the spline interpolation scheme, and
also helped to develop more efficient spline interpolation processing. In addition,
M.Sc. Alberto Brihuega provided the initial basis regarding the configuration of the
FR-2 setup, utilized to carry out one set of experimental measurements at mmW
frequencies, as it was the first time the Author had used it. Other authors helped
with the final appearance of the paper. In [P3], M.Sc. Matias Turunen greatly helped
at the time of configuring the RF measurement setups which were utilized to carry
out the RF experimentation, although all the measurement results were carried out
by the Author. Finally, in [P7], M.Sc. Alberto Brihuega provided the idea of using
a metallic reflector to obtain the SI signal in the RX antenna. It is finally noted that
Prof. Mikko Valkama and Dr. Lauri Anttila helped with the writing process in all
the aforementioned publications.

The works contained in [P2, P4, P6, P8] were carried out in collaboration with
Huawei technologies Sweden AB. All the mathematical derivations and RF verifi-
cation were carried out by the Author, while other collaborators provided useful
ideas which helped improving the quality of the publications. Specifically, in [P2]
and [P6], Dr. Guo Yan introduced the idea of using the SRA applied to block-based
learning equations to reduce their learning path complexities. Finally, the work
in [P8] served as a starting point for [P4], where Dr. Lauri Anttila proposed the
initial research direction in Bussgang’s and autocorrelation inverse covariance esti-
mation methods. In addition, Dr. Neng Wang proposed the used of the Kronecker
notation in the Bussgang inverse covariance matrix estimation method to reduce the
inversion complexity.

In addition to these publications, the Author has co-authored a book chapter [146],
authored another journal paper [200], and co-authored the works presented in [21],
[68], [98], [155], [244], [245]. These research works are not attached to this thesis,
but constitute also part of the research activity carried out by the Author during his
research time.
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1.5 Nomenclature

Throughout this thesis, matrices are represented by capital boldface letters, e.g.,
A ∈ �M×N , and vectors are column sets, presented with lowercase boldface let-
ters, e.g., v ∈ �M×1 = [v0 v1 · · · vM−1]

T , where the subindex indicates the en-
try index. By default, matrices and vectors are assumed to be complex-valued, un-
less otherwise mentioned, with ordinary transpose, Hermitian transpose, and com-
plex conjugation denoted by (·)T , (·)H , and (·)∗, respectively. A signal regression is
represented as a column vector containing its M past samples, e.g., xn ∈ �M×1 =
[x[n] x[n−1] · · · x[n−M +1]T . Additionally, the expected value, absolute value,
floor, ceil, factorial, convolution, Hadamard product, and Kronecker product oper-
ators are written as E{·}, | · |, �·�, �·	, !, �, ◦, and ⊗, respectively.

Furthermore, recursive algorithms have an additional discrete-time variable, in-
dicated as a subindex. In the left part of the equality, this subindex is incremental,
indicating the value corresponds to the next algorithm iteration. Considering an
additional learning rate μx, an example of a complete recursive law reads

wn+1 =wn +μx · · · . (1.1)

Finally, regarding the steepest descent gradient algorithm, the gradient operator
is expressed as ∇x , indicating that the partial derivative is taken with respect to the
complex conjugate of the parameter x, i.e.,

∇x J (·) = ∂ J (·)
∂ x∗ . (1.2)
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2 BACKGROUND AND STATE OF THE ART

THIS chapter first provides an overview of emerging trends in modern wireless
communication systems, while also presenting their associated challenges and

diverse possibilities of dealing with them. After this, essential background informa-
tion regarding both digital predistortion (DPD) and in-band full duplex (IBFD) ap-
plications is provided, together with a detailed state-of-the-art summary containing
the most relevant publications in these fields, as per the Author’s knowledge.

2.1 Trends and Challenges in Modern Wireless

Communications

Wireless communications are evolving following giant steps, facilitating services and
applications that have an impact in every aspect of our lives. These services and ap-
plications require more stringent requirements as technology progresses, such that
old LTE-A networks are already struggling to satisfy these demands, and are basi-
cally reaching their performance boundaries. In the second quarter of 2019, 5G new
radio (NR) Release 15 was officially launched by the 3GPP [1], [61], which promised
higher peak data rates, increased uplink (UL) and downlink (DL) bandwidths (up to
400 MHz in FR-2, in contrast to 20 MHz in LTE), ultra reliable low-latency com-
munications (URLLC) and MTC, and a massive network capacity expansion, among
many others. 5G NR also considers a slightly modified network architecture, ori-
ented towards small-cell configuration which will support 100 times more users than
in LTE-A, in which this number was limited to 200-400 users per cell. All of these
new network aspects have a direct impact on the utilized signal processing practices,
both in the BS and in the user equipment (UE). Reduced-complexity techniques are
a new trend in 5G NR [61], [69], [220], which are pursued to increase the power-
efficiency of the BS/UE. These techniques are mainly motivated by the following
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facts or tendencies: i) As mentioned before, the signal bandwidths in 5G NR are
greatly increased with respect to LTE-A [34], [95]. 5G NR considers bandwidths
up to 100 MHz in FR-1 (below 6 GHz bands), and up to 400 MHz in FR-2 (24-40
GHz bands) [1], which radically increase also the associated processing rates; ii) in
FR-1 frequencies, a medium range and local area BS will radiate less transmit powers
compared to an old macro BS, thus the available power budget for the required sig-
nal processing techniques will also be reduced; iii) in FR-2 systems, the ACLR and
TRP ACLR OoB emission requirements are largely relaxed, being in the order of
just +26-28 dBc, facilitating the deployment of simpler DPD solutions [153]; iv) fi-
nally, as demonstrated in [30], [138] in the context of IBFD, and in [85], [129], [207]
in the context of DPD, continuous parameter tracking may be needed, especially in
FR-2 systems and other mmW active antenna arrays, where the electrical beam is
steered, thus reducing the complexity of the parameter learning stage becomes also
important.

2.1.1 PA Nonlinear Distortion Quantification

When a PA is operated in its saturated region, its output becomes distorted. Never-
theless, it is desirable to operate PAs in such regions, as the power efficiency increases
with output power. The high PAPR of modern multicarrier waveforms complicates
even more the utilization of highly nonlinear power amplifiers [55], [210], [269], as
the instantaneous high peaks of the input signals fall into a more saturated region,
producing larger amounts of nonlinear distortion at its output [37], [55]. The said
output nonlinear distortion can be characterized in three main types. The first type
is in-band distortion, which affects the quality of the signal itself, and can be reflected
in the NMSE and EVM performance metrics. The second type is OoB distortion,
which is seen as a spectral regrowth overlapping the adjacent channels, hence causing
potential disruption and interference to adjacent channel users. The OoB effect is
reflected in the ACLR or TRP ACLR performance metrics. The third kind of dis-
tortion is seen as instantaneous spurious responses that may fall over other bands of
interest which are beyond the adjacent channel.

This thesis focuses on compensating for the in-band and OoB nonlinear distor-
tion, while it is assumed that the spurious emissions can be compensated by means of
a filtering stage that attenuates the regions beyond the adjacent channels. When refer-
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ring to the OoB distortion, the ACLR metric is adopted to measure the performance
in classical wired single-input single-output (SISO) systems, while the TRP ACLR
metric is adopted to quantify the performance in FR-2 systems where an over-the-air
(OTA) active antenna array is deployed [1], [85], [191]. These metrics are explained
in the following lines.

In-band Nonlinear Distortion Quantification

The in-band distortion can be quantified through the well known NMSE and
EVM performance metrics [97], [156], [237]. These metrics can be defined as

NMSE (dB) = 10 log10

�Perror

Pref.

�
, (2.1)

EVM (%) =

√√√Perror, eq.

Pref.
× 100, (2.2)

where Perror denotes the power of the error signal, which is calculated as the dif-
ference between the measured and reference signal, and Pref. denotes the power of
the reference signal. In the case of EVM, Perror,eq. corresponds to the power of the
error signal, but is now calculated between the ideal subcarrier symbols and the cor-
responding measured subcarrier samples at the PA output, after zero forcing equal-
ization, which removes the effects of the linear distortion [60], [229], [271], and
Pref. denotes the power of the reference symbols. In this thesis work and in publica-
tions [P1-P8], both the NMSE and EVM are used to evaluate the inband distortion.
The NMSE and EVM are statistically equivalent [156], [237].

Out-of-band Nonlinear Distortion Quantification

The OoB distortion can be quantified, in turn, by using the well-known ACLR,
the metric which measures the ratio between the transmitted power in the desired
channel and the spilled power in an adjacent channel [113], [271]. The ACLR can be
presented for each left and right adjacent channels, or alternatively left as the lowest
value (i.e., most restrictive value) obtained out of those. Formally, the ACLR can be
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expressed as

ACLR (dB) = 10 log10

�Pdesired ch.

Padj. ch.

�
, (2.3)

where Pdesired ch. is the power within the desired channel, and Padj. ch. is the power
within the adjacent left or right channels. The TRP ACLR metric is used when mea-
suring the spill-over power of OTA systems. The TRP ACLR metric is equivalent
to the classical ACLR, but it is measured by integrating the powers over the whole
beamspace of the antenna array, while keeping the beamforming angle fixed [1], [42],
[85]. For simplicity, the ACLR metric, measured with the TRP method, is referred
to as simply TRP ACLR in this thesis.

2.1.2 SI Quantification in IBFD Applications

The inherent problem of IBFD technology is the self-interference (SI) leakage. In
other words, a device which is transmitting at the same time and frequency will
automatically induce a signal in its own RX chain which is many orders of magnitude
more powerful than the actual desired received signal. In some cases, the induced SI
has been reported to be more than +100 dB stronger than the desired signal [150],
[217]. In order to quantify the required SI in a generic 5G NR IBFD transceiver,
let’s consider an example modern 5G NR UE, with a maximum transmit power of
+20 dBm and a sensitivity of -90 dBm [202], [222]. This means that the TX-RX
isolation should be at least +110 dB in order to suppress the SI to the receiver noise
floor level. Another example is a local area BS, with a maximum transmit power of
+24 dBm and a minimum sensitivity of -93.7 dBm, in the most restrictive scenario.
With this configuration, the required SI suppression is in the order of +118 dB in
order to suppress the SI to the receiver noise floor level. The overall effect of the SI
signal is reflected as a decrease in the signal-to-interference plus noise ratio (SINR)
achieved by the IBFD system, and this translates to a reduction in the achievable
channel capacity. This concept is given by the Shannon Hartley theorem [215],
which relates the channel capacity, CIBFD, the signal bandwidth, BW , and the SINR
of the system, as

CIBFD = 2BW log2(1+ SI N R). (2.4)
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Note that the “2” multiplier in this expression appears only in the IBFD case, where
the capacity is in theory doubled due to the simultaneous transmission and recep-
tion (STAR) of the IBFD transceiver. It is also noted that this expression assumes
a Gaussian distribution for the interference plus noise signals, thus it constitutes an
approximation if other non-Gaussian waveforms are utilized. The concept of SI is
further explained in Section 2.3.1.

Since any IBFD transmitter must suppress the SI for proper operation, it is cru-
cial to explore ways that minimize the involved computational complexity, while
still achieving highly accurate SI modeling performance, which fulfills in all cases
the IBFD transceiver requirements. In theory, the SI can be cancelled pretty easily.
Since the transmitter obviously knows its own transmit signal, the overall process
could be done by just subtracting a replica of it, properly scaled, from the overall
received signal. Of course, this would only happen if assuming that the TX and RX
chains present a completely linear response. However, in practice, all the circuitry
components of the TX and RX chains are inducing nonlinear distortion to the trans-
mit signal, and also the multipath channel between the TX and RX makes a huge
contribution to it. The overall received SI contribution is thus heavily distorted by
several unknown responses, and this is what makes the problem of SI cancellation so
challenging. Typically, the elements contributing the most to SI distortion are the
TX PA and the SI channel. The TX PA is usually operated in its saturated region to
ensure a sufficiently high power efficiency in the transmitter, but this induces heavy
nonlinear distortion to its output signal, as already discussed earlier in this section.
The SI channel typically presents random multipath effects, which can be compen-
sated by means of elementary linear time-invariant (LTI) filters. There are also many
other impairments contributing to the SI distortion, such as the in-phase/quadrature
(I/Q) imbalance induced by the TX and RX mixers, and the nonlinear distortion of
the low-noise amplifier (LNA), among others.

In order to provide a reliable and accurate replica of the SI, digital cancellation
algorithms must take these unwanted effects into account. Hence, such techniques
should model the response of the distorting elements in the TX/RX chains of the
transceiver, and cancel them from the overall received signal in a posterior digital
cancellation stage, such that only the pure useful received signal remains.
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2.2 Digital Predistortion

The transmit RF PA is located before the antenna in any transmit communication
system, and it is a crucial element to ensure enough power is transmitted. The PA is
either linear or efficient, its efficiency increasing with its output power [58], [269].
Unfortunately, as the PA output power increases, so does its nonlinear response, thus
high levels of distortion are induced to the passing waveforms. The de-facto solution
to cope with this issue is DPD. DPD applies a nonlinear pre-transformation to the
input digital waveform capable of compensating for the in-band and OoB distortions
created by the nonlinear PA. Generally, any DPD system is divided into two stages:
the DPD main path, which applies the predistortion to the input digital signal, and
the DPD learning path, which estimates and updates the DPD coefficients.

2.2.1 Basics of DPD

In the following sections, the essential and basic background of DPD is reviewed,
including fundamental nonlinear models and system architectures. This background
will facilitate the development of the posterior proposed DPD models and solutions,
with the aim of reducing the involved computational complexity.

Nonlinear Models for Digital Predistortion

In general, PA nonlinear models can be divided into two types: physical models
and behavioral models [58], [177], [187], according to the available physical knowl-
edge of the PA internal circuitry. On the one hand, physical models take into ac-
count the internal PA equivalent circuit, with associated current and voltages to
create a very accurate nonlinear equivalent circuit description. This method pro-
vides accurate results, however, it is often very time consuming and computationally
heavy. On the other hand, behavioral models consider the PA as a black-box model,
just relying on its input-output relation to extract the DPD coefficients. These mod-
els are generally less accurate than physical models, and their precision will also de-
pend on the chosen parameter estimation procedure [91], [177]. In this thesis, the
latter approach is adopted, since it provides simpler solutions which are more suit-
able for reduced-complexity and real-time or fast-tracking DPD solutions.
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Polynomial-based approaches are the most widely used behavioral models for PA
model identification [91], [133], [237]. These models are known to be linear-in-
parameters [91], [134], [270], thus they constitute simple solutions for DPD, and
also have good approximation capabilities with the extra possibility of adding or
removing memory terms as desired [50], [136], [248]. The most general polynomial-
based model is the Volterra approach, also known as the Volterra series [29], [104],
[267], [268]. Considering a polynomial order PV, a memory depth MV, and naming
the Volterra kernels as fp,m1,m2,··· ,mp

, the discrete time input-output relation of this
model reads [177], [237]

yV[n] =
PV∑

p=1
p odd

MV∑
m1=0

MV∑
m2=m1

· · ·
MV∑

m p+1
2 =

m p−1
2

· · ·
MV∑

m p+3
2 =0

· · ·
MV∑

mp=mp−1

fp,m1,m2,··· ,mp

×
p+1

2∏
i=1

x[n−mi ]
p∏

k= p+3
2

x∗[n−mk], (2.5)

where only odd-order nonlinear products are considered [70], [104], [177]. Unfortu-
nately, the number of basis functions (BFs) of this model is massive, and grows expo-
nentially with the nonlinearity order and memory depth, thus it is unfeasible to use
without any complexity-reduction technique, as the ones presented in [38], [266],
[272]. Also, different subsets of the Volterra series with a reduced number of BFs
can be used, such as the generalized memory polynomial (GMP) model [174], [188],
[193], or the classical MP model, whose input-output relation simply reads [74],
[135], [237]

yMP[n] =
MMP−1∑

m=0

PMP∑
p=0
p odd

αm, p x[n−m]|x[n−m]|(p−1), (2.6)

where PMP is the polynomial order [82], [157], MMP is the memory depth, and αm, p

are the MP coefficients.
There are also several cascaded structures that can be used to model the nonlinear

behavior of the PA, the two most common examples being the Hammerstein and
Wiener systems, conceptually presented in Fig. 2.1. The Hammerstein system in-
corporates an instantaneous nonlinear block followed by an LTI elementary block,
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(a) A Hammerstein architecture.
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(b) A Wiener architecture.

Figure 2.1 A conceptual illustration showing the block diagram of the (a) Hammerstein system model,

and (b) Wiener system model.

which ideally models a system whose structure is alike. The elementary blocks in
the Wiener system are inverted, as shown in Fig. 2.1b.

Assuming that the memoryless nonlinearity is implemented with a polynomial
expression, and the LTI block with an finite impulse response (FIR) filter, the input-
output relation of the Hammerstein and Wiener models read [92], [177], [224],
[225], respectively

yH[n] =
MH∑

m=0
wm

PH∑
p=0
αp x[n−m]|x[n−m]|p , (2.7)

yW[n] =
PW∑
p=0
αp

� MW∑
m=0

wm x[n−m]
�					

W∑
m=0

wm x[n−m]

					
p

, (2.8)

where wm are the LTI filter coefficients, and αp are the polynomial nonlinear co-
efficients. It is noted that many other cascaded structures can be used for DPD,
such as the Hammerstein-Wiener or Wiener-Hammerstein, which are studied later
in this thesis. Cascaded approaches typically have a lesser number of adaptation
coefficients, thus their complexity is generally decreased with respect to linear-in-
parameters polynomial-based models with memory [94], [166], [225]. However,
they require physical knowledge of the system, which is not always known.

Another alternative approach to model the nonlinear PA is to use LUT-based
models [130], [163], [173], [207], [264]. Out of these, the two most common ap-
proaches are the simple LUT and the nested LUT models, presented conceptually
and respectively in Fig. 2.2. The simple LUT method – Fig. 2.2a – forms the basic
behavioral model for memoryless PA nonlinearities, and simply applies a complex-
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(a) An LUT model.
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(b) A nested LUT model

Figure 2.2 A conceptual illustration showing the block diagram of a (a) LUT model, and (b) nested

LUT model.

value gain to the input waveform as

yL[n] =G(|x[n]|)x[n], (2.9)

where G(|x[n]|) is the complex gain, which depends on the magnitude of the in-
put signal. Such complex-valued gain is generally stored in two real-valued LUTs.
On the other hand, the nested LUT scheme – Fig. 2.2b – was proposed to enhance
the modeling capabilities of the former LUT model by adding memory effects [63],
[114], [243]. To this end, the complex LUT gain is now a function of the instanta-
neous input sample plus an additional ML − 1 preceding samples. This way, ML is
the total amount of memory considered in the model, and its input-output relation
reads

yNL[n] =G(|Xn |)x[n], (2.10)

where now the complex-valued gain G(·) is a function of the input data vector Xn ∈
�ML×1 = (x[n] x[n−1] · · · x[n−ML+1])T . This method, however, requires storing
an increased number of LUT entries, specifically K ML+1, K being the number of LUT
entries required in the simple case. An additional feature to add to a LUT model is an
interpolation scheme [163], [189], which generally improves the approximation of
the inverse of the PA’s nonlinear characteristics by reducing the quantization error,
while still maintaining a low number of LUT entries.

There are many other possible alternatives to modeling the nonlinear behavior
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of a PA, which are not discussed within this thesis. In order to provide some insight,
other example approaches could be artificial neural networks (ANN) [126], [167],
[168], [186], [201], or the relatively new nonlinear auto-regressive moving average
models (NARMA) [93], [96], [177], [195], [213]. The reader can find further details
of these models in the provided articles and in references therein.

DPD Learning Architectures

This subsection presents the main DPD architectures which are used for DPD
coefficient estimation. These schemes are the direct learning architecture (DLA), in-
direct learning architecture (ILA), and closed-loop architecture, and are conceptually
presented in Fig. 2.3, respectively.

First, the DLA is divided into a two-step process. In the first step, the PA di-
rect model is estimated from the PA input and PA output signals, as depicted in
Fig. 2.3a. In the second step, this estimate is directly inverted to be used as the DPD
correction [7], [72], [135], [159], [177]. Examples of approaches for inverting the
PA estimate are the pth-order inverse of nonlinear systems [165], [227], or the use
of iterative inversion algorithms [7], [28], [72], [265]. One clear drawback of the
DLA architecture is that the estimation of the PA inverse becomes more complicated
when additional memory effects are considered in the DPD model, and inaccuracies
in this process result in an accentuated performance degradation. This is the reason
why this model is usually limited to memoryless systems. The DLA is said to be an
open-loop technique, as the DPD function does not affect the coefficient estimation.

Second, the ILA is considered as one of the most widely used DPD schemes, as it
is a very simple yet potent solution [22], [91], [177], [194]. In the ILA, the PA model
post-inverse is extracted from the PA input and output signals, by comparing them
and minimizing the generated error signal [19], [73], [83], [189], [249], [253] (i.e.,
if the error signal was zero, the PA input would equal the PA output), as depicted
in Fig. 2.3b. In the digital post-distorter, the inverse PA nonlinearity is directly esti-
mated. Such an inverse response is then directly copied to the pre-distorter, assuming
that the pre- and post-estimations are equal. This approach avoids the inversion step
which was required in the DLA, thus providing a very simple solution for linearizing
nonlinear systems. However, it also has some drawbacks. In theory, the pre-inverse
and post-inverse are not necessarily equal, when considering the exact inverse of a
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(a) Direct learning architecture (DLA).
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(b) Indirect learning architecture (ILA).
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(c) Closed-loop learning architecture.

Figure 2.3 State-of-the-art DPD learning architectures most often utilized.

nonlinear system [184]. Also, the inverse function is undefined in saturated regions,
as it may tend to infinity. This can be solved by just considering a specific threshold
with respect to the input envelope, so that the DPD solution converges [177], [184].
The ILA is also an open-loop technique, with the DPD function not affecting the
coefficient adaptation. Both open-loop DLA and ILA techniques are also referred to
as self-tuning regulator architectures [177], [199].
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Third, the closed-loop architecture estimates the DPD coefficients directly from
the input system signal and PA output signals [38], [40], [189], [207], as depicted
in Fig. 2.3c. This is done by generating the so called closed-loop error signal [P2,
P4], which essentially contains the PA distortion. This error signal is then used to
update the DPD coefficients, such that the PA output distortion is minimized [177],
[184], [257]. This architecture is also known as a model reference adaptive system
(MRAS) [35], [177], and forms a closed-loop technique, as the DPD function is inside
the estimation block.

2.2.2 State-of-the-art in DPD and Linearization Techniques

This section presents a short summary regarding the state of the art in low complex-
ity DPD techniques, as per the Author’s knowledge up to date. The state-of-the-art
summary begins with classical DPD approaches, which are applicable to any SISO
device, and basically gather the most general and known predistorting solutions ex-
isting today. Then, a specific focus is given to low-complexity DPD approaches,
where other alternative solutions focusing on reduced-complexity approaches are
presented.

General DPD and Linearization Techniques

Digital predistortion and PA linearization techniques have been studied since the
early 90s, resulting in many approaches which are generally considered by the scien-
tific community as effective ways to increase the energy efficiency of TX PAs, while
still transmitting high output power levels [8]. Some of these approaches are the
Volterra-based series [38], [87], [91], [267] and its multiple subset models, such as
the GMP [91], [193], [237], or MP [5], [91], [135], [237]. These methods usually
provide robust and reliable DPD estimation, but also involve a substantial compu-
tational complexity, which poses a challenge for real-time DPD applications. These
models are introduced at the beginning of this chapter as classical approaches, thus
they are not reviewed in detail herein.

Reduced-complexity Cascaded Linearization Techniques

Cascaded nonlinear models are built upon serial connections of instantaneous
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nonlinearities and LTI filters [71], [73], [91], [122], [132], [166], [255]. The main
benefit compared to the linear-in-parameters models is that the model complexity in
terms of number of coefficients is usually much smaller, although their estimation
step is typically more complex. One recent example is provided by Dr. Scarpiniti
and his research group, who have been recently studying cascaded structures ap-
plied to PA behavioral modeling [224]–[226]. In [225], they proposed the use of a
Hammerstein structure in combination with a spline interpolation scheme to reduce
the number of modeling parameters, compared to classical polynomial approaches.
The work in [224] was equivalent, but proposed a Wiener-type structure instead.
In [226], they further explored additional combinations of the Hammerstein-Wiener
and Wiener-Hammerstein structures to enhance modeling capabilities, while also
maintaining a low modeling complexity. Another example can be found in [260]
by Dr. Younes et al., where the use of a three-box model consisting of a memo-
ryless LUT, a memory polynomial, and an envelope memory polynomial (EMP),
connected in parallel, was proposed. This model was basically an extension of the
twin nonlinear two-box (TNTB) model, previously presented in [112], and it aimed
at extending the cross-terms of the MP model with the addition of the EMP process-
ing. Additionally, the nonlinear order in the MP model could be reduced as well,
considering just a mild nonlinearity, as the LUT models the highly nonlinear be-
havior of the PA. This work was oriented to reduce the overall complexity in the
predistorter. A third example is provided by Wu et al. in [255], where a parallel
amplitude-to-amplitude modulation (AM/AM) and amplitude-to-phase modulation
(AM/PM) spline-based Hammerstein architecture was configured for DPD applica-
tions. In this work, it was demonstrated how the number of parameters to adapt was
reduced thanks to the cascaded structure. The coefficient adaptation was done with
a least squares (LS) technique, which involved a quite heavy computational complex-
ity in the learning stage.

Reduced-complexity LUT Linearization Techniques

LUTs can be used to implement arbitrary nonlinear functions, and they are often
used in low-complexity DPD implementations [9], [62], [91], [105], [130], [189],
[207], [264]. Typically, LUTs are used in memoryless DPD systems, to implement,
for instance, the complex nonlinear gain function of the predistorter, or the AM/AM
and AM/PM responses of the PA. LUTs can also be used as building blocks of other
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nonlinear models to replace their polynomial computations. The accuracy of LUTs
is generally proportional to the LUT size. However, the larger the LUT, the longer it
will take to train all table entries, thus it is important to minimize the LUT size [46],
[65]. To this end, Prof. Cavers [46] studied the optimum table spacing in LUT-
based predistorting methods, by deriving an optimum companding function for the
signal amplitude which minimizes the table size. Another approach to minimize
the LUT size is interpolation of the output values. In the literature, linear inter-
polation [86], [189], quadratic interpolation [163], and spline interpolation [100],
[224]–[226] have been applied to minimize the size of LUTs, with linear interpola-
tion being the simplest technique out of these. These schemes allow reduction of
the entry-size in the LUT, as well as speed up the LUT convergence, at the cost of a
small increase in the processing complexity.

There have been many works that have addressed the memory addition to LUT-
based predistorters. Nested LUTs are a typical solution [91], [264], but the LUT
entries increase exponentially as memory terms are added. One example is the 2D-
LUT proposed by Zhi-yong et al. in [264], where the power average of an arbitrary
number of past samples was used to address the vertical and horizontal dimensions
of the 2D-LUT. Another example was proposed by Dr. Jardin et al. in [130], who
configured an additional codebook of filters after the LUT to add memory effects,
addressed by the index of the LUT itself, while maintaining low processing com-
plexity. This model can be seen as a Hammerstein-type architecture, but with an
amplitude-dependent linear filtering part. In this work, the LUT does not have any
interpolation, thus producing large LUT sizes, but still low compared to those of
the nested LUT models. In [180], Dr. Ma et al. proposed an MP-LUT-based DPD
model capable of compensating for the nonlinear and memory behavior of the PA.
This structure avoided the use of nested LUTs, as the memory was intrinsically added
by the MP branched structure. However, in the DPD learning update, all the LUTs
appearing in each branch needed to be independently updated to provide an accurate
memory correction.

Other Relevant Low-complexity State-of-the-art DPD Techniques

In this subsection, some other relevant works regarding low-complexity DPD
are noted. A special mention is given to DPD hardware implementations, with em-
phasis on field programmable gate array (FPGA) and graphics processor unit (GPU)
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works [36], [47], [105], [124], [137], [154], [261]. Commonly, the implementabil-
ity of the DPD methods inherently implies a somewhat low complexity of the al-
gorithms, as the resources in those devices are usually well constrained and limited.
Good examples of hardware implementations can be found in [105], [161], [207].
In [207], Dr. Presti et al. proposed an FPGA implementation with the goal of
maximizing the modulated output power and power-added efficiency while main-
taining target ACLR numbers. Furthermore, in [105], Dr. Guan et al. presented
an FPGA implementation of a DPD model based on dynamic deviation reduction
(DDR) Volterra series. Finally, Dr. Li et al. presented in [161] an augmented paral-
lel Hammerstein model implemented in a GPU, which was capable of compensating
for the PA distortion, I/Q imbalance, and local oscillator (LO) leakage, inherently
present in direct-conversion transmitters.

Finally, an additional short mention is given to sample-rate reduction methods.
By oversampling the input signal, the aliasing issue is mitigated, as the new limit set
by the Nyquist frequency accommodates also the signal frequencies produced by
the nonlinear functions. However, using oversampling may lead to excessively high
sample rates and processing complexities, due to the need for interpolation and dec-
imation filters, which at the same time also increases the memory depth required in
the DPD. Hence, there are several studies in the literature that focus on decreasing
the required DPD sampling rates. Specifically, Dr. Ying et al. proposed in [172]
an expansion of the real-valued Volterra series by introducing a set of band-limiting
filter functions. By applying bandpass filtering corresponding to the band-limiting
produced by the functions on the PA output, the linearization performance of the
DPD is unaffected by the band-limiting scheme. A subsequent work was presented
in [262], which showed good linearization performance even with low bandwidths
for the feedback path if the PA output was bandpass filtered. In [234], the band-
limited MP model was revised, making the cavity filter redundant, and a modified
LS learning scheme was adopted. This work was further extended to an FPGA im-
plementation in [250]. These methods focused on the band-limitation of both the
main and learning paths, but it is also possible to just band-limit the feedback path,
as described in [39], [72], [107], [171], [179] and references therein.
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Figure 2.4 A complete direct-conversion IBFD architecture, showing both separate and shared TX/RX

antenna configurations. The RF and digital cancellation stages are also shown.

2.3 Digital SI Cancellation for IBFD Transceivers

IBFD technology constitutes a recent discovery in the world of modern wireless
communications, aiming to double the spectral efficiency by transmitting in the
same frequency band and doing so at the same time. This technology can really boost
the data rates in future wireless communication systems, but also poses several new
challenges [30], [51], [53], [77], [145]. The most critical one is the self-induced SI
signal, which is inevitably leaked from the TX node into the RX node. For proper
IBFD operation, this problem needs to be dealt with, and hence it is also important
to explore ways to deal with it by minimizing the involved computational complex-
ity [81], [141]. The SI problem is discussed in depth in the the next subsection, and
constitutes also one of the foci of this thesis.

2.3.1 Basics of Digital SI Cancellation

In order to build the theoretical background for studying digital SI cancellation,
an example showing a complete IBFD architecture is depicted in Fig 2.4, showing
also the RF and digital cancellation stages. This architecture can be configured with
two different physical configurations: either separate TX and RX antennas in the
TX/RX nodes, or a shared TX/RX antenna [15], [30], [140], [144]. With the for-
mer configuration, RF isolation can be obtained by strategically placing the antennas
such that the TX leakage is minimized. One example is the use of a back-to-back re-
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lay antenna as the one utilized for the experimental verification of this thesis [P3,
P5]. With the latter, RF isolation can be achieved by using a duplexer or a circula-
tor, which permits bidirectional communication over a single path [181], [205]. A
circulator is capable of providing +30-40 dB of signal attenuation between the iso-
lated ports, while presenting an insertion loss of just+0.3-1 dB for the desired signal
path [205]. Another solution that allows for sharing a common TX/RX antenna is
to use an electrical-balance duplexer (EBD), as the one used in [21]. An EBD builds
upon a hybrid junction that connects the TX node, RX node, antenna port, and
balancing impedance circuit port, and its TX/RX isolation is based on the accuracy
of the impedance matching between the antenna and the impedance-balancing net-
work [164], [182]. Additionally, an EBD can be easily implemented on a chip, and
thus constitutes a good alternative for handheld devices. An EBD, however, is in-
herently narrow-band, and requires active tuning to track the antenna impedance at
all times, thus it constitutes a power-driven component, in contrast to a circulator
which is just a passive element.

Digital self-interference cancellation (DSIC) in IBFD is no more than a direct
modeling problem, where the digital SI canceller aims at modeling the complete TX
signal, from the TX digital-to-analog converter (DAC), all the way to the RX analog-
to-digital converter (ADC). It then removes the generated replica from the complete
received signal, ideally leaving only the desired signal contribution [53], [77], [142].
The most critical components in an IBFD device are the TX PA and the SI chan-
nel between the TX/RX antennas, or alternatively the circulator leakage. Since the
TX PA typically exhibits deep nonlinear effects, stemming from the high satura-
tion powers set to maximize its power efficiency, the overall SI modeling is also a
nonlinear problem [12], [209], [217]. To tackle this issue, many different nonlinear
models can be adopted [26], [121], [139], [142], as the ones already introduced when
reviewing basic models for DPD. These models also constitute classical approaches,
while novel and less complex solutions are derived within the next chapters of this
thesis. The proposed models are applicable to an IBFD device having two separate
antennas, shared antennas, or utilizing an EBD.

The overall received signal in an IBFD device contains the useful signal to be de-
modulated and its own SI, leaked from the TX chain of the transceiver. The overall
scheme of the TX/RX of an IBFD transceiver is depicted in Fig. 2.5, showing all the
involved signals. The baseband model of the received signal, z(t ), can be mathemat-
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Figure 2.5 Conceptual illustration of the involved signals in a generic baseband IBFD transceiver,

before and after the ADC/DAC.

ically expressed as

z(t ) = d (t )+ zn(t )

= r (t )+ hSI(t ) � xTX(t )+ zn(t )

= r (t )+ xSI(t )+ zn(t ), (2.11)

where d (t ) is the received signal, containing both the desired component (i.e., r (t ))
and SI component (i.e., xSI(t ) = hSI(t ) � xTX(t )), zn(t ) is random noise, hSI(t ) is the
SI channel response, and xTX(t ) is the TX output signal. After having estimated the
SI signal, the digital SI canceller removes it from the overall digitized received signal,
z[n], and thus the final expression of the received signal after the digital canceller is

z[n] = d [n]− x̂SI[n]+ zn[n]

= r [n]+ xSI[n]− x̂SI[n]+ zn[n]

= r [n]+ e[n]+ zn[n], (2.12)

where x̂SI[n] is the SI estimate, and the error signal e[n] is caused by the imperfect
DSIC performance. The SI estimate is typically generated by using signal models
which take into account both the nonlinear response of the TX PA and the SI mul-
tipath channel. However, there exist other models that take into account further
components appearing in the TX/RX chains. One particular example is the pro-
posed spline-based Hammerstein-Wiener (SPHW) model presented in Section 3.5
and in [P7], which also considers the nonlinear response of the RX LNA, further
enhancing the DSIC performance in selected scenarios.
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2.3.2 State-of-the-art in Digital SI Cancellation

Transmitting and receiving at the same time and in the same frequency band is a
type of communication that has been explored for already many years. Early de-
ployments of radar technology date back to the 1940s, with the works in [27], [211],
[233] being good examples of them, and [223] presenting a survey summarizing sev-
eral post-war radar developments. The said works focused on STAR technology in
continuous-wave and frequency-modulated radar, which transmit pulses that hit the
targets to be detected, and are then bounced back to the radar system itself. Such
a system receives the echoes while still uninterruptedly transmitting its own pulses
to track or detect more targets. The main challenge of radar technology has always
been the self-induced signal leaked into the receiver of the system itself, as a result of
its own transmission. Obviously, the magnitude of this self-induced signal is signifi-
cantly stronger than the echoes received from the targets, thus some kind of isolation
procedure needed to be implemented. Early approaches typically used two separate
TX and RX antennas, which provided certain isolation between the TX and RX
system chains. This, on the other hand, generated also other challenges, as with two
separate antennas additional fixed-target and moving-target interference arises [27].
Fixed-target interference is generated when the transmit signal is bounced back from
a fixed object, such as a mountain or a building, hence having the same frequency
as the transmit waveform. Moving-target interference is caused by a moving target
bouncing the transmit waveform back with a different frequency, resulting from the
Doppler effect [27]. These added problems, together with the own self-induced sig-
nal resulted in an overall low TX/RX isolation, causing early radar applications to
suffer from reduced transmit powers, and hence an overall reduced detection distance
range.

Since the early 90s, STAR technology has begun to be explored also in the context
of radio communications. In fact, the aforementioned self-induced signal problem in
early radar deployments is rather similar to the modern SI appearing in IBFD tech-
nology. Since any IBFD device must perform the SI cancellation to become commer-
cially feasible, many results and developments can be taken from radar technology,
and be also applied to IBFD. Ever since the aforementioned papers, many advances
have been made regarding SI cancellation, and now it undoubtedly is a topic under
intensive research by the scientific community, as the usage of IBFD technology is a
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clear candidate for future wireless communications.
The vast majority of modern existing DSIC works consider the effect of the TX

PA nonlinearity in combination with the self-interference channel, since they typ-
ically induce the strongest effect in the SI signal out of all the TX/RX chain com-
ponents. Because of the nonlinear effect of the PA, SI cancellation techniques using
purely linear cancellation approaches do not provide sufficient SI cancellation per-
formance [30], [143], [162]. There are also many works in the literature which take
into account further hardware imperfections, such as the TX/RX I/Q mismatch or
the nonlinear effect of the RX LNA [138]. All of these works are reviewed in the
following lines, especially focusing on time-domain digital SI cancellation, although
SI cancellation has also been explored in the frequency domain [16], [53], [54].

The works presented in [20], [30], [79] focused on cancelling the SI signal under
strong PA-induced nonlinear distortion. Specifically, the work in [30] considered
an IBFD transceiver implemented with a circulator and hence a single antenna. In
this system, the SI linear channel contribution was estimated with a linear system of
equations that considered the transmitted packet preambles as known. The nonlin-
ear TX PA contribution was estimated with a simple memoryless polynomial, thus
assuming that no memory was generated by the PA. In [20], Dr. Anttila et al. pro-
posed a parallel Hammerstein approach to model both the effects of the nonlinear
TX PA and the SI channel. In general, the parallel Hammerstein model has been
reported to be a versatile yet reliable solution for behavioral modeling of PAs [75],
[127], and it was seen to be a robust approach also in the context of IBFD. The pro-
posed technique made it possible to transmit higher levels of TX power, while the
TX PA nonlinearity and the SI channel were compensated by the proposed DSIC.
Finally, the work by Emara et al. in [79] proposed a GPU implementation of a IBFD
transceiver with a single antenna and a circulator. In this work, both of an analog and
digital cancellation stages were used. The authors utilized a classical MP approach
to model the PA-induced nonlinearity and channel response, with a transversal re-
cursive least squares (RLS) to adapt the MP coefficients, which was based on [80].
The total amount of achieved SI cancellation was +90 dB, out of which the DSIC
achieved +36 dB.

There have been also some works which merge DPD with IBFD in order to re-
duce the complexity of the SI cancellation stage. In theory, DPD reduces the overall
nonlinear distortion induced by the TX PA, thus a simpler DSIC can be used in the
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resulting transmitter. Examples of these techniques can be found in [23], [102], for
instance. Overall, these works proposed the use of a memory polynomial to pre-
distort the signal prior to the SI cancellation stages. The DPD model reduced the
side lobes of the overall transmit waveform, and the DSICs were able to achieve an
enhanced cancellation performance when compared to the case where no DPD was
applied.

In [12], [25], [32], [147]–[149], [152], [219], the reader can find examples of
DSICs which aim to cancel further hardware impairments, such as I/Q imbalance
or LNA distortion. The I/Q imbalance problem specially happens in direct conver-
sion architectures (or homodyne architectures), where the signal is upconverted and
downconverted directly from/to baseband to/from RF [30], [77], [145]. In this type
of architecture, the image signal corresponds also to the desired signal itself, and the
non-perfect self-image rejection effect is found as a transformation of the original sig-
nal constellation. Hence, the image rejection requirements are not very high, with
+30-40 dB being sufficient in most practical cases [53], [143]. Nevertheless, other
I/Q compensation techniques can be applied to further mitigate the self-induced im-
age effect [18], [20]. In general, the DSIC proposals which also aim at cancelling the
I/Q imbalance effect are able to enhance the cancellation performance, but also have
the cost of increased computational complexity. On the one hand, the techniques
presented in [148], [219] constituted advanced DSICs aiming at compensating for
the I/Q impairments produced in the TX and RX mixing stages. These techniques
utilized the widely linear cancellation principle to take this into account. For the
coefficient estimation, LS was used in [148], while an adaptive filtering technique
which minimized the error signal between the original and regenerated SI signal was
used in [219] to facilitate continuous tracking. On the other hand, the techniques
studied in [12], [147] focused on compensating for the nonlinear LNA effect. Both
techniques utilized polynomial functions to model the RX nonlinear distortion, as
also presented in [103], and used a linear LS algorithm to estimate the model coeffi-
cients. In [147], a design of an improved compact relay antenna with a monoplane
rotation of +45º was also introduced and shown to improve the RF isolation to a
minimum of +55 dB. The work presented by M.Sc. Kurzo et al. in [152] presented
an ANN scheme for cancelling the SI signal, alongside with its corresponding main-
path FPGA and application-specific integrated circuit (ASIC) implementation. The
SI cancellation was divided into two stages: a standard linear cancellation procedure
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to regenerate the linear SI component, and a two-layer ANN to reconstruct the non-
linear part of the SI. With the hardware implementation, it was demonstrated that
the ANN achieved higher throughput with an overall lower resource usage. A sim-
ilar work was presented in [24].

It is finally noted that further good examples of DSIC prototype implementations
can be found in [14], [49], [78], [81], [110], [128], [160], [231], [235], [254], and
references therein.
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3 SPLINE-BASED CASCADED MODELS

THIS chapter presents different injection-based and spline-interpolated cascaded
models to be used for either digital predistortion (DPD) or in-band full-duplex

(IBFD) applications, among others. In particular, Hammerstein, Wiener, Wiener-
Hammerstein, and Hammerstein-Wiener architectures are presented, alongside their
corresponding gradient-based parameter estimation learning stages.

The contents of this chapter are based on the discoveries found in the publications
[P1, P3, P5, P7], as well as on the works presented in [22], [41], [64], [71], [130],
[163], [189], [206], [221], [224]–[226], [241], [255].

3.1 Review of B-spline Interpolation Theory

This section presents the basics regarding B-spline interpolation theory. B-spline
interpolation is first presented in the context of real-valued data, and is then extended
to the complex-valued case to be also used with complex-valued I/Q signals.

3.1.1 Real-valued B-spline Interpolation

Spline interpolation schemes build on piece-wise polynomials, which interpolate
through an arbitrary set of points generally known in this context as control points,
having smoothness and continuity constrains imposed on the connecting points [64],
[218]. Taking such piece-wise approaches poses several advantages, compared to clas-
sical polynomial models where a high-order expression is utilized to model the whole
input data range. The main advantage is that simpler and lower-order functions can
be taken per individual region in the model [9], [183], [206]. The use of lower-order
functions essentially translates to reduced associated complexities [189], [225], [255],
as multiplications rapidly increase with the polynomial order. It also allows for bet-
ter conditioning of the estimation problem, obtaining a lower condition number in
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the regression matrix [256] that avoids the need of prewhitening or orthogonaliza-
tion [P1]. Also, a different spline order and memory parametrization can be taken
per individual model region, depending on the desired modeling accuracy in each.

In order to build this particular piece-wise approach, let us define a set of knots
which divide the input data range into exactly N SP regions, as T= {t0, t1, · · · , tN SP},
mapping to regions i = {0,1, · · · ,N SP− 1}. Additionally, the knot sequence is con-
strained to be non-decreasing, i.e., t0 < t1 < · · ·< tN SP [206]. In the context of both
DPD and IBFD, an equi-spaced spline interpolation scheme is assumed, which al-
lows for simpler input-output relations and simpler update equations in posterior
models [224], [225]. Hence, the region width is defined asΔ= ti+1− ti ,Δ> 0, and
is considered invariant within regions.

The construction of a B-spline interpolation scheme can be generalized to any
number of regions N SP, any number of control points, and any spline polynomial
degree P . The B-spline curve fitted in each segment, [ti , ti+1), is an affine combina-
tion of P + 1 curves that form the overall polynomial in the corresponding region
i . The P th-degree spline basis function characterizes each of these curves, and it is
given by the De Boor recursion [64], defined as

N P
i (u) =

u − ti

ti+P − ti
N P−1

i (u)+
ti+P+1− u

ti+P+1− ti+1
N P−1

i+1 (u), (3.1)

where the basic 0th-order basis function, N 0
i (u) can be expressed as

N 0
i (u) =

⎧⎨
⎩

1 if ti ≤ u < ti+1,

0 otherwise.
(3.2)

It is noted that each spline basis function, N P
i (u), is non-zero exclusively in the

interval [ti , ti+P+1). Additionally, the spline basis functions N P
i (u) in different re-

gions are just shifted versions of each other, i.e., N P
i (u) = N P

0 (u − i ). The B-spline
basis functions N 0

i (u), N 1
i (u), and N 2

i (u), corresponding to P degrees 0, 1, and 2,
respectively, are showed conceptually in Fig. 3.1. The complete B-spline curve in an
arbitrary region i can be obtained by combining the P+1 spline blending functions
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Figure 3.1 B-spline basis functions N 0
i (u), N 1

i (u), and N 2
i (u), of order 0, 1, and 2, respectively.

Equi-spaced knots are assumed.

as

γ (u, i ) =
i∑

n=i−P

N P
n (u)qn , (3.3)

where qn is the control point which is weighing each spline curve.
A more generic expression of γ (u, i ) can be obtained by formulating it with a two-

vector inner product, and by further substituting each spline basis matrix shown in
(3.8). Its final form, for each spline segment, reads

γ (u, i ) =


uP uP−1 · · · 1
�

CP

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

qi−P

qi−P+1
...

qi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.4)

where CP ∈ �(P+1)×(P+1) is the B-spline basis matrix, which is directly obtained
from the De Boor recursion and depends on the curve order P and region width
Δ. Examples of this matrix for B-spline orders P = 1, · · · , 3 are shown in (3.8). By
combining all spline segments, the formula in (3.4) can be further generalized to
describe the complete spline curve. Thus, it can be rewritten, with matrix notation,
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C1 =

⎡
⎣
−1
Δ

1
Δ

1 0

⎤
⎦ , C2 =

1
2

⎡
⎢⎢⎢⎣

1
Δ2

−1
Δ2

1
Δ2

−2
Δ

2
Δ 0

1 1 0

⎤
⎥⎥⎥⎦ , C3 =

1
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
Δ3

3
Δ3

−3
Δ3

1
Δ3

3
Δ2

−6
Δ2

3
Δ2 0

−3
Δ 0 3

Δ 0

1 4 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

as

γ ′(u, i ) =ΨT q, (3.5)

where q ∈ �QSP×1 is now the complete set of control points. The total number of
control points, for N SP regions, is QSP =N SP+ P . The column Ψ and the vector u
(directly extracted from (3.4)), read

Ψ ∈�QSP×1 =

0 · · · 0 uT CP 0 · · · 0

�T
, (3.6)

u ∈�(P+1)×1 =


uP uP−1 · · · 1
�T

, (3.7)

where the term uT CP is indexed from the i th to the (i+P )th position inΨ, such that
only the corresponding control points are selected for the interpolation. Note that,
depending on the spline order P , the interpolation scheme will be characterized as:

• P = 0: Nearest neighbor interpolation.

• P = 1: Linear interpolation.

• P ≥ 2: Higher-order interpolation (e.g., quadratic, cubic, etc.).

For a more detailed explanation about real-valued spline interpolation theory, refer
to [64], [206], or [P2].

3.1.2 Complex-valued B-spline Interpolation

Traditionally, spline theory has been applied to real-valued systems [224]–[226].
However, in the context of radio communications the processing is based upon com-
plex-valued I/Q data, thus spline theory needs to be extended to the complex do-
main. Let’s begin with a simple memoryless baseband model of a bandpass nonlinear
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Figure 3.2 Conceptual illustration of the B-spline region partitioning of GI(|x[n]| and GQ(|x[n]|
with respect to |x[n]|. Note that, in this particular example, five regions are considered, in = 3, and un
takes some value in the interval [0,Δx ).

device (e.g., a PA), with an input-output response expressed as [P1-P3, P5]

y[n] = x[n]G(|x[n]|) = x[n]
�

GI(|x[n]|)+ j GQ(|x[n]|)
�
, (3.9)

where x[n] is the input signal, and G(|x[n]|) is the complex-valued nonlinear gain of
the device, only depending on its amplitude and not its phase. The complex spline
interpolation can be built from (3.9), considering |x[n]| and G(|x[n]|) as the spline
input and spline output signals, respectively. Since the spline gain is complex-valued,
two different splines modeling the I and Q data branches are considered. To char-
acterize the interpolation scheme, two local parameters which depend only on the
magnitude of the input signal are defined, named the region index, in , and the ab-
scissa value, un . These are defined as

in =
� |x[n]|
Δx

�
+ 1, (3.10)

un =
|x[n]|
Δx
− (in − 1). (3.11)

The region index indicates the region in which |x[n]| is located at time instant n, and
the abscissa corresponds to the normalized value within the region in (un ∈ [0,Δx )).
These parameters are conceptually illustrated in Fig. 3.2, assuming in this example 5
model regions, in = 3, and un ∈ [0,Δx ).

According to the real-valued theory presented in the previous section, the outputs
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of the two independent splines modeling the I and Q branches can be expressed as

GI(|x[n]|) =ΨT
n qre, (3.12)

GQ(|x[n]|) =ΨT
n qim, (3.13)

where qre ∈ �QSP×1 and qim ∈ �QSP×1 are real-valued sets containing the control
points for each I and Q branches, and Ψn is defined in (3.6). Substituting these ex-
pressions in (3.9), the combined complex-valued spline output can be expressed as

y[n] = x[n]
�

GI(|x[n]|)+ j GQ(|x[n]|)
�

= x[n]ΨT
n

�
qre+ jqim
�

= x[n]ΨT
n q, (3.14)

where q ∈�QSP×1 = [q0 q1 · · · qQSP−1]
T combines the control points of the I and Q

branches into a complex-value set. Note that q can be seen as an LUT, the control
points being the table entries. This expression constitutes the final complex-valued
B-spline interpolation output.

3.1.3 Injection-based Complex-valued B-spline Interpolation

Once the complex-valued nonlinear output of the spline interpolation scheme is de-
rived, it can be modified to be expressed as a deviation from the unit gain. This is
referred to as an injection-based scheme [3], which will allow for certain benefits,
explained in following lines. With such a formulation, (3.9) can be rewritten as

y[n] = x[n]
�
1+GI(|x[n]|)+ j GQ(|x[n]|)

�
, (3.15)

and the modified B-spline output can be expressed instead as

y[n] = x[n]
�
1+ΨT

n qre+ jΨT
n qim
�

= x[n]+ x[n]ΨT
n q

= x[n]ΨT
n (1QSP +q), (3.16)
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where 1QSP ∈ �QSP×1 denotes a column of all ones, and the partition of the unity
property of the B-splines [64], [206], i.e., ΨT

n 1QSP = 1, was used to factorize the
last expression. This expression constitutes the final complex-valued injection-based
spline interpolated output which will be used in the course of this thesis.

Applying such formulation will have several benefits in the context of cascaded
structures and also LUT systems, as demonstrated in [P1, P2] . Such benefits can be
summarized as follows:

• Gain ambiguities between elementary LTI and nonlinear blocks in cascaded
models can be effectively removed, which is relevant in posterior derivations
of cascaded structures.

• The number of required bits to quantize the vector q in a fixed-point imple-
mentation is reduced, as its dynamic range is decreased. This effect was demon-
strated in [P2, P3] by measuring the LUT bit quantization vs modeling per-
formance in a modified Saleh model [197], [230].

• If the control point vector q is initialized as a zero vector (i.e., 0QSP ), the spline
output signal is equal to the input signal, i.e., y[n] = x[n].

The complete processing scheme of the injection-based spline interpolation sche-
me is conceptually presented in Fig. 3.3. Such a scheme will be used as a building
block for the injection-based spline-interpolated scheme in the following cascaded
structures. Finally, it is noted that a generic nomenclature is adopted within this
section, where the input signal is named as x[n], the intermediate model signals are
denoted as s[n] and l [n] – according to the considered cascaded structure – and the
output model signal is referred to as y[n]. It is also worth mentioning that in a DPD
application, the signal y[n] would correspond to the signal after the predistortion
stage, named x̃[n] in Section 2.2.1. Alternatively, in an IBFD application, the output
signal y[n] would correspond to the SI estimate, denoted as x̂SI[n] in Section 2.3.1.

39



	
 ����������

�������������

�


�


�[�] �[�]

�� 

���
 

���!" 

�# 

$

%&

�'

�()�*+),,-

�()�*+),.-

�()�*+)/-

$

Figure 3.3 Complete scheme of the complex-valued injection-based spline interpolation scheme, uti-

lized to model the nonlinear blocks in subsequent sections.

3.2 Spline-based Hammerstein Model

This section overviews the developed spline-based Hammerstein model, also in com-
bination with the aforementioned injection-based scheme, as presented in publica-
tions [P1, P3, P5]. A Hammerstein-type system incorporates first a nonlinearity and
second a linear block, which aim at modeling an unknown system whose structure is
alike [71], [92], [166], [225], [255]. In this particular example, the nonlinear block is
modeled with the aforementioned injection-based spline interpolation scheme, and
the linear block is implemented as an LTI FIR filter. For the rest of the thesis, this
model is referred to as SPH.

In the context of DPD, the nonlinear block aims at estimating the PA-induced
nonlinearity, and the LTI filter aims at compensating for its memory [73]. In the
context of IBFD, the nonlinearity only models the TX PA, while the FIR filter ac-
counts for the effects of the SI multipath channel [148]. Further enhancements of the
SPH model incorporating an extra block compensating for the inherent TX mixer
I/Q imbalance can be found in [21], in the context of IBFD.

The complete architecture of the cascaded SPH model is presented in Fig. 3.4. In
accordance to the nomenclature utilized in the figure, let us denote the input and
output model signals as x[n] and y[n], and the output signal of the nonlinear block
as s[n]. Following the B-spline interpolation processing described in (3.16), and
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Figure 3.4 Complete architecture of the complex cascaded SPH structure. The spline interpolation
block comprises the processing scheme presented in Fig. 3.3.

applying a classical convolution to the resulting signal, the intermediate and output
signals of the SPH model can be written as

s[n] = x[n]ΨT
n (1Q +qn),

y[n] = gT
n sn , (3.17)

where the subindex n indicates the time-dependency of the parameters, gn ∈�Mg×1 =
[g [0] g [1] · · · g [Mg−1]]T , sn ∈�Mg×1 = [s[n+Mg ,pre] · · · s[n] · · · s[n−Mg ,post]]

T

is the signal regression of s[n], and Mg =Mg ,pre+Mg ,post+1 denotes the total num-
ber of taps of the linear FIR filter, Mg ,pre and Mg ,post being the pre- and post-cursor
memory taps. For simplicity, Mg ,pre = 0 is considered for the rest of the thesis, which
significantly simplifies the chosen notation.

3.2.1 Learning Equations

Once having derived the input-output relation of the SPH model, two different
learning rules estimating the spline control points, qn , and the FIR filter, gn , can
be derived to make the SPH model adaptive. To this end, an error signal e[n] is first
defined as

e[n] = d [n]− y[n], (3.18)
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where d [n] is the observed or desired signal containing the response of the system.
The problem now lies in minimizing the error signal with respect to both parameters
to adapt, namely qn and gn . There are several ways of minimizing a function, but
the one used for this work is the gradient-descent solution [41], [116], [192], [252],
where the parameters are learned by following the steepest negative direction of the
gradient of a cost function, until a local minimum in the mean squared error (MSE) is
reached [115]. The cost function to be minimized can be defined as the instantaneous
squared error. Such a cost function depends on both parameters to estimate, and can
be formally defined as

J (qn ,gn) = |e[n]|2 = e[n]e∗[n]. (3.19)

Taking the gradient-descent approach, the general learning rules for adapting the
control points and the FIR filter read

qn+1 = qn −μq∇qn
J (qn ,gn), (3.20)

gn+1 = gn −μg∇gn
J (qn ,gn), (3.21)

where μq and μg are the learning rates for the control points and filter coefficients,
respectively, and ∇x represents the gradient operator, evaluated with respect to x.
Invoking elementary differentiation rules, the resulting learning rules read

qn+1 = qn +μqe[n]ΣT
n X∗ng∗n , (3.22)

gn+1 = gn +μge[n]s∗n , (3.23)

where Xn ∈ �Mg×Mg gathers the signal regression of x[n] in its main diagonal, and
Σn ∈ �Mg×QSP

= [Ψn Ψn−1 · · · Ψn−Mg+1]
T . Moreover, in the learning rule for the

spline control points, it is assumed that the rate of change of the control point vector
over the span of the FIR filter is negligible (i.e., qn ≈ qn+Mg

). This assumption is
reasonable since the learning rate μq is small. Detailed derivations can be found in
[P1].

It is finally noted that both parameters in the SPH model are independent, thus
they can be freely adapted depending on the requirements on the application hosting
the algorithm [76], [116]. For instance, when applying such a method in an IBFD
device, the nonlinear response estimate, qn , once converged, can usually remain con-
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stant, since the behavior of the PA is not expected to change noticeably. Meanwhile,
the SI channel coefficients, wn , can be continuously estimated, stemming from the
ever-varying environmental multi-path effects.

3.2.2 Complexity Analysis

In this section, the computational complexity of the SPH model is analyzed. The
complexity is divided into two stages, model identification and coefficient update,
and is presented in terms of real multiplications per sample. This metric is deliber-
ately chosen, as multiplications constitute, in general, the most resource-demanding
operation in digital signal processor (DPS) devices [237], while additions cost con-
siderably less [105]. Multiplications are a key parameter, as resources in HW devices,
such as FPGAs, are usually limited. Herein, it is assumed that one complex-complex
multiplication can be obtained by four real multiplications, and one complex-real
multiplication can be executed with two real multiplications [99]. Additionally, the
square roots coming from the absolute value operator are left indicated as s q r t . One
simple option to calculate the absolute value without the need for square roots is to
use the alpha-max beta-min algorithm [88], [89], as utilized in [P1]. The complex-
ity of the SPH and posterior models calculated in terms of floating point operations
(FLOPS) can be found in [P1,P3].

The complexity of the SPH model is calculated following the exact processing
steps taken in the previous section, and is presented in Table 3.1, as a function of
the SPH modeling parameters. It is noted that the presented complexity expressions
basically represent an upper bound, since multiplications by any power of 2 or 1/2
do not represent any added complexity in the final system, as they can be easily
implemented with arbitrary bit shifts. An additional numerical example is presented
also in Table 3.1, where the model parametrization has been chosen to be P = 3,
Mg = 10, and τSP = 5. This is a similar parametrization to the one taken for the
verification of the DPD and IBFD applications.

At this point, it is important to note the relatively high complexity of the term
ΣT

n X∗ng∗n in the learning update of qn+1. To ease the update, a complexity-reduction
method was proposed in [P1, P5]. In this method, the temporal dimension (i.e.,
rows) of ΣT

n is truncated to contain only a reduced time span, which maps to the
largest filter taps in gn . These taps usually correspond to the nearest past samples,
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thus a span containing only τSP taps in ΣT
n can be selected instead. Note that if

τSP = Mg, no complexity reduction would be adopted. As demonstrated in [P1,
P5], this simplification has a minimal effect on the performance of the SPH model,
while greatly reducing the required complexity of the learning algorithm.

Table 3.1 Computational complexity required to execute the model calculation and coefficient update

of the SPH identification algorithm, in terms of real multiplications per sample. Also a numerical example

is presented, where P = 3, Mg = 10, and τSP = 5.

Operation Symbolic real mul./sample Numeric real mul./sample

Model calculation

s[n] P 2+ 4P + 8+ s q r t 29

y[n] 4Mg 40

Total P 2+ 4P + 4Mg+ 8+ s q r t 69

Coefficient update

qn+1 4P + 2PτSP+ 6τSP+ 6 78

gn+1 4Mg+ 2 42

Total 4P + 2PτSP+ 6τSP+ 4Mg+ 8 120

Total per iteration P 2+ 8P + 2PτSP+ 6τSP+ 8Mg+ 16+ s q r t 189

3.3 Spline-based Wiener Model

The spline-based Wiener model, denoted herein as SPW, is next developed, as pre-
sented in [P3]. The structure of this model is similar to the previous SPH, but the
order of the LTI and nonlinear elementary blocks is now inverted. The resulting
structure contains first the linear FIR filter which is followed by the spline-based
nonlinear block [92], [101], [122], [224]. This architecture is conceptually presented
in Fig. 3.5, which also shows the parameter learning stage.

Let us denote the input and output model signals as x[n] and y[n], and the inter-
mediate signal after the FIR filter as s[n]. Their expressions, after applying a classical
convolution for the FIR filter and the spline-interpolated scheme for the nonlinear
block, can be expressed as

s[n] =wT
n xn , (3.24)

y[n] = s[n]ΨT
n (1QSP +qn), (3.25)

where wn ∈�Mw×1 = [w[0] w[1] · · · w[Mw−1]]T , and xn ∈�Mw×1 = [x[n] x[n−
1] · · · x[n−Mw+ 1]]T is the signal regression of x[n].
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Figure 3.5 Complete architecture of the complex cascaded SPW structure. The spline interpolation
block comprises the processing scheme presented in Fig. 3.3.

3.3.1 Learning Equations

The derivation of the SPW learning rules is done in a similar manner as the one
adopted in the SPH model. The SPW associated error signal can be defined as in
(3.18), and the new cost function can be expressed as in (3.19), but changing the filter
with wn instead. The same gradient-descent solution is adopted to estimate the quan-
tities of qn and wn . Applying such a formulation gives the following expressions for
the learning rules

qn+1 = qn −μq∇qn
J (qn ,wn), (3.26)

wn+1 =wn −μw∇wn
J (qn ,wn), (3.27)

where μw is the learning rate for the preceding FIR filter. Further developing the
expressions for both parameters, the final learning rules read

qn+1 = qn +μqe[n]s∗[n]Ψn , (3.28)

wn+1 =wn +μwx∗n
�

e[n]ΨT
n (1QSP +q∗n)+

2s[n]Re{e[n]ẏ[n]}
Δs |s[n]|
�
, (3.29)

where ẏ[n] = s∗[n]u̇T
n CP (1 + q∗i ,n), the column u̇n ∈ �(P+1)×1 = [P uP−1

n (P −
1)uP−2

n · · · 1 0]T represents the derivative of the abscissa vector in (3.7), and qi ,n ∈
�(P+1)×1 = [qi ,n qi+1,n · · · qi+P,n]

T are the control points selected for the spline
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interpolation. It is finally noted that these learning equations are independent, and
can be updated freely as required by the final application hosting the algorithm.

3.3.2 Complexity Analysis

The computational complexity of the SPW model is divided into two stages, model
identification and coefficient update, and is detailed in terms of real multiplications
per sample. The same assumptions taken in Section 3.2.2 are adopted. Additionally
in this case, the number of required divisions is left indicated as d i v.

The complexity of the SPW model follows the processing steps derived in the
previous section, and is presented in Table 3.2, as a function of the SPW modeling
parameters. Again, these expressions constitute an upper bound for the complex-
ity, as many multiplications with powers of 2 or 1/2 are free in DSP implementa-
tions. Also, an additional numerical example is presented within the table, where
the model parametrization has been chosen to be P = 3, and Mw = 10, similar to the
one chosen for the posterior verification of DPD and IBFD.

Table 3.2 Computational complexity required to execute the model calculation and coefficient update

stages of the SPW identification algorithm, in terms of real multiplications per sample. Also a numerical

example is presented, where P = 3, and Mw = 10.

Operation Symbolic real mul./sample Numeric real mul./sample

Model calculation

s[n] 4Mw 40

y[n] P 2+ 4P + 8+ s q r t 29

Total P 2+ 4P + 4Mw+ 8+ s q r t 69

Coefficient update

qn+1 2P + 8 14

wn+1 P 2+ 3P + 6Mw+ 15+ d i v 93

Total P 2+ 5P + 6Mw+ 23+ d i v 107

Total per iteration 2P 2+ 9P + 10Mw+ 31+ d i v + s q r t 176

3.4 Spline-based Wiener-Hammerstein Model

The processing steps and learning equations of the spline-based Wiener-Hammerstein
model are next detailed, as detailed in [P3]. This model is a combination of the
Wiener and Hammerstein approaches that further enhances the modeling capabil-
ities by adding an extra memory filter, compensating for extra memory appearing
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Figure 3.6 Complete architecture of the complex cascaded SPWH structure. The spline interpolation
block comprises the processing scheme presented in Fig. 3.3.

in the system. The serial structure of this model, depicted in Fig. 3.6, contains first
a linear filter, followed by a nonlinearity, and is further cascaded with another lin-
ear filter [33], [226]. Since the elementary nonlinear blocks are implemented with
the presented spline interpolation scheme, this model is referred to as SPWH. In
DPD applications, the linearization performance is further enhanced by the SPWH
approach, as it better models the pre- and post-memory of the PA. In IBFD applica-
tions, the SPWH model is able to model the memory appearing before the TX PA,
and also that of the SI multipath channel. These improvements, both in DPD and
IBFD, come also with the cost of a slightly increased computational complexity.

Let us denote the input and output model signals as x[n] and y[n], the first inter-
mediate signal as l [n], and the second intermediate signal as s[n], according to the
nomenclature presented in Fig. 3.6. The intermediate and output signals, after ap-
plying a convolution for the FIR filter and the presented spline interpolated scheme
for the nonlinear block, can be written as

l [n] =wT
n xn , (3.30)

s[n] = l [n]ΨT
n (1QSP +qn), (3.31)

y[n] = gT
n sn , (3.32)

where sn ∈ �Mg×1 = [s[n] s[n − 1] · · · s[n −Mg + 1]T is the signal regression of
s[n].
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3.4.1 Learning Equations

In order to make the SPWH model adaptive, there are three parameters that need to
be estimated, namely the spline control points, qn , and the two LTI FIR filters, wn

and gn . The error signal can be defined in the same way as in (3.18), but now the
cost function depends on these three parameters to adapt, and can be expressed as

J (qn ,wn ,gn) = e[n]e∗[n], (3.33)

where e[n] remains as in (3.18). Taking the gradient-descent approach to minimize
the cost function, the following learning rules are obtained, for each parameter to be
learned,

qn+1 = qn −μq∇qn
J (qn ,wn ,gn), (3.34)

wn+1 =wn −μw∇wn
J (qn ,wn ,gn), (3.35)

gn+1 = gn −μg∇gn
J (qn ,wn ,gn). (3.36)

After evaluating the complex gradient operator, the final learning equations can be
presented as

qn+1 = qn +μqe[n]ΣT
n L∗ng∗n , (3.37)

wn+1 =wn +μw

�
e[n]Γng∗n +Υn Re

�
e[n]Ẏng∗n
��

, (3.38)

gn+1 = gn +μge[n]s∗n , (3.39)

where Ln ∈�Mg×Mg and Ẏn ∈�Mg×Mg contain the signal regression of l [n] and ẏ[n]
in their main diagonals, respectively, and Γn and Υn are defined as

Γn =

Ψn(1QSP +q∗n)x∗n Ψn−1(1QSP +q∗n−1)x

∗
n−1 · · ·

· · · Ψn−Mg+1(1QSP +q∗n−Mg+1)x
∗
n−Mg+1

�
, (3.40)

Υn =
�

l [n]x∗n
Δl |l [n]|

l [n−1]x∗n−1
Δl |l [n−1]| · · ·

l [n−Mg+1]x∗n−Mg+1

Δl |l [n−Mg+1]|
�

. (3.41)

Note that the final forms of qn+1 and gn+1 correspond to the expressions obtained
in the SPH case. In fact, the second filter, gn , can be removed (i.e., gn = [1 0 · · · 0]T )
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Table 3.3 Computational complexity required to execute the model calculation and coefficient update

stages of the SPWH identification algorithm, in terms of real multiplications per sample. Also a numerical

example is presented, where P = 3, Mw = 7, Mg = 7, and τSP = 5.

Operation Symbolic real mul./sample Numeric real mul./sample

Model calculation

l [n] 4Mw 28

s[n] P 2+ 4P + 8+ s q r t 29

y[n] 4Mg 28

Total P 2+ 4P + 4(Mw+Mg)+ 8+ s q r t 85

Coefficient update

qn+1 4P + 2PτSP+ 6τSP+ 6 78

wn+1 P 2+ 3P + 6MwMg+ 14Mw+ 8Mg+ 9+ d i v 475

gn+1 4Mg+ 2 30

Total
P 2+ 7P + 2PτSP+ 6τSP+ 6MwMg

+14Mw+ 12Mg+ 17+ d i v
583

Total per iteration
2P 2+ 11P + 2PτSP+ 6τSP+ 6MwMg

+18Mw+ 16Mg+ 25+ s q r t + d i v
668

in (3.38) to arrive at (3.29), and the nonlinear response qn can be further removed
(i.e., qn = [0 0 · · · 0]T ) to arrive at (3.23), the classical least mean squares (LMS) filter
expression, as reviewed in [P3].

3.4.2 Complexity Analysis

The computational complexity of the SPWH model is analyzed in the same manner
as done for the SPH and SPW approaches. It is divided into the model identification
and the coefficient update stages, and expressed in terms of real multiplications per
sample. Since the SPWH model shares the same update for the control point coef-
ficients as the SPH model, the same complexity-reduction method is utilized, and
hence the complexity expressions are left as a function of the reduced time span τSP.

The processing complexity of the SPWH model follows the processing steps pre-
sented in the previous subsections, and is presented in Table 3.3, as a function of the
SPWH model parameters. A numerical example is also included in the table, when
selecting P = 3, Mw = 7, Mg = 7, and τSP = 5. The SPWH model benefits from an
enhanced modeling performance, but the required computational complexity is also
increased, as one additional cascaded block and its corresponding learning equation
are newly added.
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3.5 Spline-based Hammerstein-Wiener Model

This section presents the last cascaded model of the chapter, which is the spline-
based Hammerstein-Wiener model, named SPHW herein. The SPHW model is a
combination of the Hammerstein and Wiener models, thus its structure, depicted
in Fig. 3.7, contains first an elementary nonlinear block, followed by a linear filter,
and is ended with a second nonlinear block [57], [226], [242]. As in previous sec-
tions, the nonlinear blocks are implemented with the spline-interpolated scheme,
and the linear block is built with an FIR filter. The modeling capabilities of the
SPHW model are generally better than the SPH and SPW models alone, but also
at the cost of an increased computational complexity. As demonstrated in [P7], this
structure is particularly designed to modeling IBFD devices, since the first nonlinear
block accounts for the effects of the TX PA, the linear filter models the SI multipath
channel, and the second nonlinear block further compensates for the nonlinear ef-
fects of the RX LNA [12], [147]. Therefore, in the validation chapter, this cascaded
model is only tested in the context of IBFD applications.

With reference to Fig. 3.7, and denoting x[n] as the input model signal, the ex-
pressions of the output model signal, y[n], and the intermediate signals, l [n] and
s[n], can be expressed according to the derived spline interpolation scheme and the
FIR convolution as

l [n] = x[n]ΨT
n (1QSP +qn), (3.42)

s[n] =wT
n ln , (3.43)

y[n] = s[n]ΦT
n (1C SP + cn), (3.44)

where ln ∈ �Mw×1 = [l [n] l [n − 1] · · · l [n −Mw+ 1]]T is the signal regression of
l [n], cn ∈ �C SP×1 = [c0 c1 · · · cC SP−1]

T contains the control points for the second
spline-interpolated scheme, and Φn is equivalent to (3.6), built by mimicking the
expressions presented in (3.10), (3.11), and (3.7), and considering a spline order K .

3.5.1 Learning Equations

The learning equations of the SPHW model can also be extracted by using the gra-
dient-descent approach, applied to the cost function. The cost function now depends
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Figure 3.7 Complete architecture of the complex cascaded SPHW structure. The spline interpolation
block comprises the processing scheme presented in Fig. 3.3.

on the parameters qn , cn , and wn , and its defined as

J (qn ,cn ,wn) = e[n]e∗[n], (3.45)

where e[n] remains as in (3.18). Applying the gradient-descent solution, the learning
rules can be initially formulated as

qn+1 = qn −μq∇qn
J (qn ,cn ,wn), (3.46)

cn+1 = cn −μc∇cn
J (qn ,cn ,wn), (3.47)

wn+1 =wn −μw∇wn
J (qn ,cn ,wn), (3.48)

where μc is the learning rate for the second nonlinearity. Developing these expres-
sions, the final learning equations for the SPHW model are obtained, reading

qn+1 = qn +μqe[n]ΣT
n X∗nw∗nΦT

n (1C SP + c∗n), (3.49)

cn+1 = cn +μce[n]s∗[n]Φn , (3.50)

wn+1 =wn +μwl∗n
�

e[n]ΦT
n (1QSP +q∗n)+

2s[n]Re{e[n]ẏ[n]}
Δs |s[n]|
�
. (3.51)

It is finally noted that these learning rules can be updated independently, depending
on the final application in which the SPHW algorithm is executed.
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Table 3.4 Computational complexity required to execute the model calculation and coefficient update

stages of the SPHW identification algorithm, in terms of real multiplications per sample. Also a numerical

example is presented, where P = 3, K = 3, Mw = 10, and τSP = 5.

Operation Symbolic real mul./sample Numeric real mul./sample

Model calculation

l [n] P 2+ 4P + 8+ s q r t 29

s[n] 4Mw 40

y[n] K2+ 4K + 8+ s q r t 29

Total P 2+K2+ 4P + 4K + 4Mw+ 16+ 2s q r t 98

Coefficient update

qn+1 2K + 8 14

cn+1 4P + 2PτSP+ 6τSP+ 10 82

wn+1 K2+ 3K + 6Mw+ 15+ d i v 93

Total
4P + 2PτSP+ 6τSP+K2

+5K + 6Mw+ 33+ d i v
189

Total per iteration
P 2+ 8P + 2PτSP+ 6τSP+ 2K2

+9K + 10Mw+ 49+ d i v + 2s q r t
287

3.5.2 Complexity Analysis

The computational complexity of the SPHW model is also divided into the stages of
model identification and coefficient estimation, and it is expressed in terms of real
multiplications per sample. The SPHW model shares the same update as the SPH
model for the first spline-interpolated scheme (i.e., qn), thus the same complexity re-
duction method is considered, leaving the final complexity expressions as a function
of the reduced time span τSP.

The final processing complexity expressions corresponding the SPHW model are
then presented in Table 3.4, as a function of the SPHW mode parameters. The table
also includes a numerical example, when selecting P = 3, K = 3, Mw = 10, and τSP =
5, a similar parametrization to the one chosen in for the experimental verification of
the models.
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4 LINEAR-IN-PARAMETERS MODELS

THIS chapter presents a collection of linear-in-parameters behavioral models to
be used in digital predistortion (DPD) and digital SI cancellation (DSIC) appli-

cations, alongside with two alternative parameter learning solutions. Additionally,
different complexity-reduction techniques are presented, which aim at easing the pa-
rameter learning procedure. These techniques include several sign-based solutions
applied to classical closed-loop learning methods, and also various low-complexity
inverse covariance matrix (ICM) estimation solutions.

The contents of this chapter can be found in the publications [P1, P2, P4, P6,
P8], as well as in the work presented in [200].

4.1 Spline-based MP-LUT Model

This section overviews the developed spline-based MP-LUT model, which is essen-
tially a combination between an MP model, implemented with LUTs, and the spline
interpolation scheme reviewed in Section 3.1. Inspired by the works proposed and
discussed in [180], [189], an MP parallel-branched structure is designed to model the
memory effects, while the nonlinearities in each parallel branch are substituted with
the complex spline interpolation scheme presented above. For the remainder of the
thesis, this model is referred to as SPMP, and its complete architecture is conceptu-
ally depicted in Fig. 4.1. More elaborated details of the SPMP model can be found
in [P1]. The novelty and contributions of this section can be found in the com-
bination of the MP-LUT processing architecture with the injection-based spline in-
terpolation scheme, together with the derived learning equations which are adapted
following the complex gradient-descent algorithm. A complexity analysis of the re-
sulting SPMP model can also be found at the end of this section, which details both
model identification and coefficient learning complexities.

In terms of modeling capabilities, SPMP is generally a richer model when com-
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Figure 4.1 Complete architecture of the complex-valued memory polynomial-type SPMP structure.

Each of the branches incorporates the spline interpolation scheme presented in Section 3.1. Additionally,

the spline interpolation block comprises the processing scheme presented in Fig. 3.3.

pared to the cascaded approaches reviewed in Chapter 3, since an individual non-
linear function is given for each memory branch. This method, on the other hand,
also entails higher complexity, especially when the considered number of memory
taps is large. When compared to canonical MP models, the SPMP approach poses
several advantages. First of all, the model identification processing complexity is
greatly reduced when compared to classical MP solutions, since the parallel LUTs
provide a very simple approach to process the otherwise higher order polynomial
functions [P1]. Secondly, the learning path computational complexity is partic-
ularly reduced, owing to the utilization of gradient-descent techniques in combi-
nation with the interpolated LUTs. These derived learning approaches avoid the
need for using extra BFs pre-whitening or orthogonalization [4], [200], or other
self-orthogonalized learning procedures [189], [251], which drastically simplifies the
involved learning complexities. Canonical MP models indeed require BF orthogo-
nalization or pre-whitening due to the poor convergence performance of the LMS
algorithm if the elements of the input vector are highly correlated, stemming from
the large eigenvalue spread of the input signal CM. In any such model, the static BFs
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are certainly correlated, as they are nonlinear functions of the transmitted signal. A
third advantage of the SPMP model – which constitutes also a piece-wise approach
due to the LUT interpolation scheme – is the ability to use different interpolation
orders for different regions, depending on the desired modeling accuracy in each.

4.1.1 SPMP Processing Scheme

Following the nomenclature chosen in Fig. 4.1, and the complex injection-based
spline interpolation scheme presented in Section 3.1, the input-output relation of
the SPMP model can be directly expressed as [P1]

y[n] = x[n]+
M−1∑
m=0

x[n−m]ΨT
n−mqm , (4.1)

where x[n] and y[n] are the input and output model signals, M denotes the num-
ber of memory taps, Ψn is defined in (3.6), with also a spline interpolation order
P , and qm , m = 0, 1, · · · , M − 1, are the M LUTs of the model, one for each
branch. Each of the LUTs contains the corresponding control points used in the
spline-interpolated scheme to model each nonlinearity. It is finally noted that a dif-
ferent spline parametrization could be adopted in each branch, for instance choosing
a more powerful interpolation scheme for the instantaneous or the nearest past mem-
ory branches, which are typically the ones contributing more to the model output.
For simplicity, however, the examples provided in the experimental validation chap-
ter consider the same spline order for every branch. A more detailed development
of the SPMP system model can be found in [P1].

4.1.2 Learning Equations

The complex-valued learning equations of the SPMP model are next derived. In
contrast to the cascaded models presented in Chapter 3, the SPMP model does not
contain any type of cascaded filters, and hence the learning entity considers the indi-
vidual control points appearing in the M parallel spline-interpolated branches, qm,n ,
m = 0, 1, · · · , M −1. Since in this work the spline interpolation scheme is the same
in every branch, a single learning equation is obtained, and then applied M times to
update each control point vector in each branch.
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With the goal of deriving the corresponding learning expressions, an instanta-
neous error signal can be first defined as e[n] = d [n]− y[n], and the corresponding
cost function for the SPMP model can be written as

J (q0,n , q1,n , · · · , qM−1,n) = e[n]e∗[n]. (4.2)

Applying the complex-valued steepest gradient-descent solution to the mth control
point vector of the cost function, its learning expression can be defined as

qm,n+1 = qm,n −μqm
∇qm,n

J (q0,n ,q1,n , · · · ,qM−1,n), (4.3)

where μqm
is the corresponding learning step for each branch. Further developing

this expression leads to the final learning rule, which reads

qm,n+1 = qm,n +μqm
e[n]x∗[n−m]Ψn−m . (4.4)

This learning equation is then executed to update the M parallel branches of the
SPMP model.

4.1.3 Complexity Analysis

The computational complexity of the SPMP model is presented next. As in Chap-
ter 3, it is divided into the stages of model identification and coefficient estimation,
and is presented in terms of real multiplications per sample. In the model iden-
tification stage, the complexity is composed by the sum of the M parallel spline-
interpolated branches, with input samples x[n−m], m = 0, 1, · · · , M−1, as shown
in Fig. 4.1. It is additionally noted that, at time instant n, only the instantaneous
spline weight Ψn needs to be calculated, as the past vectors Ψn−1 · · ·Ψn−M+1 can
be obtained from previous sample instants. The complexity in the learning stage
comes from the derived learning equation in (4.4), which is executed for each mem-
ory branch, thus exactly M times.

The final overall complexity expressions of the SPMP model are then presented
in Table 4.1, as a function of the SPMP model parameters. These expressions are
calculated following the exact processing steps presented in Section 4.1.
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Table 4.1 Computational complexity required to execute the model identification and coefficient update

stages of the SPMP identification algorithm, in terms of real multiplications per sample.

Operation Symbolic real mul./sample Numeric real mul./sample

Model identification
y[n] P 2+ 3P + 2P M + 6M + 4 142

Total P 2+ 3P + 2P M + 6M + 4 142

Coefficient update
qm,n+1 M (2P + 8) 140

Total M (2P + 8) 140

Total per iteration P 2+ 3P + 4P M + 14M + 4 282

4.2 MP-LUT Model

The MP-LUT model is presented next. This approach is a special case of the pre-
viously presented SPMP model, and also the work presented in [189]. Specifically,
this model is configured with a nearest neighbor interpolation scheme (i.e., P = 0
in the spline processing), and it is further presented in a matrix notation equivalent
form, that will ease its manipulation in further DPD experiments. The motivation
behind removing the spline interpolation scheme comes from its inherent reduced
complexity [180], [207], while the solution still achieves similar levels of perfor-
mance, as demonstrated in the next chapter, albeit that a larger number of LUT
entries is required. Also, the non-interpolated scheme is an important ingredient
if the SRA or sign-sign algorithms are to be used in combination with the learn-
ing rates, as the non-interpolated LUTs will not result in rank-deficiency problems
when signing the input BF matrix. This concept is further explored in Section 4.3
and publications [P2,P6].

The usefulness of this model can be specifically found in the associated modified
closed-loop learning algorithms of the MP-LUT model. First, classical GN, SO, and
BLMS learning algorithms are shown in Section 4.2.2 to provide an overview of the
already studied state-of-the-art techniques. Second, several sign-based solutions (Sec-
tion 4.3) are applied to the GN, SO, and BLMS algorithms in order to reduce their
computational complexity. In the next chapter, the performance-complexity trade-
offs of each resulting sign-based algorithm are also reported to show how they could
fit in different applications. Third, several ICM estimation methods (Section 4.4) are
derived and applied to the SO learning rule. The ICM is an important ingredient for
the proper operation of the SO rule, and it needs to be recursively calculated. These
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methods are able to reduce the computational complexity of calculating this matrix,
which is typically the heaviest term in the learning update. Overall, the proposed
methods allow for remarkable complexity reductions in the learning update of the
MP-LUT model.

4.2.1 MP-LUT Processing Scheme

The conceptual architecture of the MP-LUT model is equivalent to the one presented
for the SPMP model in Fig 4.1, but instead considers a 0th-degree spline interpolation
(i.e., P = 0). Thereby, its input-output relation, following the same notation as in
the Fig 4.1, can be also written as

y[n] = x[n]+
M−1∑
m=0

x[n−m]ΨT
n−mqm , (4.5)

whereΨn ∈�Q×1 = [0 · · · 0 1 0 · · · 0]T now, since P = 0 is chosen for the spline in-
terpolation scheme. The nonzero element inΨn is still indexed in the inth position,
according to (3.10), and qm , m = 0, 1, · · · M −1 are the Q-sized non-interpolated M
LUTs of the model.

For easiness in posterior DPD manipulation, the form in (4.5) can alternatively
be expressed following matrix notation. Such notation contains the complete input
BF matrix and a column vector stacking the M LUTs of the model. This form can
be written as

y= x+Ωααα, (4.6)

where x ∈�N×1 = [x[n] x[n− 1] · · · x[n−N + 1]]T and y ∈�N×1 = [y[n] y[n−
1] · · · y[n −N + 1]]T denote the input and output data vectors, Ω ∈ �N×C is the
input BF matrix, whose form is presented in (4.7), C = M QSP, and ααα ∈ �C×1 =
[α0 α1 · · · αC−1]

T contains the M LUTs of each polynomial branch. Note that the
formulation in (4.6) also follows the injection-based principle, and the input BF ma-
trix presented in (4.7) can be modified accordingly to also fit other Volterra-based
models, such as the well-known GMP method.
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Ω=

⎡
⎢⎢⎢⎢⎢⎣

x[n]ΨT
n x[n− 1]ΨT

n−1 · · · x[n−M ]ΨT
n−M

x[n+ 1]ΨT
n+1 x[n]ΨT

n · · · x[n−M + 1]ΨT
n−M+1

...
...

. . .
...

x[n+N − 1]ΨT
n+N−1 x[n+N − 2]ΨT

n+N−2 · · · x[n+N −M − 1]ΨT
n+N−M−1

⎤
⎥⎥⎥⎥⎥⎦

(4.7)

4.2.2 Classical Closed-loop Learning Algorithms

In this subsection, classical closed-loop learning algorithms are reviewed. Those al-
gorithms are already presented in current literature, and serve as a basis to apply the
upcoming reduced-complexity signed algorithms and ICM estimation methods.

By formulating the proposed MP-LUT model as a linear-in-parameters model,
with the processing structure presented in (4.6), closed-loop learning algorithms can
be applied. Specifically, the damped GN [108], [109], [189], [258], SO [4], [200],
[251], and BLMS [84], [236], [259] closed-loop learning techniques are discussed
and analyzed within this work. First, the block-based error signal, ek , is defined, at
iteration k and for a K it-sized block of samples, as

ek = xk − yk , (4.8)

where xk and yk are now the K it-sized input and output data blocks. The learning
equations can be consequently defined as

αααk+1 =αααk +μGN
�
ΩH

k Ωk
�−1ΩH

k ek , (4.9)

αααk+1 =αααk +μSO(R
∗)−1ΩH

k ek , (4.10)

αααk+1 =αααk +μBLΩ
H
k ek , (4.11)

whereμGN,μSO, andμBL are the learning rates for the GN, SO, and BLMS learning
rules, Ωk ∈ �K it×C , and K it is the iteration estimation sample size. Additionally,
R ∈ �C×C = E{υυυ[n]υυυH [n]} is the input data covariance matrix [263], considering
υυυ[n] ∈ �C×1 is the instantaneous input data vector, which can be seen as the first
row of the BF matrix Ω. The CM can be estimated by using the classical sample
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estimation method as

R̂=
1
N

N∑
n=1
υυυ[n]υυυH [n]. (4.12)

It is worth noting the differences found in the GN, SO, and BLMS learning equa-
tions. The first equation, corresponding to GN, executes the term

�
ΩH

k Ωk
�−1 in

each learning iteration. This results in an enhanced performance, since the statis-
tics of the input signal are well-characterized at each iteration, but its continuous
calculation also implies very high complexity numbers. Secondly, the SO solution
estimates the input data CM only once, and this estimate then remains fixed for as
long as the input signal remains unmodified, within specific limits [251]. How of-
ten to update the input covariance matrix (CM) needs to be decided according to the
performance and complexity goals of the final application hosting the algorithm. In
general, this estimation can remain fixed for a large number of iteration, as demon-
strated in [P4, P8] , and the complexity is usually reduced when compared to GN.
Finally, the BLMS learning equation can be considered to use an identity CM, consti-
tuting already a very crude approximation for the term

�
ΩH

k Ωk
�−1. Obviously, this

leads to drastically reduced complexity numbers, but implies a reduced modeling per-
formance, and also a slow convergence rate. In many cases, the convergence speed
of the BLMS model is so slow that it is unfeasible to be used in commercial appli-
cations, as was reviewed in [P2, P6] . Orthogonalization or pre-whitening methods
can be applied to increase the convergence speed of the model, but these methods,
on the other hand, also increase the complexity of the learning equation.

4.3 Closed-loop Signed Learning Algorithms

With the aim of reducing the computational complexity of the aforementioned learn-
ing algorithms in (4.9) (GN), (4.10) (SO), and (4.11) (BLMS), computationally effi-
cient sign-based versions of the previous rules are formulated. These methods are
presented in detail in [P2, P6] , and sign different terms in the original learning rules
such that the final magnitudes of the real and imaginary parts are reduced to either+1
or -1. Operations with these magnitudes are trivial to execute in DSP devices [237],
thus the proposed algorithms are able to greatly reduce the overall number of re-
quired multiplications.
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Considering complex-valued I/Q data, the classical definition of the sign func-
tion projects a nonzero number into the unit circle of the complex plane; this is
{z ∈ � | |z | = 1}, as reviewed in [239]. The magnitude of the resulting complex
number, |z |, is equal to +1, but the individual real and imaginary parts are not nec-
essarily either +1 or -1, thus no complexity reduction is yet achieved when multi-
plying with z. In order to remove the need for multiplications, the sign function is
instead defined as

csgn(z) := sgn(Re(z))+ j sgn(Im(z)), (4.13)

which results in either +1 or -1 for both real and imaginary parts, hence avoiding
the need for computing multiplications when multiplying with z. For matrices, this
complex-valued signum function is done element-wise, such that all elements are
signed. The following sections present the proposed signed-based learning rules,
which are specifically combined with the sign, sign regressor, and sign-sign algo-
rithms.

4.3.1 Sign Algorithm

The sign algorithm is the first signed-based method reviewed herein. It can be di-
rectly obtained by signing the block error signal in the learning rules presented in
(4.9), (4.10), and (4.11) [246]. With such an approach, multiplications in the term
ΩH

k ek are avoided in the GN, SO, and BLMS rules. This is already quite a substan-
tial reduction, since the horizontal dimension (i.e., number of columns) of ΩH

k is
typically large in DPD implementations. To provide a numerical example, in the
experiments testing the sign-based algorithms, K it is already 25,000 samples.

By signing the error vector, ek , the sign learning equations read

αααk+1 =αααk +μGN
�
ΩH

k Ωk
�−1ΩH

k csgn(ek ), (4.14)

αααk+1 =αααk +μSO(R
∗)−1ΩH

k csgn(ek ), (4.15)

αααk+1 =αααk +μBLΩ
H
k csgn(ek ). (4.16)

The complexity of this method is analyzed later in this section.
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4.3.2 Sign Regressor Algorithm

The SRA can be obtained by signing the Hermitian transpose BF matrix, ΩH
k , in

the GN and BLMS learning rules. Thereby, multiplications in the terms ΩH
k Ωk and

ΩH
k ek (GN) and in the term ΩH

k ek (BLMS) are avoided, reducing the overall com-
putational complexity of the learning solutions. In the GN method, the complex-
ity savings are increased when compared to the sign algorithm, as one extra term is
signed. The complexity of the BLMS method, in turn, remains the same, thus the
best working solution in terms of performance should be selected.

The resulting SRA versions of the GN and BLMS read

αααk+1 =αααk +μGN

�
csgn(ΩH

k )Φk

�−1
csgn(ΩH

k )ek , (4.17)

αααk+1 =αααk +μBL csgn(ΩH
k )ek . (4.18)

When considering the SO learning solution, the SRA method cannot be applied
as such, since the corresponding learning rule already contains the ICM, which is the
estimation of the term ΩH

k Ωk , where the SRA would have been originally applied.
Two alternative solutions for combining the SRA with the SO rule are proposed
instead. The first form only signs the data matrix ΩH

k , hence avoiding the calcula-
tion of the term ΩH

k Ωk . The second form signs the ICM as a whole, avoiding the
calculation of the term (R∗)−1ΩH

k . Both of these approaches read

αααk+1 =αααk +μSO(R
∗)−1 csgn(ΩH

k )ek , (4.19)

αααk+1 =αααk +μSO csgn((R∗)−1)ΩH
k ek . (4.20)

With the former SRA SO form, the reduced complexity is the same as in the sign
SO case, as an equal number of multiplications is avoided. With the latter form, the
achieved reduction is less than in the sign SO case. It is known from [P2] that the
second form does not perform well in the experimental results carried out later, as
signing the whole ICM is already a very crude approximation for this term. Con-
sidering this issue, and also that the complexity reduction is even less than in the
sign SO case, this form is discarded in the experimental verification cases shown in
Chapter 5.

At this point, it is important to note that all polynomial-type models, as well
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as interpolated LUT approaches will suffer from a rank deficiency when applying
the signum function to the term ΩH

k [109]. In polynomial-type models, repeated
columns will appear in this matrix, and in interpolated LUT approaches, linear de-
pendencies between columns will be generated. When this happens, the learning
equations are not able to converge to any value, as they have multiple solutions.
A specific example of this issue was presented in [109], where the authors needed
to apply an extra Walsh-Hadamard transformation to gaussianize the input data BF
matrix, ΩH

k , in order to solve this problem. This matrix transformation, however,
further increased the computational complexity of the learning equation. Never-
theless, the proposed non-interpolated MP-LUT model allows to directly apply the
SRA algorithm as such, not producing any repeated columns in the input BF matrix
ΩH

k , as demonstrated in [P2]. With this approach, rank deficiency issues, and more
importantly, extra matrix transformations that further increase the complexity of
the learning equation, are avoided. This is another obvious benefit of the proposed
MP-LUT model, in contrast to polynomial-type approaches.

4.3.3 Sign-sign Algorithm

The last sign-based algorithm studied within this work is the sign-sign algorithm.
Such a method can be obtained by signing both the data matrix and the error term
in the learning equations. Further complexity savings are obtained in the learning
methods, which avoid a great number of multiplications. In the GN method, the
complexity is further reduced, as only a few multiplications are required. In the
BLMS method, the complexity, in terms of multiplications, is already zero. The
sign-sign expressions for both GN and BLMS approaches read

αααk+1 =αααk +μGN

�
csgn(ΩH

k )Ωk

�−1
csgn(ΩH

k )csgn(ek ), (4.21)

αααk+1 =αααk +μBL csgn(ΩH
k )csgn(ek ). (4.22)

The same conclusions can be drawn for the SO method, since the sign-sign al-
gorithm cannot be applied to the SO rule as such. Again, two alternatives of this
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method are proposed as

αααk+1 =αααk +μSO(R
∗)−1 csgn(ΩH

k )csgn(ek ), (4.23)

αααk+1 =αααk +μSO csgn((R∗)−1)ΩH
k csgn(ek ). (4.24)

With both approaches, the final complexity is reduced to almost zero. However,
similar conclusions as drawn before apply also for the latter SO form. Hence, it is
presented herein for completeness of the study, but discarded in the posterior mea-
surements carried out in Chapter 5.

It is finally noted that the same rank deficiency issue already appearing in the
SRA case applies here as well, since the input data BF matrix ΩH

k needs to be signed
in the same way. In other words, polynomial-type and interpolated LUT approaches
will require extra matrix transformations, while the proposed MP-LUT model can
be directly combined with the sign-sign algorithm as such.

4.3.4 Complexity Analysis

Table 4.2 Computational complexity analysis of the classical and signed-based GN, SO, and BLMS

learning solutions, in terms of real multiplications and real additions per K it-sized learning iteration.

Learning method Symbolic real multiplications Real additions

Gauss-Newton C 3+ 4M 2(K it+ 1)+ 2M (2K + 1) 2M 2(K it− 1)+ 2M (K it+M − 2)+ 2C

Sign Gauss-Newton C 3+ 4M 2(K it+ 1)+ 2C 2M 2(K it− 1)+ 2M (K it+M − 2)+ 2C

SRA Gauss-Newton C 3+ 4M 2+ 2M 2M 2(K it− 1)+ 2M (K it+M − 2)+ 2C

Sign-sign Gauss-Newton C 3+ 2M 2M 2(K it− 1)+ 2M (K it+M − 2)+ 2C

Self-orthogonalization 4(M N +M 2)+ 2C 2M (K it+C − 2)+ 2C

Sign self-orthogonalization 4C M + 2C 2M (K it+C − 2)+ 2C

SRA 1 self-orthogonalization 4C M + 2C 2M (K it+C − 2)+ 2C

SRA 2 self-orthogonalization 4M N + 2C 2M (K it+C − 2)+ 2C

Sign-sign 1 self-orthogonalization 2C 2M (N M + 1)

Sign-sign 2 self-orthogonalization 2C 2M (K it+C − 2)+ 2C

Block-LMS 2M (2N + 1) 2(M K it+C )

Sign block-LMS 2M 2(M K it+C )

SRA block-LMS 2M 2(M K it+C )

Sign-sign block-LMS 0 2(M K it+C )
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Table 4.3 Exact numerical complexity of the baseline and sign-based learning equations, when con-

sidering M = 4, Q = 32, C = M QSP = 128, and K it = 25,000. The percentage reduction with

respect each original learning equation is also shown in the table.

Learning method Real multiplications Multiplication reduction Real additions

Gauss-Newton 4× 106 0% 1× 106

Sign Gauss-Newton 3.7× 106 7.5% 1× 106

SRA Gauss-Newton 2× 106 50% 1× 106

Sign-sign Gauss-Newton 2× 106 50% 1× 106

Self-orthogonalization 401× 103 0% 201× 103

Sign Self-orthogonalization 2.3× 103 > 99% 201× 103

SRA 1 Self-orthogonalization 2.3× 103 > 99% 201× 103

SRA 2 Self-orthogonalization 400× 103 < 1% 201× 103

Sign-sign 1 Self-orthogonalization 256 > 99% 800× 103

Sign-sign 2 Self-orthogonalization 256 > 99% 201× 103

Block-LMS 400× 103 0% 200× 103

Sign Block-LMS 8 > 99% 200× 103

SRA Block-LMS 8 > 99% 200× 103

Sign-sign Block-LMS 0 100% 200× 103

Once the sign-based learning equations are derived, a complexity analysis show-
ing the expressions of the required multiplications and also the number of real ad-
ditions per K it-sized learning iteration is presented. The same assumptions as ex-
plained in previous sections regarding the calculation of complex multiplications
are taken. It is also assumed that multiplications by ±1 are free in DSP implemen-
tations [237]. Hence, following the exact processing steps of the baseline learning
equations showed in (4.9), (4.10), and (4.11), and their corresponding sign-based ver-
sions, the final learning complexity expressions are presented in Table 4.2. Addi-
tionally, Table 4.3 presents the exact numerical complexity when the MP-LUT pa-
rameters take the example values of M = 4, QSP = 32, C = M QSP = 128, and
K it = 25,000. For convenience, these values are similar to the ones taken when per-
forming the RF verification in Chapter 5. This table also presents the percentage
reduction achieved with respect to the original baseline learning equations, in order
to highlight the effectiveness of the proposed solutions. All in all, the sign-based al-
gorithms are able to drastically reduce the required number of real multiplications
in the learning stage compared to the original rules. Specifically, the achieved per-
centage reduction goes up to 50% in the case of GN, and more than 99% in the cases
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of SO and BLMS, where the number of multiplications is even almost zero in some
cases.

From Tables 4.2 and 4.3, four key conclusions can be extracted:

• The GN SRA and GN sign-sign methods mutually pose the same computa-
tional complexity, thereby the method providing the best performance should
be selected.

• The SO sign and SO SRA 1 methods mutually pose the same computational
complexity, thereby the method providing the best performance should be
selected.

• The SO SRA 2 method does not provide any essential complexity reduction
when compared to the original SO solution. It is also anticipated that the
performance of this method lags behind the rest of SO solutions, thus it is
discarded in the posterior RF verifications.

• The BLMS sign and BLMS SRA methods mutually pose the same computa-
tional complexity, thereby the method providing the best performance should
be selected.

4.4 ICM Estimation Methods in SO Learning Algorithm

In this section, several methods which aim at efficiently estimating the ICM needed
in the SO algorithms are presented. As discussed in Section 4.2.2, a good estimate
of the CM, denoted herein by R, is an important ingredient for the SO learning
equation. This matrix estimate substitutes the term (ΩH

k Ωk )
−1 in the GN learn-

ing equation, and can be estimated off-line and then kept fixed during the iterative
learning process [4], up to some limit [P2, P4, P6, P8] . Typically, if the input sig-
nal presents small variations (e.g., changes in allocated resource blocks (RBs), PAPR
changes, a reduced signal bandwidth, etc.), this estimate is still quite valid to estimate
the learning parameters. However, if the input signal is completely changed (e.g., in-
creased signal bandwidth, changes in the sampling frequency, frequency shifts, etc.),
this term needs to be recalculated. This calculation is usually heavy, as a lot of data
is typically required to get a good estimate of R. This is where the proposed ICM
estimation methods, which drastically reduce this complexity, play their role.

Specifically, five different methods of calculating or manipulating an existing ICM,
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are proposed, each one corresponding to a particular scenario. These methods are
summarized as follows, and later reviewed in subsequent subsections.

• Estimation of the ICM with the autocorrelation function: Consists of getting
a generic estimate of the ICM by using the autocorrelation function of the
input data.

• Estimation of the ICM with Bussgang’s coefficients: Aims at simplifying the
previous method by using Bussgang’s decomposition.

• Reduction of the dimensionality of the ICM: Consists of rapidly obtaining the
ICM if a reduced model parametrization is desired.

• Estimation of the ICM with a frequency shift: Consists of efficiently shifting
the ICM to another target center frequency.

• Recursive estimation of the ICM: Presents a learning rule for the iterative adap-
tation of the ICM.

It is noted that the first proposed method builds on Reed’s theorem [208], [214]
for calculating the CM, while the second solution makes use of Bussgang’s theo-
rem [66], [214] and other stochastic analysis to provide an approximation for the
CM. Since Gaussian process theory is considered, these two methods require Gaussian-
distributed input signals. The signals used for verifying the theorems are OFDM sig-
nals, which indeed are known to converge to a Gaussian distribution, as the number
of subcarriers is generally large. This claim is demonstrated in [P4, P8]. Addition-
ally, these two first methods are especially designed for MP and GMP-like model
structures, although they can be modified to fit other system models as well. It is
recalled that the associated instantaneous input data vector (i.e., first row of the BF
matrix) in a polynomial-based model can be expressed as

υυυMP[n] =


x[n] x[n− 1] · · · x[n−M + 1]

x[n]|x[n]|2 x[n− 1]|x[n− 1]|2 · · · x[n−M + 1]|x[n−M + 1]|2

x[n]|x[n]|(P−1) x[n− 1]|x[n− 1]|(P−1) · · · x[n−M + 1]|x[n−M + 1]|(P−1)
�T

,

(4.25)

for a generic polynomial order P and memory M . The remaining methods can be
utilized in every processing model structure, such as MP or GMP [193], Volterra
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DDR [106], [272], the proposed MP-LUT model itself, or other LUT models [130],
[189].

The computational complexity of each of those solutions is studied in the last sub-
section. To provide a certain context, it is also compared to the complexity required
to calculate the ICM in the classical way. Finally, it is noted that the contents of this
section are based on the journal publications [P2, P4] . To be best of the Author’s
knowledge, these methods have not been applied to closed-loop SO DPD learning
applications, thus this combination poses, in part, the novelty of this section.

4.4.1 Estimating the ICM with the Autocorrelation Function

The first proposed method to estimate the ICM is presented herein. In contrast
to the following Bussgang’s approximation, this approach calculates the proper au-
tocorrelation values by using analytical Gaussian moments theorems, thus a more
exact ICM is obtained, with the cost of a slightly increased complexity [P4]. This
solution essentially outputs a pre-computed set of coefficients which are dependent
on the autocorrelation function of the input data, thus this is the only parameter
that is required at the time of calculating the ICM. This method greatly alleviates
the computational complexity of calculating this term, as reviewed in the following
sections.

The proposed solution is then built as follows. The first step to take is to express
the CM exclusively as a function of the autocorrelation function of the input signal.
To this end, Reed’s Gaussian moment theorem [214] can be used, which states that
a pth order central product moment is non-zero if p is even, and can be specifically
obtained as the sum of products of covariances. Formally, this is expressed as

E{x∗[n]x∗[n− 1] · · · x∗[n− k + 1]x[n]x[n− 1] · · · x[n− k + 1]}=∑
ζ

E{x∗[n− ζ ]x[n]}E{x∗[n− ζ ]x[n− 1]} · · ·E{x∗[n− ζ ]x[n− k + 1]},
(4.26)

where ζ represents a permutation of the set {0,1, · · · , (k − 1)}. All terms in the CM
have an even-order polynomial degree, thus Reed’s theorem will produce a non-zero
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value. Note that terms of the form E{|x[n]|2 p} can be alternatively obtained as [228]

E{|x[n]|2 p}= p!E{|x[n]|2}p = p!σ2 p
x , p = 1, 2, · · · , P, (4.27)

which may simplify their calculation. Specific examples of how the Reed theorem
is applied can be found in [P4], where a fourth and a six-order product moment is
developed. It is recommended to program the expressions presented in (4.26) and
(4.27) in order to recursively obtain other higher-order terms in the CM. Once each
individual term is obtained with Reed’s theorem, the resulting CM can be expressed
with a specific sub-matrix structure, which will ease its inversion. The overall size
of this block-matrix is � P2 	 × � P2 	, and the size of each of the sub-matrices is M ×M .
Formally, such a matrix reads

R ∈�� P2 	×� P2 	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1,1 R1,M+1 · · · R1,(� P2 	−1)M+1

R1,M+1 RM+1,M+1 · · · RM+1,(� P2 	−1)M+1

...
...

. . .
...

R1,(� P2 	−1)M+1 RM+1,(� P2 	−1)M+1 · · · R(� P2 	−1)M+1,(� P2 	−1)M+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.28)

where each sub-matrix, Rk ,l , is of the size M ×M , and can be defined as

Rk ,l ∈��M×M 	 =

⎡
⎢⎢⎢⎢⎣

E{υυυk[n]υυυ
∗
l [n]} · · · E{υυυk[n]υυυ

∗
l+M−1[n]}

...
. . .

...

E{υυυk+M−1[n]υυυ
∗
l [n]} · · · E{υυυk+M−1[n]υυυ

∗
l+M−1[n]}

⎤
⎥⎥⎥⎥⎦ . (4.29)

Here, each subindex in υυυ[n] indicates the corresponding element within the instan-
taneous input data vector. This notation allows for expressing these matrices with
any polynomial order, P , and memory depth, M . Additionally, only the calculation
of the upper triangular submatrices in R is needed to build the complete CM. After-
wards, this CM is inverted in a classical way to serve as the input of the SO learning
equation.

69



4.4.2 Approximating the ICM with the Bussgang Theorem

The second studied method approximates the ICM by using the Bussgang theo-
rem [66], [185] and the input data autocorrelation function. This method also pro-
vides a set of precomputed coefficients that multiply the autocorrelation function
of the input data to build the final ICM [P4]. However, the method configures the
final ICM with a specific sub-matrix notation, that allows for efficient Kronecker
inversion [240]. This specific configuration can be taken if assuming a specific sim-
plification for the Bussgang method, explained later within this subsection, while
the exact approach is presented in the previous subsection. The Kronecker inver-
sion alleviates even more the computational complexity required to calculate the
ICM, but provides a non-optimal performance, although still close to other state-of-
the-art models, as demonstrated in [P4 ,P8] and also in Chapter 5.

This method is specifically tailored to estimate the ICM in MP-type models, thus
it is important to configure the BF matrix exactly as presented in (4.25). It is also im-
portant to note that, since Bussgang’s theorem and other stochastic Gaussian theory
is used in this method, the input signals need to follow a Gaussian distribution [66].
Using signals that differ from a Gaussian distribution will result in non-optimal per-
formance [P4, P8].

In order to build the proposed Bussgang method, the first step is to construct
the input data BF matrix exclusively as a function of the input data autocorrelation
function. Considering an input signal x[n], its autocorrelation and cross-correlation
functions can be mathematically defined as

RX(τ) = E{x[n]x∗[n−τ]}, (4.30)

RXZ(τ) = E{x[n]z∗[n−τ]}, (4.31)

where z[n − τ] corresponds to the output of a nonlinear operator through which
the input signal x[n] is passed, and τ corresponds to an arbitrary sample delay. The
second order terms of the CM, which appear in its first line, are equivalent to the
expression presented in (4.30), thus they can be directly expressed as a function of
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the autocorrelation function. These are simply

R(1,1) = RX(τ = 0), (4.32)

R(1,2) = RX(τ = 1), (4.33)

...

R(1, M ) = RX(τ =M ). (4.34)

Higher-order terms in the CM are no longer equivalent to (4.30). These higher or-
der terms (i.e., x[n]|x[n]|p , p = 2,4, . . . ) can be expressed with the cross-correlation
function defined in (4.31), as a function of each corresponding nonlinear operator
z[n−τ] in each term. To evaluate these higher-order correlation values, Bussgang’s
theorem can be applied [66]. The Bussgang theorem essentially states that the cross-
correlation of any input Gaussian signal with the output signal of an instantaneous
nonlinear function can be mathematically expressed as the product of a scaling con-
stant and the autocorrelation of the input signal. Formally, this can be formulated
as

RXZ(τ) = ξ RX(τ), (4.35)

where ξ is the Bussgang coefficient. A proof of Bussgang’s theorem for complex-
valued signals can be found in [66]. The Bussgang coefficient can then be obtained
as

ξ =
E{ f (x[n])x∗[n]}

E{|x|2} =
E{ f (x[n])x∗[n]}

σ2
x

=
1
πσ4

x

∫ ∞
−∞

x∗[n] f (x[n])e−
|x[n]|2
σ2

x d x, (4.36)

where the definition of the complex proper1 Gaussian probability density function
(PDF) has been applied [119], [228], and σ2

x is the variance of the input signal x[n].
This value is usually smaller than one in order to obtain a small condition number in
the CM. Using the expressions in (4.35) and (4.36), the remaining high-order terms
in the CM can be obtained, exclusively as a function of RX(τ) and the Bussgang

1Proper (or circular) variable x: zero mean, and x is not correlated with x∗. This property signifi-
cantly simplifies the Gaussian PDF and complementary distribution function (CDF) [228], [238].
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R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ0RX(τ = 0) ξ0RX(τ = 1) · · · ξ0RX(τ =M ) ξ1RX(τ = 0) ξ1RX(τ = 1) · · · ξ1RX(τ =M )

ξ0R∗X(τ = 1) ξ0RX (τ = 0) · · · ξ0RX(τ =M − 1) ξ1R∗X(τ = 1) ξ1RX(τ = 0) · · · ξ1RX(τ =M − 1)

...
...

. . .
...

...
...

. . .
...

ξ0R∗X(τ =M ) ξ0R∗X(τ =M − 1) · · · ξ0RX(τ = 0) ξ1R∗X(τ =M ) ξ1R∗X(τ =M − 1) · · · ξ1RX(τ = 0)

ξ1RX(τ = 0) ξ1RX(τ = 1) · · · ξ1RX(τ =M ) ξ2RX(τ = 0) ξ2RX(τ = 1) · · · ξ2RX(τ =M )

ξ1R∗X(τ = 1) ξ1RX(τ = 0) · · · ξ1RX(τ =M − 1) ξ2R∗X(τ = 1) ξ2RX(τ = 0) · · · ξ2RX(τ =M − 1)

...
...

. . .
...

...
...

. . .
...

ξ1R∗X(τ =M ) ξ1R∗X(τ =M − 1) · · · ξ1RX(τ = 0) ξ2R∗X(τ =M ) ξ2R∗X(τ =M − 1) · · · ξ2RX(τ = 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.41)

coefficient, as

E{x[n]x∗[n]|x[n]|2}= ξ1RX(τ = 0), (4.37)

E{x[n]x∗[n− 1]|x[n− 1]|2}= ξ1RX(τ = 1), (4.38)

E{x[n]x∗[n]|x[n]|4}= ξ2RX(τ = 0), (4.39)

E{x[n]x∗[n− 1]|x[n− 1]|4}= ξ2RX(τ = 1), (4.40)

...

where ξ0, ξ1, · · · represent the set of Bussgang coefficients, which can be obtained
through (4.36). Now, the second-order and the higher-order terms in the CM have
been properly addressed, and are expressed as a function of only the autocorrelation
function of the input data and the Bussgang coefficients. A concrete example is pre-
sented in (4.41), which shows the CM structure with any value of M , P = 2, and
assuming that ξ0 = 1. Further analysis of (4.41) reveals that it can be configured
with a specific M × M submatrix notation, that will allow for efficient Kronecker
inversion [232], [240]. Hence, the CM can be divided into sub-blocks of size M ×M
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that contains a specific Bussgang coefficient, and are propagated through it as

R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0 R1 R2 · · · R� P2 �
R1 R2 R3 · · · R� P2 �+1

R2 R3 R4 · · · R� P2 �+2
...

...
...

. . .
...

R� P2 � R� P2 �+1 R� P2 �+2 · · · R2� P2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.42)

where each Hermitian Toeplitz sub-block can be defined as

Rk ∈�M×M = ξk

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

RX(τ = 0) RX(τ = 1) · · · RX(τ =M )

R∗X(τ = 1) RX (τ = 0) · · · RX(τ =M − 1)
...

...
. . .

...

R∗X(τ =M ) R∗X(τ =M − 1) · · · RX(τ = 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.43)

Using (4.43), the covariance matrix in (4.42) can also be expressed as a Kronecker
product as [240]

R= Ξ⊗R0, (4.44)

where Ξ ∈ �� P2 	×� P2 	 represents a matrix containing the complete set of Bussgang
coefficients. Finally, the ICM can be obtained by applying the Kronecker inverse as

R−1 = Ξ−1⊗R−1
0 . (4.45)

Note that only the first row and the last column of (4.42) need to be obtained in
order to estimate the final ICM. It is also noted that other low-complexity inversion
methods, such as the block-recursive inverse algorithm [56], can be used to efficiently
calculate the matrix inverse of (4.42). However, after careful analysis, it is concluded
that the Kronecker approach is the least complex of the two. The complexity of this
method is further analyzed at the end of this chapter.
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4.4.3 Reducing the Dimensionality of the ICM

The third proposed method aims at avoiding the recalculation of the ICM if a differ-
ent model parametrization is required (e.g., if the polynomial order in an MP model
is reduced, or the number of memory taps is decreased). The proposed method
achieves so by directly removing corresponding rows and columns of the original
ICM, such that the resulting matrix contains only the entries corresponding to the
desired parametrization. It is noted that the coefficients are directly removed from
the matrix inverse, thus the process is not straightforward.

The proposed method can then be implemented as follows. Let us denote the
original ICM as Q̃

−1 ∈�C̃×C̃ = (R̃
∗
)−1, obtained from an arbitrary set of BF, Ω̃. All

of these matrices are considered known, and they are utilized to obtain the reduced
set Q−1 ∈ �C×C = (R∗)−1, containing only the target entries. The original and
reduced BF sets are related as Ω̃= [Ω v], where v ∈�K it×1 corresponds to a column
in Ω̃ that needs to be removed. The original CM can be expressed as

Q̃= Ω̃
H
Ω̃=

⎡
⎣ΩH

vH

⎤
⎦Ω v
�
=

⎡
⎣ΩHΩ ΩH v

vHΩ vH v

⎤
⎦ , (4.46)

where the Schur Complement [203] can be applied to obtain its block inverse. It
reads

Q̃
−1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A−1 B−1

C−1 D−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.47)

where A ∈�(C̃−1)×(C̃−1), B ∈�(C̃−1)×1, C ∈�1×(C̃−1), and D ∈�1×1. These terms,
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in turn, read [203]

A−1 = (ΩHΩ)−1+D−1(ΩHΩ)−1ΩH vvHΩ
�
(ΩHΩ)−1
�H

, (4.48)

B−1 =−D−1(ΩHΩ)−1ΩH v, (4.49)

C−1 =−D−1vHΩ
�
(ΩHΩ)−1
�H

, (4.50)

D−1 =
�
vH v− vHΩ(ΩHΩ)−1ΩH v

�−1
. (4.51)

Note that the term (ΩHΩ)−1 appearing in A−1 directly corresponds to the desired
ICM subset, thus it can be finally obtained as

Q−1 = (R∗)−1 = (ΩHΩ)−1 =A−1−B−1
�B−1

D−1

�H
. (4.52)

It is noted that removing one column from the original BF matrix implies removing
one row and one column from the associated matrix inverse Q̃

−1
. The target row

and column to be removed are required to be in the last row/column of the ICM,
thus this method can be implemented iteratively to remove any arbitrary number of
rows/columns.

4.4.4 Frequency Shifting the ICM

The fourth method consists of efficiently shifting the CM in order to obtain a replica
that can be used in another target center frequency. If the input signal is frequency
upshifted or downshifted, its input statistical content will be different from the orig-
inal, and so its CM will also vary [176], [241]. Thereby, in order to obtain an opti-
mal performance, the CM and ICM need to be estimated again by some means. A
novel approach that directly applies a frequency shift to obtain the new ICM ma-
trix, instead of crudely recalculating it again, is presented within the next lines. For
simplicity, this method is presented in the context of MP processing, reviewed in
Section 2.2, but can be applied for any other model requiring the ICM calculation
in the SO algorithm. The method is built as follows.

Let Q̃
−1
= (R̃

∗
)−1 be the original ICM before applying the frequency shift, which

has been obtained from a signal x̃[n] and BF matrix Ω̃. Let Q−1 = (R∗)−1 the result-
ing ICM the method aims at estimating, corresponding to a signal x[n] and BF ma-
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Ω1 =


x[n]e jφωn · · · x[n]|x[n]|(P−1)e jφωn x[n− 1]e jφω(n−1) · · · x[n− 1]|x[n− 1]|(P−1)e jφω(n−1) · · ·
· · · x[n−M + 1]e jφω(n−M+1) · · · x[n−M + 1]|x[n−M + 1]|(P−1)e jφω(n−M+1)

�
(4.54)

trix Ω. An arbitrary frequency shift of φ f , in Hz, can be mathematically expressed
in the time domain as the multiplication with a phase term [198]. Considering x̃[n]
as the input signal, and x[n] as the resulting shifted signal, the frequency shift reads

x[n] = e jφωn x̃[n], (4.53)

where φω = (2π f )/ fs is the normalized angular frequency shift, and fs is the sam-
pling frequency. Having the frequency shift defined, the shifted input data BF ma-
trix, Ω, can be expressed exclusively as a function of the unshifted signal x̃[n] and
the frequency shift φω. This formulation can be obtained by substituting (4.53)
in the input BF matrix, obtained through the formulation presented in Section 2.2.
The first row of the resulting BF matrix is presented in (4.54). As a result of defining
the BF matrix in such a way, the entries of the conjugated ICM, Q, can be expressed
as a function of the unshifted ICM, Q̃, and an specific weight which depends on
φω. According to the matrix structure of (4.54) and the associated BF matrix in
Section 2.2, the weights are dependent on the different memory terms appearing in
each matrix, and can be divided in zero-sample-delay terms, one-sample-delay terms,
and, in general, m-sample-delay terms, as

0 -sample-delayterms: Q(i , j ) = e− jφωn e jφωnQ̃(i , j ) = Q̃(i , j ),

1 -sample-delayterms: Q(i , j ) = e− jφωn e jφω(n−1)Q̃(i , j ) = e− jφω1Q̃(i , j ),
...

m -sample-delayterms: Q(i , j ) = · · ·= e− jφωmQ̃(i , j ). (4.55)

The zero-sample-delay terms are usually around the main diagonal of Q̃, and larger
sample-delay terms are scattered through it. The final structure of the ICM and an
specific example of its configuration can be found in [P4]. The key insight until
this point is that the resulting shifted ICM only depends on the original ICM, Q̃,
and the frequency shift φω. Thereby, the final shifted ICM can be simply obtained
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by properly multiplying the original ICM with the proper frequency shift weights,
corresponding to different delayed terms in the input BF matrices. One method to
do so is to express the shifted CM as

Q= PH Q̃P, (4.56)

where the transformation matrix P ∈ �C×C applies the correct weights for each
memory term in the BF matrix. This matrix will vary according to the order of
chosen BFs. In this case, it is defined as

P=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · e jφωm 0 · · · 0

0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · e jφωm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.57)

Finally, thanks to the nomenclature chosen in (4.56), the CM can be simply inverted
as

Q−1 = (R∗)−1 = P−1Q̃
−1

PH (−1). (4.58)

The overall process drastically reduces the computational complexity of estimating
the ICM, in contrast to performing its whole recalculation. This is demonstrated
in [P4] and also in the following Chapter 5. It is finally noted that the number of
parameters, C , in DPD applications is not usually large, thus the matrix inversion
appearing in (4.58) does not constitute, in general, a heavy term when estimating the
ICM.

4.4.5 Recursively Estimating the ICM

The last proposed method aims at recursively estimating the ICM in target learn-
ing iterations. This method is especially useful when the input data signal changes
dynamically, and thus the ICM can be continuously estimated, providing optimal
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Figure 4.2 Conceptual flow diagram of the recursive ICM estimation method. Note that the learning

rule presented in (4.60) does not need to be executed at every learning iteration, and a reduced estimation

sample data set can be selected for its update.

performance at every time instant. The derived learning rule for the estimation of
the ICM does not need to be executed in every learning iteration, and even a reduced
estimation sample data set can be considered, per iteration, to estimate the ICM. A
conceptual data flow of the proposed algorithm is depicted in Fig. 4.2, showing the
idea of the overall process.

The CM can be first estimated as

Rn+1 =
n− 1

n
Rn +

1
n

xBF
n xBF,H

n , n = 1,2, · · · ,K it, (4.59)

where n represents the time index, xBF
n is the nth row of the input data BF matrix,Ω,

and R0 can be initialized as a zero matrix in the first learning iteration. Once having
the direct adaptation of the CM, its inverse can easily be obtained by applying the
matrix inversion lemma [31], [203], as

R−1
n+1 =

n
n− 1

�
R−1

n − 1

n− 1+ xBF,H
n R−1

n xBF
n

R−1
n xBF

n xBF,H
n R−1

n

�
, n = 2,3, · · · ,K it,

(4.60)
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where, again, R0 can be initialized as a zero matrix in the first learning iteration.
Since the ICM does not need to be updated in every learning iteration, this method
poses a clear advantage compare to GN, which requires the calculation of the term
(ΩH

k Ω)
−1 in every learning data block. Overall, this method allows for significant

complexity reductions in the learning path, while achieving a close performance to
the reference GN solution.

4.4.6 Complexity Analysis

In this section, a complexity comparison of the earlier presented ICM estimation
methods is analyzed. Also, the complexity of calculating the ICM in a classical way
is shown, for reference. This complexity analysis is done in terms of real multipli-
cations per K it-sized learning iteration, and left indicated as a function of the model
parameters, while concrete numerical examples are later detailed in [P4, P8] . The
complexity analyses are done by following the exact processing steps reviewed in Sec-
tions 4.4.1 to 4.4.5. When considering the third ICM estimation method, presented
in Section 4.4.3, the parameter l ICM represents the number of rows and columns that
need to be removed from the original ICM. When considering the recursive ICM es-
timation method, presented in Section 4.4.5, it is assumed that the learning equation
for the ICM in (4.60) is executed in only τICM samples within the complete K it-sized
learning block. This is a plausible assumption since the ICM generally converges fast,
and thus not that many iterations are needed. Note that if τICM =K it, the update in
(4.60) would be executed in all samples of the K it-sized learning data block.

The complete set of complexity expressions corresponding to the presented ICM
estimation methods are presented in Table 4.4, as a function of the modeling pa-
rameters, and following the assumptions explained above. The table also gathers
a numerical example, when the ICM parametrization is chosen as P = 9, M = 4,
C = 20, K it = 20.000, l ICM = 5, and τICM = KICM/4. This parametrization is simi-
lar to the one chosen to verify the various ICM estimation methods. More specific
numerical comparisons and examples are further reviewed in [P4, P8] , where also
the complexity-performance trade-offs of the proposed models are reported.
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Table 4.4 Computational complexity of the various ICM estimation methods reviewed in Sections 4.4.1

to 4.4.5, in terms of real multiplications per K it-sized learning block, and as a function of the model

parameters. The classical ICM calculation complexity is also included for reference. Also, a numerical

example is presented, where P = 9, M = 4, C = 20, K it = 20.000, l ICM = 5, and τICM =KICM/4

ICM estimation method
Symbolic real mul.

per K it-sized learning block

Numeric real mul.

to estimate ICM

Classical ICM calculation 4C 2(C +K) 32.032.000

Autocorr. ICM est. (Sec. 4.4.1) (� P2 �2+ 3� P2 �+ 2)3M 2+ 4(C 3(M + 1)(K it+ 1)) 433.460

Bussgang’s ICM est. (Sec. 4.4.2) M (4M 2+ 6M � P2 	− 3M + 4K it+ 4)+ 4(� P2 	+K it+ 1) 401.208

Dimensionality red. ICM (Sec. 4.4.3) 4l ICMC (C − 1) 7.600

Frequency shifting ICM (Sec. 4.4.4) (C 2−C )/2 190

Recursive est. of ICM (Sec. 4.4.5) τICMC (18C + 4+ 2d i v) 36.400.000
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5 EXPERIMENTAL VERIFICATION

THIS chapter provides several RF measurement examples with the aim of verify-
ing the proposed methods reviewed within this thesis. The Chapter is subdi-

vided into two main sections, dealing with DPD- and IBFD DSIC-related applica-
tions. Into the case of DPD, the proposed methods serve as the digital predistorter,
which, together with their associated learning stages, compose the overall DPD sys-
tem to test. In the case of DSIC, the proposed methods serve as the digital SI can-
cellation stage to form a complete IBFD prototype, such that the SI cancellation can
be evaluated. In order to provide realistic insight into the performance-complexity
trade-offs of the models, complete real-life measurement environments are adopted
in all cases.

The measurement results presented in this chapter are based on the publications
contained in [P1-P8], and further complemented with the works presented in [146],
[155], [200].

5.1 RF Verification in Digital Predistortion

This section deals with the verification of the proposed DPD systems. First, the
adopted experimental RF measurement setups are described, and then the proposed
cascaded and linear-in-parameters models are tested.

5.1.1 Deployed RF Measurement Setups

This section reviews the two main measurement setups deployed to carry out the
DPD measurements. The first setup consists of an FR-1 measurement environment,
where sub-6 GHz PAs are measured. Specifically, the RF testing example shown in
this thesis is performed with a 5G NR Band n78 medium-range BS PA. The second
setup conforms to an FR-2 measurement environment, with a specific mmW center
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Figure 5.1 Adopted 5G NR FR-1 RF measurement environment to test and evaluate the proposed

DPD methods at sub 6 GHz frequencies.

frequency of 28 GHz. With this configuration, a state-of-the-art active antenna array
containing 64 integrated PAs and antenna units is linearized. All FR-2 measurements
are carried out OTA. More specific characteristics of each setup are detailed in the
following subsections.

FR-1 Measurement Environment

The adopted FR-1 measurement setup utilized to test the sub-6 GHz PA is de-
picted in Fig 5.1, and it is configured as follows [P1]. First, a National Instruments
PXIe-5840 vector signal transceiver (VST) facilitates the baseband I/Q pseudo-random
input waveform generation, with a maximum instantaneous bandwidth of 1 GHz.
The baseband complex input waveform is generated by MATLAB in the VST itself,
and transmitted to the device under test (DUT) through its RF output transmit
chain. In this particular example, the DUT is a low-to-medium power Skyworks
SKY66293-21 amplification unit, oriented to be used in large-array antenna systems
or in medium-range BSs [1]. This particular Band n78 (3300-3800 MHz) amplifier
has a gain of +34 dB, and a 1-dB compression point of +31.5 dBm. Additionally,
its AM/AM response is shown in the Appendix, for reference. After the PA, the
signal is carried out through an additional attenuator, and finally fed back to the
VST. The VST module acts also as the observation receiver (ORX), and includes a
post-processing environment where the DPD algorithms are executed and the DPD
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performance metrics are evaluated. The setup in Fig 5.1 includes an additional power
splitter, with one of its outputs connected to a power meter to accurately measure
the PA output power. With this setup, the transmit signals are generated with a 4×
oversampling factor. Further details regarding the signal generation, sampling fre-
quencies, resource block (RB) allocation, subcarrier spacing (SCS), and other physi-
cal layer parameters can be found in [P1].

This setup was extensively used in [P1] to evaluate the DPD performance.

FR-2 Measurement Environment

The second measurement environment, corresponding to OTA FR-2 frequencies,
is depicted in Fig 5.2, and is configured as follows. First, a Keysight M8190 arbitrary
waveform generator (AWG) outputs the complex baseband I/Q data samples at inter-
mediate frequency (IF) 3.5 GHz, and a N5183B-MXG signal generator with an LO
signal at 24.5 GHz and a Marki Microwave T31040 mixer further upconvert the gen-
erated I/Q signal to 28 GHz center frequency. The resulting signal is then filtered by
a Marki Microwave FB3300 BPF to eliminate the mixer-induced image frequencies.
Two preamplifiers, an HMC499LC4 and an Analog Devices HMC1131 are config-
ured before the actual array to provide a sufficiently high power at its input, such
that it is operated in a well saturated region. The test PA is a 64-element Anokiwave
AWMF-0129 active antenna array, which transmits the signal OTA. The array is
mounted on an electrical tripod, which is capable of precisely providing the desired
elevation and azimuth angles. In a typical DPD experiment, the array beamforming
angle is 0◦, unless otherwise mentioned. For reference, the AM/AM curve of the
antenna array is depicted in the Appendix. The radiated signal is later captured by
a horn antenna acting as the ORX, which is well aligned to the beamforming an-
gle of the active array. The captured signal is then downconverted, attenuated, and
finally fed to a Keysight DSOS804A oscilloscope which is acting as the actual dig-
itizer. The received digital waveform is then given to a host computer for further
post-processing.

It is important to note that the RX OTA horn antenna is used for DPD learning
as well as the final OTA measurements assessing the DPD performance. This RX
is used also as the ORX because the AWMF-0129 array does not provide the option
of installing hardware-based combiners to provide the feedback signal [43], [52],
[169], [170]. Thus, the horn antenna ORX is deliberately chosen to mimic such a
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Figure 5.2 Adopted 5G NR FR-2 OTA RF measurement environment to test and evaluate the proposed

DPD methods at mmW frequencies.

setup [2], [42]. A detailed study showing the associated OTA to be problematic, such
as OTA ORX misalignment and beam-dependence of radiated nonlinear distortion,
is presented in [P2].

This setup was used in [P2-P4, P6, P8] to evaluate and test the DPD performance,
while [P7] considered a slightly modified version of it.

Finally, it is important to highlight several issues when mmW array setups are
considered. First, an array which contains R antennas also contains R PA units,
one for each antenna. These PA units are mutually different up to some limit, thus
each PA essentially presents its own nonlinear response. The estimated digital pre-
distorter builds on the combined learning path and the combined observed signal,
and thus it can only provide a good linearization in the main beam direction of the
antenna array. At other angles, the beam-pattern of the array itself will keep the
OoB distortion levels under specified limits [2], [17], [85], [191]. Second, the non-
linear characteristics of the array have been observed to be beam-dependent [6], [42],
stemming from the load modulation phenomena of the PAs, caused by antenna cou-
pling [13]. This indicates that the optimal DPD estimate will depend on the array
main beam direction, and thus the overall digital predistorter must take this into ac-
count [P2]. Plausible solutions are those capable of adapting the DPD coefficients as
the beam is steered, such as real-time tracking and fast adaptive DPD learning [45],
[180], [207]. This issue especially calls for low-complexity learning algorithms, capa-
ble of adapting the DPD estimate in a simple manner [118], [178]. Third, very wide
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channel bandwidths, more difficult impedance matching, and calibration challenges
already appear in mmW frequencies, compared to other lower frequencies [42], [67],
[85], [151]. This essentially translates to a higher frequency selectivity of the TX
system, and also that of the nonlinear distortion. As an example, distinct frequency
selectivity could appear in different components of the TX IF parts and the PA, and
the predistorter may interpret this effect as part of the PA response, hence overes-
timating its modeling and requiring an unnecessarily high level of parametrization
and complexity.

It is finally noted that all the tested input multicarrier waveforms are 3GPP Re-
lease 15 compliant [1], unless otherwise mentioned. When using this setup, the sig-
nals are generated with a 5× oversampling factor. Further details regarding the signal
generation, sampling frequencies, resource block (RB) allocation, subcarrier spacing
(SCS), and other physical layer parameters can be found in [P1-P8].

5.1.2 RF Verification of Spline-based Cascaded Models

In this section, RF verification examples are presented to show the effectiveness of
the cascaded-based DPD models in a real-life scenario. All cascaded models are esti-
mated with the ILA, as reviewed in Section 2.2. Specifically, two different examples
are presented. The first one analyzes the spectral linearization performance of the
cascaded models, when considering FR-1 and FR-2 scenarios. In both cases, it is
shown how the newly introduced 3GPP Release 15 specification requirements are
fulfilled in all cases [1]. The second experiments shows the DPD performance as a
function of the effective isotropic radiated power (EIRP) of the array, and addresses
several issues appearing in mmW OTA systems.

ACLR and TRP ACLR Limit Violation Example

In this linearization example, the DPD performance obtained with the FR-1 and
FR-2 setups is presented. In the results, the classical MP model is also shown, for
reference. First, the FR-1 setup is considered, with the previously described Sky-
works SKY66293-21 acting as the PA module. Since the radiated power of this PA
corresponds to a Medium-Range BS [P3], the absolute basic ACLR limit metric is
used to evaluate the performance [1]. The overall linearization results are depicted in
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Figure 5.3 5G NR linearization example of the proposed cascaded models in (a) FR-1 band n78

100 MHz measurement environment, using a medium-range BS PA operating at +26 dBm and (b) FR-2

band n257 400 MHz measurement environment, using the active antenna array operating at an EIRP of

+42 dBm.

Fig 5.3a. As can be seen from the figure, the OoB nonlinear distortion generated by
the PA is clearly violating the specified basic ACLR limit (-25 dBm/MHz) when no
DPD is used. However, when using the proposed cascaded DPD models, the distor-
tion power is well below the specified limit, with a specific margin that goes up to+6
dB in the case of SPWH. This result is expected, since the SPWH model constitutes
the richest approach out of the ones presented. Second, the FR-2 setup is deployed,
with the Anokiwave AWMF-0129 antenna array as the DUT. The overall lineariza-
tion example is presented in Fig 5.3b. In this case, the specified FR-2 TRP ACLR
limit (+28 dBc) is also violated when no DPD is used, with a value around +25 dBc
TRP ACLR. However, when the DPD solutions are applied, the TRP ACLR of the
resulting curves is diminished such that it complies with the 3GPP Release 15 speci-
fications in all cases. Note also how the passband distortion is corrected by the DPD
solutions, also fulfilling in all cases the required EVM limits, which are studied in the
next subsection. As an additional feature of this experiment, the DPD convergence
of the different cascaded algorithms is studied and presented in Fig. 5.4. The figure
shows the NMSE and TRP ACLR numbers as a function of the iteration index, when
considering a block iteration sample size of K it = 25 ksamples. It can be observed
that the DPD convergence is fast in general, achieving the steady-state behavior in
around 4-5 DPD iterations. This result also confirms that the 3GPP TRP ACLR
limit is fulfilled in all cases when the DPD algorithms have converged. Finally, it is
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Figure 5.4 5G NR 400 MHz OTA DPD convergence performance in terms of (a) NMSE, and (b) TRP

ACLR of the proposed DPD cascaded models as a function of the iteration index, with an EIRP of +42 dBm.

worth mentioning that the main path complexity of the cascaded models is reduced
by 68% (SPH), 68% (SPW), and 52% (SPWH), when compared to the classical MP
processing, as demonstrated in [P1] and [P5].

DPD Performance vs. EIRP in OTA Systems

One aspect worth highlighting when working with mmW OTA systems is how
the DPD algorithms perform as the active array output power varies. To this end,
a power sweep measurement example is presented next, showing the TRP ACLR
and EVM performance metrics against the EIRP of the array, which ranges from
+38.5 dBm to +42.5 dBm. The considered signal bandwidth for this experiment is
400 MHz, while the FR-2 OTA measurement environment is configured exactly as
explained in Section 5.1.1. This experiment sheds some light into two main things:
i) whether the TRP ACLR or the EVM is the limiting metric of the system, in terms
of maximum reachable EIRP, and ii) to test the DPD performance of the developed
methods as the array output power increases.

The obtained example results are then presented in Fig. 5.5. From the figure, it
can be clearly seen that the limiting metric of the array system is the EVM, which
has a value of +8% [1] at an EIRP of already +39.8 dBm, where the TRP ACLR
is still under +28 dBc. Nevertheless, when the proposed predistort techniques are
applied, both EVM and TRP ACLR performance metrics are kept well under the
specified limits at least up to an EIRP of +42.5 dBm, and clearly far beyond, as can
be seen from the example figure. These results clearly indicate an output power in-
crease, and thus a power efficiency improvement achievable with the proposed DPD
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Figure 5.5 5G NR 400 MHz OTA linearization performance of the propose DPD methods as a function

of the EIRP, in terms of (a) TRP ACLR, and (b) EVM.

solutions, which allow to increase the EIRP to +42.5 dBm and beyond, compared
to the maximum +39.8 dBm that would have been possible if no DPD correction
was applied. Further power sweep experimentation can be found, for other different
DPD models, in [P1-P3].

5.1.3 RF Verification of Spline-based Linear-in-parameters Solutions

In this section, the performance of the several linear-in-parameters solutions pre-
sented in Chapter 4 is tested. To this end, several RF measurements examples are
presented, which provide proof of the achieved DPD performance. Specifically, a
linearization example of the SPMP model is presented, followed by a performance
analysis of the sign-based learning algorithms combined with the MP-LUT model, a
further DPD performance vs. adopted LUT size comparison, and finally followed
by an example of the ICM estimation methods for the SO learning rule.

SPMP ILA Performance Example

In this predistortion example, the linearization performance obtained with the
SPMP model is tested, when configured with an ILA as presented in Section 2.2. In
this case, the learning procedure is based on the steepest gradient-descent algorithm
presented in Section 4.1. The FR-2 measurement setup described in Section 5.1.1 is
considered as the test scenario, along with the active antenna array DUT described
before. As can be seen from Fig 5.6, the specified FR-2 TRP ACLR requirement
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Figure 5.6 A 5G NR linearization example of the proposed SPMP ILA linear-in-parameters model, in

an FR-2 band n257 200 MHz measurement environment, using the active antenna array operating at an

EIRP of +42.5 dBm.

of +28 dBc [1] is violated when no DPD is applied, with a value around +23 dBc.
Nevertheless, when the SPMP DPD model is applied, the TRP ACLR is improved
up to +38 dBc, which constitutes a consistent margin of +10 dB with respect to the
+28 dBc limit [1]. Linearization examples of the previously presented SPH model
and an MP model are also presented for reference, when adopting a similar DPD
parametrization to make the comparison fair. The computational complexity of
the SPMP DPD model is, in turn, reduced by 44% with respect to the classical MP
model. A more detailed complexity analysis can be found in [P1].

Signed Closed-loop Algorithms Performance Example

The next linearization example shows the behavior of the sign-based algorithms
when combined with the classical GN, SO, and BLMS learning equations. In this ex-
ample, the mmW FR-2 setup is also adopted, with the active array acting as the DUT
nonlinear PA. The results are then presented in Fig. 5.7a, for the three adopted learn-
ing equations. As can be seen from all figures, PA linearization is indeed needed, as

89



27.2 27.4 27.6 27.8 28 28.2 28.4 28.6 28.8
Frequency (GHz)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

N
or

m
al

iz
ed

 p
ow

er
 (

dB
)

GN

No DPD
Unsigned
Sign error
SRA
Sign-sign

(a)

27.2 27.4 27.6 27.8 28 28.2 28.4 28.6 28.8
Frequency (GHz)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

N
or

m
al

iz
ed

 p
ow

er
 (

dB
)

SO

No DPD
Unsigned
Sign error
SRA 1
Sign-sign 1

(b)

27.2 27.4 27.6 27.8 28 28.2 28.4 28.6 28.8
Frequency (GHz)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

N
or

m
al

iz
ed

 p
ow

er
 (

dB
)

BLMS

No DPD
Unsigned
Sign error
SRA
Sign-sign

(c)

Figure 5.7 A 5G NR linearization example of the proposed sign-based algorithms in an FR-2 band

n257 400 MHz measurement environment, using the active antenna array operating at an EIRP of

+43 dBm, with (a) GN learning method, (b) SO learning method, and (c) BLMS learning method.
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the spectral curves without DPD do not comply with the+28 dBc TRP ACLR limit
specified in [1]. The TRP ACLR is however diminished under the specified limit
when applying all the sign-based learning solutions. In the first case, the GN, the
DPD performance of all considered sign-based versions is similar. With the second
considered learning rule, the SO, the difference in terms of performance between
the sign-based versions is more notable, as further signing its terms already consti-
tutes a more crude approximation. This is observed especially in the cases of the SO
sign and SO sign-sign, where the linearization performance drops around +4 dB,
when compared to the unsigned classical solution. Finally, with the BLMS solution,
the performance is generally degraded, and the convergence speed is also slower [P4,
P6], when compared to the GN or SO learning solutions, although its complexity is
also lighter. Specific experiments and analyses targeting the DPD convergence speed
of the proposed algorithms can be found in [P4,P6]. In general, the computational
complexity is, in turn, reduced by up to 50% in the case of the GN, and by more
than 99% in the case of the SO and BLMS, as demonstrated in [P2] and [P6].

All in all, the GN presents a robust solution, but often involves an increased
complexity. The SO solution presents quite a good approximation, while the com-
plexity is reduced. Finally, the BLMS is a very simple solution, but the performance
and convergence may suffer in some scenarios.

DPD Performance vs. LUT Size Comparison Example

One aspect worth noting when working with LUT-based systems is how the con-
sidered LUT size affects the achievable DPD performance. This section presents
a measurement example showing the DPD behavior against the considered LUT
size, when adopting the SO learning rule and its different signed variants. In this
FR-2 OTA example, an effective signal bandwidth of 400 MHz and an EIRP of
+43 dBm are considered, while the measurement setup is configured as explained
in Section 5.1.1. Similar comparisons made with the GN and BLMS learning ap-
proaches can be found in [P2].

The example results are then presented in Fig. 5.8, showing the achievable TRP
ACLR numbers as a function of the LUT size. The obtained curve when no DPD is
applied and the+28 dBc TRP ACLR performance limit [1] are also shown for refer-
ence. As can be seen from the figure, the various DPD curves pose a clear ascending
pattern, showing an improved linearization performance as the LUT size increases.

91



10 20 30 40 50 60
LUT size

24

26

28

30

32

34

T
R

P
 A

C
LR

 (
dB

c)

W/o DPD
SO unsigned
SO sign error
SO SRA
SO sign-sign
MP DPD
28 dBc TRP ACLR limit

Figure 5.8 Comparison of the achievable TRP ACLR against the adopted LUT size in the SO learning

rule and its different signed variants, considering a signal bandwidth of 400 MHz and at an EIRP of

+43 dBm.

This effect is seen until the LUT size reaches 32 elements, where the achievable DPD
performance essentially saturates. Hence, a 32-point LUT seems to be the optimal
choice in this particular example, in terms of linearization performance and required
resources. To see a reduced performance when the LUT size is low is naturally ex-
pected, since a very low number of control points in the LUT are not sufficient
to approximate and invert the effective PA nonlinearity. It is finally noted that the
+28 dBc TRP ACLR performance metric is fulfilled in all cases when the LUT size is
greater than 8 points. This figure also reconfirms the potential of the proposed sign-
based solutions, which are in all cases within the TRP specified limits, regardless of
their much lower involved computational complexity.

Another important aspect of the developed methods is their convergence speed.
In general, the convergence speed of the unsigned learning equation (i.e., the learning
equation when no sign algorithm has been applied) is faster, reaching the steady-state
sooner. When applying the different sign-based versions of the learning equations,
the convergence speed is slightly decreased, since some information is inevitably lost
when signing different terms in them. In all cases, the proposed models are very sta-
ble after convergence, and satisfy the 3GPP requirements [1]. Detailed convergence
and stability analyses of the proposed methods can be found in [P2, P6].

92



27 27.5 28 28.5 29
Frequency (GHz)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

N
or

m
al

iz
ed

 p
ow

er
 (

dB
)

W/o DPD
SO DPD, autocorr. ICM est.
SO DPD, Bussgang ICM apprx.
GN DPD

Figure 5.9 A 5G NR linearization example of the proposed Bussgang and autocorrelation ICM esti-

mation methods, combined with the SO learning equation, in an FR-2 band n257 800 MHz measurement

environment, and using the active antenna array operating at an EIRP of +40.5 dBm.

5.1.4 RF Verification of the ICM Estimation Methods

The DPD verification is concluded with the testing of the ICM estimation methods.
In this section, a linearization example of estimating the ICM with the autocorre-
lation function and the Bussgang coefficients (Section 4.4.1 and 4.4.2) is presented,
while the reader can find further examples showing the effectiveness of the other pre-
sented approaches in [P4] and [P8]. The following experimentation is carried out
with the real-life mmW FR-2 environment shown in Section 5.1.1, with the aim of
linearizing the active antenna array, while minimizing the complexity in the DPD
learning path.

The provided linearization example is then presented in Fig. 5.9, for a very wide
bandwidth of 800 MHz. It is noted that this signal bandwidth is not compliant with
the latest 3GPP Release 15 [1], but is nonetheless chosen on purpose in order to push
the performance boundaries of the DPD system. In the figure, the spectral curve
without DPD has a TRP ACLR value of barely +21 dBc, which already demon-
strates a very nonlinear operation point. Despite this, both ICM estimation methods
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are able to generate a reliable ICM, which is then taken as an input for the SO learn-
ing algorithm. The SO learning algorithm provides also a reliable set of DPD coeffi-
cients, which are able to suppress the OoB nonlinear emissions to +31.5 dBc (auto-
correlation estimation method) and +30 dBc (Bussgang’s approximation method).
Both of these values are also very close to the GN model, measured and presented as
a reference technique. The average learning computational complexity of the pro-
posed methods is, in turn, drastically reduced by up to 95%, when compared to the
reference GN technique, as demonstrated in [P4] and [P8]. Additional convergence
analyses of the proposed ICM methods can be found in [P4].

5.2 RF Verification in Digital Self-interference Cancellation

This second section deals with the verification of the proposed DSICs. Following
an equivalent structure as taken before, the cascaded models are first tested, followed
by the linear-in-parameters solutions.

5.2.1 RF Verification of Spline-based Cascaded Models

The various proposed cascaded models are tested and verified in the context of dig-
ital SI cancellation for IBFD devices through two different RF measurement envi-
ronments. Firstly, the measured data originally used in [143]was utilized to test the
SPH, SPW, and SPWH models. This data was extracted from a complete FR-1 IBFD
prototype. The second measurement environment considers instead an FR-2 IBFD
system, with an additional LNA in the RX chain to further demonstrate the effec-
tiveness of the SPHW model. These experiments are explained within the following
lines.

Digital SI Cancellation in a Complete FR-1 IBFD Prototype

The first measurement setup is conceptually depicted in Fig 5.10, containing a
back-to-back relay antenna to provide as much TX-RX isolation as possible in the
analog domain [117], [125]. In this example, the RF cancellation stage is omitted
altogether, in contrast to other generic IBFD architectures. Omitting the RF can-
cellation stage is, however, done deliberately, as this results in a higher induced SI
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Figure 5.10 Conceptual structure of the FR-1 IBFD prototype utilized to evaluate the digital SI cancel-

lation obtained with the spline-based cascaded structures.

interference before the ADC. As a consequence, a significant amount of SI suppres-
sion is still required, thus making this data set optimal to test the proposed SPH,
SPW, and SPWH cascaded models, as reviewed in [P3, P5].

Three different SI cancellation examples are then presented in Fig 5.11, for the
input signal bandwidths of 20, 40, and 80 MHz, respectively. The example power
spectral densities (PSDs) show the cancellation performance of the SPH, SPW, and
SPWH techniques, alongside a classical LMS-based MP model which is measured
as a reference technique. In the three PSDs examples, the power of the RX signal
after the back-to-back antenna isolation still ranges between -41.8 dBm (20 MHz)
and -39.8 dBm (80 MHz), which is obviously above the RX noise floor level of -88
dBm, hence further digital cancellation is required. In the first bandwidth example
of 20 MHz, the SPH and SPWH models are able to suppress the SI signal to around
-86 dBm, which is only+2 dB higher than the RX noise floor. This result constitutes
a digital SI cancellation of some +44 dB, which is at the same time comparable to
also the +44 dB cancellation obtained with the MP model, regardless of the much
lower complexity involved in the cascaded approaches. The cancellation of the SPW
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Figure 5.11 PSDs after the digital SI cancellation stage in the IBFD prototype, when the cascaded

SPH, SPW, and SPWH models are applied, for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz signal bandwidths.
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Figure 5.12 Residual error power with respect to the iteration index after applying the different DSIC

algorithms, in the case of 80 MHz instantaneous bandwidth.

model, +32 dB, lies somewhat behind, but this result is expected since the structure
of the considered IBFD prototype follows a Hammerstein system, in which the can-
cellation performance is non-optimal when modeled with a Wiener-type approach.
The proposed cascaded approaches perform well also with the increased signal band-
widths of 40 and 80 MHz, as demonstrated within the figure. In the case of 40 MHz,
the SPWH and MP models achieve an SI cancellation of some +43 dB, with the
SPWH model even outperforming the MP approach. This result is followed by the
SPH model, with +42 dB cancellation, and finally the SPW structure, with +32 dB
cancellation. Similar conclusions apply for the latter case of 80 MHz, with an SI
cancellation of +39 dB (SPWH and MP), +38 dB (SPH), and finally +32 dB (SPW).

A final convergence analysis of the proposed cascaded models is presented in
Fig. 5.12, which shows the residual error power after cancellation as a function of the
iteration index in the latter case when the bandwidth of 80 MHz is selected, while
the former 20 MHz and 40 MHz cases can be found in [P3,P5]. It can be seen from
the figure that all models essentially achieve a similar convergence speed, despite the
cascaded models not using any type of orthogonalization. The figure also confirms
the absolute levels of digital cancellation achieved by the different models, with the
Wiener model lagging slightly behind, and with the SPH and SPWH models almost
reaching the same performance as the reference MP model.

All in all, the cascaded approaches, especially SPH and SPWH, are able to suc-
cessfully suppress the SI signal in the IBFD prototype, for all bandwidth cases of
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Figure 5.13 5G NR FR-2 measurement environment utilized to evaluate the digital SI cancellation

obtained by the SPHW cascaded structure.

20-80 MHz, with cancellation results comparable to the reference LMS-based MP
solution, regardless of the great complexity reductions of 82% (SPH and SPW), and
80% (SPWH) in the cancellation stage. Further details and measurements of this
experiment can be found in [P3, P5].

Digital SI Cancellation in a Complete FR-2 Prototype

Second, the cascaded SPHW is tested within an FR-2 measurement system. A
special IBFD setup incorporating a second LNA after the TX/RX antennas is incor-
porated to demonstrate the effectiveness of this model when modeling such struc-
tures. The considered RF measurement environment is depicted in Fig. 5.13. Specifi-
cally, the adopted mmW FR-2 measurement environment incorporates a 64-element
active antenna array acting as the main TX PA, and an additional nonlinear AD
HMC1040LP3CE LNA placed before the actual RX ADC. Moreover, a metallic re-
flector is situated at 2 meters from the TX/RX antennas, such that it produces a real-
istic reflection into the RX antenna. This reflection constitutes the main SI signal the
IBFD device aims at suppressing. Since the power of the undesired signal reflection
is not drastically high, no RF cancellation stage is considered, thus DSIC is required
in the IBFD device for its successful operation. It is noted that there is no meaningful
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Figure 5.14 PSDs after the digital SI cancellation stage in the FR-2 measurement environment, when

the cascaded SPHW model is applied, considering a signal bandwidth of 400 MHz. The SPH model is

also presented for reference.

leakage from the array to the RX antenna, due to its highly directive beam-pattern.
Corresponding signal upconversion/downconversion to/from 28 GHz and further
signal conditioning stages are configured as explained in Section 5.1.1.

The SI cancellation results are then presented in Fig 5.14, showing also the per-
formance of the SPH model for reference. In this example, the power of the interfer-
ence signal coming from the metallic reflector is+11 dBm, which creates significant
nonlinear distortions in the LNA, and thus additional DSIC processing is clearly
needed to suppress this effect. After applying the digital cancellers, the SI signal is
suppressed to -14 dBm with the SPH model, and to -18 dBm with the SPHW model.
These results translate into a SI cancellation of +25 dB in the case of SPH, and up
to +29 dB in the case of SPHW. With these type of structures, the performance en-
hancement achieved by the SPHW cascaded approach is clear, specifically providing
+4 dB more of digital SI cancellation, since it is also capable of modeling the non-
linear response of the RX LNA. Further experimentation and testing of the SPHW
model, including its convergence analysis, can be found in [P7].
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5.2.2 RF Verification of Spline-based MP-LUT Models

In this last section, the cancellation performance of the linear-in-parameters SPMP
model is tested and analyzed. The chosen RF measurement environment is the ex-
act same as the one presented in Fig 5.10, where the output data is obtained from
that same complete FR-1 IBFD prototype. For further details of this setup, refer to
Section 5.2.1 and [P3, P5]. In this case, the SPMP model cancellation performance
is tested with the widest signal bandwidth of 80 MHz, and compared to the classical
MP and SPWH models for reference. The chosen amount of memory is the same as
in the MP and SPWH models, and the LUT sizes are also the same as in the SPWH
model.

The SI cancellation example result is then presented in Fig 5.15. Digital cancella-
tion is indeed needed, since the power of the RX signal after the back-to-back antenna
is still some -40 dBm. After applying the SPMP DSIC, the power of the SI signal is
reduced to -78.2 dBm, which translates to +38.4 dB of digital SI cancellation. This
result perfectly compares to the+39.9 dB of cancellation obtained with the twin MP
model, regardless of the much lower complexity of the SPMP model. This result is
also comparable to the +38.2 dB of cancellation obtained with the SPWH model.
The convergence speed of the SPMP model is also similar to that of the SPWH and
classical MP models, as can be verified from [P3,P7]. In terms of computational com-
plexity in the cancellation stage, the SPMP model allows for a reduction of +42%,
when compared to the classical MP model, while a more complete complexity anal-
ysis can be found in [P3]. Overall, these results indicate that high levels of efficient
digital cancellation can indeed be achieved by the proposed SPMP technique.
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6 CONCLUSION

THIS last chapter presents a summary of the main findings and results obtained
within the research work carried out for this thesis, alongside with potential

future directions of the studied topics. With 5G NR already well ramping up in
modern mobile networks, and 6G being just around the corner, there are doubtlessly
many possible directions for the future of DPD and IBFD. As reported within this
work, the ever-increasing signal bandwidths, TX power efficiency, sampling rates,
frequency ranges, etc. in radio transceivers call for low-complexity impairment com-
pensation algorithms. Hence, there are still many relevant topics to be still explored,
regardless of the several findings already presented here.

6.1 Main Findings

The principal aim of this thesis work was to develop low-complexity DPD and DSIC
techniques applicable for modern wireless communications systems. On the one
hand, the proposed DPD models targeted a power efficiency increase in the consid-
ered transmitter, while keeping the unwanted in-band and OoB emissions within
specified levels. On the other hand, the proposed DSICs aimed at improving the
spectral efficiency of the transmission by precisely modeling the unwanted SI signal
which appears in any IBFD transceiver, and by removing its effect from the overall
received signal in the cancellation stage. Since the transmit PA typically presents a
highly saturated response, both of these approaches required a certain type of non-
linear modeling, and thus the modeling algorithms which were presented in this
thesis could be used in both applications. To this end, the behavior of the nonlinear
distortion injected by the transmit PA was analyzed, and several nonlinear mod-
els whose aim was to precisely estimate the PA nonlinear distortion were derived.
Moreover, all of these models were supported by their corresponding mathematical
derivations, and were tested and verified in all cases with commercial off-the-shelf
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PAs, and through comprehensive real-life RF measurement environments, includ-
ing state-of-the-art examples at FR-1 and FR-2.

The main findings and results found within this thesis work can be summarized
as follows. First, Chapter 3 and publications [P1, P3, P5, P7] presented four differ-
ent configurations of spline-interpolated cascaded structures to model the nonlin-
ear behavior of a transmitter system, alongside their corresponding gradient-descent
adaptive parameter learning solutions. Moreover, the cascaded approaches were con-
figured with an injection-based scheme, which allowed to avoid gain ambiguities in
the structures and also reduce the dynamic range of the spline control points. A
vast amount of different experimental tests was provided, covering successful lin-
earization and SI suppression in different scenarios. These results, together with the
numerous complexity analyses provided, showed that the proposed cascaded models
possess very appealing performance-complexity trade-offs. Specifically, the SPWH
model usually behaved in a similar manner as other state-of-the-art reference solu-
tions, such as the MP model, while drastically reducing the complexity involved by
50%. The performance of the SPH and SPW approaches typically followed behind,
while achieving even a more drastic reduction in terms of computational complexity,
in the order of 60%.

Next, in Chapter 4 and publications [P1, P2, P4, P6, P8], an efficient linear-in-
parameters behavioral model was proposed, together with two alternative parame-
ter learning solutions. The proposed model was implemented with the same spline
interpolation processing scheme of Chapter 3, but now configured within a MP-
type parallel branched structure to provide additional memory correction. In such
a model, the parameter estimation was done with either a gradient descent-based
adaptive learning solution, or with either the closed-loop-based forms of GN, SO,
and BLMS. Additionally, as detailed in [P2, P6], the latter learning forms were also
combined with efficient sign-based algorithms which signed different magnitudes in
the learning updates to further reduce its computational complexity, while keeping
an acceptable modeling performance. Specifically, the proposed signed models were
shown to achieve a very close linearization behavior to that of the original unsigned
version, while achieving complexity reductions in the order of 50-90%. Further-
more, to provide an even more drastic complexity reduction, several ICM methods
were also proposed [P4, P8], in combination with the SO learning equation. In this
case, the inherent low-complexity of the SO method, combined with the proposed
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solutions, led to remarkably reduced complexities, which were in the order of 90%,
while still maintaining a very close linearization performance to other reference ap-
proaches.

The performance of all aforementioned methods and models was tested and veri-
fied in Chapter 5. In the context of DPD, two state-of-the-art measurement environ-
ments were proposed, targeting FR-1 and FR-2 scenarios. The performance of the
proposed algorithms was analyzed, and was also compared to other state-of-the-art
solutions to demonstrate its effectiveness. In the experiments, impressive channel
bandwidths of up to 800 MHz were reported. In all cases, the latest specified 3GPP
Release 15 requirements of EVM and ACLR were fulfilled, regardless of the much
lower complexity involved in the proposed systems. In the context of IBFD, the
proposed models were configured as digital SI cancellers, and tested also in both FR-
1 and FR-2 measurement environments. In all cases, the proposed DSIC solutions
achieved high levels of digital SI suppression, with up to +45 dB and +32 dB when
utilizing the FR-1 and FR-2 setups, respectively. These results are comparable in all
cases to other state-of-the-art reference solutions, while the overall computational
complexity in the modeling and learning paths was drastically reduced by more than
80%.

Altogether, this thesis showed that efficient PA linearization and digital SI can-
cellation can be achieved through the proposed techniques. The proposed digital
methods are able to achieve levels of performance which are very close to, and even
outperform in some cases, classical state-of-the-art solutions, regardless of their lower
level of computational complexity involved. This was demonstrated through care-
ful RF testing and experimentation, which complied in all cases with the latest in-
ternational communications standards. In summary, this thesis, together with pub-
lications [P1-P8], provided several methods and solutions which were able to reach
more efficient DPD systems, and also bring IBFD technology one step closer to
commercially feasible implementations.

6.2 Future Work

This thesis work studied DPD and IBFD technologies, targeting the reduction of the
computational complexity involved. In this context, this work unveiled many paths
that still remain to be explored. Future directions and further research is hereby
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summarized.
In the context of DPD, it is clearly a new trend to develop less complex predis-

torters which target a medium PA linearization performance, in contrast to classical
methods which aimed at achieving high levels of distortion suppression. Adopting
such low-complexity predistorters is particularly useful in mmW over-the-air arrays,
where the nonlinear distortion is beam-dependent, and thus the DPD coefficients
need to be estimated in the learning stage as quickly as possible as the beam is steered.
In the existing literature, a lesser focus has been given to the learning complexity, thus
it constitutes another area that requires further research.

Another whole topic that is somewhat unexplored is sampling reduction meth-
ods for DPD applications. Reducing the sampling rate can be achieved by two main
approaches. The first method is band-limiting, which is already studied in DPD
schemes. However, the overall complexity reduction of the band-limiting functions
needs to be carefully assessed, as the upsampling and downsampling functions also
add complexity to the system on their own. The second method is antialiasing,
which has been studied within audio engineering applications, but its feasibility in
DPD processing has so far yet to be studied. Such techniques operate instead at a
lower sample rate all the time, thus avoiding the costly resampling processes needed
in bandlimiting applications. All of these questions have not been addressed in the
current literature, and would require further exploration.

In the context of IBFD, learning the associated parameters with the SO learning
rule in combination with the ICM estimation methods reproduced in [P4, P8] is a
natural continuation, which could further reduce the learning computational com-
plexity in polynomial-type models. Furthermore, little attention has been given to
the combination of IBFD with DPD. DPD can largely reduce the nonlinear distor-
tion injected by the TX PA, thus simpler digital SI cancellation solutions could be
adopted, which would reduce the modeling and learning associated complexities.

In addition, exploring IBFD technology in the context of mmW frequencies and
active antenna arrays constitute a very interesting future research direction, with a
preliminary idea already given in [P7]. It is well-known that very wide channel band-
widths, more difficult impedance matching, calibration challenges, higher frequency
selectivity, etc. already appear in mmW frequencies, compared to other lower fre-
quencies, and this will surely pose a challenge for IBFD and SI cancellation. Ad-
ditionally, multi-antenna arrays inherently have nonlinear characteristics which are
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beam-dependent, stemming from the load modulation phenomena of the PAs. The
digital SI cancellers must take this into account, adapting their parameters as the
beam of the array is steered. This is also clearly a future direction for IBFD technol-
ogy that needs further research.

All in all, and despite the incremental progress that this thesis offered, there are
still several key points that remain to be explored in the context of both DPD and
IBFD. On the one hand, developing more efficient yet reliable DPD systems will
allow for the minimization of cost and size of the utilized circuitry within the radio
transceivers. On the other hand, it is crucial to keep researching and developing
IBFD technology, with the ultimate aim of reaching full feasibility for its integration
with commercial devices.
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APPENDIX AM/AM RESPONSES OF THE

TESTED PA SYSTEMS

THIS appendix provides representative measured AM/AM curves of all the PA
systems utilized for the RF verification and validation of the proposed DPD

and IBFD methods, which were described within this Dissertation and also within
the attached papers.

Specifically, the AM/AM responses of the Mini-circuits ZHL-4240 PA unit, the
Skyworks SKY66293-21 PA unit, and the Anokiwave AWMF-0129 active antenna
array, are featured in Fig. 1, Fig. 2, and Fig. 3, respectively. Further measurement
parameters can be found in corresponding figure captions.

Figure 1 Instantaneous normalized AM/AM response of the Mini-circuits ZHL-4240 PA system, ob-

tained with a 5G NR signal bandwidth of 100 MHz, an RF center frequency of 3.5 GHz, an output power of

+27 dBm, and a PAPR of 8 dB (0.01% CCDF). This PA unit has a gain of +41 dB and a 1-dB compression

point of +31 dBm.

141



Figure 2 Instantaneous normalized AM/AM response of the Skyworks SKY66293-21 PA system, ob-

tained with a 5G NR signal bandwidth of 100 MHz, an RF center frequency of 3.65 GHz, an output power of

+27 dBm, and a PAPR of 8 dB (0.01% CCDF). This PA unit has a gain of +34 dB and a 1-dB compression

point of +31.5 dBm.

Figure 3 Instantaneous normalized AM/AM response of the Anokiwave AWMF-0129 active antenna

array, obtained with a 5G NR signal bandwidth of 800 MHz, an RF center frequency of 28 GHz, an EIRP of

+40.5 dBm, since an OTA measurement system is considered, and a PAPR of 8 dB (0.01% CCDF). This

active antenna array has a 1-dB compression point of +41 dBm.
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Gradient-Adaptive Spline-Interpolated LUT
Methods for Low-Complexity Digital Predistortion
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Dani Korpi, Member, IEEE, Markus Allén, and Mikko Valkama, Senior Member, IEEE

Abstract—In this paper, new digital predistortion (DPD) so-
lutions for power amplifier (PA) linearization are proposed,
with particular emphasis on reduced processing complexity
in future 5G and beyond wideband radio systems. The first
proposed method, referred to as the spline-based Hammerstein
(SPH) approach, builds on complex spline-interpolated lookup
table (LUT) followed by a linear finite impulse response (FIR)
filter. The second proposed method, the spline-based memory
polynomial (SMP) approach, contains multiple parallel complex
spline-interpolated LUTs together with an input delay line such
that more versatile memory modeling can be achieved. For both
structures, gradient-based learning algorithms are derived to
efficiently estimate the LUT control points and other related DPD
parameters. Large set of experimental results are provided, with
specific focus on 5G New Radio (NR) systems, showing successful
linearization of multiple PA samples as well as a 28 GHz active
antenna array, incorporating channel bandwidths up to 200 MHz.
Explicit performance-complexity comparisons are also reported
between the SPH and SMP DPD systems and the widely-applied
ordinary memory-polynomial (MP) DPD solution. The results
show that the linearization capabilities of the proposed methods
are very close to that of the ordinary MP DPD, particularly with
the proposed SMP approach, while having substantially lower
processing complexity.

Index Terms—Digital predistortion, power amplifier, spline
interpolation, Hammerstein, memory polynomial, lookup table,
nonlinear distortion, behavioral modeling, EVM, ACLR

I. INTRODUCTION

MODERN radio communication systems, such as the 4G
LTE/LTE-Advanced and the emerging 5G New Radio

(NR) mobile networks, build on multicarrier modulation, most
notably orthogonal frequency division multiplexing (OFDM)
[1]. OFDM waveforms are known to contain high peak-
to-average power-ratio (PAPR) [2], [3], which complicates
utilizing highly nonlinear power amplifiers (PAs) in transmit-
ters operating close to saturation [2], [4], [5]. Digital pre-
distortion (DPD) is, generally, a well-established approach
to control the unwanted emissions and nonlinear distortion
stemming from nonlinear PAs, see, e.g., [2], [4], [6]–[9] and
references therein. Especially when combined with appropriate
PAPR reduction methods [10], DPD based systems can largely
improve the transmitter power efficiency while keeping the
unwanted emissions within specified limits.

Some of the most common approaches in PA direct mod-
eling as well as DPD processing are the memory polynomial

P. Pascual Campo, A. Brihuega, L. Anttila, M. Turunen, M. Allén, and
M. Valkama are with the Department of Electrical Engineering, Tampere
University, Tampere, Finland. e-mail: pablo.pascualcampo@tuni.fi

D. Korpi is with Nokia Bell Labs, Espoo, Finland.

(MP) [2], [9], [11] and the generalized memory polynomial
(GMP) [2], [11]–[13], both of which can be interpreted
to be special cases of the Volterra series [2], [14]–[16].
Such approaches allow for efficient direct and inverse mod-
eling of nonlinear systems with memory, while also sup-
porting straight-forward parameter estimation, through, e.g.,
linear least-squares (LS), as they are known to be linear-in-
parameters models [11]. However, the processing complexity
per linearized sample is also relatively high, particularly
with GMP and other more complete Volterra series type of
approaches, though also several works exist where complexity
reduction is pursued [15], [17]–[21]. Specifically, the works
in [18], [19], [22] present predistorter and PA modeling meth-
ods that build on spline-based basis functions – an approach
that is technically considered also in this article, in the form
of spline-interpolated lookup tables (LUTs).

In this paper, we develop and describe two new DPD
solutions whose linearization capabilities are similar to those
of the well-established polynomial-based solutions, while at
the same time offering a substantially reduced DPD main path
processing and parameter learning complexities. The develop-
ment of such reduced-complexity DPD solutions is mainly
motivated by the following four facts or tendencies. First, the
channel bandwidths in NR are substantially larger than those
in LTE-based systems. Specifically, up to 100 MHz and 400
MHz continuous channel bandwidths are already specified in
NR Release-15 at frequency range 1 (FR-1; below 6 GHz
bands) and FR-2 (24-40 GHz bands), respectively, [23], which
imply increased DPD processing rates. Second, the actual
unwanted emission requirements, particularly in the form of
total radiated power (TRP) based adjacent channel leakage
ratio (ACLR), are largely relaxed in NR FR-2 systems, being
only in the order of 26-28 dB [23], increasing the feasibility of
simplified DPD solutions. Third, the medium-range and local
area base-stations (BSs) adopt substantially reduced transmit
powers [23], compared to classical macro base-stations, hence
the available power budget of the DPD solutions is also
reduced. Finally, as observed recently in [5], even continuous
learning may be needed at FR-2 and other mmWave active
array systems, hence developing methods which reduce the
parameter learning complexity becomes important.

The first new DPD method proposed in this paper, referred
to as the spline-based Hammerstein (SPH) approach, builds
on complex spline-interpolated LUT followed by a linear
finite impulse response (FIR) filter. The interpolation allows
to use a small amount of points in the LUT, while the
linear filter facilitates basic memory modeling. Gradient-based
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Fig. 1. Illustration of a) the considered DPD system building on indirect learning architecture (ILA), and b) the injection-based complex spline-interpolated
LUT scheme utilized inside the proposed digital predistorter and digital postdistorter entities.

learning algorithms are also derived, to efficiently estimate
the LUT control points as well as the linear filter parameters
in a decoupled manner. The second proposed DPD method,
referred to as the spline-based memory polynomial (SMP),
consists of multiple parallel spline-interpolated LUTs and an
input delay line such that more versatile memory modeling
can be achieved when summing together the outputs of the
parallel LUTs. Through spline interpolation, the size of all
parallel LUTs can be kept small, while gradient-adaptive
learning rule is again derived to estimate the control points of
the involved parallel LUTs. For both proposed models – the
SPH DPD and the SMP DPD – comprehensive computational
complexity analyses are provided, while also comparing to
ordinary gradient-adaptive canonical MP DPD system. Then,
extensive RF measurement results are provided, covering
several different FR-1 PA samples, channel bandwidth cases
as well as base-station classes. Additionally, a state-of-the-art
28 GHz active antenna array, specifically Anokiwave AWMF-
0129, is successfully linearized with 100 MHz and 200 MHz
5G NR channel bandwidths.

In general, it is noted that LUT-based PA linearization
is, as such, a well-known approach, see, e.g., [8], [24]–
[27] and the references therein. However, the PA memory
aspects are not considered in [24], while fairly sizeable LUTs
without interpolation are considered in [8], [26]. Additionally,
a linearly-interpolated LUT-type implementation of a memory
polynomial is described in [25] while the learning is based
on classical LS model fitting. Furthermore, in [27], a DPD
structure that includes two parallel Hammerstein systems com-
pensating for the PA AM-AM and AM-PM responses, with
Catmull-Rom spline interpolation, is presented. The model
identification is based on a separable LS technique, specifically
using a Levenberg-Marquardt algorithm to identify the DPD
coefficients. The main path and training complexities are
thus high when compared to the methods presented in this
article. It is finally also noted that multi-dimensional LUT
based solutions exist [28]–[30]. However, the LUT size in
the nested LUT scheme in [28] grows exponentially with
the memory depth, thus requiring unfeasible total LUT size
when the linearized system exhibits substantial memory. The
2-dimensional LUT technique in [29] is, in turn, limited in
its memory modeling capability, since it uses a weighted
average of past amplitude samples to index the second LUT
dimension. Finally, [30] combines an orthogonal matching
pursuit algorithm to select the best LUTs in the forward path,

and a partial least squares algorithm to estimate the DPD
coefficients, which usually involves high complexity mainly
due to the matrix inversion in the LS problem.

In the DPD system context of Fig. 1, the novelty and
contributions of this article can be summarized as follows:

• New linear-in-parameters formulation for utilizing spline-
interpolated I/Q LUTs in DPD systems, incorporating
also the so-called injection-based DPD structure, is pro-
vided;

• New Hammerstein DPD solution utilizing the spline-
interpolated I/Q LUT and decoupled gradient-based
learning is proposed and derived;

• New memory polynomial DPD solution utilizing multiple
parallel spline-interpolated I/Q LUTs and gradient-based
learning is proposed and derived;

• Comprehensive computational complexity analysis of the
methods is provided;

• Extensive performance-complexity assessments using
versatile RF measurement examples at sub-6 GHz and
28 GHz bands are provided;

Compared to the existing literature, the new DPD formula-
tion with spline-interpolated I/Q LUTs allows, in general, for
(i) using any typical linear estimator (gradient or least-squares)
to learn or update the LUT entries and (ii) reducing the main
path processing complexity clearly when compared to ordinary
canonical MP DPD. Specifically, the main path complexity and
particularly the learning complexity are both reduced when
compared to gradient-based canonical MP, owing to the use of
the derived gradient-based learning in combination with the in-
terpolated LUTs, since no basis function orthogonalization [7]
nor self-orthogonalized learning procedure [25], [31] is needed
with the proposed methods. Thus, by utilizing the proposed
solutions, posing a remarkably low learning complexity, even
continuous DPD adaptation/tracking is potentially viable.

The rest of the paper is organized as follows. Section II
describes the I/Q spline interpolation scheme used through-
out this paper, and presents the proposed SPH and SMP
predistorter models. Section III derives and presents then
the gradient-descent parameter learning algorithms for both
DPD models. A complexity analysis and comparison of the
proposed DPD solutions is provided in Section IV. Section V
describes the RF measurement setups, and presents the cor-
responding measurement results and their analyses. Finally,
conclusions are drawn in Section VI.

Throughout the rest of this article, matrices are denoted by
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capital boldface letters, e.g., A ∈ CM×N , while vectors are
denoted by lowercase boldface letters, e.g., v ∈ CM×1 =
[v1 v2 · · · vM ]T . Ordinary transpose is represented as (·)T .
Additionally, the complex conjugate, absolute value, floor,
and ceil operators are represented as (·)∗, | · |, b·c, and d·e,
respectively.

II. PROPOSED DPD MODELS

In this section, we introduce the proposed I/Q spline inter-
polation scheme, followed by the corresponding formulation
of the SPH and SMP DPD models. For notational convenience,
we formulate the mathematical presentation in the context
of the indirect learning architecture (ILA) for postdistorter
processing, with z[n] and r[n] denoting the postdistorter input
and output, respectively. The input and output signals of the
actual predistortion stage are x[n] and xDPD[n], as illustrated
in Fig. 1.

A. Background and Basics

Building on piece-wise polynomials, spline based modeling
and interpolation seeks to determine a smooth curve that
approximates or conforms to a set of points, commonly known
as control points [32]. Consequently, the input signal range is
divided into several pieces, and the polynomials model the
nonlinear system behavior in the corresponding regions under
continuity and smoothness constraints. With this approach,
simple low-order functions can be adopted, per region, in
contrast to methods where a single high-order function or
polynomial models the whole input range.

Traditionally, spline modeling has been applied to real-
valued signals and systems [32]–[35]. However, in the context
of radio communications, complex I/Q signals are utilized,
and therefore the spline models need to be extended to the
complex domain. Specifically, in this paper, we consider
complex baseband models of RF nonlinearities, particularly
those stemming from PA, for DPD purposes. To first shortly
illustrate how splines can be applied to RF nonlinearity mod-
elling at baseband, we start with the well-known memoryless
polynomial, written for an arbitrary input signal xin[n] as

xout[n] =
P∑

p=1, p odd

αpxin[n]|xin[n]|p−1
, (1)

where αp ∈ C are the corresponding polynomial coeffi-
cients [9], [12]. Setting α1 = 1, without loss of generality,
this can be re-written as

xout[n] = xin[n](1 + α3|xin[n]|2 + · · ·+ αP |xin[n]|P−1
)

= xin[n](1 + F (|xin[n]|)), (2)

where the function F (·) = FI(·)+jFQ(·) is a real-to-complex
mapping. Thus, the baseband equivalent nonlinearity model
consists of two real-valued functions FI(·) and FQ(·), both
dependent only on the absolute value of the input signal.

B. Proposed I/Q Spline Interpolation Scheme

In general, the above model structure shown in (2) can
be used for both PA direct modeling as well as PA inverse
modeling, i.e., DPD. In the context of DPD, the nonlinear

           

    

           

        

                 

Fig. 2. Conceptual illustration of the nonlinear model regions of FI(|z[n]|)
and FQ(|z[n]|) with respect the input magnitude |z[n]| assuming K = 5
regions. Also an example of the input envelope value is shown, in this
particular case within region in = 4, where un ∈ [0,∆z) denotes the
normalized input envelope within a region.

functions can be implemented efficiently with, for example,
LUTs.

To formulate a LUT-based DPD system in the linearization
context of Fig. 1, we describe in this article spline-interpolated
LUTs, i.e., small LUTs with spline interpolation to obtain the
intermediate values. By adopting the notations in Fig. 1, such
spline-based modeling of the nonlinear functions FI(·) and
FQ(·) is illustrated at conceptual level in Fig. 2, where the
input is a unipolar signal |z[n]| with a maximum amplitude
of Amax. We adopt uniform equi-spaced splines with knot
spacing (region width) of ∆z > 0, thus resulting in a total of
K = Amax/∆z regions. These regions are built, and accessed
at time instant n, through the span index in and abscissa value
un, defined similar to [36] as

in =

⌊
|z[n]|
∆z

⌋
+ 1, (3)

un =
|z[n]|
∆z

− (in − 1). (4)

Here, in denotes the index of the selected region at time instant
n, and un, 0≤ un <∆z , represents the normalized value of
the corresponding input envelope within the current region in.

In general, adopting uniform splines allows the spline-
interpolated output signal to take a very simple form, discussed
also in [27] in the context of real-valued systems. The outputs
of the I and Q splines can now be written as

FI(|z[n]|) = gT
ncre, (5)

FQ(|z[n]|) = gT
ncim, (6)

where cre and cim contain the Q control points of each spline.
The vector gn ∈ RQ×1, in turn, is defined as

gn =
[
0 · · · 0 uT

n BPSP 0 · · · 0
]T
, (7)

where

un =
[
uPSP
n uPSP−1

n · · · 1
]T ∈ R(PSP+1)×1, (8)

and BPSP
∈ R(PSP+1)×(PSP+1) is the spline basis matrix of

order PSP. In (7), the term uT
nBPSP

of size 1 × (PSP + 1)
is located such that the starting index is in. Thus, at a given
time instant n, only the control points cin , cin+1, . . . , cin+PSP

contribute to the output. It is noted that for simplicity, we
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assume in this work that the spline order PSP does not depend
on the region.

Using (5) and (6), while following the model structure in
(2), the complex-valued output of the instantaneous nonlinear
system, s[n], can be constructed as

s[n] = z[n] + z[n]gT
n (cre + jcim)

= z[n] + z[n]gT
nc, (9)

where c ∈ CQ×1 =
[
c0 c1 · · · cQ−1

]T
is the overall

complex-valued LUT containing the control points for the
I and Q components. The interpolation scheme is further
detailed in Fig. 1(b). We also note that the total number of
control points with K regions and spline interpolation order
PSP is Q = K + PSP.

Importantly, the spline output gT
nc in (9) is defined as a

deviation from unit gain. We refer to such structure as an
injection-based scheme. Specifically, with this formulation, if
c is initialized as an all-zero vector, the nonlinear system
output will be the original input signal, i.e. s[n] = z[n].
By following this formulation, e.g., the gain ambiguities
between the nonlinear spline and a cascaded FIR filter can be
effectively removed – an issue that is relevant in the following
Hammerstein DPD system – as the linear filter alone will
handle the gain in the system. Additionally, the number of
required bits in c in a fixed-point implementation is generally
reduced, as this formulation reduces its dynamic range.

C. Spline-Interpolated Hammerstein DPD

This subsection introduces the proposed SPH scheme which
builds on a Hammerstein structure where the involved non-
linearity is modelled with a complex spline-interpolated LUT.
Following the proposed interpolation scheme presented above,
in (9), we thus express the output of the instantaneous nonlin-
ear block in the Hammerstein structure as

sSPH[n] = zSPH[n] + zSPH[n]gT
nc. (10)

It is noted that the term gn depends on the B-spline basis
matrix BPSP

. This matrix can be precomputed for the given
type of splines and polynomial order, and can be therefore
considered as static. As a concrete example, in this article we
focus on 3rd order (PSP = 3, cubic interpolation) B-splines,
although other spline orders are tested and demonstrated as
well. In this case, the basis matrix can be expressed as [33]

B3 =
1

6


−1
∆3

z

3
∆3

z

−3
∆3

z

1
∆3

z

3
∆2

z

−6
∆2

z

3
∆2

z
0

−3
∆z

0 3
∆z

0

1 4 1 0

 . (11)

Next, after having derived the expression for the mem-
oryless nonlinear signal model, the memory effects are in-
corporated through the FIR filter stage that is common to
all regions. Hence, the overall output signal rSPH[n] can be
directly expressed as

rSPH[n] = hT sn, (12)

where h ∈ CMSPH×1 =
[
h0 h1 · · · hMSPH−1

]T
con-

tains the filter coefficients, with MSPH denoting the num-
ber of taps in the model, while sn ∈ CMSPH×1 =[
sSPH[n] sSPH[n− 1] · · · sSPH[n−MSPH + 1]

]T
. The

overall processing structure is illustrated in Fig. 3(a).

D. Spline-Interpolated MP LUT DPD

This subsection formulates the proposed SMP DPD model.
Inspired by [8], a memory polynomial type parallel branched
structure is adopted to model the memory effects, while the
actual parallel nonlinearities are each implemented through the
complex spline-interpolated LUTs presented above.

Following this approach, the proposed SMP processing can
thus be expressed as

rSMP[n] = zSMP[n] +

MSMP−1∑
m=0

zSMP[n−m]gT
n−mqm, (13)

where MSMP denotes the considered memory order while qm,
m = 0, 1, . . . ,MSMP − 1, are the MSMP LUTs of the model,
containing the control points for the spline interpolation in
each parallel branch. The proposed SMP processing structure,
adopting also the injection principle but in generalized form,
is illustrated in Fig. 3(b).

Generally, in terms of the modeling capabilities, the SMP
is a richer model compared to SPH, while it also naturally
entails higher complexity. These models will be assessed and
compared to classical DPD solutions in terms of complexity
and performance in Sections IV and V.

III. PARAMETER LEARNING RULES

In this section, we derive efficient gradient-descent type
learning rules for both proposed DPD approaches, to adap-
tively estimate and track the unknown parameters in each of
the models. Notation-wise, to allow for sample-adaptive esti-
mation, we denote the vectors to be estimated with a subindex
n, i.e., cn and hn for SPH and qm,n, m = 0, 1, . . . ,MSMP−1,
for SMP, to indicate their time-dependence.

A. SPH Learning Rules

To calculate the learning rule in the SPH case, the in-
stantaneous error signal between xDPD[n] and rSPH[n], in
the context of the considered ILA-type architecture is first
extracted as

eSPH[n] = xDPD[n]− rSPH[n] = xDPD[n]− hT
nsn. (14)

Then, to facilitate the gradient-descent learning [37], the
cost function is defined as the instantaneous squared error,
expressed as

J(hn, cn) = |eSPH[n]|2. (15)

The corresponding iterative learning rules are then obtained
through the partial derivatives of J(hn, cn) with respect to
both parameter vectors to adapt, expressed formally as

hn+1 = hn − µh[n]∇hnJ(hn, cn), (16)
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Fig. 3. Illustration of the postdistorter structures of a) the proposed SPH DPD system, and b) the proposed SMP DPD model. The Spline interpolation
block(s) in both models comprises the scheme shown in Fig. 1(b).

cn+1 = cn − µc[n]∇cnJ(hn, cn), (17)

where ∇x refers to the complex gradient operator [37], [38]
of a real-valued function against complex-valued parameter
vector x. Additionally, µh[n] and µc[n] are the learning rates
for hn and cn, respectively, at time instant n. After relatively
straight-forward derivations, the resulting concrete learning
rules read

hn+1 = hn + µh[n]eSPH[n]s∗n, (18)

cn+1 = cn + µc[n]eSPH[n]ΣT
nZ∗

nh∗
n, (19)

where the diagonal matrix Zn ∈ CMSPH×MSPH =
diag {zSPH[n], zSPH[n− 1], · · · , zSPH[n−MSPH + 1]},
and Σn contains MSPH previous instances of gn, defined as
Σn ∈ RMSPH×Q =

[
gn gn−1 · · · gn−MSPH+1

]T
. These

learning rules in (18) and (19) are executed in parallel such
that both parameter vectors are updated simultaneously. For
readers’ convenience, an example illustration of the structure
of the matrix Σn is given in (20), for MSPH = 4, Q = 9,
and PSP = 3, assuming representative example values of the
index variable in.

Σn =



0 0 [∗ ∗ ∗ ∗]︸ ︷︷ ︸
uT

nBPSP

0 0 0

[∗ ∗ ∗ ∗]︸ ︷︷ ︸
uT

n−1BPSP

0 0 0 0 0

0 0 0 [∗ ∗ ∗ ∗]︸ ︷︷ ︸
uT

n−2BPSP

0 0

0 0 0 0 0 [∗ ∗ ∗ ∗]︸ ︷︷ ︸
uT

n−3BPSP


,

in = 3

in−1 = 1

in−2 = 4

in−3 = 6

.
(20)

Note that the term uT
nBPSP

is located in Σn at each iteration
n according to the span index in, as shown in (7). It is noted
that the derived learning rules in (18) and (19) are novel, as
the overall Hammerstein system is known to be not linear in
its parameters.

B. SMP Learning Rules

We next derive gradient-based iterative learning rules for
the SMP model. Different to SPH case, the SMP model does
not contain cascaded filters while the learning entity considers
the MSMP parallel spline-interpolated LUTs, specifically their
control points qm,n, m = 0, 1, . . . ,MSMP − 1.

Following now a similar approach as earlier, the instanta-
neous error signal is first defined in the context of ILA-based
learning as

eSMP[n] =xDPD[n]− rSMP[n]

=xDPD[n]− zSMP[n]−
MSMP−1∑

m=0

zSMP[n−m]gT
n−mqm,n.

(21)

For the gradient-descent learning, the cost function is defined
as a function of the instantaneous error signal as

J(q0,n,q1,n, · · · ,qMSMP−1,n) = |eSMP[n]|2. (22)

Then, by adopting again the complex gradient operator [38],
the learning rule for the mth LUT can be written as

qm,n+1 = qm,n − µqm
∇qm,n

J(q0,n,q1,n, · · · ,qMSMP−1,n),
(23)

while by following the complex differentiation steps, the final
learning rule for the mth LUT reads

qm,n+1 = qm,n + µqm
[n] eSMP[n] z∗SMP[n−m] gn−m.

(24)

These learning rules are adopted for all the involved MSMP

LUTs in parallel.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, a computational complexity analysis and
comparison between the proposed SPH, SMP and a widely-
applied canonical MP DPD with self-orthogonalizing least-
mean square (LMS) [37] parameter adaptation is presented.
LMS type adaptation is deliberately assumed also for MP
DPD, for the fairness of the comparison. The complexity
analysis is carried out in terms of real multiplications per
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linearized data sample, as multiplications are commonly more
resource-intensive operations than additions in digital signal
processing (DSP) implementations [11].

The quantitative complexity assessment of the proposed
gradient-adaptive SPH DPD and SMP DPD follows the exact
processing steps described in Sections II and III. It is noted that
the complexity expressions reported below basically represent
an upper bound for the required arithmetical operations, as
in real implementations some elementary or trivial operations
such as multiplying by any integer power of 2 or 1/2 does
not really reflect any actual complexity, while are included
as normal operations in the expressions for simplicity. Addi-
tionally, it is noted that the modulus operator, needed in (3)
and (4), is assumed to be calculated with the alpha max beta
min algorithm [39]. Finally, in the complexity analysis, we
consider uniform splines with ∆z = ∆x = 1.

A. Complexity of Proposed SPH Method

With reference to Fig. 3(a) and the underlying processing
elements, the generic complexity expressions can be stated in
a straight-forward manner as follows:

• DPD main path, starting with the input signal x[n].
The complexity of the predistorter intermediate signal,
sDPD[n], includes the processing in (3), (4), and (10)
but with x[n] as the input. These together with the FIR
filtering in (12) to calculate xDPD[n] yield the following
complexity expressions

1) sDPD[n] → P 2
SP + 4PSP + 10.

2) xDPD[n] → 4MSPH.

• DPD learning, for observed signal zSPH[n]. The gen-
eration of the error signal eSPH[n] contains the same
multiplication operations as in sDPD[n] and xDPD[n],
due to the ILA architecture. The complexity of updating
hn and cn corresponds to calculating (18) and (19),
respectively. Overall, we thus get

1) eSPH[n] → P 2
SP + 4PSP + 4MSPH + 10.

2) hn+1 → 4MSPH + 2.

3) cn+1 → 2PSPMSPH + 4PSP + 6MSPH + 6.

Interestingly, it is noted that the amount of multiplications in
the DPD main path does not depend on the chosen number
of control points Q, or equivalently the number of regions,
as the spline-interpolation algorithm basically utilizes PSP +1
control points for any given region.

B. Complexity of Proposed SMP Method

With the SMP approach, as shown in (13) for post-
distortion, there is no separate linear filtering stage but the
overall DPD output is composed as a sum of MSMP parallel
spline-interpolated LUTs with input samples x[n −m], m =
0, 1, . . . ,MSMP−1. Therefore, with reference to Fig. 3(b) and
the underlying processing ingredients described in Sections II
and III, the main path and parameter learning complexities can
be stated as follows:

• DPD main path, starting with the input signal x[n].
The complexity involves calculating xDPD[n], as in (13),
with x[n] as the input. By taking into account that at
time instant n, only gn needs to be calculated while
gn−1, . . . ,gn−MSMP+1 are available from previous sam-
ple instant, we obtain the following overall complexity
expression

1) xDPD[n]→ P 2
SP+3PSP+2PSPMSMP+6MSMP+4.

• DPD learning path, for observed signal zSMP[n]. Due to
the ILA architecture, the involved complexity of calculat-
ing the error signal eSMP[n] is, arithmetically, the same
as calculating xDPD[n]. Additionally, the complexity of
updating one of the LUTs or spline control point vectors,
qm,n, corresponds to calculating (24). Thus, we get

1) eSMP[n]→ P 2
SP+3PSP+2PSPMSMP+6MSMP+4.

2) qm,n+1 → 2PSP + 8.

C. Complexity of Reference MP DPD

When considering the LMS-adaptive MP DPD with mono-
mial basis functions (BFs), in the context of ILA architecture
in Fig. 1(a), we first write the postdistorter output sample as

rMP[n] = wT
n ln, (25)

where wn ∈ Cm×1 is the MP DPD coefficient vector, with
m = dPMP

2 eMMP denoting the number of coefficients, while
PMP and MMP are the assumed polynomial order and memory
length (per nonlinearity order), respectively. Additionally, the
vector of the basis function samples ln used to calculate the
current output is as defined in (26), next page, where zMP[n]
denotes the observed feedback signal at postdistorter input.

Once rMP[n] is calculated, the error signal can be directly
obtained as

eMP[n] = xDPD[n]− rMP[n] = xDPD[n]−wT
n ln, (27)

and the coefficient update can be written as

wn+1 = wn + µw[n]eMP[n]R−1l∗n, (28)

where µw[n] is the learning rate, and R−1 is the inverse of
the autocorrelation matrix of the PA output basis function
samples [37]. We assume that a block of NB samples is
used to calculate the sample estimate of R, and include
below the corresponding complexity for completeness of the
study. Importantly, it is also noted that the self-orthogonalizing
type transformation R−1 in (28) is an important ingredient
for stable operation, as the MP basis functions in (26) are
known to be largely correlated [40]. Alternatively, orthogonal
polynomial type set of basis functions could be used [40], [41],
though with increased main path complexity. The SPH and
SMP DPD related learning rules in (18)-(19) and (24), on the
other hand, do not suffer from such correlation challenge, and
are shown in Section V to provide reliable linearization with-
out any additional (self-)orthogonalization. This is one clear
benefit, complexity-wise, compared to the existing gradient-
adaptive reference DPD solutions.

Building on above, the self-orthogonalizing LMS-adaptive
MP DPD complexity can be detailed as follows
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ln =
[
zMP[n] zMP[n] |zMP[n]|2 · · · zMP[n] |zMP[n]|PMP−1 zMP[n− 1] zMP[n− 1] |zMP[n− 1]|2 · · · zMP[n− 1] |zMP[n− 1]|PMP−1

zMP[n−MMP + 1] zMP[n−MMP + 1] |zMP[n−MMP + 1]|2 · · · zMP[n−MMP + 1] |zMP[n−MMP + 1]|PMP−1
]T

. (26)

TABLE I
COMPLEXITY EXPRESSIONS IN TERMS OF REAL MULTIPLICATIONS PER SAMPLE FOR THE PROPOSED SPH, THE PROPOSED SMP AND THE REFERENCE

CANONICAL MP METHODS, COVERING BOTH THE DPD MAIN PATH PROCESSING AND THE DPD PARAMETER LEARNING, WITH m = dPMP
2
eMMP

Operation SPH model SMP model MP model

Predistortion

Nonlinearity P 2
SP + 4PSP + 10 P 2

SP + 3PSP + 2PSPMSMP + 6MSMP + 4 3
⌈
PMP
2

⌉
− 2

Filtering 4MSPH 0 4m

Total P 2
SP + 4PSP + 4MSPH + 10 P 2

SP + 3PSP + 2PSPMSMP + 6MSMP + 4 3
⌈
PMP
2

⌉
+ 4m− 2

Learning

Error signal P 2
SP + 4PSP + 4MSPH + 10 P 2

SP + 3PSP + 2PSPMSMP + 6MSMP + 4 3
⌈
PMP
2

⌉
+ 4m− 2

Update 2PSPMSPH + 4PSP + 10MSPH+8 MSMP(2PSP + 8) 4m2 + 4m + 2

Total PSP(PSP + 2MSPH + 8) + 14MSPH+18 P 2
SP + 3PSP + 4PSPMSMP + 14MSMP + 4 3

⌈
PMP
2

⌉
+4m2+8m

• DPD main path, starting with the input signal x[n], in
terms of real multiplications per linearized sample:

1) MP BF samples → 3
⌈
PMP

2

⌉
− 2.

2) xDPD[n] → 4m.

• DPD training, for observed signal zMP[n]:

1) MP BF samples → 3
⌈
PMP

2

⌉
− 2.

2) R−1 → m3.

3) rMP[n] → 4m.

4) eMP[n] → 3
⌈
PMP

2

⌉
+ 4m− 2.

5) wn+1 → 4m2 + 4m+ 2.

D. Summary and Comparison

Table I collects and summarizes the deduced expressions
for the numbers of real multiplications per sample needed for
the fundamental main path processing and parameter learning
stages in the proposed SPH, SMP and the reference MP
DPD methods. In this table, when it comes to MP DPD, we
have excluded the complexity related to the calculation of the
elements of R and its inverse, as those are something that
can be considered carried out offline, or within the very first
phases of the overall learning procedure.

Next, to obtain concrete numerical complexity numbers
and to carry out a comparison, we study an example case
where the SPH and SMP DPD spline polynomial order is
PSP = 3. Additionally, the number of control points per LUT
is chosen to be Q = 7 for both SPH and SMP models, and
the considered memory length is MSPH = MSMP = 4. These
constitute a total number of 14 free parameters to be estimated
in the SPH model and 31 free parameters in the SMP case.
Then, the MP DPD polynomial order is chosen as PMP = 11,
and the considered memory length per filter is MMP = 4.
This configuration leads to 24 free parameters in the MP DPD.
Similar type parametrizations are used also in the actual DPD
measurements and experiments, in Section V.

TABLE II
NUMERICAL COMPLEXITY VALUES, IN TERMS OF REAL MULTIPLICATIONS
PER SAMPLE, FOR PSP = 3, MSPH = MSMP = 4, QSPH = QSMP = 7,

PMP = 11, AND MMP = 4.

SPH model SMP model MP model

No. of coefficients 14 31 24

Nonlinearity 24 63 16

Filtering 16 0 96

Total main path 40 63 112

Relative complexity wrt. MP 35.7% 56.3% 100%

Error signal 40 63 112

Coeff. update 84 56 2402

Total learning 124 119 2514

Relative complexity wrt. MP 4.9% 4.7% 100%

The resulting exact numerical processing complexities, ex-
pressed in terms of real multiplications per linearized sample,
are presented in Table II. In these numerical values, when
it comes to the SPH and SMP DPD, we have excluded
the trivial operations, i.e., multiplications by zeros, ones and
integer powers of two or half, stemming from the structure of
B3 in (11). Overall, the results in Table II demonstrate the
large complexity reduction provided by the proposed spline-
based DPD approaches, with respect to the reference MP
model, the relative complexities being 35.7% (SPH) and 56.3%
(SMP) in the DPD main path to predistort the input signal.
Furthermore, the required parameter learning complexity is
also very remarkably reduced, with the relative complexity
compared to the MP model being only approximately 5% in
both SPH and SMP cases. This indicating that solutions like
these might already facilitate even continuous DPD learning or
parameter tracking in selected applications. Such continuous
DPD learning can be important, e.g., in mmWave active array
linearization where the effective nonlinear characteristics are
known to be beam-dependent due to the load modulation
phenomenon [5]. Additionally, owing to the largely reduced
learning complexity, the feasibility of implementing both the
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Fig. 4. Overall RF measurement setup at FR-1 and the sub-6 GHz PA modules used in the Experiments 1-2.

DPD parameter learning as well as the main path processing
in the same chip increases.

V. EXPERIMENTAL RESULTS

In order to evaluate and validate the proposed DPD con-
cepts, three separate linearization experiments are carried out.
The first two measurement scenarios are conducted with FR-1
(sub-6 GHz) PAs, including a general purpose wideband PA
and a 5G NR Band 78 small-cell BS PA. The third experiment
is then related to FR-2 and over-the-air (OTA) measurements
where a state-of-the-art 28 GHz active antenna array with 64
integrated PAs and antenna units is linearized. For complexity
assessment, we use the derived results in Table I, while again
exclude the trivial operations, i.e., multiplications by zeros,
ones and integer powers of two or half, stemming from the
structure of the B-spline basis matrix BPSP

. Additionally,
we also provide the corresponding amounts of floating point
operations (FLOPs) per sample. One complex multiplication
is assumed to cost 6 FLOPs, while one complex-real multipli-
cation and one complex sum both cost 2 FLOPs [42].

A. FR-1 Measurement Environment and Figures of Merit

The FR-1 measurement setup utilized for the first two
experiments is illustrated in Fig. 4(a), and consists of a Na-
tional Instruments PXIe-5840 vector signal transceiver (VST),
facilitating arbitrary waveform generation and analysis be-
tween 0–6 GHz with instantaneous bandwidth of 1 GHz. This
instrument is used as both the transmitter and the observation

receiver, and includes also an additional host-processing based
computing environment where all the digital waveform and
DPD processing can be executed. In a typical conducted mea-
surement, the baseband complex I/Q waveform is generated
by MATLAB in the VST host environment, and fed to the
device under test (DUT) through the VST transmit chain. The
DUT output is then observed via the VST receiver, through
an external attenuator. All DPD parameter learning and actual
DPD main math processing stages are executed in the host
environment. Finally, the actual DPD performance measure-
ments are carried out where different random modulating data
is used, compared to the learning phase.

As the DPD system figures of merit, we adopt the well-
established error vector magnitude (EVM) and ACLR metrics,
as defined for 5G NR in [23]. The EVM focuses on the
passband transmit signal quality, and is defined as

EVM (%) =

√
Perror, eq.

Pref.
× 100, (29)

where Perror, eq. denotes the power of the error signal calcu-
lated between the ideal subcarrier symbols and the correspond-
ing observed subcarrier samples at the PA output after zero
forcing equalization removing the effects of the possible linear
distortion [23]. Furthermore, Pref. denotes the corresponding
power of the ideal (reference) symbols. The ACLR is defined
as the ratio of the transmitted power within the desired channel
(Pdesired ch) and that in the left or right adjacent channel



9

3300 3350 3400 3450 3500 3550 3600 3650 3700

Frequency [MHz]

-50

-40

-30

-20

-10

0

10

P
o
w

e
r 

d
e
n
s
it
y
 [
d
B

m
/M

H
z
]

W/o DPD

SPH DPD

SMP DPD

MP DPD

GMP DPD

    Basic limit

-25 dBm/MHz
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output power of +27 dBm, while adopting PSP = 3, QSPH = QSMP = 7,
MSPH = 3, MSMP = 4, PMP = PGMP = 11, MMP = MGMP = 4, and
G = 9.

(Padj. ch.), expressed as

ACLR (dB) = 10 log10
Pdesired ch.

Padj. ch.
, (30)

measuring thus the out-of-band performance. While ACLR
is, by definition, a relative measure, an explicit out-of-band
spectral density limit, in terms of dBm/MHz measured with
a sliding 1 MHz window in the adjacent channel region, is
also defined for certain base-station types [23], referred to
as the absolute basic limit in 3GPP terminology. Thus, the
PA output spectral density in dBm/MHz is also quantified
in the measurements, particularly in the context of local area
and medium-range BS PAs [23]. Specifically, we quantify the
maximum out-of-band spectral density, denoted as maximum
dBm/MHz in the following experiments, which will allow for
further comparison between the deployed DPD models.

All the forth-coming experiments utilize 5G NR Release-15
standard compliant OFDM downlink waveform and channel
bandwidths [23], while the adopted carrier frequencies in
each experiment are selected according to the available 5G
NR bands and the available PA samples. In all experiments,
the initial PAPR of the digital waveform is 9.5 dB, when
measured at the 0.01% point of the instantaneous PAPR
complementary cumulative distribution function (CCDF), and
is then limited to 7 dB through well-known iterative clipping
and filtering based processing, while also additional time-
domain windowing is applied to suppress the inherent OFDM
signal sidelobes. These impose an EVM floor of approximately
4% to the transmit signal. More specific waveform parameters
such as the subcarrier spacing (SCS) and the occupied physical
resource block (PRB) count are stated along the experiments.

Finally, in the upcoming FR-1 experiments, we also utilize
LMS-adaptive GMP [12] as an additional reference DPD
method for completeness. For simplicity, we assume the same
amount of leading and lagging envelope delays [12], denoted
here by G.
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Fig. 6. Measured ACLR and EVM performance in Experiment 1 as a func-
tion of the PA output power, while adopting PSP = 3, QSPH = QSMP = 7,
MSPH = 3, MSMP = 4, PMP = 11, and MMP = 4.

B. Experiment 1: General Purpose PA

The first experiment focuses on a general purpose wideband
PA (Mini-Circuits ZHL-4240), illustrated in Fig. 4(b), as the
actual amplification stage. The amplifier has a gain of 41 dB,
and a 1-dB compression point of +31 dBm, being basically
applicable in small-cell and medium-range base-stations. The
transmit signal is a 5G NR downlink OFDM waveform, with
30 kHz subcarrier spacing and 264 active PRBs [23], yielding
a passband width of 95.04 MHz. The RF center frequency is
3.5 GHz and the assumed channel bandwidth is 100 MHz.
The I/Q samples are transmitted through the VST RF output
port directly to the PA, facilitating a maximum output power
of +27 dBm. The proposed and the reference DPD schemes
are then adopted, and the performance quantification measure-
ments are carried out. In all results, five ILA learning iterations
are adopted while the signal length within each ILA iteration
is 100,000 samples. In this experiment, the VST observation
receiver runs at 491.52 MHz (4× oversampling).

Fig. 5 shows a snap-shot linearization example, at PA output
power of +27 dBm, when PSP = 3 is chosen as the spline
order in both the SPH and SMP models, while the number of
control points is fixed to QSPH = QSMP = 7 and the memory
filter orders are MSPH = 3 and MSMP = 4. Additionally, an
LMS-based MP DPD (PMP = 11, MMP = 4) and an LMS-
based GMP DPD [12] (PGMP = 11, MGMP = 4, G = 9)
are also adopted and presented for reference. We can observe
that the performances of the proposed SPH and SMP DPDs
are very close to each other, and to those of the MP DPD and
GMP DPD, despite the substantially reduced complexity. The
figure also illustrates that all DPD methods basically satisfy the
absolute basic limit requirement of -25 dBm/MHz, which is
less severe than the classical 45 dB ACLR limit, and applies
in medium-range BS cases with TX powers of higher than
+24 dBm up to +38 dBm [23].

Fig. 6 then presents the behavior of the measured EVM
and ACLR performance metrics, as functions of the PA output
power, following the same DPD parameterization. Again, we
can observe that the proposed SPH, SMP, and the MP DPD
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TABLE III
SUMMARY OF DPD MAIN PATH PROCESSING COMPLEXITY AND LINEARIZATION PERFORMANCE IN EXPERIMENT 1, PA OUTPUT POWER IS +27 dBm.

Running complexity Model performance

P M G Q ∆z,x # of coefficients FLOPs/sample Mul./sample EVM (%) Max. dBm/MHz

No DPD - - - - - - - - 7.82 -23.80

SPH DPD
2 3 - 7 1 12 55 28 5.61 -32.30

3 3 - 7 1 13 69 36 5.54 -36.30

4 3 - 7 1 14 89 45 5.55 -36.80

SMP DPD
2 4 - 7 1 30 65 50 5.55 -37.20

3 4 - 7 1 31 99 63 5.57 -37.80

4 4 - 7 1 32 143 77 5.57 -37.80

MP DPD 11 4 0 - - 24 255 112 5.47 -38.20

GMP DPD 11 4 9 - - 42 393 184 5.44 -38.40
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Fig. 7. Measured ACLR and EVM performance in Experiment 1 at PA
output power of +27 dBm, as a function of the number of LUT control points
in the SPH and SMP models, Q, while adopting PSP = 3, MSPH = 3,
MSMP = 4, PMP = 11, and MMP = 4.

behave very similarly. Similar observations follow also from
Fig. 7, showing again the EVM and ACLR metrics but this
time at fixed PA output power of +27 dBm while then varying
the number of LUT control points in the proposed SPH and
SMP models. From this figure we can also observe that the
LUT based DPD performance is optimized with approximately
Q = 7 or Q = 8 control points, in this example, while in
general it is likely that the optimization of the value of Q is
to be done separately for different PA types.

Finally, Table III then collects and summarizes the obtained
DPD results in Experiment 1 while also showing the DPD
main path processing complexities. Here also other spline
interpolation orders PSP are considered and shown. We can
conclude that the proposed spline-based DPD models offer a
favorable performance-complexity trade-off compared to the
reference MP DPD approach.

C. Experiment 2: 5G NR Band 78 Small-Cell PA
The second experiment includes the Skyworks SKY66293-

21 PA module, illustrated in Fig. 4(c), which is a low-to-

medium output power amplification unit oriented to be used
either in small-cell base-stations or in large antenna array
transmitters. The PA module is specifically designed to operate
in the NR Band n78 (3300-3800 MHz), having a gain of 34 dB,
and a 1-dB compression point of +31.5 dBm. Similar 5G NR
downlink signal corresponding to the 100 MHz channel band-
width scenario, as in the Experiment 1, is adopted, while the
considered RF center-frequency is 3.65 GHz. The test signal is
again transmitted via the RF TX port of the VST directly to the
PA module, while the considered PA output power is +24 dBm,
corresponding to the maximum transmit power of a Local Area
BS according to the NR regulations [23]. Again, five ILA
learning iterations are adopted while the signal length within
each ILA iteration is 100,000 samples. The VST observation
receiver runs at 491.52 MHz (4× oversampling).

Fig. 8 and Table IV illustrate and summarize the obtained
linearization results for the proposed and the reference DPD
methods. Again, also comparative complexity numbers are
stated in Table IV. As stated in [23], a 5G NR Local
Area BS can operate within an absolute basic limit of -
32 dBm/MHz in the adjacent channel region, assuming the
considered PA output power of +24 dBm. As shown in Fig. 8
and Table IV, the SPH, SMP, MP, and GMP DPD satisfy this
limit, indicating successful linearization. Table IV shows again
that remarkable complexity reductions are obtained through
the proposed spline-based DPD approaches, compared to the
reference MP or GMP DPDs, while all provide a very similar
linearization performance.

D. Experiment 3: FR-2 Environment and 28 GHz Active Array

In order to further demonstrate the applicability of the
proposed spline-based DPD concepts, the third and final
experiment focuses on timely 5G NR mmWave/FR-2 deploy-
ments [23] with active antenna arrays. Unwanted emission
modeling and DPD-based linearization of active arrays with
large numbers of PA units is, generally, an active research field,
with good examples of recent papers being, e.g., [5], [43]–[48].
Below we first describe shortly the FR-2 measurement setup,
and then present the actual linearization results.

1) FR-2 Measurement Setup: The overall mmWave/FR-2
measurement setup is depicted in Fig. 9, incorporating an
Anokiwave AWMF-0129 active antenna array, together with
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TABLE IV
SUMMARY OF DPD MAIN PATH PROCESSING COMPLEXITY AND LINEARIZATION PERFORMANCE IN EXPERIMENT 2, PA OUTPUT POWER IS +24 dBm

Running complexity Model performance

P M G Q ∆z,x # of coefficients FLOPs/sample Mul./sample EVM (%) Max. dBm/MHz

No DPD - - - - - - - - 8.64 -18.20

SPH DPD
2 4 - 7 1 13 63 32 5.70 -31.40

3 4 - 7 1 14 77 40 5.57 -33.20

SMP DPD
2 5 - 7 1 37 73 56 5.60 -32.90

3 5 - 7 1 38 111 75 5.55 -33.10

MP DPD 11 5 0 - - 30 303 136 5.54 -33.20

MP DPD 11 5 9 - - 48 441 208 5.49 -39.80
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Fig. 8. Example illustration of linearization results in Experiment 2 (NR
small-cell PA measured at 3.65 GHz), with 100 MHz channel bandwidth and
PA output power of +24 dBm, while adopting PSP = 3, QSPH = QSMP =
7, MSPH = 4, MSMP = 5, PMP = PGMP = 11, MMP = MGMP = 5,
and G = 9.

other relevant instruments and equipment for signal generation
and analysis, facilitating measurements at 28 GHz center-
frequency with up to 3 GHz of instantaneous bandwidth.
On the transmit chain side, the setup consists of a Keysight
M8190 arbitrary waveform generator that is used to generate
directly the I/Q samples of a wideband modulated IF signal
centered at 3.5 GHz. The signal is then upconverted to the
28 GHz carrier frequency by utilizing the Keysight N5183B-
MXG that generates the corresponding local oscillator signal
running at 24.5 GHz, together with external mixers and
filters. The modulated RF waveform is then pre-amplified by
means of two Analog Devices’ driver PAs, HMC499LC4 and
HMC943ALP5DE, with 17 dB and 23 dB gain, respectively,
such that the integrated PAs of the Anokiwave AWMF-0129
active antenna array are driven towards saturation. The 1 dB
compression point of the active array, when measured in terms
of the effective isotropic radiated power (EIRP) and 5G NR
compliant OFDM waveform, is approximately +42 dBm.

The transmit signal propagates over-the-air (OTA) and is
captured by a horn antenna at the observation receiver, such
that the receiving antenna system is well aligned with the main
transmit beam. At the receiver side, another Keysight N5183B-
MXG and a mixing stage are used to downconvert the signal
back to IF. Then, the Keysight DSOS804A oscilloscope is

3

1

2

4

5

Fig. 9. RF measurement setup in Experiment 3 including the Keysight
M8190 arbitrary waveform generator (1), Keysight N5183B-MXG LO signal
generators (2), Anokiwave AWMF-0129 active antenna array (3) working at
28 GHz center frequency (NR Band n257), horn antenna as receiver (4), and
Keysight DSOS804A digitizer (5).

utilized as the actual digitizer, including also built-in filtering,
and the signal is taken to baseband and processed in a host
PC, where the DPD learning and predistortion are executed.
The OTA measurement system is basically following the mea-
surement procedures described in [23], [43], [49], specifically
the measurement option utilizing the beam-based directions.
In these measurements, the observation receiver provides I/Q
samples at 7× oversampled rate.

2) Active Array Linearization: Linearization of active
phased-array transmitters is generally a challenging task, since
a single DPD unit must linearize a bank of mutually different
PAs. There are multiple ways of acquiring the observation
signal for DPD parameter learning, as discussed e.g. in [5],
[43]–[47]. In this work, we assume and adopt the so-called
combined observation signal approach and utilize specifically
the OTA-combined received signal for DPD parameter learn-
ing [5], [44], [47], while otherwise following exactly the same
learning algorithms as in the Experiments 1 and 2.

In the DPD measurements, we adopt 5G NR FR-2 OFDM
signal with SCS of 60 kHz and 7 dB PAPR (0.01% CCDF
point), and consider active PRB counts of 132 and 264,
mapping to 100 MHz and 200 MHz channel bandwidths,
respectively [23]. In this case, 5 ILA iterations are adopted,
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Fig. 10. Illustration of OTA linearization of the Anokiwave AWMF-0129 active antenna array, when (a) NR 100 MHz and (b) NR 200 MHz transmit signals
are applied, measured at EIRP of +42.5 dBm The SPH and SMP DPD spline order is PSP = 3, while QSPH = QSMP = 7, MSPH = 3, and MSMP = 4.
The MP DPD order is PMP = 11 while MMP = 4.
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Fig. 11. OTA linearization performance of the Anokiwave AWMF-0129 active antenna array, with NR 100 MHz OFDM waveform, as a function of the
EIRP of the proposed DPD models in terms of a) TRP ACLR, and b) EVM.

TABLE V
SUMMARY OF LINEARIZATION PERFORMANCE OF THE ANOKIWAVE AWMF-0129 ACTIVE ANTENNA ARRAY, WITH 100 MHZ AND 200 MHZ 5G NR

CHANNEL BANDWIDTHS, MEASURED AT +42.5 dBm EIRP

DPD running complexity DPD perf., 100 MHz DPD perf., 200 MHz

P M Q ∆z,x FLOPs/sample Mul./sample EVM (%) TRP ACLR (dB) EVM (%) TRP ACLR (dB)

No DPD - - - - 0 0 12.10 26.10 12.43 26.30

SPH DPD 3 3 7 1 69 36 6.20 34.40 6.25 34.10

SMP DPD 3 4 7 1 99 63 6.15 34.80 6.20 34.40

MP DPD 11 4 - - 255 112 6.00 35.20 6.13 35.00

each containing 50,000 samples. Example OTA linearization
results are illustrated in Fig. 10, measured at an EIRP of
+42.5 dBm, where the received spectra with the proposed SPH,
SMP and the reference MP DPD are shown, while the no-
DPD case is also shown for comparison. The parametrization
of the SPH and SMP DPD is PSP = 3 and MSPH = 3, and
MSMP = 4, while MP DPD is configured with PMP = 11
and MMP = 4. As mentioned already in the introduction, the
OTA ACLR requirements at FR-2 are quite clearly relaxed,
compared to the classical 45 dB at FR-1, with 28 dB defined
as the TRP-based ACLR limit in the current NR Release-

15 specifications [23]. Additionally, 64-QAM is currently the
highest supported modulation scheme at FR-2, heaving 8% as
the required EVM.

In both channel bandwidth cases, considered in Fig. 10, the
initial EVM and TRP ACLR metrics are around 12.5% and
26 dB, respectively, when measuring at EIRP of +42.5 dBm
and when no DPD is applied. Hence, linearization is indeed
required if the same output power is to be maintained, while
Fig. 10 demonstrates that all considered DPD methods can
successfully linearize the active array. Table V shows the exact
measured numerical TRP ACLR and EVM values, indicating
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good amounts of linearization gain and that the EVM and TRP
ACLR requirements can be successfully met. It is also noted
that the initial TRP ACLR of approximately 26 dB corresponds
already to a very nonlinear starting point.

Finally, Fig. 11 features a power sweep performed with
the antenna array, with NR 100 MHz OFDM waveform,
illustrating the TRP ACLR and EVM as a function of the
EIRP with and without DPD. It can be clearly observed that in
this particular experiment, when no DPD is applied, it is the
EVM metric that is limiting the maximum achievable EIRP
such that both TRP ACLR and EVM requirements are still
fulfilled. Specifically, without DPD processing, this limits the
maximum EIRP to approximately +39 dBm, while when DPD
processing is applied, both requirements are fulfilled at least
up to the considered maximum EIRP of +42.5 dBm – and
clearly also beyond. In this particular linearization experiment,
the SPH DPD provides an excellent linearization performance,
despite its very low computational complexity.

VI. CONCLUSIONS

In this paper, novel complex spline-interpolated LUT con-
cepts and corresponding DPD methods with gradient-adaptive
learning rules were proposed for power amplifier linearization.
A vast amount of different measurement-based experiments
were provided, covering successful linearization of different
PA samples at sub-6 GHz bands. Additionally, a 28 GHz state-
of-the-art active antenna array was successfully linearized. The
measured linearization performance results, together with the
provided explicit complexity analyses, show that the proposed
spline-interpolated DPD concepts can provide very appealing
complexity-performance trade-offs, compared to, e.g., ordinary
canonical MP DPD. Specifically, the SMP DPD was shown
to provide in all measurement examples linearization perfor-
mance very close to that of ordinary MP DPD, while having
substantially lower main path and DPD learning complexity.
Additionally, the SPH DPD offers further reduction in the main
path processing complexity, while demonstrating a lineariza-
tion performance that is fairly close to the other DPD systems,
particularly in the timely 28 GHz active array linearization
experiment. Our future work topics contain extending the
current work to direct learning architecture (DLA) context
and to digital MIMO transmitters with multi-dimensional DPD
basis functions.
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Abstract—In this article, we study digital predistortion (DPD)
based linearization with specific focus on millimeter wave (mmW)
active antenna arrays. Due to the very large channel bandwidths
and beam-dependence of nonlinear distortion in such systems, we
present a closed-loop DPD learning architecture, look-up table
(LUT) based memory DPD models, and low-complexity sign-
based estimation algorithms, such that even continuous DPD
learning could be technically feasible. To this end, three different
learning algorithms – Sign, Signed Regressor, and Sign-sign –
are formulated for the LUT-based DPD models, such that the
potential rank deficiencies, experienced in earlier methods, are
avoided, while facilitating greatly reduced learning complexity.
The injection-based LUT DPD structure is also shown to allow for
low numbers and reduced dynamic range of the involved LUT
entries. Extensive RF measurements utilizing a state-of-the-art
mmW active antenna array system at 28 GHz are carried out
and reported to validate the methods, incorporating very wide
channel bandwidths of 400 MHz and 800 MHz while pushing
the array close to saturation. Additionally, the processing and
learning complexities of the considered techniques are analyzed,
which together with the measured linearization performance
figures allow to assess the complexity-performance trade-offs of
the proposed solutions. Overall, the results show that efficient
mmW array linearization can be obtained through the proposed
methods at very low complexity.

Index Terms—ACLR, active array transmitters, closed-loop
systems, digital predistortion, EVM, lookup table, millimeter-
wave frequencies, nonlinear distortion, over-the-air, sign algo-
rithms, signed regressor.

I. INTRODUCTION

THE adoption of modern, spectrally efficient waveforms
with high peak-to-average power ratio (PAPR), most

notably OFDM, complicates operating power amplifiers (PAs)
close to saturation [1]. To ensure a good power efficiency,
while at the same time controlling the transmitted signal
quality, digital predistortion (DPD) based linearization is a
well-known and widely-applied approach, see, e.g., [1] and [2]
and the references therein. DPD aims at suppressing the un-
wanted out-of-band (OOB) emissions and passband nonlinear
distortion steaming from the PAs by applying an appropriate
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Fig. 1. Illustration of the injection-based DPD scheme with closed-
loop parameter learning for linearizing an active phased-array trans-
mitter, with K antennas and PA units. Observation path builds on
co-phasing and combining the PA output signals, or alternatively on
OTA feedback.

nonlinear transformation to the digital transmit waveform.
Especially when combined with PAPR reduction methods [2],
the DPD system can largely improve the transmitter power
efficiency, while maintaining the passband signal quality and
OOB emissions within specified limits [3], [4].

One modern and timely DPD use case is the linearization of
active antenna array based base-stations of the emerging 5G
New Radio (NR) networks at millimeter-wave (mmW) bands –
referred to as frequency range 2, FR-2 – with good examples of
recent papers being [5]–[13]. In such DPD systems, stemming
from the load modulation phenomenon, the effective nonlinear
distortion has been observed to be clearly beam-dependent [9],
and thus fast DPD adaptation is required. This issue, together
with the very wide channel bandwidths [14], and thus DPD
processing rates, calls for low-complexity DPD systems and
parameter learning algorithms. Such methods are currently
under intensive research and form also the topic of this paper.

In the existing literature, various DPD architectures and
PA modeling methods have been widely studied, with the
memory polynomial (MP) [1], [4], [15] and the generalized
memory polynomial (GMP) [1], [4], [16] being some of the
most common approaches. Both of these techniques can be
interpreted to be subsets of the Volterra series [1], [17], [18].
While these approaches typically provide an accurate and
reliable DPD linearization performance, they often involve
a relatively high processing complexity, which can pose a
challenge for real-time implementations.

The literature on low-complexity DPD methods and the
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associated learning algorithms is, on the other hand, some-
what more scarce. Techniques towards this direction are, for
instance, [7], [18]–[25]. In [7], a reduced complexity approach
which utilizes the combined PA output signals together with
a computationally efficient closed-loop learning equation to
minimize the distortion in the main beam direction, is in-
vestigated. In [20], in a more traditional single-antenna DPD
context, the use of 1-bit observations in closed-loop learning is
considered, in combination with a sign-based Gauss-Newton
(GN) learning algorithm. In [21], a GN signed regressor al-
gorithm (SRA) is formulated for real-valued feedback signals.
The signed regressor matrix is, however, rank deficient, and
thus an additional Walsh-Hadamard transformation is applied
to make it invertible, further increasing the computational
complexity. In [22], a look-up table (LUT) based MP DPD
with a sample-adaptive least mean squares (LMS) SRA is
proposed. However, in this work each LUT in the MP structure
is updated independently, making the solution sub-optimal.
In [23], direct least squares (LS) and GN adaptations for
linearly interpolated LUT-based Volterra models are proposed
in indirect learning architecture (ILA) and closed-loop context,
respectively. In [24], [26], cascaded Hammerstein structures
with polynomial and spline nonlinearities were proposed. Cas-
caded structures typically have less free parameters, making
them appealing when low-complexity solutions are pursued.
However, the models were based on the ILA in combination
with LS-based learning algorithms, which complicates adap-
tive estimation and tracking.

In this article, contrary to the earlier closed-loop works
in [20]–[23], we adopt the so-called injection-based DPD
structure [7], [27], illustrated in Fig. 1 in the context of
mmW active arrays. To this end, building on our early work
in [28], we formulate various signed learning methods –
Sign, Signed Regressor, and Sign-sign – based on the GN,
self-orthogonalization (SO), and block-LMS (BLMS) learning
rules. Such sign algorithms allow for a large complexity
reduction in the DPD learning, since the needed number
of multiplications is largely reduced compared to the refer-
ence methods. Additionally, we adopt a LUT-based memory
DPD model. LUT-based structures are generally simpler than
polynomial-type ones used in the reference works [7], [20],
[21], allowing large reductions in terms of the processing and
learning complexities. Furthermore, adopting the injection-
based DPD allows to significantly reduce the LUT sizes, such
that 32 or even 16 entries are enough for efficient linearization,
without interpolation. Additionally, the use of non-interpolated
LUTs avoids the rank deficiencies in the SRA and Sign-
sign algorithms and thus the additional matrix transformation,
which were experienced in [21]. Due to their low complexity
and closed-loop nature, the developed solutions allow for fast
real-time adaptation, and thus potentially on-chip implementa-
tions and continuous learning. We also show that the injection-
based DPD formulation allows for dynamic range reduction in
the LUT control points, and thus facilitates efficient fixed-point
implementations with relatively low number of bits.

Extensive RF measurement results at 28 GHz (5G NR
band n257 [14]), utilizing a state-of-the-art 64-element active
antenna array and 5G NR like OFDM waveforms, are re-

ported and analyzed, incorporating standard-compliant channel
bandwidth of 400 MHz while also pushing the performance
boundaries further up to 800 MHz. The obtained linearization
results, together with the provided detailed complexity anal-
ysis, show that the proposed methods provide very favorable
complexity-performance trade-offs, while meeting the 3GPP
5G NR [14] OOB emission and passband transmit signal
quality requirements at FR-2 in all tested scenarios, even in
the ambitious 800 MHz channel bandwidth case. Overall, the
results show that efficient mmW array linearization can be
obtained through the proposed methods.

In short, the novelty and contributions of the article can be
summarized as follows:

• Injection-based memory polynomial LUT DPD system
is proposed, shown to significantly reduce the LUT
entry sizes to achieve efficient linearization. Additionally,
the injection-based scheme is also shown to allow for
dynamic range reduction in the LUT control points, thus
facilitating efficient fixed-point implementations;

• Various sign-based low-complexity closed-loop learning
algorithms are formulated in the context of injection-
based MP LUT DPD system;

• Extensive computational complexity analysis of the dif-
ferent signed learning rules is provided and also com-
pared to the corresponding unsigned algorithms;

• Very extensive 28 GHz active array linearization measure-
ments are provided and analyzed, incorporating channel
bandwidth up to 800 MHz;

It is finally noted that even though our primary applications
are in the mmW active array transmitters, the proposed tech-
niques are applicable to any single-input single-output DPD
system, where the PA output is commonly observed directly
through a directional coupler and an observation receiver.

The rest of the paper is organized as follows. Section II first
presents the proposed injection-based MP-LUT closed-loop
DPD system, together with the unsigned GN, SO, and BLMS
learning principles. Additionally, the dynamic range reduction
through the injection-based DPD approach is addressed, while
the different options for arranging the DPD feedback signal
in mmW active arrays are also shortly discussed. Section III
then describes the different sign-based learning algorithms.
Section IV presents a detailed complexity analysis of the
considered unsigned and signed learning rules. Section V
presents an extensive set of RF measurements at 28 GHz which
test and validate the proposed approaches. Finally, Section VI
concludes the paper.

Notation Used in This Article

In this paper, matrices are represented by capital boldface
letters, i.e., Σ ∈ CM×N . Ordinary transpose, Hermitian
transpose, and complex conjugation are denoted by (·)T , (·)H ,
and (·)∗, respectively. By default, vectors are complex-valued
column vectors, presented with lowercase boldface letters, i.e.,
v ∈ CM×1 = [v1 v2 · · · vM ]T . Additionally, the absolute
value and floor operators are represented as | · | and b·c,
respectively.
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Φ =


x[n]ξξξTn (|x[n]|, k) x[n− 1]ξξξTn−1(|x[n− 1]|, k) · · · x[n−M + 1]ξξξTn−M+1(|x[n−M + 1]|, k)

x[n+ 1]ξξξTn+1(|x[n+ 1]|, k) x[n]ξξξTn (|x[n]|, k) · · · x[n−M + 2]ξξξTn−M+2(|x[n−M + 2]|, k)
...

...
. . .

...
x[n+N − 1]ξξξTn+N−1(|x[n+N − 1]|, k) x[n+N − 2]ξξξTn+N−2(|x[n+N − 2]|, k) · · · x[n+N −M ]ξξξTn+N−M (|x[n+N −M ]|, k)
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Fig. 2. The input-output relation of the proposed MP-LUT DPD
model, in combination with the injection-based scheme.

II. CLOSED-LOOP DPD SYSTEM

In this work, we adopt and formulate the MP DPD model,
where the high-order polynomial functions are replaced with
Q entry-sized LUTs [23]. This model is adopted due to its
inherent low processing complexity, [22], [29]. Additionally,
the system builds on a closed-loop learning architecture, where
the DPD coefficients are directly adapted using the input signal
x[n] and the observed signal y[n] [30], following the basic
notations shown in Fig. 1.

A. Injection Based MP-LUT DPD

Formally, the input-output relation of an ordinary MP can
be formulated as a function of its polynomial order P and
memory-depth M , as

xDPD[n] =

M−1∑
m=0

P∑
p=0
p odd

αm,px[n−m]|x[n−m]|(p−1)
, (2)

where αm,p is the corresponding PA model coefficient. In
order to substitute the polynomials with LUTs, (2) can be
rewritten as

xDPD[n] =

M−1∑
m=0

x[n−m]Gm(|x[n−m]|). (3)

Herein, Gm(|x[n−m]|), m = 0, 1, · · · ,M − 1, refer to the
complex LUT gains, weighting the input samples in each

memory branch, denoted here by the parameter m. This
complex LUT gain can be defined and expressed as

Gm(|x[n−m]|) = ξξξTn−m(|x[n−m]|, k)cm, (4)

where cm ∈ CQ×1, m = 0, 1, · · · ,M − 1, are the M
corresponding Q-sized LUTs, while the vector ξξξn(|x[n]|, k) ∈
RQ×1 reads

ξξξn(|x[n]|, k) =

{
1 if k = pn
0 if k 6= pn

, for k = 1, 2, · · · , Q, (5)

where k indicates the index within the vector, and pn is defined
as

pn =

⌊
|x[n]|
∆x

⌋
+ 1. (6)

Thus, the input sample x[n] is multiplied with the corre-
sponding LUT gain, which is indexed by the input magnitude
|x[n]|. Additionally, ∆x is the amplitude spacing of the LUT
entries, defined as the maximum input magnitude divided by
the desired number of LUT entries, Q.

In this paper, we specifically utilize the so-called injection-
based DPD scheme, in which an estimate of the PA nonlinear
distortion products is injected, properly phased, to the linear
digital signal such that the PA output signal is effectively
linearized. Following this scheme, we rewrite the final form
of the input-output relation of the DPD model, illustrated in
Fig. 2, as

xDPD[n] = x[n] +
M−1∑
m=0

x[n−m]ξξξTn−m(|x[n−m]|, k)cm.

(7)

Applying such formulation will reduce the dynamic range of
the LUT entries, thus requiring less number of bits in fixed-
point implementations. This reduction is further explored and
analyzed in the Subsection II.C.

The obtained input-output relation of the predistorter can be
now equivalently expressed in matrix notation, for an N -sized
block of samples, as

xDPD = x + Φw, (8)

where Φ ∈ CN×C is the input data basis functions matrix,
whose structure is shown in (1), with C = MQ being the
total number of model coefficients, and x = [x[n], x[n +
1], · · · , x[n+N −1]]T denotes the input data vector. The col-
umn w ∈ CC×1 stacks the M LUTs (i.e. c0, c1, · · · , cM−1)
to form the complete set of DPD coefficients, and it is typically
initialized as a zero vector in the first DPD iteration.
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Fig. 3. Direct modeling performance of the modified Saleh (MS) model with and without the injection-based scheme, when considering
a fixed number of quantization bits, shown in (a), and when varying the number of quantization bits, shown in (b).

B. Closed-Loop Learning – Unsigned Algorithms

Formulating the LUT-based DPD as a linear-in-parameters
model as in (8), allows us to apply closed-loop learning
techniques. Defining the error signal ek ∈ CN×1 = xk− yk

GPA
,

for block iteration k, we can define the three learning tech-
niques which are studied along this paper, namely the damped
Gauss-Newton (GN), the self-orthogonalized (SO), and the
block-LMS (BLMS) [21], [23], [27] methods. These learning
approaches can be expressed as

wk+1 = wk + µg
(
ΦH
k Φk

)−1
ΦH
k ek, (9)

wk+1 = wk + µsR
−1ΦH

k ek, (10)

wk+1 = wk + µbΦ
H
k ek, (11)

where µg , µs and µb are the corresponding learning step-sizes
for each method. Additionally, R is the covariance matrix of
the input basis function vector, formally defined as

R = E[ΦnΦH
n ], (12)

where

Φn = [x[n]ξξξTn (|x[n]|, k) x[n− 1]ξξξTn−1(|x[n− 1]|, k) · · ·
· · · x[n−M + 1]ξξξTn−M+1(|x[n−M + 1]|, k)]T .

(13)

The matrix R can be precomputed and fixed, and thus its online
calculation is not required [31].

Finally, we note that the formulations in (8)–(12) are quite
general, and can be applied with other LUT-based DPD models
as well, such as those following generalized MP or Volterra-
DDR models (see [23] for an example).

C. Dynamic Range Reduction in q

In order to shortly assess and illustrate the dynamic range
reduction in the LUT control points q through the injection-
based processing principle, the modified Saleh (MS) model
presented in [32] is considered as a practical and reproducible
example. This MS model is approximated with and without the
injection-based DPD scheme, in other words, the processing

principles in (7) and (3) are deployed, but here in the context of
direct PA modeling instead of DPD. The results are then com-
pared to demonstrate the benefit of using the injection-based
approach. For clarity, the AM-AM and AM-PM responses of
the considered MS model are stated as [32]

z(r) =
αzr√

1 + βzr3
, (14)

ψ(r) =
αψ

3
√

1 + βψr4
− ε, (15)

where r and z represent the instantaneous input and output
envelope values, while ψ represents the output signal phase
change as a function of the input envelope. Furthermore, αz =
0.82, βz = 0.29, αψ = −0.35, βψ = 1, and ε = −0.36 are
the envelope and phase related model coefficients, which have
been estimated in this case from the measured input-output
relation of an LDMOS PA, used in [32].

A 100 MHz 5G NR compliant OFDM signal, of length
20.000 samples, with 30 kHz subcarrier spacing (SCS), 273
active resource blocks (RB), and 7 dB PAPR measured at
0.01% point of the complementary cumulative distribution
function (CCDF) is then generated and passed through the
model. Next, an LS fitting technique is used to estimate the
LUT control points modelling the MS PA, with and without the
injection-based scheme. Both LUT vectors are then quantized
to the same number of bits (12 quantization bits), and the
modelling capabilities of both approaches are then visually
illustrated in Fig. 3a. Additionally, the direct modeling related
NMSE numbers are calculated and presented as the number
of quantization bits increases from 6 to 20. These NMSE
results are shown in Fig. 3b. It can be observed that the
modelling accuracy or performance is steadily about 13 dB
better when considering the injection-based scheme, until the
NMSE values essentially saturate with 16 quantization bits.
This illustrates and quantifies the dynamic range reduction
obtained through the injection-based approach.
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D. Observation Receiver and Feedback in mmW Active Array
Systems

There are generally several alternatives to address the ob-
servation receiver (ORX) aspect and arranging the feedback
signal for DPD parameter learning in mmW active array
systems. One known method is the hardware-based approach
where the individual PA output signals are phase-aligned and
combined in hardware [7], [10] – illustrated conceptually also
in Fig. 1. Another alternative is to adopt a separate ORX
to capture the over-the-air (OTA) combined signal [9], [13],
[33]–[35] and feed it back to the transmitter system through
some means for DPD learning. Also this alternative approach
is illustrated in Fig. 1. Both of these approaches basically seek
to mimic the far-field signal at the actual receiver, under the
assumption of line-of-sight propagation.

We clarify that the DPD learning algorithms proposed in
this article do not explicitly depend on the actual method
of obtaining the combined observed signal, while note that
the hardware-based ORX system has the benefit of, e.g.,
avoiding the OTA ORX positioning and beam misalignment
challenges [13], [36]. For fairness, however, it is also noted
that there exists literature, e.g., [33]–[35], where the OTA ORX
beam misalignment challenge is further addressed, proposing
different mechanisms to reconstruct the far-field signal in
the direction of the main beam, through subsequent sidelobe
observations or by leveraging the crosstalk between adjacent
radiating elements. In our actual mmW active array experi-
ments in Section V, our feedback system adopts a carefully
aligned OTA ORX with the primary purpose of mimicking
the hardware-based feedback combiner system.

III. SIGNED LEARNING ALGORITHMS

In order to reduce the computational complexity of the
baseline learning rules in (9), (10), and (11), we next formulate
computationally efficient sign-based learning algorithms. In
general, the idea behind the signed algorithms is to sign
selected terms in the learning equations, such that the needed
number of multiplications is largely reduced. This is beneficial
as in the digital signal processing (DSP) implementations,
multiplications constitute one of the most resource-intensive
operations, while additions are essentially free [4], [37].

The classical definition of the complex signum function
projects a non-zero complex number to the unit circle in the
complex plane [38]. The magnitude of the resulting number,
z̄, is 1, but the real and imaginary parts are not equal to ±1,
thus no direct complexity reduction can yet be achieved when
multiplying with z̄. To remove the need for multiplications,
we define the complex signum function instead as

csgn(z) := sgn(Re(z)) + j sgn(Im(z)), (16)

which provides either −1 or +1 for the real and imaginary
parts. For matrices, the operation is taken element-wise. The
next sections present the three considered signed algorithms,
implemented with the form shown in (16), and its combination
with the original learning equations.

A. The Sign Algorithm
The sign algorithm is obtained by signing the error signal ek

in the learning rules presented in (9), (10), and (11). With this
simplification, multiplications in the term ΦH

k ek are avoided.
We note that the dimension of ek is N – commonly a large
number in DPD implementations (in the experiments of this
paper, N = 25, 000) – thus a large reduction in terms of
multiplications can be achieved. By signing the error vector,
the DPD learning rules read

wk+1 = wk + µg
(
ΦH
k Φk

)−1
ΦH
k csgn(ek), (17)

wk+1 = wk + µsR
−1ΦH

k csgn(ek), (18)

wk+1 = wk + µbΦ
H
k csgn(ek). (19)

The reader can find an implementation of the sign algorithm
in combination with GN learning rule in [20].

B. The Signed Regressor Algorithm
The SRA method signs the transposed basis functions

matrix, ΦH
k , in the learning rules. Hence, multiplications in

the terms ΦH
k Φk and ΦH

k ek (GN), and ΦH
k ek (BLMS) are

avoided, making the computational complexity of the learning
rule lighter. In the GN method, the complexity saving is larger
compared to the Sign algorithm, as an extra term is signed in
the learning equation. In the BLMS method, no reduction is
achieved when compared to the previous Sign algorithm. The
SRA learning rules corresponding to GN and BLMS methods
can be expressed as

wk+1 = wk + µg

(
csgn(ΦH

k )Φk

)−1

csgn(ΦH
k )ek, (20)

wk+1 = wk + µb csgn(ΦH
k )ek. (21)

When referring to the SO method, the SRA approach cannot
be applied as such, as the inverse covariance matrix, R−1,
already contains the input data matrix multiplication. Two
alternative solutions can be drawn in order to use the SRA
principle in combination with SO learning rule. The first
proposed form signs only the input data matrix term ΦH

k ,
avoiding the calculation of csgn(ΦH

k )ek. The second form
signs the inverse covariance matrix R−1, simplifying the
matrix multiplication csgn(R−1)ΦH

k . Thus, the exact learning
rules can be expressed as

wk+1 = wk + µsR
−1 csgn(ΦH

k )ek, (22)

wk+1 = wk + µs csgn(R−1)ΦH
k ek. (23)

It is noted that with the former formulation, the computational
complexity is the same as in the Sign SO case, since an equal
number of multiplications is avoided.

It is also important to note that all polynomial-based DPD
approaches, as well as linearly interpolated LUTs, basically
suffer from a rank deficiency in the signed data matrix
csgn(ΦH

k ), as repeated columns or linear combinations be-
tween them will appear. An example is presented in [21], in the
context of an MP DPD [39]. In such a case, the estimated DPD
coefficients will diverge, as they do not have a unique solution.
One way to solve this problem is to apply a unitary Walsh-
Hadamard transformation (WHT) to gaussianize the distribu-
tion of csgn(ΦH

k ) and make it full rank [21]. This, however,
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TABLE I
COMPLEXITY ANALYSIS OF THE BASELINE AND THE SIGNED LEARNING METHODS FORMULATED AND ADOPTED IN THE PAPER, AS A

FUNCTION OF THE MODEL PARAMETERS, IN TERMS OF REAL MULTIPLICATIONS AND REAL ADDITIONS PER DPD LEARNING ITERATION.

Real multiplications Real additions

Gauss-Newton C3 + 4M2(N + 1) + 2M(2N + 1) 2M2(N − 1) + 2M(N +M − 2) + 2C

Sign Gauss-Newton C3 + 4M2(N + 1) + 2C 2M2(N − 1) + 2M(N +M − 2) + 2C

SRA Gauss-Newton C3 + 4M2 + 2M 2M2(N − 1) + 2M(N +M − 2) + 2C

Sign-sign Gauss-Newton C3 + 2M 2M2(N − 1) + 2M(N +M − 2) + 2C

Self-orthogonalization 4(MN +M2) + 2C 2M(N + C − 2) + 2C

Sign self-orthogonalization 4CM + 2C 2M(N + C − 2) + 2C

SRA 1 self-orthogonalization 4CM + 2C 2M(N + C − 2) + 2C

SRA 2 self-orthogonalization 4MN + 2C 2M(N + C − 2) + 2C

Sign-sign 1 self-orthogonalization 2C 2M(NM + 1)

Sign-sign 2 self-orthogonalization 2C 2M(N + C − 2) + 2C

Block-LMS 2M(2N + 1) 2(MN + C)

Sign block-LMS 2M 2(MN + C)

SRA block-LMS 2M 2(MN + C)

Sign-sign block-LMS 0 2(MN + C)

further increases the complexity in the learning rule. On the
other hand, and very importantly, with the proposed LUT-
based DPD approach, the rank deficiencies are avoided, as the
structure of this model does not lead to repeated or linearly
dependent columns in csgn(ΦH

k ). Thus, the SRA learning rule
can be directly applied, with no extra matrix transformations
needed. This is one clear benefit of the proposed LUT-based
DPD formulation compared to polynomial based DPDs.

C. The Sign-Sign Algorithm

Finally, the Sign-sign algorithm applies the signum function
to both the data matrix and the error vector. In the GN method,
the required multiplications are greatly reduced, as only a few
matrix operations need to be calculated. In the case of the
BLMS approach, the number of required multiplications to
obtain the DPD coefficients is already zero. The exact learning
expressions with the Sign-sign algorithm for GN and BLMS
approaches read

wk+1 = wk + µg

(
csgn(ΦH

k )Φk

)−1

csgn(ΦH
k ) csgn(ek),

(24)

wk+1 = wk + µb csgn(ΦH
k ) csgn(ek). (25)

When referring to the SO method, the same conclusion as
presented with the SRA algorithm is drawn, i.e., the Sign-
sign approach cannot be directly applied to the learning rule.
We thus define again two revised alternative solutions for the
Sign-sign algorithm in combination with the SO, which read

wk+1 = wk + µsR
−1 csgn(ΦH

k ) csgn(ek), (26)

wk+1 = wk + µs csgn(R−1)ΦH
k csgn(ek). (27)

With both solutions, the DPD learning complexity, in terms of
real multiplications, is almost reduced to zero, while the exact
computational complexity assessment is provided in the next
section.

Additionally, it is noted that the same discussion about the
rank deficiency problem in csgn(ΦH

k ) propagates with the
Sign-sign algorithm as well, with respect the polynomial-based
and interpolated LUT DPD approaches. In other words, the
LUT-based DPD formulation can be used without any addi-
tional matrix transformations as there are no rank-deficiency
challenges.

IV. LEARNING COMPLEXITY ANALYSIS AND COMPARISON

The DPD learning complexity is analyzed in terms of
real multiplications and real additions per DPD coefficient
update, over an N -sized block of samples. It is assumed
that one complex multiplication is implemented with 4 real
multiplications and 2 real additions, and one real-complex
multiplication costs 2 real multiplications. Furthermore, one
complex addition costs 2 real additions, while a real-complex
addition is performed with one addition. In the complexity
assessment, when it comes to matrix algebra, we follow [40].

Firstly, Table I presents the complexity expressions of the
GN, SO, and BLMS adaptive learning methods, as functions
of the DPD model parameters. These expressions essentially
cover the original learning rules presented in (9), (10), and,
(11) and the sign-based versions presented in Section III.
Secondly, Table II shows example numerical complexity num-
bers, with N = 25, 000 samples, Q = 32, M = 4, and
C = MQ = 128, which represent the same parametrization
used in the experimental measurement results in Section V.
Additionally, this table illustrates the complexity percentage
reduction of the sign algorithms with respect to the original
learning equations, in terms of real multiplications. As seen
herein, the number of real multiplications is commonly very
largely reduced when deploying the sign-based, thus greatly
easing continuous learning and/or on-chip learning implemen-
tations.

Several concluding remarks can be extracted from the
complexity analysis, as follows:
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TABLE II
NUMERICAL COMPLEXITY ASSESSMENT AND COMPARISON OF

THE METHODS WHEN N = 25, 000, Q = 32, M = 4, AND
C =MQ = 128. THE RELATIVE COMPLEXITY REDUCTION WITH

RESPECT TO THE ORIGINAL LEARNING EQUATIONS IS ALSO
SHOWN, IN PERCENTAGES.

Real multiplications Mul. reduction Real adds.

GN 4× 106 0% 1× 106

Sign GN 3.7× 106 7.5% 1× 106

SRA GN 2× 106 50% 1× 106

Sign-sign GN 2× 106 50% 1× 106

SO 401× 103 0% 201× 103

Sign SO 2.3× 103 > 99% 201× 103

SRA 1 SO 2.3× 103 > 99% 201× 103

SRA 2 SO 400× 103 < 1% 201× 103

Sign-sign 1 SO 256 > 99% 800× 103

Sign-sign 2 SO 256 > 99% 201× 103

BLMS 400× 103 0% 200× 103

Sign BLMS 8 > 99% 200× 103

SRA BLMS 8 > 99% 200× 103

Sign-sign BLMS 0 100% 200× 103

• GN SRA and Sign-sign algorithms pose mutually the
same complexity order of magnitude, thus the model
which provides better performance should be selected.

• SO Sign and SRA 1 algorithms pose mutually the same
complexity, thus the model which yields better perfor-
mance should be selected. The same conclusion applies
for Sign-sign 1 and Sign-sign 2 SO.

• SO SRA 2 model does not provide essentially any com-
plexity reduction, hence it is not explicitly considered in
the measurement based experiments.

• Sign and SRA BLMS algorithms pose mutually the
same complexity, thus the model which provides better
performance should be selected.

All in all, the sign algorithms are capable of drastically re-
ducing the computational complexity, especially in the cases of
BLSM and SO, where in most cases it is reduced by more than
99% with respect to the corresponding original update rules. In
the case of GN, the sign algorithms simplify the update up to
50%. In the next section, the DPD linearization performance
of the proposed algorithms will be evaluated through extensive
RF measurements. Together with the complexity analysis, it
will allow to assess the complexity-performance trade-offs of
the proposed algorithms.

V. EXPERIMENTAL RESULTS

In order to test and validate the proposed DPD algorithms,
extensive set of experimental results is provided building
on mmW FR-2 OTA measurements. Specifically, our setup
features a state-of-the-art 28 GHz active antenna array with
64 integrated PAs and antenna units, with which the lineariza-
tion performance-complexity trade-offs of the injection-based
closed-loop MP-LUT DPD system are assessed and pursued,

while deploying and comparing both the baseline and the
various signed learning rules.

In the context of mmW array measurements, some important
issues are to be noted. Firstly, an active antenna array with K
antenna units contains also K parallel PA units. Furthermore,
the different PA units are commonly mutually different, at least
to certain extent, thus each parallel PA has unique nonlinear
characteristics. Hence, the estimated predistorter building on
combined observation path and combined observed signal
can typically provide good linearization mostly in the array’s
main beam direction, while the beampattern of the array
will maintain the levels of OOB distortion sufficiently low
in other directions [7]. Secondly, the load modulation of
the PAs, which occurs due to the coupling between the
antennas [9], makes the effective nonlinear characteristics of
the array beam-dependent. This essentially means that the
optimal DPD solution will depend on the beam direction,
and thus, the linearization solutions should take this into
account. Real-time tracking and fast adaptive DPD learning
are viable solutions, capable of estimating and adapting the
DPD coefficients as the beam is steered. Third, the frequency
selectivity of the transmitter system and thus that of the
nonlinear distortion can already be substantial – mostly due to
the wide channel bandwidths at mmW frequencies, calibration
challenges and more difficult impedance matching, compared
to lower frequencies.

In this work, the in-band DPD linearization performance
is evaluated through the well-known error vector magnitude
(EVM) metric [4], [14]. Additionally, since an OTA DPD
system is considered, the out-of-band performance is measured
with the total radiated power (TRP) based adjacent channel
leakage ratio (ACLR), which is the ratio of the filtered mean
power centered on the assigned channel frequency and the
filtered mean power centred on an adjacent channel frequency,
measured by integrating the powers over the whole beamspace,
while keeping the beamforming angle fixed [14].

A. 28 GHz Active Array Experimental Setup

The OTA FR-2 measurement setup is depicted in Fig. 4. The
transmit chain consists firstly of a Keysight M8190 arbitrary
waveform generator (AWG), outputting the I/Q samples at 3.5
GHz IF. Then, a Keysight N5183B-MXG signal generator,
providing the LO signal at 24.5 GHz, and a Marki Microwave
T31040 mixer, further upconvert the signal to 28 GHz, after
which the signal is filtered by a Marki Microwave FB3300
band-pass filter (BPF) to suppress the mixer induced image
frequencies. Two preamplifiers, Analog Devices HMC499LC4
and Analog Devices HMC1131, are then deployed before
the actual active antenna array to facilitate driving the array
towards saturation. The test device is a 64-element Anokiwave
AWMF-0129 antenna array, which transmits and radiates the
signal OTA. It is mounted on an electrical tripod capable of
providing the horizontal rotation, with 0 degrees considered
as the array beamforming angle in these measurements. The
radiated signal is then captured by a horn antenna and an
observation receiver, such that the receiver antenna is well-
aligned with the transmitter main beam. The observed signal
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Fig. 4. 5G NR FR-2 OTA RF measurement setup utilized in the mmW DPD experiments.

is attenuated and downconverted again to IF frequency by
another mixing stage. Finally, the resulting signal is fed into a
Keysight DSOS804A oscilloscope, which is used as the actual
digitizer to facilitate the post-processing on a host PC, where
the DPD algorithms are executed. It is noted that the OTA RX
with horn antenna is used both for DPD learning, as ORX, and
for final OTA measurements to assess the DPD performance.
The use of the OTA RX as the ORX is because the AWMF-
0129 active array does not allow for actual hardware-based
combiners for feedback, hence we deliberately mimic such
through the carefully aligned OTA ORX.

The signals adopted in the coming Sub-sections B-G are
3GPP 5G NR Release-15 FR-2 compliant OFDM waveforms,
with 120 kHz SCS and 264 RBs. This configuration maps
to the channel bandwidth configuration of 400 MHz [14].
The signals adopted in Sections H-I are, in turn, generated
by doubling the number of active subcarriers and the OFDM
waveform processing FFT size, compared to the standard-
compliant signal, which then maps already to an impressive
channel bandwidth of 800 MHz. This is done deliberately
to experiment and demonstrate the DPD-based active array
linearization with extremely large channel bandwidths and
OFDM modulation, while operating with effective isotropic
radiated powers (EIRPs) of more than +40 dBm – something
that has not been commonly reported in the existing literature.

In all experiments, the initial PAPR of the digital waveform
is 9.5 dB, when measured at the 0.01% point of the instanta-
neous PAPR CCDF, and is then limited to 7 dB through well-
known iterative clipping and filtering based processing, while
also additional time-domain windowing is applied to suppress
the inherent OFDM signal sidelobes. These impose an EVM
floor of some 4% to the transmit signal. In a single DPD
iteration, a block of N = 25, 000 pseudo-random samples of
the above-described 5G NR OFDM waveforms is circularly
transmitted, received, and used to update the DPD coefficients.

A new block of N samples is then generated for the next
DPD update iteration. This transmission/reception and the
DPD update is repeated until the DPD learning algorithm
reaches convergence. The MP-LUT DPD models utilize LUT
entry sizes of Q = 32, and M = 4 memory branches,
as the baseline. The LUTs are initialized as all-zero vectors
in the first DPD iteration. In the measurements where the
SO learning rule is considered, the covariance matrix, R, is
estimated from a long sequence of 10 Msamples, and inverted
before the actual DPD processing. It is then kept fixed during
the remaining DPD iterations. A classical MP model in a
closed-loop configuration, with P = 11 and M = 4, is utilized
as the reference method, as polynomial based DPDs are some
of the most common high-performance techniques used in the
literature [4], [16], [41]. Furthermore, the parameter learning
of the MP reference method builds always on the unsigned GN
algorithm as the polynomial basis functions are known to be
largely correlated and here no basis function orthogonalization
is adopted.

B. DPD Performance

In this subsection, the OTA DPD linearization performance
of the various GN, SO, BLMS, and their corresponding sign
versions, is demonstrated. The following measurements are
carried out with the NR FR-2 400 MHz signal, measured at
a highly nonlinear operation point of the active antenna array,
specifically at EIRP of approximately +43 dBm.

Firstly, the measured power spectral densities (PSDs) cor-
responding to the GN learning rule are presented in Fig. 5.
The performance of the sign algorithms is observed to be very
close to that of the classical unsigned learning method, despite
the substantially reduced complexity. Even the highly simple
Sign-sign algorithm provides a comparable linearization per-
formance to the original learning rule. It is also observed that
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Fig. 5. 400 MHz 5G-NR OTA linearization performance of the
closed-loop MP-LUT DPD, at EIRP of +43 dBm, with original GN
and signed GN learning algorithms. Also the performance of classical
MP DPD with unsigned learning is shown, for reference.
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the linearization results are very close to the reference MP
model.

Secondly, the measured PSDs corresponding to the SO
learning are presented in Fig. 6. In this case, somewhat
decreased linearization performance is expected, and also
observed, compared to GN as the learning equation applies
a fixed estimated covariance matrix R. However, it also
involves further reduced complexity. It can be observed that the
unsigned and Sign SO achieve mutually similar linearization
performance, also been very close to the classical MP. These
are then followed in performance by the SRA 1 and Sign-sign
1 algorithms. As seen in Section IV, the sign error and SRA 1
achieve the same complexity reduction, so the model providing
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Fig. 7. 400 MHz 5G-NR OTA linearization performance of the
closed-loop MP-LUT DPD, at EIRP of +43 dBm, with original
BLMS and signed BLMS learning algorithms. Also the performance
of classical MP DPD with unsigned GN learning is shown, for
reference.

better performance should be selected – in this case, the Sign
error approach. It is also important to note that the complexity
of the Sign-sign algorithm is close to zero, while still achieving
a fair amount of linearization. When measuring with the Sign-
sign 2 method, the DPD does not converge to any reasonable
solution, thus the Sign-sign 1 method is deployed from now
on when it comes to the Sign-sign based approaches.

Thirdly, Fig. 7 presents the measured PSDs with the BLMS
method. In this case, the unsigned and the SRA learning
approaches provide the best performance. These provide again
performance fairly similar to the classical MP case, while
being a bit more degraded when compared to GN and SO
cases. The Sign and Sign-sign curves follow somewhat behind,
in performance, but also facilitate good linearization despite
no actual multiplications are needed in the parameter learning.

Overall, it can be observed that the best performance is
achieved with the GN learning methods, however, GN learning
also involves the highest computational complexity. The SO
approach presents an intriguing solution, able to provide very
similar levels of linearization as GN, with clearly reduced
complexity. The BLMS learning approach is, in turn, the
simplest method in terms of complexity, and also capable
of facilitating good amounts of linearization. Additionally, all
methods essentially reach the 8% EVM requirement [14] of
NR Release-15 that corresponds to 64-QAM – the largest
modulation order supported currently at FR-2. From the
complexity-performance trade-off point of view, we observe
that the SO Sign-sign 1, BLMS Sign, BLMS SRA, and BLMS
Sign-sign are particularly interesting as they require exactly or
approximately zero multiplications per DPD iteration, while
still providing good linearization performance. Also, it is noted
and emphasized that the BLMS and different signed BLMS
variants are indeed applicable with the injection-based MP-
LUT DPD – without any additional orthogonalization proce-
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Fig. 8. Comparison of the LUT size, Q, in the closed-loop MP-LUT DPD vs. measured TRP ACLR for (a) GN, (b) SO, and (c) BLMS
DPD learning rules at EIRP of +43 dBm. The 28 dB ACLR limit is also shown, together with MP DPD reference performance with unsigned
GN learning. These results are obtained by training the DPD model with the same number of iterations as presented in the x-axes of Fig. 9.
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Fig. 9. TRP ACLR convergence of the closed-loop MP-LUT DPD vs. number of block-iterations with (a) GN, (b) SO, and (c) BLMS
algorithms at EIRP of +43 dBm. The 28 dB ACLR limit is also shown, together with MP DPD reference convergence with unsigned GN
learning.

dures that are commonly adopted in case of, e.g., gradient-
adaptive canonical MP DPD [27]. This is a clear benefit
compared to polynomial based DPD systems.

C. LUT Entry Size Comparison

We next continue the OTA measurements with NR FR-2
400 MHz signal at EIRP of +43 dBm while now varying
the LUT entry size, Q, in the proposed closed-loop MP-
LUT DPD method to experiment and assess its impact on
the linearization performance. The obtained measured results
with GN, SO, and BLMS are presented in Fig. 8. As can be
observed, when adopting the DPD models with small numbers
of entries in the LUT, the performance drops to some extent.
This is quite expected as very few control points in the LUT
are not sufficient to accurately model and invert the effective
PA nonlinearity. At the same time, it is observed that as the
LUT entry size is increased, the TRP ACLR performance
improves, until reaching Q = 32, at which the performance
essentially saturates in these measurements. Compared to the
results in [23], the considered injection-based DPD scheme
allows for lower entry-sized non-interpolated LUTs, while the
sign methods further reduce the DPD processing and learning
complexities. Additionally, we observe that the 5G NR TRP

ACLR limit of 28 dBc [14] is fulfilled in all cases when
Q = 16 or greater.

This experiment also reconfirms the conclusion drawn in
the previous subsection, showing that the linearization perfor-
mances of the original and selected signed algorithms are very
close to each other. Specifically, the difference is only 0.1 dB
between GN unsigned and GN SRA, 0.2 dB between SO
unsigned and SO Sign, and 0.4 dB between BLMS unsigned
and BLMS SRA. The computational complexity, in turn, is
reduced by 50% in the first case, and by more than 99% with
the SO and the BLMS, as analyzed and shown in Section IV.

D. DPD Convergence

We next pursue and present the convergence behavior of
the proposed DPD solutions, with the same configuration as
adopted before. The convergence behavior is presented in
terms of the measured OTA TRP ACLR as a function of the
number of DPD block-iterations, again with a block-length of
N = 25, 000 samples.

The obtained convergence results are presented in Fig. 9,
for the GN, SO, and BLMS learning rules. In general, it is
observed that the convergence speed is faster with the unsigned
versions of the learning equations, reaching the steady-state
sooner. When applying the signed algorithms, the convergence
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Fig. 10. Measured TRP-based ACLR in (a), and EVM in (b), as functions of the EIRP in the 400 MHz channel bandwidth case at 28 GHz.

speed is then slightly decreased, as some information is lost
when signing different terms in the learning rules. However,
the signed solutions are capable of reaching the steady-state
only in a few more iterations, as shown in Fig. 9. In all cases,
the models are very stable after convergence, and fulfill the
28 dBc TRP ACLR limit [14].

The different algorithms are capable of reaching full conver-
gence in around 10-12 (GN), 17-20 (SO), and 30-35 (BLSM)
iterations, respectively. The relative behavior is intuitive, as
the GN algorithm calculates the inverse covariance matrix,
(ΦkΦ

H
k )−1, in each DPD iteration, thus providing the fastest

convergence. The SO learning equation considers a fixed
covariance matrix estimate, that somewhat slows down the
convergence. The BLMS, in turn, can be interpreted to con-
sider an identity covariance matrix, which is already a very
crude approximation, thus the convergence is slowest and also
the steady-state performance is somewhat lower.

E. Power Sweep

This fourth experiment considers a transmit power sweep
carried out with the same configuration as presented above,
and illustrates the measured TRP ACLR and EVM values
as functions of the EIRP. By sweeping the EIRP, two main
things can be studied. First, to evaluate whether the EVM
or the TRP ACLR is the limiting performance metric of
the system [14], in terms of the maximum EIRP. Second,
to assess the performance of the DPD algorithms as the
array output power varies. In this study, GN (unsigned and
SRA), SO (unsigned and Sign), and BLMS (unsigned and
SRA) algorithms are chosen and measured, as they have been
observed in the earlier examples to have particularly positive
performance-complexity trade-offs.

The measured TRP ACLR and EVM values as functions of
the EIRP are presented in Fig. 10. Firstly, it can be clearly
seen that, when no DPD is applied, the EVM constitutes the
metric limiting the maximum achievable EIRP, such that both

TRP ACLR and EVM are still fulfilled. Specifically, when
no DPD is applied, the EIRP is limited to some +39.2 dBm,
while when DPD processing is utilized, both requirements
are still fulfilled at least up until +43 dBm, and clearly also
somewhat beyond. These findings indicate a power efficiency
increase in the overall transmitter, as the antenna array can
be operated closer to saturation thanks to the transmit power
increase facilitated by the DPD operation.

Secondly, it can be seen that the DPD algorithms behave in
a similar manner as concluded in earlier subsections. The best
linearization performance is obtained with GN and its signed
version. The linearization performance obtained with unsigned
and sign SO lies very close to GN, despite the reduced learning
complexity. The BLMS follows somewhat behind, providing
less linearization performance, but constituting a very simple
DPD solution. In general, the sign algorithms lie very close to
the original learning rules, and allow for complexity reductions
up to 50% (GN), and more than 99% (SO and BLMS).
Additionally, as already noted, all the algorithms successfully
fulfill the 3GPP specifications [14] at least up to EIRP of
+43 dBm.

F. Beam-Dependence of Radiated Nonlinear Distortion

We next explore the effects of beam-steering on the non-
linear characteristics of the active array, while continue to
utilize the same 5G NR OFDM waveform as in the previ-
ous experiments. Furthermore, for presentation simplicity, we
focus only on the SO unsigned DPD learning method in this
experiment. In these measurements, the transmit and receive
antenna systems were kept at the same physical positions
throughout the experiment, and were first aligned at α = 0°
to estimate the DPD coefficients with the beam of the antenna
array pointing towards this direction. Then, the electrical
beam of the active array was digitally steered, sweeping from
α = −40° to α = 40° with an angular resolution of 5°, by
means of phase-only analog beamforming. At the same time,
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Fig. 11. Linearization performance in terms of (a) TRP ACLR, and (b) EVM as a function of the steering angle at EIRP of +43 dBm,
when the DPD is trained such that the main beam is aligned towards α = 0° (red) or α = 20° (green). Additionally, the purple curve
presents the performance when the DPD system is separately re-trained for each beam direction angle α.
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Fig. 12. Linearization performance as a function of the OTA ORX misalignment angle at EIRP of +43 dBm, in terms of (a) TRP ACLR,
and (b) EVM. The DPD coefficients are learned when the beams are misaligned, while the DPD verification is done when the beams are
aligned. In all cases, the electrical beam angle of the active array is kept fixed at 0°.

the active array was physically rotated towards the opposite
direction, so that the main beam of the array was always
pointing to the receiver horn antenna. The same experiment
was also repeated by training the DPD coefficients when the
beam was pointed towards α = 20° direction. Additionally, a
third set of measurements was also conducted, such that the
DPD coefficients were always learned for every considered
electrical beam direction. In all cases, the EVM and the TRP
based ACLR, defined in Section V, were evaluated.

The results of these experiments are presented in Fig. 11.
Through the red and green DPD curves, it can be seen that
excellent linearization performance is obtained, in terms of
both TRP ACLR and EVM, at those specific directions at
which the DPD model was trained (i.e., α = 0° and α = 20°).
Additionally, the DPD performance then fastly deteriorates

when the beam is steered to another angle. This is caused by
the load modulation phenomenon, modifying the effective non-
linear characteristics of the array when the beam is steered [9],
[13]. We can observe that for some specific beam directions,
the TRP ACLR and EVM values are no longer satisfying the
specified 3GPP limits [14]. Finally, the purple curves show
that the linearization performance remains stable when the
DPD is trained at every beam direction, providing relatively
flat TRP ACLR and EVM curves for different beamforming
angles. Overall, these results indicate that continuous DPD
tracking may indeed be needed in systems where fast beam-
steering or beam-switching is adopted.
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G. OTA ORX Misalignment Study

While the main purpose of the OTA ORX is, in this article,
to mimic the hardware combined based feedback system, we
next shortly address the DPD performance as a function of the
misalignment between the beam directions of the active array
and an OTA ORX. The same 400 MHz 5G NR waveform as
in the previous experiments is utilized, while for simplicity,
we focus on the SO unsigned DPD learning method.

First, the TX and OTA ORX beams were accurately aligned,
with the electrical beam configured to 0°. Then, the active
array was mechanically rotated from −30° to 30° with an
angular resolution of 5° to produce controlled misalignment,
and the learned DPD coefficients were stored for each mis-
alignment angle. Afterwards, the transmit and receive beams
were again accurately aligned, and the DPD performance was
assessed such that the main beam was pointing accurately
towards the receive antenna. The EVM and TRP-ACLR were
calculated and recorded for each misalignment angle.

The obtained results are presented in Fig. 12. As it can be
observed, the DPD system achieves an excellent linearization
performance when the misalignment angle ranges from some
−10° to +7°. However, as the misalignment angle increases
beyond this range, the DPD system experiences a systematic
loss of linearization performance due to the fact that the OTA
ORX is then already observing clearly off the main beam. It
is also noted that the considered active array has a minimum
in its radiation patter at around +15°, which can be seen from
the TRP ACLR and EVM values at this angle. In our view,
this highlights the benefits of a hardware-based observation
system, shown in Fig. 1, which is by design immune to any
misalignment. Alternatively, the methods from [33]–[35] can
be considered such that observing with the OTA ORX outside
the transmitter main beam becomes more feasible.

H. DPD Evaluation with Aggregated 800 MHz Channel BW

The last two experiments study and assess the linearization
performance of the proposed algorithms in an aggregated
800 MHz channel bandwidth case with 5G NR like OFDM
signal. Compared to the previous examples, we utilize here
double the amount of passband active subcarriers and FFT
processing size, while keeping the SCS of 120 kHz. This first
study presents the OTA linearization performance of the GN
(unsigned and SRA), SO (unsigned and Sign), and BLMS
(unsigned and SRA) algorithms, while measuring at EIRP of
approximately +41.5 dBm.

A corresponding snapshot linearization performance exam-
ple, in terms of measured spectra, is presented in Fig. 13. It
can be observed that the GN and SO models, and their signed
versions, perform similarly, achieving TRP ACLR numbers
of around 35 dB, while the corresponding EVM numbers are
shown in the figure. The BLMS algorithm follows somewhat
behind, still achieving good amount of linearization, with TRP
ACLR numbers being around 32 dB. It is also noted that
the transmitter system poses already quite substantial memory
effects in the 800 MHz bandwidth case. However, based on
this example and the following EIRP sweep measurements,
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Fig. 13. 800 MHz 5G-NR like OTA linearization performance of
the closed-loop MP-LUT DPD, at EIRP of +41.5 dBm, with unsigned
and signed GN, SO, and BLMS algorithms.

the injection-based MP-LUT can well handle such memory
effects.

I. Power Sweep with Aggregated 800 MHz Channel BW

The last experiment presents a power sweep similar to that
presented in Subsection V-E, but now carried out with the
800 MHz signal. The measured results, illustrated in Fig. 14,
are presented again in terms of the TRP ACLR and EVM
as functions of the EIRP, sweeping from +38.5 to +43 dBm.
Without DPD, the EVM is again the limiting metric at roughly
+39 dBm, where both TRP ACLR and EVM requirements
are still fulfilled. When applying DPD processing, the EIRP
can be further increased to +43 dBm and beyond, as the
figure indicates. These results essentially indicate a power
efficiency increase of the overall transmitter, since the antenna
array can be operated closer to saturation thanks to the DPD,
which facilitates increasing the transmit power. The unsigned
and signed versions of the studied algorithms are again very
close to each other, in terms of performance, yielding similar
conclusions as earlier.

In general, the injection-based MP-LUT DPD and the three
learning equations and their signed versions studied along this
paper demonstrate very appealing performance-complexity
trade-offs, while being able to successfully linearize a state-
of-the-art active antenna array even with 800 MHz modu-
lation/channel bandwidth. The signed GN and SO can be
adopted when a high DPD performance is required, while the
signed BLMS approach can be utilized in cases where very
small learning complexity is required.

VI. CONCLUSIONS

In this article, injection-based memory polynomial LUT
DPD system was proposed, together with various signed
closed-loop DPD learning algorithms. The described MP-
LUT DPD, along with the signed learning algorithms, were
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Fig. 14. Measured TRP-based ACLR in (a), and EVM in (b), as functions of the EIRP in the 800 MHz channel bandwidth case at 28 GHz.

shown to facilitate large reductions in terms of computational
complexity, while maintaining a very similar linearization
performance compared to ordinary MP DPD. Additionally,
the use of LUTs avoids the rank deficiencies in the Signed-
Regressor and Sign-sign algorithms, thus eliminating the need
for additional matrix transformations that are required in
the existing reference methods. Even the block-LMS and its
different signed variants were shown to be applicable with the
injection-based MP-LUT DPD, without any orthogonalization
procedures, allowing for very low complexity. Due to the
injection-based DPD structure, it was further shown that the
LUT entry sizes required in the DPD system can be decreased,
allowing to utilize only 32 or even 16 LUT entries while
still achieving efficient linearization performance. Extensive
millimeter-wave OTA measurements using a state-of-the-art
28 GHz active antenna array were reported to validate the
proposed techniques, incorporating very wide channel band-
widths of 400 MHz and 800 MHz while also pushing the active
array very close to saturation. The shown measurement results,
together with the detailed complexity analysis, demonstrate
that the proposed techniques have a very favorable complexity-
performance trade-off in mmW active array linearization.
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Abstract—In this paper, we present a class of cascaded non-
linear models for complex-valued system identification, aimed at
baseband modeling of nonlinear radio systems. The proposed
models consist of serially connected elementary linear and non-
linear blocks, with the nonlinear blocks implemented as uniform
spline-interpolated look-up tables (LUT) and the linear blocks
as FIR filters. Wiener, Hammerstein, and Wiener-Hammerstein
models are built, and simple but efficient gradient based adap-
tive learning rules are derived for all the models. This ap-
proach leads to remarkably simple solutions in terms of com-
putational complexity, making the techniques suitable for real-
time implementation. The proposed methods are then applied
to full-duplex self-interference cancellation and digital predistor-
tion in various real-life scenarios. First, evaluations with mea-
sured data from an in-band full-duplex prototype working at
2.4 GHz ISM band show that the algorithms are capable of ob-
taining similar cancellation performance as existing state-of-the-
art solutions, regardless of the clearly reduced complexity. Sec-
ond, a mmW active antenna array working at 28 GHz center
frequency is digitally predistorted with the proposed solutions.
The unwanted emissions and nonlinear distortion are suppressed
to similar levels as with other state-of-the art solutions, and the
corresponding linearity specifications are fulfilled in all cases, while
the processing complexity is again drastically reduced.

Index Terms—Behavioral modeling, cascaded models, digital
predistortion, full-duplex, linearization, look-up tables, power
amplifiers, self-interference cancellation, splines.

I. INTRODUCTION

NONLINEAR modeling and system identification are im-
portant ingredients in many wireless communications

systems, due to the inherent nonlinearity of certain hardware
components. The power amplifier (PA), for example, is typi-
cally operated in its nonlinear region to improve power effi-
ciency [1]. Behavioral modeling and digital predistortion (DPD)
of the PA are typical examples of nonlinear modeling tasks [2].
Other applications include, for example, digital self-interference
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cancellation (DSIC) in simultaneous transmit and receive
(STAR) devices [3]–[5] and nonlinear channel equalization in
satellite communications [6], [7].

Most often a general black-box or behavioral modeling ap-
proach is adopted for such problems, for example based on the
Volterra series [8], [9] or artificial neural networks [7], [10].
However, in many cases some physical knowledge of the system
under study is available, and a block-oriented model is well ar-
gued [7]. A good example of such a problem is self-interference
cancellation in STAR or in-band full-duplex (IBFD), where the
modeling is typically concerned with identifying a nonlinear
device (the PA) in cascade with a linear system (the self-
interference propagation channel), which together constitute a
Hammerstein system [11]. Nonetheless, cascaded models have
been successfully applied to black-box modeling problems as
well such as DPD, see for example [12]–[15]. Compared to
linear-in-parameters models such as Volterra, cascaded models
typically have much less free parameters, thus they are appealing
when low-complexity implementation is pursued.

The literature is abundant in complex nonlinear models and
learning techniques for PA behavioral modeling, DPD, and
DSIC. The vast majority of the existing works are based on
Volterra-type models; see [2], [16] for overviews of these ap-
proaches. The literature on cascaded models and the associ-
ated learning methods for communications applications is more
scarce. Techniques in this category contain the works in [11]–
[15], [17]–[22]. In [20], [21], a frequency-domain identifica-
tion of Hammerstein and Wiener-Hammerstein DPD models,
respectively, was proposed. These works relied on the direct
learning approach, i.e., required learning the PA forward model
which was then inverted. In [12], a Hammerstein DPD with
polynomial nonlinearity was proposed, together with an offline
two-stage least-squares (LS) estimation scheme based on the in-
direct learning architecture (ILA). In [18], the authors proposed
a Hammerstein DPD with a look-up table (LUT) nonlinearity.
They also resorted to a two-stage estimation procedure and ILA,
utilizing smoothed AM-AM and AM-PM curves for generating
the LUT, and LS for estimating the filter coefficients. The study
in [14] proposed a parallel Hammerstein (PH) DPD, with two
independent real-valued spline-based Hammerstein models for
the magnitude and phase. ILA with the Levenberg-Marquardt
algorithm was used for parameter estimation, making real-time
learning and tracking challenging due to the involved computa-
tional complexity. In [17] and [15], the authors presented Wiener
and Hammerstein models, respectively, building on spline-based
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neural networks. The learning is based on the direct learning
architecture, where the forward model is estimated with LS
based algorithms, and then inverted with an iterative scheme.
Altogether, the learning complexities of all the above techniques
are considerable, and can be considered generally unsuitable for
real-time implementation. In [22], a Hammerstein DPD based
on the simplical canonical piece-wise linear (SCPWL) basis
functions was introduced, and least mean squares (LMS)-based
learning algorithms with both direct and indirect learning ar-
chitecture were proposed. However, the solutions required the
identification of the forward PA model, which was assumed
to obey the Wiener model, thus complicating the estimation
procedure. The Hammerstein DPD model was also formulated
into a linear-in-parameters form (effectively a PH model), which
led to overparameterization.

In the context of DSIC, PH based algorithms building on poly-
nomial nonlinearities were proposed in [23]–[26], with [23]–
[25] operating in time-domain and [26] in the frequency-domain.
The works in [23], [24] utilized block LS estimation, while
adaptive estimation methods were used in [25], [26]. While the
PH model has been shown to be an accurate model for DSIC, it
suffers from high complexity, making real-time implementation
very challenging, especially with wider bandwidths. In [11],
[27], which serve as a starting point or background for this
paper, we proposed a Hammerstein model for DSIC and DPD,
respectively, building on spline-interpolated LUTs and simple
adaptive learning rules.

In this paper, we propose block-oriented models for complex-
valued baseband modeling of nonlinear radio systems, along
with simple gradient-based learning rules. We build Wiener,
Hammerstein, and Wiener-Hammerstein models, comprised of
different combinations of spline-interpolated LUTs and finite
impulse response (FIR) filters. The techniques are based on the
recently introduced concept of spline adaptive filters, which was
developed for real-valued systems in [28]–[30]. The proposed
techniques differ from these works in the following ways:
� The adaptive spline interpolation scheme within the cas-

caded models is specifically developed for complex-valued
modeling of radio systems, instead of real-valued systems;

� We introduce a so-called injection-based nonlinear block,
where the complex nonlinear gain of the system is defined
as a deviation from unity gain. This helps to control the gain
ambiguity between the cascaded blocks, and also reduces
the dynamic range and thus the number of bits of the LUT;

� We point out and fix a shortcoming in the original learning
equations in [28]–[30], which slowed down their conver-
gence;

� We apply the techniques to two real-life problems: self-
interference cancellation in IBFD, and digital predistortion
of nonlinear power amplifiers;

� We verify the functionality and performance of the models
using measured signals, and compare to the widely-used
memory polynomial (MP) and generalized memory poly-
nomial (GMP).

The proposed techniques are shown to offer similar per-
formance compared to the MP and GMP models in both di-
rect and inverse modeling problems using measured signals,

but with greatly reduced processing complexity. Altogether,
the framework proposed in this paper offers appealing low-
complexity adaptive solutions for real-time applications that
require complex-valued nonlinear model identification. Thus the
paper offers contributions in both signal processing theory and
applications.

The rest of the paper is organized as follows. First, Section II
presents the general real-valued theory of spline interpolation,
and then extends it to the complex domain. Building on our early
work in [11], Section III then presents the spline-interpolated
Hammerstein model, provides a complexity analysis, and high-
lights the differences to the original real-valued work in [29].
Section IV and Section V describe the spline-interpolated
Wiener and Wiener-Hammerstein approaches, along with their
learning rule derivations and complexity analyses. In Section VI,
we present two applications for the techniques, along with
experiments in real-life use cases, in order to verify and validate
the proposed models. Finally, Section VII summarizes the main
findings of this paper.

I. Notation used in this paper

In this paper, matrices are represented by capital boldface
letters, e.g., Σ ∈ CM×N . Ordinary transpose, Hermitian trans-
pose, and complex conjugation are denoted by (·)T , (·)H , and
(·)∗, respectively. By default, vectors are complex-valued col-
umn vectors, presented with lowercase boldface letters, i.e.,
v ∈ CM×1 = [v1 v2 · · · vM ]T . Additionally, the absolute value,
floor, and ceil operators are represented as | · |, �·�·, and �·�·,
respectively.

II. PRINCIPLES OF B-SPLINE INTERPOLATION

This section presents the B-spline interpolation theory. First,
the traditionally used real-valued scheme is presented, and
second, our extension to the complex domain is introduced.
This will enable the use of the scheme in the context of radio
communications, where complex I/Q signals are utilized.

A. Real-Valued B-Spline Interpolation

Spline interpolation builds on piece-wise polynomials to in-
terpolate between an arbitrary set of points known as control
points, under certain continuity and smoothness constraints
at the connecting points. With such a piece-wise modeling
approach, simpler and lower-order functions can be adopted
per individual region, in contrast to the classical polynomial
methods where a single high-order expression is utilized to
model the whole input range. The use of lower-order functions
essentially translates to reduced associated processing complex-
ities [11], [29], as demonstrated in later sections. Also, it allows
to better condition the estimation problem [31], i.e., obtaining
a lower condition number for the regression matrix and thus
avoiding the need of prewhitening/orthogonalization. Another
potential advantage of piece-wise models is the ability to use
different polynomial orders for different regions, depending on
the desired modeling accuracy in each.
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To build the piece-wise scheme, we formally define a set
of knots that divides the input data range into N regions, de-
fined as T = {t0, t1, . . . , tN}, corresponding to regions i =
{1, 2, . . . , N}. The knots are constrained to be non-decreasing,
i.e., t0 < t1 < · · · < tN . We consider uniform splines in this
paper, since it allows for a simple input-output relation, suitable
for adaptive estimation of the control points. Thus, the region
width is defined as Δ = ti+1 − ti, Δ > 0.

In general, this construction can be generalized to any number
of regions, N , and any spline degree, P . The B-spline segment
describing each individual region, [ti, ti+1), is therefore an affine
combination of P + 1 spline curves [32]. Each of these curves
is characterized by the P th-degree spline basis function, given
by the De Boor recursion [31] as

NP
i (u) =

u− ti
ti+P − ti

NP−1
i (u)

+
ti+P+1 − u

ti+P+1 − ti+1
NP−1

i+1 (u), (2)

where the initial 0th-order basis function,N0
i (u), can be defined

as

N0
i (u) =

{
1 if ti ≤ u < ti+1,
0 otherwise.

(3)

The nonzero portions of these segments span over the interval
[ti, ti+P ]. Additionally, the blending functions NP

i for different
regions are shifted versions of each other, and in general, they
can be written as [33]

NP
i (u) = NP

0 (u− i). (4)

Consequently, the resulting spline segment in a particular region
can be defined as [34]

γ(u, i) =

i−1∑
n=i−P−1

NP
n (u)qn, (5)

where qn is the corresponding control point multiplying each
spline curve. Alternatively, equation in (5) can be expressed as
the inner product of two vectors, as

γ(u, i)=
[
NP

i−P−1(u) NP
i−P (u) · · · NP

i−1(u)
]
⎡
⎢⎢⎢⎢⎣

qi−P−1
qi−P

...

qi−1

⎤
⎥⎥⎥⎥⎦.

(6)

Further developing this expression by substituting the recursion
in (2) [28], and combining the spline segments of all the regions,
a generic formulation as a function of the spline basis functions
is obtained as

γ(u, i) = ΨTq, (7)

where q ∈ RQ×1 = [q0 q1 · · · qQ]
T is the complete set of

spline control points. We note that the total number of control
points with N regions and spline order P is Q = N + P .
Additionally, Ψ reads

Ψ ∈ RQ×1 = [0 · · · 0 uTCP 0 · · · 0]T . (8)

Here, u is referred to as the abscissa vector, defined as

u ∈ R(P+1)×1 = [uP uP−1 · · · 1]T , (9)

and CP ∈ R(P+1)×(P+1), shown at the bottom of this page, in
(1) for P = 1, · · · , 4, is the spline basis matrix, which depends
on the chosen spline order P and the knot spacing Δ. The term
uTCP in Ψ is indexed such that the starting index is i (i.e. i− 1
leading zeros and Q− (i+ P ) trailing zeros in (8)), such that
only the corresponding control points are contributing to the
basis function weighting, according to the region index.

B. Complex-Valued B-Spline Interpolation

In the context of radio communications, complex-valued I/Q
signals are utilized. Therefore, real-valued spline interpolation
theory needs to be extended to the complex domain. We begin
by noting that a memoryless baseband model of a bandpass
nonlinear device (such as a PA), with input signal x[n], can
be expressed as [35]

y[n] = x[n]G(|x[n]|), (10)

where G(|x[n]|) = GI(|x[n]|) + jGQ(|x[n]|) is the nonlinear
complex gain of the device. Notice that G(|x[n]|) depends only
on the magnitude of the input signal, and not on its phase.

Let us now denotex[n] as the input signal andG(|x[n]|) as the
output of the spline nonlinearity. According to (10), two separate
splines can be used to model the I and Q responses. As the input
to the splines is a unipolar magnitude signal, the region index in
and abscissa value un, at time instant n, are defined as

in =

⌊ |x[n]|
Δx

⌋
+ 1, (11)

un =
|x[n]|
Δx

− (in − 1), (12)

C1 =

⎛
⎝−1

Δ
1
Δ

1 0

⎞
⎠ , C2 =

1

2

⎛
⎜⎜⎜⎝

1
Δ2

−1
Δ2

1
Δ2

−2
Δ

2
Δ 0

1 1 0

⎞
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1

6

⎛
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⎛
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Fig. 1. The injection-based complex spline interpolated LUT scheme pre-
sented in (16), utilized in the proposed block-oriented models.

where Δx is the region width, and un is within the interval
[0,Δx).

The outputs of the two splines modeling the I and Q branch
responses of the system can then be written as

GI(|x[n]|) = ΨT
nq

re, (13)

GQ(|x[n]|) = ΨT
nq

im, (14)

where qre and qim contain the control points for the I and Q
splines, and Ψn is defined in (8). Following (10), and using (13)
and (14), the spline model output can be written as

y[n] = x[n](GI(|x[n]|) + jGQ(|x[n]|))
= x[n]ΨT

n (q
re + jqim)

= x[n]ΨT
nq, (15)

where q = qre + jqim now contains the complex-valued con-
trol points.

In this paper, we define the complex nonlinear gain function
as a deviation from unity gain, and thus write G(|x[n]|) =
1 +GI(|x[n]|) + jGQ(|x[n]|). Thus, with this assumption, the
output of the nonlinear subsystem is written as

y[n] = x[n] + x[n]ΨT
nq

= x[n]ΨT
n (1+ q), (16)

and further illustrated in Fig. 1. Here,1 ∈ RQ×1 denotes a vector
of all ones, and the partition of unity property of B-splines [33],
or ΨT

n1 = 1, is used to arrive to the last form. Applying such a
nonlinear subsystem in cascaded models will effectively remove
the gain ambiguity between the linear and nonlinear blocks. It
will also reduce the dynamic range of the control point vector
q, thus requiring less bits in a fixed-point implementation. This
will be illustrated in the following subsection.

C. Dynamic Range of q

To illustrate the reduced dynamic range, the Modified Saleh
(MS) memoryless PA model presented in [36] is approximated
with the spline models drawn in (15) and (16). The MS AM-AM

and AM-PM responses can be described by

z(r) =
αzr√

1 + βzr3
; φ(r) =

αφ

3
√

1 + βφr4
− ε; (17)

where r and z represent the magnitudes of the input and output
signal, respectively, and φ is the phase error of the output
signal. Additionally, αz , βz , αφ, βφ and ε are the AM-AM and
AM-PM model coefficients. Herein, it is considered αz = 0.82,
βz = 0.29, αφ = −0.35, βφ = 1 and ε = −0.36 [36], which
were extracted from PA input/output data measured from an
LDMOS PA.

An arbitrary OFDM input signal is then passed through
the MS model, and a LS algorithm is used to fit both spline
techniques to the output model data, thus obtaining the control
point vectors from (15) and (16). The magnitude and phase of
these values are then quantized with the same fixed number of
bits to illustrate the dynamic range reduction. Fig. 2(a) shows
the AM-AM response of the MS and the fitted spline models,
with both magnitude and phase quantized with 12 bits. It is
clearly seen that the modelling accuracy of (15) is reduced when
considering the same number of bits as in (16). Additionally,
Fig. 2(b) shows the NMSE values of both solutions as the control
point vectors are quantized with an increasing number of bits.
The modelling performance of (16) is consistently about 18 dB
better than that of (15), until the curves essentially saturate. The
exact difference depends on the shape of the nonlinear response.
However, assessing this further is out of the scope of this paper.

III. COMPLEX SPLINE-BASED ADAPTIVE

HAMMERSTEIN MODEL

The adaptive Hammerstein solution aims at identifying an
unknown nonlinear system consisting of a memoryless nonlinear
function followed by a linear FIR filter [29]. In our previous
publication [11], we studied this structure and applied the spline
interpolated LUT as the nonlinear block. This model, herein
referred to as SPH, serves as a starting point for this paper, and
thus we recapitulate the main expressions.

Let us denote by x[n] and y[n] the input and output signals
of the SPH model, and by s[n] the intermediate signal after the
nonlinear function. Following the B-spline interpolation proce-
dure in (16) for the nonlinear block, and a classical convolution
for the FIR filter, the intermediate and output signals of the SPH
model can be written as

s[n] = x[n] + x[n]ΨT
nqn,

y[n] = gT
n sn, (18)

where gn ∈ CMg×1 = [g[0] g[1] · · · g[Mg − 1]]T , sn ∈
CMg×1 = [s[n] s[n− 1] · · · s[n−Mg + 1]]T , andMg denotes
the number of taps of the linear filter.

A. Learning Rules and Complexity Analysis

The learning rules for both gn and qn can be obtained
by following the gradient-descent approach. From [11], these
expressions read

gn+1 = gn + μge[n]s
∗
n, (19)
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Fig. 2. Response of the Modified Saleh memoryless nonlinear model and its modelling with (15) and (16) and with 12 quantization bits in (a), and NMSE as a
function of the LUT quantization bits in (b).

TABLE I
NUMBER OF REQUIRED ARITHMETIC OPERATIONS IN EACH ITERATION OF THE SPH IDENTIFICATION ALGORITHM, IN TERMS OF FLOPS PER SAMPLE, AND REAL

MULTIPLICATIONS PER SAMPLE

qn+1 = qn + μqe[n]Ξ
T
nX

∗
ng

∗
n, (20)

where Xn contains the signal regression of x[n] over
the span of gn in its main diagonal, Ξn ∈ RMg×Q =
[Ψn Ψn−1 · · · Ψn−Mg+1]

T , and e[n] = d[n]− y[n], d[n] be-
ing the observed signal. Additionally, in the learning rule for
qn+1, it is assumed that the rate of change of qn over the span
of the filter length Mg is negligible, i.e., qn ≈ qn+Mg

. This is
a plausible assumption since μq is small.

It is important to notice the relatively high complexity in-
volved in calculating the term ΞT

nX
∗
ng

∗
n in the update of qn+1,

as ΞT
n is a Q×Mg matrix, somewhat large if gn contains a

large number of taps. To ease this update, in [11] we proposed
a complexity reduction approximation where only a specific
temporal span of the matrix Ξn (row dimension) is chosen for
the update. Obviously, the largest filter taps in gn are the ones
that contribute the most to the update, and those taps typically
correspond to the nearest past samples. Thus, only τ taps, i,e,.
rows of Ξn, gn, and xn, can be selected for the learning rule,
simplifying the overall update and having little effect in the final
modeling performance. This is

Ξn ∈ Rτ×Q = [Ψn Ψn−1 · · · Ψn−τ+1]
T . (21)

We refer the reader to [11] for a more detailed presentation of
the SPH model.

Finally, we analyze the computational complexity of the SPH
model in terms of FLOPs and real multiplications per sample.
The results are gathered in Table I. For this complexity analysis,
it is assumed that one complex multiplication is calculated with
6 FLOPs or 4 real multiplications, while one complex-real mul-
tiplication costs 2 FLOPs or 2 real multiplications, and one real
addition costs 1 FLOP and 0 real multiplications. Additionally,
one square root costs 8 FLOPs, and it is left indicated as sqrt in
the case of real multiplications [16]. Equivalently, one division
is left indicated as div in the complexity tables.

We also note that in certain applications, it may not be neces-
sary to update all coefficients at every iteration. One particular
example is in the full-duplex scenario, shown in Section VI-A,
where the control points qn can remain static once steady-state
is reached, as the operating conditions of the PA usually do
not change drastically once estimated. The filter coefficients,
on the other hand, require constant updating, because the self-
interference (SI) channel is generally time-varying.

B. Suboptimal Formulation in Scarpiniti Et Al.

As mentioned in the introduction to this paper, the original
real-valued presentation of the techniques contained a defect in
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Fig. 3. Convergence comparison between the SPH algorithm based on [29]
and the proposed SPH algorithm.

the coefficient updates, which affected the convergence. In [29],
the update of the real-valued control point vectorqn was defined
as

qi,n+1 = qi,n + μqe[n]C
T
PUi,ngn. (22)

Here, qi,n = [qi,n qi+1,n · · · qi+P,n]
T with qk,n denoting the

k-th entry of qn, is the subset of qn starting from index i.
The matrix Ui,n = [ui,nui,n−1 . . .ui,n−M+1] collects M past
vectors ui,n−k, where each vector assumes the value of un−k

if evaluated in the same span as the current input sample or
in an overlapped span, while otherwise it is a zero vector. The
equation in (22) thus only updates the subset qi,n at time instant
n, whereas our correct learning rule in (20) updates the whole
vector qn in each iteration. The update rule in (22) can also be
seen to use some samples from wrong spans to update the current
span qi,n, therefore making it suboptimal. To substantiate this,
we derived the complex-valued version of (22), which reads

qi,n+1 = qi,n + μqe[n]C
T
PUi,nX

∗
ng

∗
n, (23)

and compared its learning behavior with the update in (20),
when learning a cascaded Hammerstein system. Specifically,
the Hammerstein structure contains the Saleh nonlinear function
presented in Section II-C, followed by an FIR filter with 20
complex-valued taps to account for the memory effects. The
same parametrization (P =3, M=20, Q=7, μw=0.002, μq=
0.002) is naturally chosen in both models to ensure fairness, and
the resulting error signal powers are then presented in Fig. 3. The
proposed Hammerstein solution is seen to clearly outperform
the one based on [29] in terms of convergence speed and final
steady-state behavior.

We finally note that, although the whole control point vector
in (20) is updated in every iteration, only the control points
corresponding to the current span (i.e. qin , qin+1, . . . , qin+P ) are
selected to build the output signal, y[n], in (16). This stems from
the definition of Ψn, which indexes the term uTCP starting
from index in, such that only the correct control points are
selected for the interpolation.

Fig. 4. Architecture of the complex spline interpolated Wiener system. Note
that the spline interpolation block incorporates the scheme presented in Fig. 1.

IV. COMPLEX SPLINE-BASED ADAPTIVE WIENER MODEL

In this section, we present the details of the adaptive Wiener
solution, herein called SPW, which builds on spline interpolated
LUTs. This technique, outlined in Fig. 4, models an unknown
nonlinear system with memory effects by cascading a linear filter
and a nonlinear function. We denote the linear filter by w, and
its tap number by Mw = Mw,pre +Mw,post + 1, considering
both pre-cursor and post-cursor taps. For simplicity, the model
equations consider Mw,pre = 0. This consideration is also taken
in other following methods.

First, denoting x[n] as the input signal of the model, the
intermediate signal s[n] after the linear filter can be written as

s[n] = wT
nxn, (24)

where wn ∈ CMw×1 = [w[0] w[1] · · · w[Mw − 1]]T , and
xn ∈ CMw×1 = [x[n] x[n− 1] · · · x[n−Mw + 1]]T .

Secondly, the nonlinear subsystem in (16) is excited with the
filter output signal s[n], yielding the SPW model output

y[n] = s[n] + s[n]ΨT
nqn. (25)

A. Learning Rules

In order to make the Wiener model adaptive, two different
learning rules, estimating the filter coefficients wn and control
points qn, are derived. To this end, we define the error signal

e[n] = d[n]− y[n], (26)

where the model output signal y[n] is subtracted from the ob-
served signal, or the desired response of the system, denoted here
by d[n]. The problem lies now in estimating the values of wn

andqn to minimize e[n]. This can be done by following the clas-
sical gradient-descent solution, where the quantities are learned
by following the negative direction of the gradient, towards a
local minimum in the mean surface error [37]. The coefficients
can be updated iteratively when necessary, depending on the
requirements of the final application hosting the algorithm [38].

A cost function can be defined as the instantaneous squared
error, depending on both parameters to estimate. In the complex
case, the cost function to minimize is

J(wn,qn) = e[n]e∗[n]. (27)
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Firstly, the general form of the learning rule for the control points
reads

qn+1 = qn − μq∇qn
J(wn,qn), (28)

whereμq[n] is the weight or learning rate of the update. Invoking
elementary complex differentiation rules [39], while considering
the other parameter wn constant, the partial derivative can be
written as

∂J(wn,qn)

∂q∗
n

= e[n]
∂e∗[n]
∂q∗

n

+ e∗[n]
∂e[n]

∂q∗
n

= −e[n]
∂s∗[n]ΨT

n (1+ q∗
n)

∂q∗
n

+ 0

= −e[n]s∗[n]Ψn. (29)

Substituting in (28), the final learning rule reads

qn+1 = qn + μqe[n]s
∗[n]Ψn. (30)

Secondly, the learning rule for the filter wn is

wn+1 = wn − μw∇wn
J(wn,qn), (31)

where μw[n] is the learning rate of the update. The partial
derivative with respect to wn, holding qn constant, is given
as

∂J(wn,qn)

∂w∗
n

= e[n]
∂e∗[n]
∂w∗

n

+ e∗[n]
∂e[n]

∂w∗
n

= −e[n]
∂s∗[n]ΨT

n (1+ q∗
n)

∂w∗
n

+ 0

= −e[n]ΨT
n (1+ q∗

n)x
∗
n

− s[n]x∗
n

|s[n]| Re {e[n]ẏ[n]} . (32)

Here, ẏ[n] = s∗[n]u̇T
nCP (1+ q∗

i,n), and the vector u̇n ∈
R(P+1)×1 = [PuP−1

n (P − 1)uP−2
n · · · 1 0]T represents the

derivative of the abscissa vector un. Substituting this result in
(31), the final learning rule reads

wn+1 = wn + μwx
∗
n

×
(
e[n]ΨT

n (1+ q∗
n) +

Re {e[n]ẏ[n]s[n]}
|s[n]|

)
. (33)

B. Complexity of the Proposed SPW Model

As described above, the algorithm is designed to be executed
sample by sample, and thus this analysis is presented in terms of
FLOPs per sample. This metric basically collects the numbers
of multiplications, additions and subtractions to be executed.
Furthermore, the number of real multiplications required by the
algorithm is also presented separately, as it can constitute an
important metric for hardware implementations, such as FPGAs,
where resources are limited.

The computational complexity of this method is detailed
based on the model identification and coefficient update stages
done in each iteration, following the steps below:

1) Filter the input signal to get s[n]

2) Compute index and abscissa parameters in, un, and un

3) Perform spline interpolation to obtain y[n]
4) Update coefficient qn+1

5) Update coefficient wn+1

The corresponding complexity expressions are collected in
Table II , giving the upper bounds for the final complexity, as
in a hardware implementation many trivial operations such as
multiplications with zero elements or integer powers of 2 or 1/2
do not reflect any added complexity. The complexity expressions
are presented as a function of the model parameters P , Mw

and Q.

V. COMPLEX SPLINE-BASED ADAPTIVE

WIENER-HAMMERSTEIN MODEL

The Wiener-Hammerstein model is a combination of the
Wiener and Hammerstein models, capable of modeling more
complex nonlinear systems with memory. This approach cas-
cades a second linear filter to the Wiener structure to compensate
for memory effects appearing after the nonlinearity [30]. Again,
the nonlinear function is built upon B-spline interpolation, and
it is injected to the linear intermediate signal l[n], as indicated
in Fig. 5. We refer to this approach as the SPWH model.

According to the nomenclature in Fig. 5, the intermediate
signals, l[n] and s[n], and the model output signal, y[n], can be
defined as in (24) and (16). Hence,

l[n] = wT
nxn, (34)

s[n] = l[n] + l[n]ΨT
nqn, (35)

y[n] = gT
n sn, (36)

where the new filters are defined now as wn ∈
CMw×1 = [w[0] w[1] · · · w[Mw − 1]]T , gn ∈ CMg×1 =
[g[0] g[1] · · · g[Mg − 1]]T , and xn and sn are the regression
signals for x[n] and s[n], respectively.

A. Learning Rules

In order to obtain the learning rules for the SPWH model, the
same gradient descent approach can be adopted, where an error
signal is used to generate a cost function which is minimized
with respect to the coefficients to be estimated. In this case,
three different coefficient vectors need to be updated, namely
the spline control points qn, and the two linear filters, wn,
and gn.

The cost function for the SPWH adaptation can then be written
as

J(wn,qn,gn) = e[n]e∗[n], (39)

and the learning expressions are then

wn+1 = wn − μw∇wn
J(wn,qn,gn), (40)

qn+1 = qn − μq∇qn
J(wn,qn,gn), (41)

gn+1 = gn − μg∇gn
J(wn,qn,gn), (42)

where μw, μq, and μg represent the learning rates for each
update. The complex gradient approach is again used to cal-
culate the derivatives, assuming that the other coefficients are
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TABLE II
NUMBER OF REQUIRED ARITHMETIC OPERATIONS IN EACH ITERATION OF THE SPW IDENTIFICATION ALGORITHM, IN TERMS OF FLOPS PER SAMPLE, AND REAL

MULTIPLICATIONS PER SAMPLE

Fig. 5. Architecture of the complex spline interpolated Wiener-Hammerstein system. Note that the spline interpolation block incorporates the scheme presented
in Fig. 1.

constants. Thus, the first gradient in (40) can be obtained as

∂J(wn,qn,gn)

∂w∗
n

= e[n]
∂e∗[n]
∂w∗

n

+ e∗[n]
∂e[n]

∂w∗
n

= −e[n]
∂gH

n s∗n
∂w∗

n

− e∗[n]
∂gT

n sn
∂w∗

n

= · · ·

= e[n]Σng
∗
n +ΥnRe

{
e[n]Ẏng

∗
n

}
, (43)

where Ẏn = diag{ẏ[n], . . . , ẏ[n−Mg + 1]}, and Σn and
Υn are presented in (37) and (38), as shown at the bottom of
this page, respectively.

The final learning update for wn can then be written as

wn+1 = wn + μw

(
e[n]Σng

∗
n +ΥnRe

{
e[n]Ẏng

∗
n

})
,

(44)

Note that removing the filter gn (gn = [1 0 · · · 0]T ) leads
to the learning rule of the SPW model, presented in (44). Addi-
tionally, further removing the nonlinearity (qn = [0 0 · · · 0]T )
leads to the expression of the classical LMS filter, shown in (19).

When considering gn and qn, they directly correspond to
the learning rules obtained in the SPH case, due to the SPWH

structure. Hence, they can directly be written as

gn+1 = gn + μge[n]s
∗
n, (45)

qn+1 = qn + μqe[n]Ξ
T
nL

∗
ng

∗
n, (46)

where Ln is a diagonal matrix containing the regression of l[n].
Note that in the learning rule for qn+1, it is again assumed that
the rate of change of qn over the span of the filter length Mg is
negligible, i.e., qn ≈ qn+Mg

.

B. Complexity of the Proposed SPWH Model

The complexity of the proposed SPWH model is analyzed in
terms of FLOPs and real multiplications per sample.

It is again important to remark the relatively high complexity
involved in calculating the termΞT

nL
∗
nw

∗
n in the update ofqn+1,

as Ξn is a Q×Mw matrix, and wn may contain a large number
of taps. To ease this update, we propose a similar complexity
reduction approximation as was done for the SPH model, where
only a specific temporal span of the matrix Ξn (row dimension)
is chosen for the update. Thus, only τ taps, i,e,. rows of Ξn, wn,
and Ln can be selected for the learning rule, simplifying the
overall update while having minimal effect on the performance.
The approximation is similar to the SPH model, and is given in
(21).

Σn =
[
Ψn(1+ q∗

n)x
∗
n Ψn−1(1+ q∗

n−1)x
∗
n−1 · · · Ψn−Mg+1(1+ q∗

n−Mg+1)x
∗
n−Mg+1

]
, (37)

Υn =
[
l[n]x∗

n

|l[n]|
l[n−1]x∗

n−1

|l[n−1]| · · · l[n−Mg+1]x∗
n−Mg+1

|l[n−Mg+1]|

]
. (38)
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TABLE III
NUMBER OF REQUIRED ARITHMETIC OPERATIONS IN EACH ITERATION OF THE SPWH IDENTIFICATION ALGORITHM, IN TERMS OF FLOPS PER SAMPLE, AND

REAL MULTIPLICATIONS PER SAMPLE

The upper bound complexity expressions for the SPWH
model are gathered in Table III. Note that the case τ = Mw

corresponds to the original learning update, with no complexity
reduction method applied.

VI. APPLICATIONS, USE CASES, AND RF MEASUREMENTS

The proposed modeling approaches can be applied to many
use cases and applications. In this section, we specifically focus
on DSIC and DPD as direct and inverse modeling problems,
respectively. We present extensive RF measurement results to
verify and demonstrate the performance of the proposed tech-
niques.

In the results, the widely used MP and GMP models are
adopted for reference, as they are the most common high-
performance techniques used in the literature [9], [16], [23], [40].
The input/output relation of the GMP model can be expressed
as

y[n] =

PMP∑
p=1
p odd

MMP∑
m=0

αp,mx[n−m]|x[n−m]|p−1

+

PC∑
p=3
p odd

MC∑
m=0

LC∑
l=−LC
l �=0

βp,m,lx[n−m]|x[n−m+ l]|(p−1),

(47)

where PMP, MMP, and αp,m represent the nonlinear order,
memory, and model coefficients of the aligned envelope terms.
Additionally, PC, MC, LC, and βp,m,l are the nonlinear order,
memory, depth, and model coefficients of the lagging and lead-
ing terms. For simplicity, we assume in this work the same
number of lagging and leading coefficients, denoted here by
C = �PC/2�MCLC. In fact, C indicates the number of addi-
tional coefficients compared to the MP model. Obviously, the
MP model can be directly obtained from (47) by setting the
lagging and leading coefficients to zero (and thus C = 0). In
both models, the set of coefficients can be learned using the LMS
algorithm, thus facilitating a fair comparison with the proposed
algorithms. The basis functions of the models, however, need

to be prewhitened or orthogonalized before the processing [41],
if LMS is applied. The reason for this is the poor convergence
performance of the LMS algorithm if the elements of the input
vector are highly correlated, stemming from the large eigenvalue
spread of the input signal covariance matrix. In this case, the
static basis functions can certainly be expected to be correlated,
since they all depend on the original transmit signal. Orthogonal-
izing them is thus a necessary step to ensure efficient parameter
learning by the LMS algorithm. The computational complexity
of this process is included within the parameter update stage.
Further details and analysis of the orthogonalized polynomial
models and LMS learning in the context of DSIC can be found
in [25].

A. Direct Modeling: DSIC in IBFD Transceivers

Self-interference cancellation technology has gathered a lot
of attention in the past 10 years as a key technology for realizing
IBFD communications [3], [23], [40]. IBFD devices are capable
of transmitting and receiving simultaneously on the same chan-
nel, thus enabling a twofold increase in the spectral efficiency
and data rate, without requiring any additional bandwidth. Fig. 6
shows a typical IBFD transceiver structure. Besides IBFD, DSIC
technology can benefit also other communication technolo-
gies [4], as well as joint sensing and communications [42].

To make IBFD commercially viable, the problem of SI must
be dealt with. SI refers to the unwanted own transmit signal that is
leaked into the receiver chain, potentially saturating the receiver
and masking the desired received signal. Thus, any full-duplex
transceiver must be capable of removing the SI signal in an
efficient manner to provide reliable communication. In practice,
this is done in three stages: using propagation domain isola-
tion techniques, analog SI cancellation, and digital cancellation
(DSIC), as illustrated in Fig. 6. DSIC, which is our focus here, is
a forward modeling problem, typically aiming at modeling the
nonlinear transmitter and the SI propagation channel [5]. The
proposed cascaded models are well suited for modeling such a
system.

We demonstrate the feasibility of the proposed techniques
in the context of DSIC in IBFD by utilizing measured data
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Fig. 6. Generic IBFD transceiver architecture.

TABLE IV
THE RF MEASUREMENT AND MODEL PARAMETERS IN THE DSIC EXPERIMENT. THE COMPUTATIONAL COMPLEXITY IN THE CANCELLATION AND PARAMETER

UPDATE STAGES IS PRESENTED IN THE LAST TWO COLUMNS, IN TERMS OF REAL MULTIPLICATIONS PER SAMPLE. THE MP AND GMP BF ORTHOGONALIZATION

COMPLEXITY IS INCLUDED IN THE COEFFICIENT UPDATE STAGE

Fig. 7. PSDs of the overall signal after the different DSICs, for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz instantaneous bandwidths.

originally used in [43], where a back-to-back relay antenna was
used to provide the analog isolation between the transmitter and
receiver nodes, and no active analog cancellation was used.

The parameterizations for the different DSIC models are col-
lected in Table IV, along with the computational complexity in
terms of real multiplications per input sample in the cancellation
and coefficient update stages. In both SPH and SPWH models,
the proposed complexity reduction method is considered, with
τ = 5. In the GMP model, PC = 5, MC = 3, and LC = 2 are
considered, which leads to C = 12 coefficients. Additionally,
a large number of memory taps is considered in each model

due to the high frequency selectivity of the SI channel. First,
the power spectral densities (PSDs) of the transmit, received,
and signal after cancellation with the algorithms are shown in
Fig. 7, for three different instantaneous signal bandwidths of
20, 40, and 80 MHz. In all cases, the SPH and SPWH models
achieve a similar cancellation to that of the MP and GMP
models, regardless of the substantial complexity reduction. With
the narrowest 20 MHz bandwidth, the amounts of achieved
digital cancellation are 44.1 dB (SPH) and 44.9 dB (SPWH).
With the widest 80 MHz bandwidth, the amounts of achieved
cancellation are 37.9 dB (SPH) and 38.2 dB (SPWH). These
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Fig. 8. Residual powers with respect to the iteration index after the different DSICs, for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz instantaneous bandwidths.

results indicate high modeling accuracy, with the SPWH model
even outperforming the MP and GMP models in the narrowband
cases. In this particular measurement, the SPW model yields
somewhat lower performance with around 32 dB cancellation
in the three considered bandwidth cases. This is expected due
to the SI signal model naturally following a Hammerstein type
structure. Additionally, the proposed methods are capable of re-
ducing the cancellation complexity by more than 82% (SPH and
SPW) and 80% (SPWH) in the cancellation stage with respect
to the MP and GMP models. In the coefficient update stage,
the computational complexity of all the methods is reduced by
more than 99% compared to the MP and GMP. This is due,
in large part, to them not requiring BF orthogonalization, in
contrast to the polynomial-based models. These results illustrate
the excellent performance-complexity trade-off of the proposed
solutions.

In order to evaluate the convergence properties of the algo-
rithms, Fig. 8 shows the residual powers of the received signals
after cancellation, for the three bandwidths mentioned above.
All the models are essentially achieving a similar convergence
speed, despite the proposed spline based models not using or-
thogonalization. Altogether, the results show that excellent dig-
ital cancellation can be obtained with the proposed algorithms,
regardless of the large processing complexity reduction.

B. Inverse Modeling: Digital Predistortion

In this section, the proposed models are tested in the context of
DPD. DPD is a well-established technique that aims at minimiz-
ing the unwanted emissions and nonlinear distortion originated
from PAs. This approach applies a nonlinear transformation
to the input signal that pre-compensates for the unwanted PA
effects [2]. Thus, in DPD processing, choosing a nonlinear
model with the best complexity-performance trade-off for the
device at hand is a key design challenge.

In this paper, we apply DPD linearization to a millimeter wave
(mmW) active antenna array system operating at 28 GHz. The

array linearization problem, in the single user case, is a single-
input single-output identification problem, similar to regular
DPD linearization of a single PA [44]–[46]. However, in a
K-antenna array, there are alsoK PAs, each with unique (though
somewhat similar) nonlinear characteristics. The DPD can thus
guarantee good linearization only in the main beam direction,
while in the rest of the directions, the beampattern of the array
will help to keep the nonlinear distortions low [44]. Another im-
portant feature of arrays is the load modulation of the PAs, which
occurs due to coupling between the antennas [47]. This will
make the nonlinear characteristics of the array beam-dependent.
Thus, any linearization solution for active arrays needs to take
this into account, as the optimal DPD will also depend on the
beam direction. DPD solutions which are real-time adaptive are
one viable solution to track and adapt the DPD coefficients
as the beam is steered. A further concern at mmWs, as the
signal bandwidths are wide and matching is more problematic
compared to lower frequencies, is the frequency selectivity of
the transmitter. There could be, for example, distinct frequency
selectivity between the baseband/IF parts and the PA, which the
DPD estimator would interpret as part of the PA response, thus
requiring large memory depth and unnecessary complexity in
the DPD. The proposed adaptive cascaded models can separate
these linear distortions from the nonlinear effects of the PAs,
and thus offer much lower complexity linearization, which is an
important criterion when designing real-time systems.

For learning, we adopt the so-called ILA, which is illustrated
in Fig. 9. Here, the DPD coefficients are estimated through the
post-inverse of the PA, which can be calculated directly from the
PA input and output signals [9]. The post-inverse coefficients are
copied to the digital predistorter, and the learning procedure is
then typically iterated a few times to reach steady-state.

The DPD performance is evaluated through the well-known
error vector magnitude (EVM) and normalized mean square
error (NMSE) [16]. However, since an over-the-air (OTA) DPD
system is considered, the out-of-band performance is measured
with the total radiated power (TRP) based adjacent channel
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Fig. 9. Illustration of the ILA DPD system, in the context of a K-antenna
array. The DPD is estimated directly from the predistorted and OTA received
signals. GPA represents the estimate of the complex linear gain of the Tx chain.

Fig. 10. The 5 G NR mmW/FR-2 RF deployment used in the DPD experiment.

leakage ratio (ACLR), which is the filtered mean power cen-
tered on the assigned channel frequency to the filtered mean
power centred on an adjacent channel frequency, measured by
integrating the powers over the whole beamspace, while keeping
the beamforming angle fixed [48].

The overall array measurement setup is shown in Fig. 10,
containing the test device, which is an Anokiwave AWMF-0129
64-element active antenna array, together with other instru-
ments to facilitate signal generation and analysis at 28 GHz
center frequency. Firstly, a Keysight M8190 arbitrary waveform
generator (AWG) is used to generate an IF signal at 3.5 GHz.
The signal is then upconverted to the 28 GHz carrier by a
Keysight N5183B-MXG acting as the LO at 24.5 GHz and a
Marki Microwave T31040 L mixer, and then filtered by a Marki
microwave FB3300 band-pass filter (BPF). The upconverted
signal is then driven through two pre-amplifiers, Analog De-
vices HMC499LC4 and Analog Devices HMC1131, facilitating
enough power to drive the active antenna array to saturation. The
array transmits the signal OTA, and the signal is captured by a
horn antenna at the observation receiver, such that the receiver
antenna is well aligned with the main beam. In this experiment,
the beamforming angle is considered as 0 degrees. The signal is
then carried through an attenuator and another mixer to be down-
converted back to IF. Then, a Keysight DSOS804 A oscilloscope

Fig. 11. Example illustration of DPD OTA linearization results at 28 GHz,
with 400 MHz bandwidth and EIRP≈+42 dBm.

is used as the actual digitizer to facilitate the post-processing on
a host PC, where the DPD algorithms are executed.

In the DPD measurements, a 5G NR FR-2 OFDM signal
with 120 kHz subcarrier spacing (SCS) and 264 active re-
source blocks (RBs) is adopted. This configuration maps to
400 MHz channel bandwidth. The proposed DPD models are
tested with 12 ILA iterations, and 50 ksamples each. The adopted
model parametrization and DPD complexity are presented in
Table V. The cross-terms of the GMP model are configured with
PC = 9, MC = 2, LC = 2, which leads to C = 16 coefficients.
A snap-shot linearization example is showed in Fig. 11, at
effective isotropic radiated power (EIRP) of +42 dBm. Within
the three proposed solutions, the SPWH model obtains the best
linearization performance, and the closest to the reference MP
and GMP solutions. This model is followed by the SPH DPD,
which also obtains a good DPD linearization, slightly degraded
but close to SPWH. The SPW model follows somewhat behind
the other DPD solutions, but it is still capable of obtaining a
fair amount of performance. This result can be explained as fol-
lows. On the one hand, the SPW model cannot correct memory
effects and distortion appearing in the mixing and filtering stage
(T31040 L MX and FB3300 BPF), before the driver PA, leading
to performance loss. On the other hand, the SPH model cannot
properly account for the frequency selectivity appearing in the
OTA transmission. The SPWH model, in turn, is able to account
for both phenomena, achieving thus an enhanced performance
compared to the other models.

The same conclusion can be made from Fig. 12, which shows
the NMSE and TRP ACLR performance as a function of the
iteration number. It can also be observed that the convergence
of the DPD models is fast in general, reaching the steady-state
in approximately 4-5 DPD iterations. The 5G NR ACLR limit
of 28 dBc, measured using the TRP [48] approach, is fulfilled in
all cases. It can be seen from Table V that the computational
complexity with respect to the classical MP is also greatly
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TABLE V
THE RF MEASUREMENT AND MODEL PARAMETERS IN THE DPD EXPERIMENT. THE COMPUTATIONAL COMPLEXITY OF THE DPD MAIN PATH AND DPD LEARNING

STAGES IS PRESENTED IN THE LAST TWO COLUMNS, IN TERMS OF REAL MULTIPLICATIONS PER SAMPLE. THE MP AND GMP BF ORTHOGONALIZATION

COMPLEXITY IS INCLUDED IN THE DPD LEARNING STAGE

Fig. 12. DPD performance in terms of (a) NMSE, and (b) TRP ACLR of the proposed DPD models as a function of the iteration index, with 400 MHz bandwidth
and EIRP≈+42 dBm.

reduced by 68% (SPH and SPW) and 53% (SPWH) in the DPD
main path. With respect to GMP, the complexity is reduced by
78% (SPH and SPW) and 67% (SPWH). In the DPD learning,
the computational complexity of the proposed models is reduced
by more than 90% with respect to MP, and by more than
95% with respect to GMP. These results verify the excellent
performance-complexity trade-off of the proposed techniques.

To further demonstrate the performance of the proposed
models, a third and final experiment featuring a power sweep
is presented. The power sweep shows the ACLR, measured
through the TRP, and EVM performance metrics as a function
of the EIRP, which ranges from +38.5 dBm to +42.5 dBm. With
this experiment, we try to shed some light into two main things.
First, to evaluate whether the TRP ACLR or the EVM is the
limiting performance metric in the mmW system, in terms of
maximum achievable EIRP. Second, to assess the performance
of the proposed and reference DPD models as the radiated power
of the antenna array varies. The obtained TRP ACLR and EVM
results are presented in Fig. 13. Firstly, it can be clearly seen
that, when no predistortion is applied, the EVM constitutes the
limiting factor in terms of maximum achievable EIRP, basically
surpassing the 8% EVM limit [48] at approximately +39.8 dBm,
where the TRP ACLR limit is still fulfilled. However, when the
proposed predistortion techniques are applied, both EVM and
TRP ACLR limits are satisfied at least up until +42.5 dBm,
and clearly somewhat beyond, as the figure shows. These find-
ings indicate an increase in the overall power efficiency of the

transmit chain, as the antenna array can be operated closer to
saturation thanks to the DPD operation. Secondly, the power
sweep also indicates that the DPD algorithms behave in a similar
manner as commented before. The proposed SPWH model is
capable of achieving a similar linearization performance to that
of the MP and GMP models, despite the reduced processing
and learning complexities. It is then followed by the SPH and
SPW models, whose performance lie somewhat behind, but still
fulfilling the specified 3GPP limits. In general, the proposed
algorithms achieve good amounts of linearization performance,
and successfully satisfy the 3GPP specifications [48] at least
up to EIRP of +42.5 dBm and clearly beyond, while allowing
for excellent processing and learning complexity reductions.
These results further confirm the very favorable complexity-
performance trade-offs of the proposed solutions in different
scenarios.

VII. CONCLUSION

In this paper, a class of low-complexity cascaded models and
learning algorithms were proposed for modeling of complex-
valued nonlinear systems with memory. Hammerstein, Wiener,
and Wiener-Hammerstein models were constructed, building on
uniform spline-interpolated LUTs as the elementary nonlinear
functions and FIR filters for the linear blocks, and gradient
descent based adaptive algorithms were derived for each of the
models. This approach was shown to yield remarkably simple
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Fig. 13. DPD OTA linearization performance at 28 GHz with 400 MHz bandwidth, as a function of the EIRP of the proposed DPD models in terms of (a) TRP
ACLR, and (b) EVM.

yet effective solutions, suitable for real-time implementation and
continuous learning. In order to validate and verify the proposed
methods, RF measurements were carried out in the context of
full-duplex self-interference cancellation and digital predistor-
tion. First, the received signal from a complete full-duplex proto-
type environment was used to test the SI cancellation capability
of the proposed methods, achieving high cancellation levels with
much lower complexity compared to state-of-the-art. Second, a
millimeter-wave active antenna array operating at 28 GHz was
linearized with the proposed techniques, reducing the unwanted
emissions to levels below the specified limits. These results
illustrate the excellent complexity-performance trade-off of the
proposed methods, as they can offer modeling performance very
close to state-of-the-art regardless of the substantial complexity
reduction.
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Abstract— In this article, we study closed-loop digital
predistortion (DPD) systems and associated learning algorithms.
Specifically, we propose various low-complexity approaches to
estimate and manipulate the inverse of the input data covari-
ance matrix (CM) and combine them with the so-called self-
orthogonalized (SO) learning rule. The inherent simplicity of
the SO algorithm, combined with the proposed solutions, allows
for remarkably reduced complexity in the DPD system while
maintaining similar linearization performance compared to other
state-of-the-art methods. This is demonstrated with thorough
over-the-air (OTA) mmW measurement results at 28 GHz,
incorporating a state-of-the-art 64-element active antenna array,
and very wide channel bandwidths up to 800 MHz. In addi-
tion, complexity analyses are carried out, which together with
the measured linearization performance demonstrates favorable
performance–complexity tradeoffs in linearizing mmW active
array transmitters through the proposed solutions. The tech-
niques can find application in systems where the power ampli-
fier (PA) nonlinearities are time-varying and thus frequent or
even constant updating of the DPD is required, good examples
being mmW adaptive antenna arrays as well as terminal trans-
mitters in 5G and beyond networks.

Index Terms— Array transmitters, autocorrelation function,
Bussgang theorem, closed-loop systems, covariance matrix (CM),
digital predistortion, Gauss–Newton (GN), parameter learning,
power amplifier (PA), self-orthogonalization.

I. INTRODUCTION

CONTEMPORARY radio communication systems, such
as the recently introduced 5G new radio (NR) mobile

networks, build on multicarrier modulation—most notably
orthogonal frequency-division multiplexing (OFDM). Multi-
carrier modulations are known to provide spectrally efficient
waveforms but also possess high peak-to-average power ratio
(PAPR) [1], [2], which complicates the operation of power
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amplifiers (PAs) close to saturation. In order to control the
quality of the transmit waveform while ensuring high power
efficiency in the transmit chain, digital predistortion (DPD) is
a well-known technical approach—see, e.g., [1], [3]–[5], and
the references therein. DPD aims to suppress the unwanted
out-of-band (OoB) emissions and in-band nonlinear distortion
by applying specific nonlinear preprocessing to the digital
transmit waveform. Especially in combination with efficient
PAPR mitigation methods [6], DPD can significantly improve
the transmitter power efficiency while maintaining at the same
time low levels of unwanted nonlinear distortions.

A particularly timely DPD application is the linearization
of active antenna arrays, being an essential technology for
instance in the emerging 5G NR base stations and mobile
devices, especially at the millimeter-wave (mmW) bands.
These operating frequencies are also referred to as the so-
called frequency range 2 (FR-2) [7] in the 3GPP terminology.
Timely examples of articles focusing on this topic include,
e.g., [8]–[13]. In such systems, the nonlinear distortion is
known to be beam-dependent, stemming from the load-
modulation phenomenon [8]. Fast DPD adaptation is thus
required such that the nonlinear distortions can be suppressed,
while the beam is steered. This issue, along with the extremely
high processing rates and channel bandwidths at mmW fre-
quencies, calls for reduced complexity DPD approaches and
associated parameter learning algorithms.

Another relatively new DPD use case is mobile device
linearization. In general, mobile device power efficiency is
very important, which is why the PA is typically operated
close to saturation. Thus, despite the more relaxed linearity
requirements compared to base-station transmitters, lineariza-
tion can be pursued for maximum power efficiency. Further-
more, in mobile devices, the transmitted waveforms are very
dynamic, as the resource block allocation and output power
can change on a per-slot basis [14]. On the other hand, the
computational resources in mobile devices are much more
limited than in base stations. Thus overall, both the adapt-
ability and the complexity of the DPD system are becoming
increasingly important in mobile devices, forming one main
motivation for this work and the methods described in this
article.

A wide range of DPD models can be found in the exist-
ing literature, with some of the most common approaches

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Illustration of the considered closed-loop MP DPD scheme, with special emphasis on mmW active array linearization with R antenna elements and
PA units. The learning signal can be obtained by either co-phasing and combining the individual PA output signals or, alternatively, by using an OTA ORX.

being the memory polynomial (MP) [1], [5], [15] and the
generalized MP (GMP) [3], [15], [16]. These approaches can
be seen as subsets of the Volterra series [17], [18]. In such
methods, the DPD coefficients are usually estimated by using
block-based regression algorithms, such as least squares (LS)
or Gauss–Newton (GN) [4], [19]. These learning solutions
provide reliable coefficient estimation, but they also involve
relatively high computational complexity—especially if on-
chip estimation were pursued. Alternatively, adaptive filtering
algorithms can be used, such as least mean squares (LMS) or
some of its variants [20]. The input data basis functions (BFs),
however, need to be typically prewhitened or orthogonalized
before the actual processing since the elements of the input
data are highly correlated, leading to large eigenvalue spread
of the input signal covariance matrix (CM) [21].

Literature targeting explicitly low-complexity DPD
approaches and associated learning methods is, in turn,
somewhat less common. Techniques aiming at this direction
are, for instance, [21]–[27]. In [22], a closed-loop MP DPD
model was presented, where the model coefficients were
estimated with damped GN in combination with a signed
regressor algorithm (SRA). However, the signed CM in the
SRA suffered from rank-deficiencies, and additional Walsh-
Hadamard matrix transformations were required, further
increasing the computational complexity. In [21] and [23],
a block-adaptive LMS-type algorithm was proposed. However,
additional BF orthogonalization or prewhitening had to be
applied to ensure fast and reliable convergence. In [27],
an SO solution was applied and demonstrated to achieve
a similar performance as other state-of-the-art techniques.
However, the CM was assumed fixed, and the computational
cost of its recalculation was high. In [24]–[26] and [28],
cascaded Hammerstein and Wiener structures were proposed.
Such approaches typically have less free parameters, leading
to solutions with lower associated complexity. However, they
are best applied in scenarios where physical knowledge of
the system under study is available, which is not always the
case. Finally, works in [29] and [30] presented lookup table

(LUT)-based approaches. The LUTs aimed at substituting
the high-order polynomials in the DPD model, relaxing the
overall complexity. Nonetheless, their modeling capabilities
are somewhat limited, depending on the size of the LUTs.
To enhance the performance, the LUT sizes can be increased
to better describe the nonlinear characteristics, but this leads
to higher memory requirements and slower convergence
speeds.

In this article, we adopt a closed-loop MP structure in
combination with a modified version of the SO learning
to update the DPD model coefficients. We adopt the MP
structure, in contrast to other more complex solutions, due
to the relaxed linearity requirements of the mmW NR FR-2
systems [7], [14] and also because its reduced complex-
ity makes it appealing for various DPD applications, such
as the terminal PA linearization. The overall DPD struc-
ture is shown in Fig. 1, in the context of mmW active
arrays.

The main technical contributions of this article are the devel-
opment of several low-complexity solutions for estimating and
manipulating the inverse CM (ICM) needed in SO learning
algorithms. The ICM gathers statistical information of the
DPD input data and the corresponding BF samples, and it
is an important ingredient in the learning path to ensure good
linearization performance and convergence. This is the most
computationally heavy element in the SO learning rule and
needs to be recalculated whenever the transmit signal type
or its spectral characteristics are modified, to ensure optimal
DPD execution. Specifically, we propose the following four
methods:

1) method to efficiently modify the ICM by removing rows
and columns for a smaller DPD parameterization;

2) method to efficiently modify the ICM when the input
signal is frequency-shifted, reflecting, e.g., a change in
resource allocation inside the channel bandwidth;

3) method to estimate the ICM from the autocorrelation
function of the input data, assuming that it is a complex
proper Gaussian distributed random signal.
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4) Method to efficiently approximate the technique in 3) by
utilizing the Bussgang decomposition.

Techniques 1) and 2) can be applied to modify a previously
calculated ICM with low computational effort, while tech-
niques 3) and 4) require only an estimate of the autocorrelation
function of the input data to build the ICM. The SO learning
algorithm in combination with the proposed methods allows
for fast DPD coefficient estimation with minimal complexity in
time-varying scenarios. Hence, on-chip implementations and
continuous tracking of the DPD can become feasible.

Extensive over-the-air (OTA) RF measurement results at the
28 GHz mmW center frequency–the 5G NR band n257 [7]—
are carried out and reported in order to test and validate
the proposed solutions. All measurements feature a state-of-
the-art 64-element active antenna array and 5G NR com-
pliant OFDM waveforms, with signal bandwidths ranging
from 200 to 400 MHz. In addition, further measurements
with an aggregated signal bandwidth of 800 MHz are also
conducted, with the aim of pushing the performance bound-
aries of the considered DPD system. Altogether, the obtained
results, alongside with the complexity analyses, indicate very
favorable performance–complexity tradeoffs of the proposed
solutions when comparing against the state of the art. Finally,
we note that although the experiments in this article consider
mmW active array linearization, the developed solutions are
applicable also in any more classical single-input–single-
output DPD system and PA linearization context.

The rest of this article is organized as follows. Section II
presents the adopted MP structure and also clarifies the
assumptions taken for the mmW setup. Sections III and IV
present the proposed low-complexity methods to estimate the
ICM, needed for the SO learning rule. Complexity analyses
and comparisons are then provided in Section V. Section VI
presents the deployed 28 GHz measurement setup and the cor-
responding FR-2 RF measurement results and their analyses.
Finally, conclusions are drawn in Section VII.

Notation Used in This Article: In this article, matrices are
represented by capital boldface letters, e.g., � ∈ CM×N . Ordi-
nary transpose, Hermitian transpose, and complex conjugation
are denoted by (·)T , (·)H , and (·)∗, respectively. By default,
vectors are complex-valued column vectors, presented with
lowercase boldface letters, i.e., ααα ∈ CM×1 = [α1 α2 · · · αM ]T .
In addition, the expected value, absolute value, floor, ceil,
factorial, Hadamard product, and Kronecker product operators
are written as E{·}, | · |, �∗�·, �∗�·, !, ◦, and ⊗, respectively.

II. CLOSED-LOOP DPD SYSTEM

In this section, the MP DPD model utilized in this work is
described. Both the processing and learning paths are detailed,
where the actual digital predistortion and the DPD coefficient
estimation are executed. The MP model is adopted because
it is a widely used model and is known to strike a good
balance between linearization performance and computational
complexity [1], [3], [5], [21], [23]. In addition, the DPD
system builds on a closed-loop structure, where the DPD
coefficients are estimated from the input signal, x[n], and the
observed learning signal, y[n], [31] according to the notation
followed in Fig. 1.

A. DPD Main Path

The complete closed-loop MP DPD scheme is presented in
Fig. 1. Here, x[n] is the original baseband signal, xDPD[n] is
the signal after predistortion, and y1(t), y2(t), . . . , yR(t) are
the individual PA output signals to be transmitted. Following
this notation and adopting the classical MP model structure,
the input–output relation of the digital predistorter can be
written as

xDPD[n] =
M−1∑
m=0

P∑
p=0
p odd

αm,px[n − m]|x[n − m]|(p−1) (1)

where M denotes the number of memory taps considered in
the model, P corresponds to the polynomial order, and αm,p is
the corresponding PA model coefficient for a specific memory
tap and polynomial order. Following this configuration, the
model has C = �(P/2)�M coefficients. It is noted that while
only odd orders are considered in the above model, there are
works [32], [33], which have shown that the use of both odd
and even orders can have certain benefits, such as the ability to
reduce the overall polynomial order P for given linearization
performance targets. The ICM estimation methods derived and
described in this article focus on MP systems with odd orders,
while the extension to cover also even-order polynomials is an
interesting topic for future work in this area.

Next, in order to facilitate the closed-loop processing, the
input–output relation obtained in (1) can be alternatively
expressed with matrix notation as the complex multiplication
of the MP BF matrix and the DPD coefficient vector. This
expression reads

xDPD = �ααα (2)

where ααα ∈ CC×1 contains the PA model coefficients and
� ∈ C

N×C is the original monomial BF matrix with N
denoting the total number of the available input data samples.
� can be further expressed as

� = [x1,0 x1,1 · · · x1,M−1 x3,0 x3,1 · · · x3,M−1 · · ·
· · · xP,0 xP,1 · · · xP,M−1

]
(3)

with each vector xp,m ∈ CN×1 being defined as

xp,m =

⎡
⎢⎢⎢⎣

x[n − m]|x[n − m]|p−1

x[n − m + 1]|x[n − m + 1]|p−1

...

x[n − m + N − 1]|x[n − m + N − 1]|p−1

⎤
⎥⎥⎥⎦. (4)

The order of the BF terms in (3) becomes important
for the formulation taken in the methods presented in
Sections III and IV. We finally note that in the first DPD
iteration, the vector ααα is usually initialized with a one in the
first element and zeros in the rest (i.e., ααα = [1 0 · · · 0]T ) such
that only the unmodified linear term is passed through the
predistorter.

B. DPD Learning Path

In closed-loop DPD systems, the observation signal y[n]
is nonlinear in the DPD parameters. Therefore, nonlinear LS
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techniques need to be applied, such as those based on the
GN algorithm [29], [34]. At block iteration k, these iterative
algorithms build on the error vector ek = yk − xk that is
stacking the prevailing error signal samples of the current
processing block of size K . In this article, we focus on the
SO and the damped GN learning methods [21], [22], [29].
In Sections III and IV, the SO learning rule is studied in detail
and combined with different methods to reduce the involved
computational complexity, while the GN serves as a reference
solution. To this end, the SO and the GN learning rules read

αααk+1 = αααk + μs
(
R∗)−1

�H
k ek (5)

αααk+1 = αααk + μg
(
�H

k �k
)−1

�H
k ek (6)

respectively, where μs and μg are the learning steps for the
updates, �k ∈ CK×C is the BF matrix corresponding to the
DPD block iteration k, and R ∈ CC×C is the CM of the input
BF vector, defined as

R = E
{
ψ[n]ψ H [n]

} ≈ 1

N

N∑
n=1

ψ[n]ψ H [n]. (7)

In above, ψ[n] is the instantaneous input vector at time
instant n (i.e., a row of �), and N is the total number of
available samples over which R is estimated. If the input signal
does not vary significantly within DPD iterations, the CM can
be estimated off-line and then kept fixed, avoiding repetitive
online calculations. For later purposes, we also already define
the ordinary autocorrelation function of the DPD input signal
x[n], as well as its sample estimate, as

RX (τ ) = E
{
x[n]x∗[n − τ ]

} ≈ 1

N

N∑
n=1

x[n]x∗[n − τ ]. (8)

In general, it is important to note that the term (�H
k �k)

−1

in the GN learning rule essentially calculates the (conjugate
of the) ICM at every DPD iteration. This provides an accurate
description of the statistics of the input signal at every iteration
but also involves heavy computational complexity. For this
reason, the GN method is considered as the baseline high-
performance solution against which the linearization perfor-
mance is compared. At the same time, the SO approach
aims at drastically reducing the computational complexity by
obtaining the ICM with different alternatives, described in
Sections III and IV, while still achieving a linearization perfor-
mance close to GN. We further note that the learning solutions
presented in (5) and (6) are generic learning approaches for
linear-in-parameters models and can also be applied to other
models, such as GMP [3], Volterra DDR [35], [36], or even
LUT-based solutions [29], [37].

Finally, it is noted that one common alternative in the DPD
developments is to deploy BF orthogonalization or whiten-
ing [21], [23]. Such an approach can also facilitate utilizing
low-complexity learning algorithms, even block-LMS [22].
However, the BF whitening also implies increased DPD main
path complexity—even more so in case of dynamic input
signals, implying that also the whitening matrix should be
recalculated. Hence, in this work, we do not consider BF
whitening in the DPD main path.

C. Observation Receiver Configuration in mmW Active Array
Systems

In the context of mmW phased-array systems, there exist
various alternatives for arranging the ORX in order to obtain
the combined learning signal—y[n] in Fig. 1—used for DPD
parameter learning. One particular approach is the hardware-
based method, in which each PA output signal is coupled,
phase-aligned, and combined in hardware [11], [12], [38].
Another plausible solution is to configure a separate ORX,
which captures the combined OTA received signal and feeds
it back to the DPD systems for DPD learning [13], [39]–[41].
These two alternatives are presented, as plausible solutions,
in Fig. 1. Both of these alternatives mimic the far-field
combined signal at a distant receiver, in case of line-of-sight
propagation.

It is important to clarify that the DPD learning solutions
and methods presented within this article do not depend on the
actual way of obtaining the combined learning signal used for
parameter estimation. It is noted, however, that the hardware-
based approach does not suffer from the common OTA-related
challenges, such as ORX misalignment and positioning chal-
lenges, environmental dependencies, and beam dependence of
radiated nonlinear distortion. We also note that there exist
several works in the literature [39]–[41], where the OTA ORX
beam misalignment challenges are studied, proposing different
solutions to provide the far-field signal in the main beam
direction. Furthermore, our adopted mmW measurement setup,
featured in Section VI, aims at mimicking the hardware-based
feedback system by carefully aligning a horn antenna in the
main beam, acting as the OTA ORX.

III. LOW-COMPLEXITY METHODS FOR

MODIFYING THE ICM

If the input signal to the SO algorithm remains static,
the ICM can be precalculated off-line, saving complexity in
the DPD learning path. However, whenever the input signal
changes, the ICM needs to be estimated again in order to
provide optimal linearization performance. The process of cal-
culating the ICM—or, alternatively, the term (�H

k �k)
−1 in the

GN learning rule (6)—is computationally heavy, as it involves
calculating the inverse of the product between the BF matrix
and its Hermitian transpose. The size of the BF matrix, �k ,
is K × C , which is typically large in DPD implementations.
To ease this calculation, we propose in Sections III-A and III-B
two methods for modifying the ICM when the input signal or
the parameterization of the DPD is changed. We finally note
that these solutions are applicable to any DPD models that are
linear in the parameters, not just the MP.

A. Reducing the Dimensionality of the ICM

The first considered method avoids the need of recal-
culating the ICM if a simpler parameterization is desired
in the DPD system. A simpler parameterization might be
adopted when lowering the transmit power or when changing
from a high-order modulation to a lower order modulation
with less stringent EVM requirements. Furthermore, in mmW
active array linearization, where the severity of the nonlinear
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distortions varies as a function of the beam direction, such a
technique may be particularly useful in optimizing the power
consumption of the transmitter.

To this end, we first generate a generic ICM obtained
with a large DPD parameterization. If a smaller polynomial
order or memory depth is desired, the proposed method then
removes the appropriate rows and columns from the generic
ICM and obtains a new ICM submatrix, which corresponds
to the new chosen parameterization. The new submatrix can
then be used in the SO learning equation to estimate the new
DPD coefficients.

The proposed method can be described as follows. Let us
consider a generic ICM, Q̃−1 = (R̃∗)−1 ∈ CC̃×C̃ = (�̃

H
�̃)−1,

obtained from the complete set of BFs, �̃. This matrix is
known and it is used to find the reduced ICM subset Q−1 =
(R∗)−1 ∈ CC×C = (�H �)−1, as described before. The BF
matrices, �̃ and �, are mutually related as

�̃ = (� v
)

(10)

where v ∈ CN×1 represents a column in �̃ that needs to be
removed. The generic CM can be now written as

Q̃ = �̃
H
�̃ =

(
�H

vH

)(
� v

) =
(

�H � �H v
vH � vH v

)
(11)

and its block inverse can be directly obtained by using the
Schur complement [42] of (11) as

Q̃−1 =

⎛
⎜⎜⎜⎜⎝

A−1 B−1

C−1 D−1

⎞
⎟⎟⎟⎟⎠ (12)

where

A−1 = (
�H�

)−1 + D−1
(
�H �

)−1
�H vvH�

((
�H �

)−1
)H

(13)

B−1 = −D−1(�H �
)−1

�H v, (14)

C−1 = −D−1vH�
((

�H �
)−1
)H

(15)

D−1 =
(

vH v − vH�
(
�H �

)−1
�H v

)−1
. (16)

Finally, the system of linear equations in (13) can be directly
solved to obtain (�H �)−1, which corresponds to the desired
ICM subset, expressed as

Q−1 = (R∗)−1 = (�H �
)−1 = A−1 − B−1

(
B−1

D−1

)H

. (17)

We note that removing one column from the BF matrix, �̃,
corresponds to removing one row and one column from the
ICM, Q̃−1. The proposed method requires moving the row
and column to be removed to the end of the matrix and can
be executed iteratively to cut out more than one row/column.
In Algorithm 1, we present an example pseudocode that shows
how to remove l rows and columns from Q̃−1 ∈ CC̃×C̃ ,
obtaining the new ICM submatrix Q−1 ∈ C(C̃−l)×(C̃−l).

Algorithm 1 Pseudocode showing how l rows and
columns can be removed from Q̃−1 to obtain the
subset Q−1. The generic ICM, given as input data, is
conceptually presented in (12)

Data: �̃, Q̃−1

Result: Q−1

Initialize: Q−1 ∈ RC×C = I,
A−1 ∈ R(C̃−1)×(C̃−1) = 0,
B−1 ∈ R

(C̃−1)×1 = 0,
D−1 = 0 ;

for i = 1, 2, . . . , l − 1, l, do
Permute row/column to the end of Q̃−1 ;
A−1 = Q̃−1(1 : (C̃ − i), 1 : (C̃ − i)) ;
D−1 = Q̃−1(C̃ − i + 1, C̃ − i + 1) ;
B−1 = Q̃−1(1 : (C̃ − i), C̃ − i + 1) ;
Q−1 = A−1 − B−1( B−1

D−1 )
H ;

end

B. Frequency Shifting the ICM

In the second considered scenario, we study how to avoid
the ICM recalculation when the DPD input signal is digitally
frequency shifted. In such a case, the spectral components of
the signal are modified, and thus, its CM and ICM will no
longer be the same. In order to provide accurate linearization
performance, the new ICM needs to be estimated again by
some means. To that end, we propose a novel method that
shifts the original ICM, denoted as Q̃−1 = (R̃∗)−1, in the
frequency domain to obtain the resulting shifted ICM, denoted
as Q−1 = (R∗)−1. The computational complexity of this
method is very low compared to recalculating the whole ICM
again, as shown in Section V. A good example use case of
such frequency shifting is when the uplink spectral allocation
of a terminal/UE transmitter changes within a given channel
bandwidth.

The proposed method is constructed as follows. Let us
denote the original unshifted digital input signal as x̃[n]
and the corresponding shifted signal as x[n]. A frequency
shift of � f , in Hz, can be mathematically expressed in the
time domain as the multiplication with a sampled complex
exponential, and thus, the shifted digital signal reads

x[n] = e j�ωnx̃[n] (19)

where �ω = (2π� f )/ fs denotes the normalized angular
frequency shift, while fs refers to the sample rate. The next
step is to obtain the shifted BF matrix, �, exclusively as
a function of the unshifted signal x̃[n] and the normalized
frequency shift �ω. This can be done by substituting (19)
into (3) and (4). For simplicity, we just present the first row
of the resulting �, shown in (9) at the bottom of the next
page, considering that

∣∣e j�ωn
∣∣ = 1. Due to the formulation

taken in (9), Q can also be expressed as a function of
Q̃ and a multiplying factor that depends on the frequency
shift �ω. This factor appears in the BF terms with different
delays, caused by the distinct memory terms appearing in
the BF matrix. Specifically, we observe 0-sample-delay terms,
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1-sample-delay terms, and, in general, m-sample-delay terms,
appearing in the CM, expressed as

0 -sample-delay: Q(i, j) = e− j�ωne j�ωnQ̃(i, j) = Q̃(i, j)

1 -sample-delay: Q(i, j) = e− j�ωne j�ω(n−1)Q̃(i, j)

= e− j�ω1Q̃(i, j)
...

m -sample-delay: Q(i, j) = · · · = e− j�ωmQ̃(i, j). (20)

The CM is generally a Hermitian–Toeplitz matrix, and
the way how the different sample delay terms are scattered
through it can also be seen from (28), where the value of τ
within the autocorrelation function RX (τ ), defined formally
in (8), indicates the corresponding delay. Hence, the zero-
delay samples correspond to the main diagonal of the M × M
submatrices within the CM, the one-delay samples correspond
to the second diagonal term of these submatrices, and so on.
From this structure, it is then relatively easy to see that the
frequency-shifted CM can be written as

Q = PH Q̃P (21)

where the diagonal matrix P ∈ CC×C applies the right shift
weights for each column of Q̃, and it is defined as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · e j�ωm 0 · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · e j�ωm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

Defining the CM as in (21) will allow for applying simple
yet efficient matrix inverse properties. As a result, the shifted

ICM can be directly obtained from (21) as

Q−1 = (R∗)−1 = P−1Q̃−1PH (−1). (23)

Note that only the original ICM, R̃−1, and the frequency
shift, �ω, are needed to obtain the final shifted ICM, R−1.

IV. LOW-COMPLEXITY ICM ESTIMATION

FOR GAUSSIAN SIGNALS

This section presents two novel methods to estimate the
ICM in a computationally efficient manner. These methods
build on the autocorrelation function of the input signal
and provide a set of precomputed coefficients that can be
utilized to easily estimate the ICM. The first method is an
application of Reed’s theorem [43] for calculating the CM,
while the second technique utilizes the Bussgang theorem
and other stochastic analysis to provide an approximate CM.
In the latter case, the resulting CM can be shown to consist
of a specific subblock structure expressible as a Kronecker
product, allowing for efficient inversion. We note that, since
we consider complex Gaussian process theory, we assume
the Gaussian distributed input signals in this section. OFDM
signals are known to converge toward Gaussian, as the number
of subcarriers is large [44]. This claim is further substantiated
in Section VI.

A. ICM Estimation With the Autocorrelation Function

The first proposed method utilizes the moment theorem
for complex-circular Gaussian signals presented in [43].
We specifically aim at expressing the CM as a function of
the autocorrelation function of the input signal. To that end,
the autocorrelation function is first estimated over the desired
span with (8). Reed’s theorem states that all odd-order central
product moments are zero, while all even-order moments can

� = (
x[n]e j�ωn · · · x[n]|x[n]|(P−1)e j�ωn x[n − 1]e j�ω(n−1) · · · x[n − 1]|x[n − 1]|(P−1)e j�ω(n−1) · · ·

· · · x[n − M + 1]e j�ω(n−M+1) · · · x[n − M + 1]|x[n − M + 1]|(P−1)e j�ω(n−M+1)
)

(9)

E
{
x[n]x∗[n − 1]|x[n − 1]|2} = E

{
x∗[n − 1]x[n]

}
E
{
x∗[n − 1]x[n − 1]

}+ E
{

x∗[n − 1]x[n]
}

E
{
x∗[n − 1]x[n − 1]

}
= 2RX (τ = 0)RX (τ = 1),

E
{
x[n − 1]x∗[n]|x[n]|2} = E

{
x∗[n]x[n]

}
E
{
x∗[n]x[n − 1]

}+ E
{
x∗[n]x[n]

}
E
{
x∗[n]x[n − 1]

}
= 2RX (τ = 0)R∗

X (τ = 1),

E
{
x[n]x∗[n − 1]|x[n]|2|x[n − 1]|2} = E

{
x∗[n]x[n]

}
E
{
x∗[n − 1]x[n]

}
E
{

x∗[n − 1]x[n − 1]
}

+ E
{
x∗[n]x[n]

}
E
{
x∗[n − 1]x[n]

}
E
{
x∗[n − 1]x[n − 1]

}
+ E

{
x∗[n − 1]x[n]

}
E
{
x∗[n]x[n]

}
E
{
x∗[n − 1]x[n − 1]

}
+ E

{
x∗[n − 1]x[n]

}
E
{
x∗[n − 1]x[n]

}
E
{
x∗[n]x[n − 1]

}
+ E

{
x∗[n − 1]x[n]

}
E
{
x∗[n]x[n]

}
E
{
x∗[n − 1]x[n − 1]

}
+ E

{
x∗[n − 1]x[n]

}
E
{
x∗[n − 1]x[n]

}
E
{
x∗[n]x[n − 1]

}
= 4R2

X (τ = 0)RX (τ = 1) + 2R2
X (τ = 1)R∗

X (τ = 1),

E
{
x[n − 1]x∗[n]|x[n]|2|x[n − 1]|2} = · · · = 4R2

X (τ = 0)R∗
X (τ = 1) + 2

(
R∗

X (τ = 1)
)2

RX (τ = 1) (18)
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be obtained through sums of products of the second-order
moments, expressed in the general case as [43]

E
{
x∗

0 x∗
1 · · · x∗

k−1x0x1 · · · xk−1
}

=
∑

ζ

E
{
x∗

ζ x0
}

E
{

x∗
ζ x1
} · · · E

{
x∗

ζ xk−1
}
. (25)

Here, for notational simplicity, xm = x[n − m], and ζ
constitutes a permutation of the set {0, 1, . . . , (k −1)}. Noting
that all terms in the CM have an even order, and following the
specific BF order assumed in (3), each term in the CM can be
obtained by applying (25).

For clarity, an example of the application of Reed’s theorem
to the fourth- and sixth-order moments is presented in (18),
as shown at the bottom of the previous page, while other
higher order terms can be obtained similarly. The definition
of the autocorrelation function in (8) has been used to arrive
at the last expressions in (18). It is noted that the expression
presented in (25) allows to obtain the higher order terms
recursively. It is also noted that the specific terms of the form
E{|x[n]|2p} can be alternatively obtained as

E
{|x[n]|2p

} = p!E{|x[n]|2}p = p!σ 2p
x (26)

which may simplify their calculation.
Once Reed’s theorem has been applied to each individual

term in the CM, we can express the CM with a specific sub-
block matrix structure. Specifically, the CM can be expressed
with a �(P/2)� × �(P/2)� submatrix structure, each of size
M × M , written as presented in (24), as shown at the bottom
of the page. Here, the submatrix Rk,l is in turn defined as

Rk,l = E

⎧⎪⎨
⎪⎩
⎡
⎢⎣

ψk[n]ψ∗
l [n] · · · ψk[n]ψ∗

l+M−1[n]
...

. . .
...

ψk+M−1[n]ψ∗
l [n] · · · ψk+M−1[n]ψ∗

l+M−1[n]

⎤
⎥⎦
⎫⎪⎬
⎪⎭

(27)

where the subscript in ψ[n] indicates the corresponding ele-
ment within the instantaneous input vector. Due to the notation
utilized in (24) and (27), such matrices can accommodate
any polynomial order, P , and memory depth, M , chosen in
the DPD system. Note that only the calculation of the upper
triangular submatrices in R is required to build the complete
CM. The CM is then inverted to generate the resulting ICM,
thereon used in the SO learning equation.

B. ICM Approximation With Bussgang Coefficients

In the second proposed method, we aim at simplifying the
previous method by using Bussgang’s decomposition. This
theorem states that the cross correlation of a Gaussian signal
x[n] and a signal y[n] = f (x[n]) that has passed through an

instantaneous nonlinear function f (·) can be expressed as the
product of the autocorrelation function of x[n] and a scaling
constant. Formally, this is expressed as

RXY(τ ) = ξ RX (τ ) (29)

where

RXY(τ ) = E
{
x[n]y∗[n − τ ]

}
(30)

is the definition of the cross correlation function, while the
autocorrelation function RX (τ ) reads as in (8). The Buss-
gang coefficient, ξ , is obtained through the complex proper
Gaussian probability distribution function (PDF) as

ξ = 1

πσ 4
x

∫ ∞

−∞
x∗ f (x)e

− |x |2
σ2

x dx (31)

where f (·) represents the nonlinear amplitude distortion and
σ 2

x is the variance of x[n].
In general, the second-order terms appearing in the CM,

on its first row, can be expressed directly as a function of
RX (τ ) as

R(1, 1) = RX (τ = 0) (32)

R(1, 2) = RX (τ = 1) (33)
...

R(1, M) = RX (τ = M). (34)

The higher order terms appearing in the CM (i.e.,
x[n]|x[n]|p, p = 2, 4, . . .) can be seen as nonlinear functions
of x[n] and can thus be expressed as a function of the
autocorrelation according to the Bussgang theorem [45].

Using (29), we can now express all the remaining high-order
terms in the CM uniquely as a function of RX (τ ) as

E
{
x[n]x∗[n]|x[n]|2} = ξ1 RX (τ = 0) (35)

E
{

x[n]x∗[n − 1]|x[n − 1]|2} = ξ1 RX (τ = 1) (36)

E
{
x[n]x∗[n]|x[n]|4} = ξ2 RX (τ = 0) (37)

E
{
x[n]x∗[n − 1]|x[n − 1]|4} = ξ2 RX (τ = 1) (38)

...

where the coefficients ξ1, ξ2, . . . can be obtained using (31).
By having all the terms as a function of RX (τ ) and the
Bussgang coefficients, the complete CM can be expressed
through them. A concrete example is presented in (28), as
shown at the bottom of the next page, which is showing the
CM structure in the specific case of P = 3 and M = 1
while also assuming that ξ0 = 1. Each matrix element, which
depends on the input data signal, can be then obtained by using
the explicit expressions shown in (7) and (31).

We next note that the order of the BFs in the BF matrix
becomes important to replicate this particular structure. By fur-
ther studying (28), we realize that it can be formulated with a

R =

⎡
⎢⎢⎢⎣

R1,1 R1,M+1 · · · R1,(� P
2 �−1)M+1

R1,M+1 RM+1,M+1 · · · RM+1,(� P
2 �−1)M+1

...
...

. . .
...

R1,(� P
2 �−1)M+1 RM+1,(� P

2 �−1)M+1 · · · R(� P
2 �−1)M+1,(� P

2 �−1)M+1

⎤
⎥⎥⎥⎦ (24)
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specific subblock matrix notation that will allow for efficient
Kronecker inversion. The CM can be alternatively simplified
in M × M subblocks, which are weighted with a different
Bussgang coefficient and are propagated through R as

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

R0 R1 R2 · · · R� P
2 �

R1 R2 R3 · · · R� P
2 �+1

R2 R3 R4 · · · R� P
2 �+2

...
...

...
. . .

...
R� P

2 � R� P
2 �+1 R� P

2 �+2 · · · R2� P
2 �

⎤
⎥⎥⎥⎥⎥⎥⎦

(39)

where the subscripts indicate the corresponding Bussgang
coefficients. In addition, the submatrix Rk ∈ CM×M reads

Rk = ξk

⎡
⎢⎢⎣

RX (τ = 0) RX (τ = 1) · · · RX (τ = M)
R∗

X (τ = 1) RX (τ = 0) · · · RX (τ = M − 1)
...

...
. . .

...
R∗

X (τ = M) R∗
X (τ = M − 1) · · · RX (τ = 0)

⎤
⎥⎥⎦.

(40)

Note that only the submatrices appearing on the first row
and the last column of (39) need to be calculated to build the
whole CM.

Finally, due to the well-structured formulation in (39),
the CM can be efficiently inverted using different matrix
inversion methods. One possible solution is to use block-
recursive matrix inverse algorithms, such as the one in [46],
which poses drastically reduced complexity when compared to
ordinary matrix inversion. An alternative and yet more efficient
solution is to use the Kronecker inversion [47], [48]. To this
end, we first note that the CM can be equivalently expressed
with the Kronecker product as

R = � ⊗ R0 (41)

where � ∈ R�(P/2)�× �(P/2)� contains the complete set of
Bussgang coefficients. Then, the ICM is directly obtained as
the inverse of its elements as

R−1 = �−1 ⊗ R−1
0 . (42)

The Kronecker inversion further reduces the computational
complexity of inverting R, as demonstrated in Section V.

V. COMPLEXITY ANALYSIS AND COMPARISON

In this section, we present the computational complexity
involved in the proposed DPD and ICM estimation solu-
tions. The processing complexity is divided in three differ-
ent stages—the DPD main path (Section II-A), the DPD
learning path (Section II-B), and the ICM-related calculations
(Sections III and IV). All the analyses are carried out in
terms of real multiplications per K -sized DPD iteration (i.e.,

for one block iteration with data size of K samples). Multi-
plications constitute, in general, the most resource-intensive
operations in digital signal processing (DSP) implementa-
tions, while additions can be considered to be essentially
free [15], [49]. In this study, it is assumed that one complex-
complex multiplication is calculated with four real multi-
plications, and one real-complex multiplication is calculated
with two real multiplications. In addition, the matrix inver-
sion of an m × m matrix is assumed to cost 4 m3 real
multiplications [42], [46].

As noted, the first considered stage is the DPD main path,
where the actual predistortion is applied. Here, the complete
BF matrix [i.e., � in (3)] is first calculated from the input sig-
nal x[n], assuming its recursive calculation through previously
obtained values. Later, the actual predistortion processing is
carried out as in (2). The second considered stage is the DPD
learning path, where the closed-loop learning equations are
applied to update the DPD coefficients. Here, we consider both
the reference GN algorithm and the SO learning approach.
In this analysis, in case of SO learning, we express the
learning complexity first for a given ICM while noting the ICM
calculation complexity then separately. The GN approach,
in turn, needs to calculate the ICM estimate (�H

k �k)
−1 in

every DPD iteration—by its very definition. Finally, a com-
plexity assessment and comparison between the classical ICM
calculation and the proposed ICM estimation methods are
provided. The classical ICM estimation complexity directly
results from the calculation of (�H �)−1. The complexity
of the proposed ICM estimation methods, in turn, is deter-
mined following the exact processing principles presented
in Sections III and IV.

Table I gathers the obtained complexity analysis results for
the considered methods. The table presents the required real
multiplications in each stage of the DPD solution, in a general
form as a function of the modeling parameters. In addition,
the final column presents a specific numerical example when
P = 9, M = 4, C = 20, l = 5, and K = 20 000,
in order to provide a concrete and representative example
of the involved complexities. Such DPD parameterization is
similar to the one chosen to perform the RF experiments
and validation in Section VI. From the numerical example,
it can be clearly observed how the computational complexity
is reduced against the reference GN method when utilizing
the SO learning solution in combination with the proposed
ICM estimation methods. In all cases, the learning com-
plexity is drastically reduced while still achieving a similar
linearization performance, as demonstrated in Section VI. The
quantitative results also demonstrate the very large reduction
in the needed multiplications, achievable through the pro-
posed ICM estimation methods, compared to the direct ICM
calculation.

R =

⎡
⎢⎢⎣

ξ0 RX (τ = 0) ξ0 RX (τ = 1) ξ1 RX (τ = 0) ξ1 RX (τ = 1)
ξ0 R∗

X (τ = 1) ξ0 RX (τ = 0) ξ1 R∗
X (τ = 1) ξ1 RX (τ = 0)

ξ1 RX (τ = 0) ξ1 RX (τ = 1) ξ2 RX (τ = 0) ξ2 RX (τ = 1)
ξ1 R∗

X (τ = 1) ξ1 RX (τ = 0) ξ2 R∗
X (τ = 1) ξ2 RX (τ = 0)

⎤
⎥⎥⎦ (28)
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TABLE I

COMPUTATIONAL COMPLEXITIES OF THE DPD MAIN PATH, DPD LEARNING PATH, AND THE VARIOUS ICM ESTIMATION METHODS

For reference and comparison purposes, we also address the
complexity of a classical MP model with BF prewhitening or
orthogonalization while considering block-LMS as the DPD
coefficient update rule. With block-LMS, BF prewhitening
becomes a necessary ingredient stemming from the large
eigenvalue spread of the input signal CM. This process ensures
that reasonably fast and stable learning convergence can be
obtained by the simple LMS algorithm, which essentially
uses a diagonal matrix to approximate the ICM [22]. The BF
prewhitening is done in the DPD main path and is assumed
here to build on the well-known Cholesky decomposition-
based method [23], [42], which provides an upper triangular
orthogonalization matrix. The overall main path complexity of
such an approach is then the one presented on the fourth row
of Table I plus the extra cost of the prewhitening stage that is a
matrix–matrix product. Due to the triangular orthogonalization
matrix, the extra complexity is of the form 4K (C(C + 1)/2).
In the numerical example case of Table I, the corresponding
overall main path complexity is 18.6M real multiplications,
reflecting a substantial increase in comparison to the methods
that do not require prewhitening. On the other hand, the cost
of updating the DPD coefficients in the block-LMS learning
rule [50] is given by 4C K + 2C , which leads to 1 600 040
real multiplications—a number that is of the same complexity
order as the SO solution when combined with any of the
proposed ICM estimation methods. This analysis thus shows
that the main path complexity increases substantially when
BF orthogonalization is deployed, while the corresponding
decrease in the learning complexity through using block-LMS
is fairly minor when the ICM calculations in the reference SO
solutions build on the proposed methods. In addition, we note
that in these complexity calculations, the prewhitening matrix
has been considered to be precalculated off-line. However,
when considering DPD applications for example in termi-
nal transmitters, where the transmitted waveforms are very
dynamic (the resource block allocation and/or output power
can change on a per-slot basis), such an assumption may not be
feasible. This, in turn, means that in such dynamic scenarios,

also the prewhitening matrix may need to be recalculated
online during the learning procedures, further increasing the
corresponding online processing burden.

Finally, based on the results in Table I, we separate three
possible alternatives regarding the SO learning approach in
combination with the ICM estimation.

1) The SO learning rule is applied in a dynamic waveform
scenario using classical ICM calculation based on the
sample estimate of the CM in (7). The ICM is thus
calculated each time the waveform changes. If this
happens frequently, the complexity approaches that of
the GN.

2) The SO learning rule is applied in a dynamic waveform
scenario using the proposed ICM estimation methods.
Computational complexity may be drastically reduced
compared to the previous when waveform changes are
frequent.

3) The SO learning rule is applied in a static waveform
scenario. In this case, the ICM is fixed and only needs
to be computed once. Thus, the overall complexity is
the smallest.

VI. RF MEASUREMENTS

In order to test, verify, and validate the proposed meth-
ods and algorithms, an extensive set of RF measurements
is provided, in the context of an FR-2 mmW device. The
deployed system features a state-of-the-art 28 GHz 64-element
active phased array, acting as the nonlinear element which
the proposed methods aim at linearizing. The measured 1-dB
compression point of the array is +41 dBm, and the operating
FR-2 band is 5G NR band n257. Once the measurement results
are obtained, they are analyzed together with the quantitative
complexity analysis results provided in Section V, to assess the
performance–complexity tradeoffs of the proposed solutions.

In the context of mmW measurements with multiple-
element phased arrays, several issues are to be noted. First,
in an R-antenna array, there are also R parallel PAs, one
per antenna unit. Each of these amplifiers will basically have
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Fig. 2. 5G NR mmW/FR-2 OTA measurement setup utilized to carry out the experiments at 28 GHz.

unique nonlinear characteristics, and hence, the predistorter
can only guarantee an efficient linearization performance in
the main beam direction. In the rest of the angles, the intrin-
sic beampattern of the array suppresses the OoB nonlinear
distortion [11]. Another concern is the load modulation of
the PAs, occurring due to coupling between the antenna
elements [8]. This makes the effective nonlinear characteristics
of the antenna array beam-dependent, thus tying the DPD
solution to the beam direction. Consequently, linearization
methods must take considered. This issue can be tackled
with, for instance, real-time DPD tracking, which is able to
estimate the DPD coefficients as the beam is steered. Since the
parameter estimation needs to be done in real time, it is crucial
to explore ways of minimizing the involved computational
complexity while at the same time being able to provide the
needed linearization performance.

In this work, the DPD performance is evaluated through
the well-known EVM [15], normalized mean square error
(NMSE) [15], and the TRP-ACLR metrics since an OTA
system is considered [7]. The TRP-ACLR measures the OoB
performance by computing the ratio between the filtered mean
power centered on the assigned channel frequency and the fil-
tered mean power centered on an adjacent channel frequency,
measured by integrating the powers over the whole beamspace
while keeping the beamforming angle fixed [7], [8].

A. 28 GHz Active Array Experimental Setup

The complete 28 GHz measurement setup is shown in
Fig. 2. The experimental setup is configured as follows. First,
a Keysight M8195A arbitrary waveform generator (AWG) is
deployed to output the modulated I/Q waveform at 2.5 GHz
intermediate frequency (IF). Then, a Keysight N5183B signal
generator provides the LO signal at 24.5 GHz that together
with a Marki Microwave T310401741 mixer further upcon-
verts the signal to the 28 GHz band. A Marki Microwave
FB3300 bandpass filter (BPF) is applied immediately after-
ward to suppress the mixer-induced image frequencies. Two

preamplifiers, AD HMC499LC4 and AD HMC1131, are
deployed to guarantee a sufficiently high power at the input
of the active antenna array such that it can be pushed close
toward saturation. The 64-element active array—the Anoki-
wave AWMF-0129—is then configured to transmit the signal
OTA toward the horn antenna of the ORX. Both antennas are
mounted on different electrical tripods capable of providing the
required rotation in azimuth and elevation. For DPD learning
and verification, both antennas are perfectly aligned when
transmitting/receiving, as noted in Section II-C. For simplicity,
the beamforming angle of the TX antenna array is set at 0◦.
The combined learning signal captured by the ORX is then
attenuated and fed back to a Keysight UXR0402AP oscillo-
scope, which is acting as the digitizer. Finally, the digital signal
is sent to a host PC for further processing and/or performance
assessments. We note that the Anokiwave AWMF-0129 does
not allow for actual hardware-based combiners for feedback,
and hence, we adopt the carefully aligned OTA ORX to mimic
such hardware-based processing.

The modulated signals adopted in the following experiments
are 3GPP 5G NR Release-15 FR-2 compliant OFDM wave-
forms, with the subcarrier spacing (SCS) and RB allocation
specified in each particular experiment. The sampling rate of
the signals and DPD execution is 2 GHz. As an additional
ingredient, which aims at pushing the performance boundaries
of the DPD system, we also consider a wider, nonstandard-
compliant, signal bandwidth of 800 MHz in some of the
experiments. This is obtained by doubling the number of active
subcarriers and also the OFDM waveform processing FFT
size, compared to the standard-compliant 400 MHz signal.
In addition, the initial PAPR of the generated signals is
approximately 12 dB when measured at the 0.01% point of the
instantaneous PAPR complementary cumulative distribution
function (CCDF) [2]. This value is then limited through
well-known iterative clipping and filtering-based processing to
8 dB, measured also at the 0.01% point of the instantaneous
PAPR CCDF. Clipping the waveform, however, strictly speak-
ing degaussianizes the input signal distribution, as it basically
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Fig. 3. PDF of the generated 5G NR FR-2 OFDM waveform with 400 MHz
carrier bandwidth, including also PAPR mitigation to 8 dB through iterative
clipping and filtering. The shown PDF reflects the real part of the complex
I/Q waveform, while that of the imaginary part is essentially identical. For
reference, also the theoretical normal PDF is shown.

removes the high- and low-end values of the amplitude PDF.
The difference to the Gaussian distribution is nevertheless very
small, as can be observed through the illustration in Fig. 3,
which shows the PDF of the generated NR-compliant OFDM
signal with clipping and filtering versus an ideal Gaussian
PDF. Finally, after the PAPR mitigation, additional time-
domain windowing is also applied to suppress the inherent
OFDM signal sidelobes.

In each DPD iteration, a block of K = 20 000 pseudoran-
domly generated OFDM signal samples is circularly transmit-
ted, received, and utilized to estimate the DPD coefficients.
The K -sized closed-loop error signal vector, ek , is generated
as the subtraction between the transmitted and received data
samples and essentially contains the prevailing PA distortion
samples. This term is then used as an input of (5) or (6) to
estimate the DPD coefficients. Such transmit/receive process
is then repeated until the algorithms reach convergence. In all
the experiments, the MP DPD model is configured with a
ninth-order polynomial (i.e., P = 9) and with four taps of
memory (i.e., M = 4). The DPD coefficients are initialized
as ααα = [1 0 · · · 0]T such that just the linear term is obtained
after predistortion in the first iteration. In the measurements
where the ICM is precalculated off-line, the CM is estimated
from a 500 ksamples sequence and inverted before the DPD
processing. It will remain fixed for the rest of the iterations
unless otherwise mentioned.

B. Baseline DPD Performance

In this section, we study the linearization performance of the
SO and the reference GN learning methods. The measurement
results are carried out with both signal bandwidths of 800 MHz
(120 kHz SCS, 528 RBs) and 400 MHz (120 kHz SCS,
264 RBs), measured at a highly nonlinear operation point
of the active phased array. Specifically, this experiment is
performed with effective isotropic radiated power (EIRP) of
approximately +40.5 dBm, corresponding to an input power
of approximately −6 dBm. This leads to an initial TRP-ACLR

of approximately +22 dBc and an EVM of some 11.6%,
reflecting a highly nonlinear operation point.

First, Fig. 4(a) presents the obtained linearization results
with a signal bandwidth of 800 MHz for both SO and reference
GN learning methods. We assume for the SO method a
precalculated ICM, which is then kept fixed through the DPD
iterations. The GN learning rule, in contrast, calculates the
ICM estimate (�H

k �k)
−1 in every DPD iteration. As can be

seen from the figure, the linearization performance of the
SO method is practically matching that of the GN, with
TRP-ACLR numbers of about +32.5 dBc and EVM values
below 6%. This performance is also achieved with the SO
solution regardless of the rough ICM off-line estimation.
Secondly, Fig. 4(b) presents the results with a signal bandwidth
of 400 MHz. Similar conclusions can be drawn regarding
the behavior of the SO and GN learning methods. In this
case, the TRP-ACLR is around +35 dBc and the EVM is
below 5.5% for both SO and GN methods. What is more
important, we also include a third measurement that shows
the linearization behavior of the SO learning method when the
ICM is calculated from the previous 800 MHz signal (i.e., the
same as the one utilized in Fig. 4(a)). As shown in the figure,
the DPD performance is only slightly degraded in comparison
to the normal SO learning rule, with the TRP-ACLR and EVM
being around +34 dBc and 5.7%, respectively. This is because
the ICM has been obtained from a wider signal than the one
being transmitted. However, the SO with an ICM obtained
from the 400 MHz signal would not work to linearize the wider
800 MHz signal. We finally note that all measured methods
satisfy the TRP-ACLR limit of +28 dBc and EVM limit of
8% (for 64-QAM), as stated in 3GPP specifications [7].

C. Reducing the ICM Dimensionality

In this second experiment, we study and highlight the
obtained numerical precision of applying the method, which
removes rows/columns from the ICM to get a new covariance
set for a DPD system with reduced parameterization. We recall
that the rows/columns that are to be removed from the ICM
are shifted to the last row/column, and then, this algorithm
is repeated iteratively until all the targeted elements are
successfully removed.

To this end, we perform the following experiment. We first
generate an ICM of size 36 × 36 corresponding to P = 11 and
M = 6. We then execute the proposed algorithm described in
Section III-A iteratively until l = 16 rows and columns are
removed, leading to a final ICM of size 20 × 20 elements—
corresponding to P = 9 and M = 4. Parallel to that,
we mathematically calculate, using (7), the corresponding ICM
of size 20 × 20 (also corresponding to P = 9 and M = 4) and
compare it to the estimated version. The obtained numerical
error when comparing the two versions is in the order of
10−13. This order of magnitude can be considered negligible in
any DPD implementation, thus demonstrating the effectiveness
of the considered technique. A similar experiment is next
repeated for reducing the DPD parameterization down to
P = 7 and M = 3, corresponding to l = 24.
The numerical error in this case between the ideal and
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Fig. 4. Baseline OTA linearization results at EIRP ≈ +40.5 dBm for the SO and GN learning methods with (a) 800 MHz bandwidth and (b) 5G-NR
400 MHz signal bandwidth, also showing the SO learning rule with the ICM estimated from the 800 MHz signal.

Fig. 5. 400 MHz 5G-NR OTA linearization performance at EIRP ≈ +40.5 dBm for the SO method, with emphasis on the ICM shifting technique proposed
in Section III-B, when a frequency shift of (a) −200 and (b) +400 MHz is applied. The linearization performance of the GN method is also included for
reference. Note that the “SO DPD, original ICM” and “SO DPD, est. shifted ICM” curves practically overlap.

estimated ICMs is in the order of 10−11, reflecting again very
high accuracy. Finally, we note that no PSDs are visualized
along this experiment, as with such very low numerical errors,
the PSDs corresponding to the calculated and estimated ICMs
are essentially completely overlapping.

D. Frequency Shifting the ICM

In this third experiment, we study the linearization perfor-
mance of the SO learning rule in combination with the ICM
shifting method proposed in Section III-B. The measurements
are carried out with a signal bandwidth of 400 MHz (120-kHz
SCS, 264 RBs), while the EIRP, the array’s input power, and
thus initial TRP-ACLR and initial EVM values are maintained
as before.

The experiments to test the proposed method are carried
out as follows. First, the input 5G NR 400 MHz baseband
signal is generated, and then, two different example digital

frequency shifts of −200 and +400 MHz are applied to it.
This generates the resulting shifted RF signals, which are
centered at 27.8 and 28.4 GHz. We report the linearization
performance of the SO solution with: 1) the unshifted ICM;
2) the original ICM (i.e., estimated from the shifted signal);
and 3) the ICM generated with the proposed method, presented
in Section III-B. The performance of the GN solution is
also presented as a reference. As can be seen from the
obtained results in Fig. 5, the SO with the unshifted ICM
does not converge to any solution since the ICM is not able
to describe the statistics of the shifted signal. Second, the
SO with the original ICM provides the optimal linearization
performance, essentially equal to GN, since the ICM is directly
calculated from the shifted signal. Third, the SO with the
ICM estimated using the proposed method in Section III-B
also provides optimal performance, despite the substantially
lower associated complexity. The TRP-ACLR and the EVM
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Fig. 6. OTA linearization performance at EIRP ≈ +40.5 dBm for the SO method when the ICM is estimated through the two novel methods presented in
Section IV, with the signal bandwidth of (a) 200, (b) 400, and (c) 800 MHz. The GN method is also measured and shown for reference.

numbers for the proposed method are in both cases maintained
above +31 dBc and below 5.6%, respectively, thus satisfying
the 3GPP standards [7] at FR-2. This performance is equal to
that of the GN method, which involves heavy complexity in
each DPD iteration. These results verify the effectiveness of
the proposed ICM shifting method in terms of linearization
performance.

E. Estimating ICM From the Autocorrelation Function

This fourth experiment validates the two novel methods
presented in Section IV, which estimates the ICM from the
autocorrelation function of the input data. These techniques
are tested with three different signal bandwidths of 200 MHz
(120 kHz SCS, 132 RBs), 400 MHz (120 kHz SCS, 264 RBs),
and 800 MHz (120 kHz, 528 RBs). In all cases, the ICM is
estimated using the proposed approach described in Section IV
and then injected in the SO learning rule. The GN method is
also measured for reference, while all the remaining system
parameters are maintained as explained before.

The obtained measurement results are presented in Fig. 6.
With a bandwidth of 200 MHz, the SO DPD with autocor-
relation ICM estimation achieves an excellent linearization
performance, very close to that of the GN approach. The
SO DPD with the Bussgang ICM estimation lies somewhat
behind but still obtains a good amount of linearization. This
difference is reduced when considering the wider bandwidths
of 400 and 800 MHz, in which the performance of the
proposed novel solutions is very close to each other and
also to the reference GN model. It is noted that there
is no direct theory-based reason why the performance gap
between the autocorrelation-based ICM estimation and the
Bussgang ICM estimation methods is largest in the case
of 200 MHz bandwidth. The difference can be stemming,
e.g., from a slight change in the hardware setup, or by a
minor movement in the position of the person handling the
measurements. In all cases, the SO solution in combination
with the methods proposed in Section IV successfully satisfies
the +28 dBc TRP-ACLR and the 8% EVM limits while
showing a remarkable complexity reduction in estimating
the ICM.

F. Convergence Analysis

We continue the experimental results with a convergence
analysis of the proposed DPD methods in a static waveform
scenario. For this analysis, we consider the signal bandwidth
of 800 MHz (120-kHz SCS, 528 RBs, 625 ksamples) and
present the convergence behavior of the SO method when:
1) ICM is estimated normally from the input signal; 2) ICM
is estimated with the autocorrelation method presented in
Section IV-A; and 3) ICM is estimated with the Bussgang-
based method presented in Section IV-B. The convergence
speeds of the remaining methods are the same as that of 1),
and thus, they are not shown separately. The remaining DPD
parameters are maintained as stated above.

The convergence behavior of the DPD models is presented
in Fig. 7, in terms of the TRP-ACLR and the NMSE. As can
be seen from the figure, the TRP-ACLR convergence of the
GN, the SO with classical ICM calculation, and the SO with
autocorrelation-based ICM estimation is very similar, reaching
the steady-state performance in around 15 CL iterations, after
which the DPD behavior stabilizes at around +32 dBc TRP-
ACLR. The convergence speed of the SO with the Bussgang
ICM estimation is slightly slower, reaching the steady state
in around 20 block iterations. However, the final values of
TRP-ACLR are similar compared to the previous methods.
This behavior is expected since the Bussgang-based method
provides only an approximate ICM. Similar conclusions can
be drawn from the second figure, which shows that the NMSE
obtained with the different methods. These results show the
favorable performance of the proposed SO solutions, which
together with the achieved complexity reductions demonstrates
very appealing performance–complexity tradeoffs.

G. DPD Learning Complexity With Different ICM Methods

In this final subsection, we gather the quantitative DPD
learning complexity numbers obtained with the proposed ICM
estimation methods and corresponding to the DPD parameter-
ization of P = 9, M = 4, C = 20, l = 5, and K = 20 000.
Here, we measure the complexity in terms of average number
of real multiplications per linearized sample, assuming that
the DPD learning algorithms are executed over 15 closed-loop
iterations—which is generally the number of iterations that the
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Fig. 7. OTA convergence performance with 800 MHz waveform bandwidth and EIRP ≈ +40.5 dBm for the SO method and its variants, in terms of
(a) TRP-based ACLR and (b) NMSE. The GN method is also measured and shown for reference.

TABLE II

AVERAGE LEARNING PATH COMPLEXITIES OF THE PROPOSED METHODS
PER LINEARIZED SAMPLE AND THE RELATIVE COMPLEXITY

REDUCTIONS WITH RESPECT TO THE REFERENCE GN APPROACH

models need to converge, as demonstrated in the earlier sub-
sections. The obtained quantitative complexity results, building
on the expressions in Table I, together with the corresponding
relative complexity reduction with respect to the reference GN
method, are presented in Table II.

As can be seen from the table, excellent complexity sav-
ings can be obtained through the proposed solutions. In all
cases, the numerical average complexity is drastically reduced
when comparing with the reference GN method. This is also
reflected in the achieved percentage reduction, which is in
most cases larger than 90%. Keeping in mind that all the
proposed methods satisfy the 3GPP transmit waveform quality
specifications [7], as shown through the obtained results in
Section VI-B–E, the combination of efficient linearization
performance and low processing and learning complexity is
paving the way toward fast and continuous DPD adaptation
with on-chip real-time implementations in commercial sys-
tems.

VII. CONCLUSION

In this article, various methods to efficiently estimate the
inverse of the input data CM were proposed and combined
with SO closed-loop learning in a DPD-based linearization
context. The inherent low complexity of the SO learning
combined with the proposed methods, allowed for remarkably
reduced complexities in the DPD system, while maintaining
a similar linearization performance compared to state-of-the-
art solutions. To substantiate this, complexity analyses dealing

with the proposed solutions were performed, and thorough
RF measurement results at 28 GHz mmW band, featuring a
64-element active antenna array, were presented. The obtained
results, both in terms of performance and complexity, indi-
cated very favorable performance–complexity tradeoffs of the
proposed methods when comparing against the state of the
art. The proposed methods are thus promising candidates for
linearizing mmW phased-array transmitters as well as cellular
terminal transmitters, the processing complexity being a key
concern in both applications.
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Abstract—In this paper, a novel digital self-interference can-
celler based on a Hammerstein adaptive filter is proposed and
examined. The proposed system consists of a spline-interpolated
lookup table to model the nonlinear power amplifier, followed
by a linear filter accounting for the impulse response of the
linear self-interference channel. The gradient descent based
parameter learning algorithms are derived, which estimate the
spline control points and the filter coefficients in a decoupled
manner. The proposed digital canceller leads to a complexity
reduction of 77% when compared to the existing state-of-the-art
solutions. Performance evaluations using measured data from
a complete inband full-duplex prototype system operating at 2.4
GHz ISM band show the effectiveness of the proposed technique,
demonstrating that it obtains similar cancellation performance
as the existing state-of-the-art canceller, regardless of its lower
complexity. The measured digital self-interference cancellation
values are 45 dB, 43 dB and 38 dB with 20 MHz, 40 MHz
and 80 MHz channel bandwidths, respectively. These results
indicate that the complexity-accuracy trade-off of the proposed
decoupled spline-based cancellation approach is very favorable.
Owing to the resulting decrease in the computational complexity,
the proposed digital cancellation technique brings inband full-
duplex transceivers one step closer to commercial deployments.

Index Terms—Spline interpolation, inband full-duplex, de-
coupled model, self interference, digital cancellation, nonlinear
distortion, adaptive tracking

I. INTRODUCTION

The practical feasibility of inband full-duplex communi-
cations, where individual radio devices transmit and receive
simultaneously on the same frequency channel, has recently
been proven by various research groups [1]–[5]. The main
motivation for implementing such inband full-duplex systems
stems from the resulting increase in spectral efficiency; the
simultaneous transmission and reception facilitates a twofold
increase in the data rate without requiring any additional band-
width. Such an improvement is highly sought after especially
in the heavily congested ultra high frequency (UHF) bands,
and may turn out to be a key technology in the future wireless
networks.

However, in order to make inband full-duplex technology
commercially feasible, the problem of self-interference (SI)
must be dealt with in an efficient manner [6], [7]. The SI
is caused by the own transmit signal overlapping the desired
received signal both temporally and spectrally due to the
inband full-duplex operation, and the full-duplex device must
be capable of suppressing it in order to operate properly. In
principle, this can be done by subtracting the known transmit
signal from the received signal, after accounting for the effects

of the coupling channel. Since any full-duplex device must
inevitably perform the SI cancellation procedure, it is crucial
to explore ways of minimizing the involved computational
complexity, while at the same time being able to provide the
needed SI cancellation performance.

In this paper, we propose a novel digital SI cancellation
solution, which utilizes an adaptive Hammerstein filter while
modeling the nonlinearity with splines to significantly reduce
the computational complexity compared to existing state-of-
the-art solutions. In particular, we extend the real-valued spline
adaptive filters from [8] to complex-valued form, and derive
decoupled adaptive learning rules for the spline control points
and the linear filter. To the best of our knowledge, this type
of a spline-based digital SI canceller has not been proposed
in the earlier literature.

Compared to the state-of-the-art solutions [2], [4], the
proposed digital canceller achieves the same cancellation
performance with 77% fewer computations. This is proven by
evaluating the proposed canceller with measured SI signals
from a complete inband full-duplex prototype system operat-
ing at 2.4 GHz ISM band and comparing its performance to
that of the earlier solutions. The obtained results show that
the spline-based Hammerstein digital canceller is a promising
solution for bringing the inband full-duplex technology one
step closer to a commercially viable implementation, with a
very favorable cancellation performance–complexity trade-off.

The rest of this paper is organized as follows. In Sec-
tion II, the proposed spline-based digital canceller is described,
alongside with the parameter adaptation rules. Section III
provides analysis of the computational complexity together
with complexity comparison against a memory polynomial-
based digital canceller, which represents the current state-of-
the-art. After this, the performance of the digital cancellers
is evaluated and compared in Section IV using measurement
data. Finally, Section V concludes the paper.

Notation used in this paper

In this paper, vectors are represented with boldface low-
ercase letters. By default, all vectors consist of complex-
valued elements represented as columns vectors (i.e., x ∈
CN×1 = [x0 x1 · · · xN−1]T ). Matrices are expressed with
boldface capital letters (i.e., A ∈ CN×M ). Ordinary transpose
and Hermitian transpose of vectors are represented as (·)T
and (·)H , respectively. Moreover, the absolute value and floor
operator are denoted by | · | and b·c, respectively.
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Fig. 1: Considered inband full-duplex device architecture.

II. SYSTEM MODEL AND PROPOSED SPLINE-BASED
CANCELLER

A. Principles of Spline Interpolation

In spline interpolation, particular type of piece-wise polyno-
mials under continuity and smoothness constraints are used to
interpolate the input data [9]. With this technique, a nonlinear
system can be modeled accurately even when using low-
order piece-wise polynomials, as opposed to conventional
polynomial models, where high orders are usually needed. The
piece-wise polynomials are controlled through a set of control
points being adapted according to the nonlinearity present in
the system.

Spline curves can be generalized to any piece-wise degree,
denoted here by PSP. The spline curve is therefore a combina-
tion of PSP+1 spline segments between so-called knots, which
define the boundaries of the individual splines. The individual
region between the ith and i + 1th knot is defined as the ith
span. Moreover, each spline curve is characterized by a PSPth-
degree spline basis function pPSP

i (un), which is defined as [10]

pPSP
i (un) =

qi+PSP+1 − un
qi+PSP+1 − qi+1

pPSP−1
i+1 (un)

+
un − qi

qi+PSP − qi
pPSP−1
i (un), (1)

where qi is the control point for the ith span. The abscissa
value and the span are defined as

un =
x[n]

∆x
−
⌊
x[n]

∆x

⌋
, (2)

in =

⌊
x[n]

∆x

⌋
+
Q− 1

2
, (3)

where x[n] is the input signal of the spline system, ∆x is the
uniform distance between the consecutive knots, and Q is the
total number of knots.

This function can be obtained recursively, starting from the
spline polynomial of degree PSP = 0, defined as

p0i (u) =

{
1 if qi ≤ u < qi+1,
0 otherwise. (4)

For a more detailed explanation, refer, for instance, to [9].
As shown in [10], the output of a spline nonlinearity can

be expressed with matrix notation as

si(un) = Snqn, (5)

where qn ∈ RQ×1 = [q0 q1 · · · qQ−1]T is a real-valued
vector containing the control points and Sn ∈ R1×Q is defined
as

Sn = [0 · · · 0 uT
nC 0 · · · 0]. (6)

Here, uT
nC represents the matrix multiplication between the

abscissa vector un ∈ R(PSP+1)×1 = [uPSP
n uPSP−1

n · · · 1]T

and the spline basis matrix C ∈ R(PSP+1)×(PSP+1), which is
pre-computed and fixed. The resulting (PSP + 1) × 1 vector
is then sorted in Sn starting from the span index i in the
current iteration. This way, uT

nC is multiplied with the correct
samples of qn in the ith span. The spline basis matrix C is
dependent on the type of splines used, as well as on the spline
polynomial order. For example, for B-splines and PSP = 2,
the spline basis matrix becomes [10]

C =
1

2

 1 −2 1
−2 2 0
1 1 0

 . (7)

B. Proposed Spline-Based Hammerstein Canceller

The objective of the proposed canceller is to accurately
reconstruct nonlinearly distorted SI within a full-duplex device
whose block diagram is depicted in Fig. 1. Previous works
in [2], [7], [11] have shown that Hammerstein-type models
are, in general, accurate in reconstructing nonlinearly distorted
SI but they involve substantial processing complexity. To this
end, we propose using a decoupled Hammerstein model, which
consists of a static nonlinearity representing the nonlinear
power amplifier (PA), followed by a linear filter which models
the linear SI channel. This linear SI channel includes the PA
memory as well as the the overall linear coupling response
from the PA output to the receiver digital baseband.

The proposed spline-interpolated lookup table for modeling
and cancelling the SI is illustrated in Fig. 2, where the signal
x[n] corresponds to the input signal of the proposed structure,



Fig. 2: Architecture of the proposed nonlinear decoupled spline-based Hammerstein self-interference canceller. Note that the pre-cursor taps
are omitted from the diagram for clarity.
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in this case the original transmit signal. However, this signal is
complex-valued, whereas regular splines are real-valued. Since
here the splines are used to model the nonlinear response of the
PA, which only depends on the magnitude of the input signal,
the real-valued splines can be used to model it by defining
separate splines for the I and Q components and using |x[n]|
as the input of both splines. Consequently, the abscissa and
span of both splines is now obtained by replacing x(n) with
|x(n)| in (2) and (3), and omitting the term Q−1

2 from (3) as
the abscissa is now non-negative. The splines modeling the real
and imaginary (the I and Q) responses of the PA are therefore
expressed as

s1(un) = Sn(1 + qre
n ), (8)

s2(un) = Snqim
n , (9)

where qre
n and qim

n contain the control points for the nth
iteration.

By using the expression in (8) and (9), the complex-valued
output of the nonlinear system can be written as

s[n] = x[n]Sn(1 + qre
n + jqim

n ) = x[n]Sn(1 + qn), (10)

where qn is the overall complex-valued control point vector
for the nth iteration. The signal s[n] retains the phase informa-
tion of the original signal via the multiplication by x[n], while
the two splines determine the real and imaginary responses of
the nonlinear PA.

Compared to (5), we now define the control point vector
qn as a deviation from 1. This has several benefits, especially
in the current application. First, if qn is initialized as a
zero vector, the spline will be linear (i.e., s[n] = x[n]) in
the beginning of the algorithm learning period. This will
effectively remove the gain ambiguity between the two blocks
(linear filter and splines), and the linear filter will immediately
start to converge to a state where it handles the gain. A

second benefit is that the dynamic range of qn is reduced,
and thus a smaller number of bits is required in a fixed-point
implementation.

In addition to the nonlinear distortion, also the memory
effects need to be modeled. This includes the memory of
the PA itself as well as the linear response of the rest of the
overall SI channel, from PA output all the way to the receiver
baseband. Considering this, the final output signal of the model
is

y[n] = wH
n sn, (11)

where wn is the impulse response of the linear filter, defined
as wn ∈ CM×1 = [wn[0] wn[1] · · · wn[M − 1]]T , sn ∈
CM×1 = [s[n + Mpre] · · · s[n] · · · s[n−Mpost]]

T , Mpre is
the number of pre-cursor taps, Mpost is the number of post-
cursor taps, and M = Mpre +Mpost + 1.

C. Derivation of the Learning Rules

In order to estimate the unknown parameters of the system,
namely the linear filter wn, and the control points qn, let us
consider the error signal

e[n] = d[n]− y[n], (12)

where d[n] denotes the observed SI signal at receiver digital
baseband, which the digital canceller aims at suppressing. At
this point, the problem lies in estimating the values of the
linear filter and the spline control points to minimize the error
signal e[n]. This can be done by using the basic gradient
descent solution, where the quantities are learned by adjusting
them to the negative direction of the gradient of the cost
function. Furthermore, to obtain a simple learning rule, only
the instantaneous gradient is used, similar to the classical least
mean squares (LMS) filter.



For the estimation of the memory model, the cost function
is defined as the instantaneous squared error, expressed as

J(wn,qn) = e[n]e∗[n]. (13)

It can then be noted that the memory is after the nonlinearity,
and therefore the splines are not dependent on wn. As a result,
the system with respect to wn is simply a linear filter, where
the traditional LMS learning rule can be used. Consequently,
the learning rule for the memory filter becomes

wn+1 = wn − µw
∂J(wn,qn)

∂wn
= wn + µwe

∗[n]sn, (14)

where µw is the learning step-size.
The complex-valued control-points can be learned using a

similar rule, which can be expressed as

qn+1 = qn − µq
∂J(wn,qn)

∂qn
, (15)

where µq is the corresponding step-size. However, now the
partial derivative is not previously known, and must be cal-
culated in order to express the learning rule. Firstly, we can
rewrite it as [12]:

∂J(wn,qn)

∂qn
= e∗[n]

∂e[n]

∂qn
+ e[n]

∂e∗[n]

∂qn

= −e∗[n]
∂y[n]

∂qn
− e[n]

∂y∗[n]

∂qn

= −e∗[n]

[
∂y[n]

∂qre
n

+ j
∂y[n]

∂qim
n

]
− e[n]

[(
∂y[n]

∂qre
n

)∗

+ j

(
∂y[n]

∂qim
n

)∗]
. (16)

Therefore, it suffices to determine the partial derivative of y(n)
with respect to the control points of the real and imaginary
splines. Invoking elementary differentiation rules, they can be
written as

∂y[n]

∂qre
n

= ΣnXnw∗
n, (17)

∂y[n]

∂qim
n

= jΣnXnw∗
n, (18)

where Σn ∈ RQ×M =
[
ST
n+Mpre

· · · ST
n · · · ST

n−Mpost

]
, and

Xn = diag {x[n+Mpre], . . . , x[n−Mpost]}.
Substituting these into (16), the partial derivative becomes

∂J(wn,qn)

∂qn
= −2e(n)ΣnX∗

nwn. (19)

Therefore, the learning rule of the control points can finally
be written as

qn+1 = qn + µqe(n)ΣnX∗
nwn. (20)

During the actual operation of the proposed canceller, both
the linear filter and the control points are then estimated and
updated in parallel as per (14) and (20).

The downside of the update in (20) is the high complexity
in computing ΣnX∗

nwn, especially if the filter wn is long.
However, the larger tap values of wn are clearly the most

significant ones in the update, and these tap values are usually
those around the index Mpre + 1. Thus, as a simplifying
approximation, we propose to reduce the time span of the
matrices, keeping only the entries corresponding to the most
significant taps in wn. This way, the computation of ΣnX∗

nwn

can be greatly simplified.

III. COMPUTATIONAL COMPLEXITY ANALYSIS

A. Complexity of Proposed Canceller

Let us next briefly consider the computational complexity of
the proposed decoupled spline-based Hammerstein algorithm.
For this purpose, the number of arithmetical operations re-
quired to run a single iteration of the algorithm is calculated, in
a similar manner as done in [13]. However, for brevity, herein
we only consider the number of multiplications since the
computational cost of additions is negligible in comparison.

The complexity of the algorithm can be detailed based on
the cancellation processing steps performed in each iteration.

• At the beginning of each iteration, the span index and
the abscissa value (in and un) are computed. For this, it
is necessary to calculate the absolute value of a complex
number, whose analytical expression contains a square
root. To avoid such a costly operation, the absolute value
can be approximated as in [14]:

|x[n]| = α max
{
|Re{x[n]}|, |Im{x[n]}|

}
+ β min

{
|Re{x[n]}|, |Im{x[n]}|

}
, (21)

where α and β can be chosen based on selected approx-
imation criterion, such as minimum RMS error for zero-
mean signals.

• Next, the signals s[n] and y[n] must be calculated, as per
(10) and (11).

Then, in order to update the coefficients of the learning rates,
the following steps are followed:

• The linear filter wn+1 is updated as shown in (14).
• Finally, the control point vector qn+1 is updated accord-

ing to (20). In the analysis we consider a time span of
τ = 5 taps for wn. This will considerably reduce the
computational complexity of the vector update with an
acceptable loss of cancellation.

The corresponding numbers of required multiplications per
one iteration are collected in Table I. Note that in some cases
it might not be necessary to update all the coefficients in each
iteration, which obviously reduces the overall computational
cost. In particular, as discussed below, it is often unnecessary
to continuously update the spline control points as the nonlin-
ear characteristics of the PA remain relatively constant over
time.

B. Complexity of Memory Polynomial Canceller

The widely used memory polynomial (MP) model consti-
tutes the current state of the art when modeling the behaviour
of PAs in the context of inband full-duplex devices [2], [7],
[11]. For this reason, it has been adopted as the reference
benchmark for the proposed novel solution. Below, we shortly



TABLE I: Number of required arithmetic operations in each iteration
of the spline-based digital cancellation algorithm.

Computation Real multiplications

Cancellation s[n], y[n] (PSP + 1)2 + PSP + 2Q+ 3M + 4

Coefficient
updates

wn+1 3M + 2

qn+1 Q(2τ+3) + 3τ+2

Total PSP(PSP + 3)+τ (2Q+ 3) + 5Q+ 6M + 9

review the principal processing structure of such MP-based
digital SI canceller and address its computational complexity
for reference.

The discrete-time MP model can be expressed as

y[n] =

PMP∑
p=1
p odd

Mpost∑
m=−Mpre

hp[m]ψp[x[n−m]], (22)

where PMP is the nonlinearity order of the MP model, hp[m]
represents the overall effective coupling channel from the pth
basis function perspective, and ψp[x[n]] = |x[n]|p−1

x[n] is the
pth-order basis function. In addition, in this model these basis
functions need to be prewhitened or orthogonalized to ensure
efficient learning [7]. After this step, the parameters of the MP
model can be learned with the basic LMS algorithm, the use of
which facilitates a fair comparison with the proposed solution.
Such an algorithm is described in [11], wherein further details
can be found. The total number of arithmetic operations can
easily be calculated as 3(PMP+1

2 )2+(3M+1)(PMP+1)+2 real
multiplications per one iteration, of which 3(PMP+1

2 )2+(3M+
2)(PMP+1

2 ) are used for the actual cancellation processing
while the coefficient updates require 3M(PMP+1

2 ) + 2 real
multiplications.

C. Comparison

For the purpose of comparing the aforementioned models,
typical parameter values are chosen in accordance with the
characteristics of each algorithm. When considering the de-
coupled spline-based Hammerstein model, the degree of the
polynomial is chosen as PSP = 2, which is sufficient to reach
a SI cancellation performance similar to that of the MP model
(see Section IV). The total number of knots is chosen as
Q = 11, and the time span for the matrix simplification is
τ = 5. The overall memory length of the linear filter is chosen
for both models as M = Mpre+Mpost+1 = 25+50+1 = 76.
Consequently, using Table I, the amount of computations per
iteration can be calculated as 655 real multiplications for the
proposed decoupled Hammerstein algorithm. Of this, the can-
cellation processing accounts for only 265 real multiplications.

As for the MP-based canceller, PMP = 11 is chosen as the
order of the nonlinearity, similar to [11]. As a result, the num-
ber of real multiplications to be performed within an iteration
is 2858, according to the expression provided in the previous
subsection. This demonstrates the large complexity reduction

Digital 

canceller

Original 

transmit 

data

Cancelled 

signal

National Instruments 

PXIe-5645R VST

TX RX

PA

Back-to-back 

relay antenna

Fig. 3: Illustration of the overall RF measurement setup used in
obtaining the evaluation data.

when using the novel decoupled spline-based Hammerstein ap-
proach, as nearly 77% less multiplications per iteration suffices
to obtain a comparable cancellation performance. Moreover,
when considering only the actual cancellation processing, the
number of real multiplications per iteration is 1488 for the MP
canceller. Therefore, under static conditions where it is not
necessary to update any of the coefficients, the spline-based
canceller can operate with 82% fewer multiplications.

However, in most practical cases, while the nonlinear be-
haviour of the PA remains more or less static, the wireless
coupling channel is time-variant and the corresponding coef-
ficients must be adapted continuously. This unveils another
benefit of the proposed decoupled spline-based solution, as
it considers the PA nonlinearity and the linear channel as
separate entities, meaning that the channel coefficients can be
updated while the spline control points are kept static after the
initial learning phase. Taking this into account, it suffices for
the proposed decoupled spline-based model to update only the
memory filter during the actual operation, reducing the number
of real multiplications per iteration to 495 with the example
parameters. Recognizing that it is not possible to separate the
effects of the linear coupling channel and the PA nonlinearity
in the MP model, under this assumption the proposed spline-
based canceller can operate with 82% fewer multiplications.

IV. EXPERIMENTAL RESULTS

In order to evaluate the cancellation performance of the
proposed spline-based digital canceller, a similar RF measure-
ment environment as in [4], reflecting a complete inband full-
duplex prototype system, is used. The measured data consists
of the observed SI signal obtained using the system depicted in
Fig. 3, where a back-to-back relay antenna is used to provide
the transmitter-receiver isolation in the analog domain. That
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Fig. 4: PSDs of the overall signal after the different digital cancellers for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz instantaneous bandwidths.
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Fig. 5: Residual powers with respect to the iteration index after the different digital cancellers for (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz
instantaneous bandwidths.

is, the RF canceller is omitted altogether, as opposed to the
more generic full-duplex transceiver architecture depicted in
Fig. 1. Since this results in less SI suppression before the
analog-to-digital conversion, a significant amount of digital
cancellation is required, making this data ideal for evaluating
the performance of the proposed digital canceller. The more
detailed measurement parameters are listed in Table II.

First, the power spectral densities (PSDs) of the SI sig-
nal after the different stages of the full-duplex device are
shown in Fig. 4. With instantaneous bandwidths of 20 MHz
and 40 MHz, the spline-based canceller obtains essentially
the same amount of cancellation as the MP-based canceller,
despite the substantial complexity reduction. In these two
cases, the amount of digital cancellation with the proposed

canceller is 45 dB and 43 dB, respectively, which indicates
very high modeling accuracy. Keeping in mind that it uses
77% fewer multiplications than the MP model, the complexity-
accuracy trade-off of spline-based modeling is very intriguing.
With the widest considered bandwidth of 80 MHz, the MP-
based canceller outperforms the proposed digital canceller by
some 2 dB. Therefore, further work is still needed to ensure
sufficient modeling accuracy of splines under very wideband
operation. It should be noted, however, that the proposed
canceller can suppress the SI by 38 dB even over 80 MHz,
which is in most cases sufficient cancellation performance.

To evaluate the convergence behavior of the proposed digital
canceller, Fig. 5 shows the residual power after the two
digital cancellers, using the same data as in Fig. 4. For the



TABLE II: The essential RF measurement parameters.

Parameter Value

Center frequency 2.56 GHz

Bandwidth 20–80 MHz

Transmit waveform OFDM

Transmit power 24 dBm

RX losses 4 dB

Parameter estimation sample size 1 000 000

MP-based canceller
Mpre 25

Mpost 50

PMP 11

Spline-based canceller

Mpre 25

Mpost 50

PSP 2

Q 11

20-MHz and 40-MHz SI signals, it can be observed that
the proposed spline-based digital canceller converges faster
than the MP-based canceller, thereby reaching the steady-
state sooner. However, in accordance with the observations
made in Fig. 4, the 80-MHz case seems to be somewhat more
challenging for the spline-based digital canceller also in terms
of convergence behaviour. Figure 5c shows that the spline-
based canceller converges somewhat slower than the MP-based
canceller, while also suffering from slightly higher steady-state
error. Nevertheless, these results prove that with bandwidths of
40 MHz or less, the proposed canceller can retain the highest
possible cancellation performance while using significantly
less computational resources.

V. CONCLUSION

In this paper we proposed a novel digital self-interference
canceller for inband full-duplex devices that relies on splines
and decoupled modeling when reconstructing nonlinearly dis-
torted self-interference signals at digital baseband. To the best
of our knowledge, this is the first time splines have been
applied to self-interference cancellation. The benefit of the
proposed approach is a significant reduction in the number
of computations required within the digital canceller while
still retaining high cancellation performance. In particular, it
was shown that the proposed solution can obtain cancellation
performance comparable to the existing state-of-the-art digital
canceller while using 77% fewer multiplications per iteration.
The measured digital self-interference cancellation numbers,
obtained in a complete inband full-duplex radio prototype
system operating at 2.4 GHz ISM band, are 45 dB, 43 dB
and 38 dB with 20 MHz, 40 MHz and 80 MHz channel
bandwidths, respectively. Therefore, the spline-based digital
canceller is an important step towards commercially feasible
inband full-duplex devices, where processing complexity and
energy consumption are of fundamental importance.
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Closed-Loop Sign Algorithms for Low-Complexity Digital Predistortion

Pablo Pascual Campo, Vesa Lampu, Lauri Anttila, Alberto Brihuega, Markus Allén, and Mikko Valkama
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Abstract — In this paper, we study digital predistortion (DPD)
based linearization with specific focus on millimeter wave (mmW)
active antenna arrays. Due to the very large channel bandwidths
and beam-dependence of nonlinear distortion in such systems,
we propose a closed-loop DPD learning architecture, look-up
table (LUT) based memory DPD models, and low-complexity
sign-based estimation algorithms, such that even continuous DPD
learning could be technically feasible. To this end, three different
learning algorithms – sign, signed regressor, and sign-sign –
are formulated for the LUT-based DPD models, such that the
potential rank deficiencies, experienced in earlier methods, are
avoided. Then, extensive RF measurements utilizing a state-of-
the-art mmW active antenna array system at 28 GHz are carried
out and reported to validate the methods. Additionally, the
processing and learning complexities of the considered methods
are analyzed, which together with the measured linearization
performance figures allow to assess the complexity-performance
tradeoffs. Overall, the results show that efficient mmW array
linearization can be obtained through the proposed methods.

Keywords — Array transmitters, nonlinear distortion, digital
predistortion, mmW frequencies, sign algorithm, signed regressor,
Hadamard, lookup table, ACLR.

I. INTRODUCTION

The adoption of modern, spectrally efficient waveforms
with high peak-to-average power ratio (PAPR), most notably
OFDM, complicates operating power amplifiers (PAs) close
to saturation [1]. To ensure a good power efficiency, while
still emitting sufficiently low distortion levels, digital predis-
tortion (DPD) based linearization is a well-known and widely-
applied approach. In the existing literature, different DPD
architectures and modeling methods have been widely studied,
reflecting different processing complexities and linearization
performance, with good overviews being available in [1]–[3].

In modern DPD use cases, particularly the active antenna
array based base-stations of the emerging 5G New Radio (NR)
networks at mmW bands (referred to as the frequency range 2,
FR2) [4], the effective nonlinear distortion has been observed
to be beam-dependent [5], and thus fast DPD adaptation is
required. This issue, together with the very wide channel
bandwidths [4], and thus DPD processing rates, calls for low-
complexity DPD systems and parameter learning algorithms.
Such methods are currently under intensive research and form
also the topic of this paper.

To this end, the authors in [5] present a comprehensive
overview of 5G NR array linearization, while [6] investigates
a reduced complexity approach by utilizing the combined PA
output signals together with a computationally efficient closed-
loop (CL) learning rule to minimize the distortion in the main
beam direction. In [7], in a more traditional single-antenna
DPD context, the use of 1-bit observations in CL learning is
considered, together with a sign-based Gauss-Newton (GN)
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RxPA
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Fig. 1. The Closed-loop DPD system based on injection. G is the estimate
of the complex linear gain of the chain and K is the number of antennas.

learning algorithm. In [8], a GN signed regressor algorithm
(SRA) is developed for real-valued feedback signals. The
signed regressor matrix is, however, rank deficient, and thus an
additional Walsh-Hadamard transformation is applied to make
it invertible. In [9], an LUT based memory polynomial (MP)
DPD with a sample-adaptive least mean squares (LMS) SRA is
proposed. However, in this work each LUT in the MP structure
is updated independently, making the solution sub-optimal. In
[10], direct least squares (LS) and GN adaptations for linearly
interpolated LUT-based Volterra models are proposed in indi-
rect learning architecture (ILA) and CL context, respectively.

In this paper, contrary to the earlier CL works in [7]–
[10], we adopt the so-called injection-based DPD structure [6],
[11], and formulate various signed learning methods based on
both GN and block-LMS, while adopting LUT-based memory
DPD models. LUT-based structures are generally simpler than
polynomial-type ones used in the reference works [6]–[8],
allowing large reductions in terms of the processing and
learning complexities. Furthermore, adopting the injection-
based DPD allows to significantly reduce the LUT sizes, such
that 16 or 32 entries are enough for efficient linearization,
without interpolation. Additionally, the use of non-interpolated
LUTs avoids the rank deficiencies in the SRA and sign-sign al-
gorithms and thus the additional matrix transformation, which
were experienced in [8]. Due to their low complexity and
closed-loop nature, the developed solutions allow for fast real-
time adaptation, and thus potentially on-chip implementations
and continuous learning.

Extensive RF measurement results at 28 GHz, utilizing a
state-of-the-art 64-element active antenna array and 400 MHz
5G NR waveform, are reported and analyzed. The obtained
linearization results, together with the provided detailed com-
plexity analysis, show that the proposed methods provide very
favorable complexity-performance tradeoffs, while meeting the
3GPP 5G NR [4] emission requirements for FR2. Overall, the
results show that efficient mmW array linearization can be
obtained through the proposed methods.
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II. CLOSED-LOOP DPD SYSTEM

In this work, we adopt the MP DPD model, where the high-
order polynomial functions are replaced with Q entry-sized
LUTs [10]. This model is adopted due to its low processing
complexity [9], [12]. Additionally, the system builds on a
closed-loop learning architecture, where the DPD coefficients
are directly adapted using the input signal x[n] and observed
signal y[n], obtained from an over-the-air (OTA) observation
receiver, following the notations shown in Fig. 1. It is also
noted that even though our primary applications are in the
mmW array transmitters, the proposed techniques are applica-
ble to any single-input single-output DPD systems.

Formally, the input-output relation of the DPD, for a block
of N samples, is expressed as

xDPD = x + Φw, (2)

where Φ ∈ CN×C is the input data matrix, whose structure
in the MP case with memory depth M is shown in (1), x =
[x[n], x[n+1], · · · , x[n+N−1]]T is the input data vector, and
C = MQ is the total number of model coefficients. The vector
w ∈ CC×1 contains the LUT entries, and it is initialized as a
zero vector in the first DPD iteration. In (1), the vector ξξξn is
defined as

ξξξn ∈ RQ×1 =
[
0 · · · 0 1 0 · · · 0

]T
, (3)

where the unit element is inserted in the index pn, defined as

pn =

⌊
|x[n]|
∆x

⌋
+ 1. (4)

Thus, the input sample x[n] is multiplied with the correspond-
ing LUT gain, which is indexed by the input magnitude |x[n]|.
∆x is the amplitude spacing of the LUT entries, defined as the
maximum input magnitude divided by the desired number of
LUT entries, Q.

Formulating the LUT-based DPD as a linear-in-parameters
model as in (2), allows us to apply traditional closed-loop
learning techniques, such as GN or LMS-type adaptations.
Defining the error signal ek ∈ CN×1 = xk − yk

G , for block
iteration k, the damped GN and block-LMS learning rules can
be defined, respectively, as [8], [10], [11]

wk+1 = wk + µ
(
ΦH

k Φk

)−1
ΦH

k ek, (5)

wk+1 = wk + µΦH
k ek, (6)

where µ is the learning rate.
Finally, we note that the formulations in (2)–(6) are quite

general, and can be applied with other LUT-based DPD models
as well, such as those following generalized MP or Volterra-
DDR models (see [10] for an example).

III. SIGNED ALGORITHMS

The classical definition of the complex signum function
projects a non-zero complex number to the unit circle of the
complex plane [13]. The magnitude of the resulting number, z̄,
is 1, but the real and imaginary parts are not equal to ±1, thus
no complexity reduction can be achieved when multiplying
with z̄. To remove the need for multiplications, we define the
complex signum function instead as

csgn(z) := sgn(Re(z)) + j sgn(Im(z)), (7)

which provides either -1 or +1 for the real and imaginary parts.
For matrices, the operation is taken element-wise.

A. The Sign Algorithm

The sign algorithm is obtained by signing the error signal
en in the learning rules presented in (5) and (6). The mo-
tivation is to avoid multiplications in calculating ΦHe, such
that only additions remain, which are less resource-intensive
operations in digital signal processing (DSP) implementations.
By signing the error vector, the DPD learning rules read

wk+1 = wk + µ
(
ΦH

k Φk

)−1
ΦH

k csgn(ek), (8)

wk+1 = wk + µΦH
k csgn(ek). (9)

An implementation of the sign GN algorithm was shown in [7].

B. The Signed Regressor Algorithm

The SRA method signs the input data matrix in the learning
rules. Multiplications in the terms ΦHΦ and ΦHe (GN),
and ΦHe (LMS) are thus avoided, making the computational
complexity of the learning rule lighter. The SRA learning rules
can be expressed as

wk+1 = wk + µ
(

csgn(ΦH
k )Φk

)−1

csgn(ΦH
k )ek, (10)

wk+1 = wk + µ csgn(ΦH
k )ek. (11)

It is important to note that all polynomial-based DPD ap-
proaches, as well as linearly interpolated LUTs, will suffer
from a rank deficiency in the signed data matrix csgn(ΦH

k ),
as repeated columns or linear combinations between them will
appear. An example is presented in [8], in the context of
an MP DPD. In such a case, the estimated DPD coefficients
will diverge, as they do not have a unique solution. One way
to solve this problem is to apply a unitary Walsh-Hadamard
transformation to gaussianize the distribution of csgn(ΦH

k )
and make it full rank [8]. This, however, further increases
the complexity in the learning rule. On the other hand, with
the proposed LUT-based DPD approach, the rank deficiencies
are avoided, as the structure of this model does not lead to



Table 1. Complexity analysis of the normal and signed learning methods presented throughout the paper, in terms of real multiplications and real additions per
DPD learning iteration. The last column presents a numerical example when N = 25 ksamples, Q = 32, M = 4, and C =MQ = 128.

Real multiplications Real additions Real mul. / Real Add.

Gauss-Newton C3 + 4M2(N + 1) + 2M(2N + 1) 2
(
2M2N +M(2N +M − 1) + 2C

)
(4 / 2)× 106

Sign Gauss-Newton C3 + 4M2(N + 1) + 2C 4M2N + 2M(N +M − 2) + 2C + 2N log2(N) (3.7 / 2.5)× 106

SRA Gauss-Newton C3 + 4M2 + 2M 2
(
M2N +M(M +N − 2) + 2C

)
+ 2N log2

(
NM

2

)
(2 / 1.8)× 106

Sign-sign Gauss-Newton C3 + 2M 2
(
M2(N − 1) +M(N +M − 2) + C

)
+ 2N log2

(
N2 M

2

)
(2 /2.5 )× 106

Block-LMS 2M(2N + 1) 2(MN + C) (400 / 200)× 103

Sign block-LMS 2M M(N − 1) + 2C + 2N log2(N) 8 / 100× 103

SRA block-LMS 2M M(N − 1) + 2C + 2N log2
(
NM

2

)
8 / 880× 103

Sign-sign block-LMS 0 2M(N − 1) + 2C + 2N log2
(
N2 M

2

)
0 / 170× 103

repeated or linearly dependent columns in csgn(ΦH
k ). Thus,

the SRA learning rule can be directly applied, with no extra
matrix transformations needed.

C. The Sign-Sign Algorithm

Finally, the sign-sign algorithm applies the signum function
to both the data matrix and the error vector, further reducing
the overall complexity. The same discussion about the rank
deficiency problem applies here as well. The learning expres-
sions with the sign-sign algorithm read

wk+1 = wk + µ
(

csgn(ΦH
k )Φk

)−1

csgn(ΦH
k ) csgn(ek),

(12)

wk+1 = wk + µ csgn(ΦH
k ) csgn(ek). (13)

D. Learning Complexity Comparison

The learning complexity is analyzed in terms of real multi-
plications and real additions per DPD coefficient update, over
an N -sized block of samples. It is assumed that one complex
multiplication is implemented with 4 real multiplications and 2
real additions. Table 1 presents the complexity expressions of
the GN and block-LMS adaptive learning methods, covering
the original learning rules in (5) and (6) and the sign-based
versions in (8)–(13). The last column shows a numerical
example with N = 25 ksamples, Q = 32, M = 4, and
C = MQ = 128, which is the same parameterization used
in the experimental results in Section IV. The complexities
of the signed GN algorithms are clearly reduced, but are still
clearly higher than those of the LMS algorithms, mainly due
to the required matrix inversion. The signed LMS algorithms
provide remarkably simple options for learning.

IV. EXPERIMENTAL RESULTS

A. 28 GHz Active Array Experimental Setup

Shifting towards mmW frequencies [5], all the experiments
are carried out using an FR2 measurement setup, depicted
in Fig. 2. The transmit chain consists of a Keysight M8190
waveform generator providing the I/Q samples at 3.5 GHz IF,
further devices to upconvert the signal to 28 GHz, and finally
an Anokiwave AWMF-0129 active antenna array. The signal
is measured OTA, downconverted again to IF, and digitized for

3

1
2

4

Fig. 2. RF measurement setup including the Keysight M8190 waveform
generator (1), Anokiwave AWMF-0129 active antenna array (2), horn antenna
as receiver (3), and the Keysight DSOS804A digitizer (4).

DPD processing. The adopted signals are NR FR2 compliant
OFDM waveforms, with bandwidths of 100 and 400 MHz and
subcarrier spacing of 60 and 120 kHz, respectively. The MP-
LUT DPD models utilize LUT entry sizes of Q = 32 and
M = 4 memory branches. The classical MP model (P = 9,
M = 4) in a closed-loop configuration is used as a reference.
The DPD operation is block-based, with a block size of 25
ksamples and 15 closed-loop iterations.

B. Measurement Results

In this section, two evaluations of the proposed DPD
models are provided. The first test features two sets of OTA
measurements using the 400 MHz signal, measured at a highly
nonlinear operation point with EIRP ≈ 43 dBm. The measured
PSDs are depicted in Fig. 3 a) and Fig. 3 b). In both cases, the
performances of the sign and SRA algorithms are not degraded
drastically in comparison with the normal learning methods,
which lie at the same time close to the reference MP model.
The performance of the sign-sign algorithm is also similar
when GN-based learning is utilized, however, it is slightly
degraded on the right hand side of the spectra when adopting
LMS-type adaptation.

The second test, presented in Fig. 4, features an OTA
measurement with 100 MHz NR signal and a varying LUT
entry size Q, while EIRP ≈ 41 dBm. It is seen from the figure
that increasing Q up to 32 improves the DPD linearization
performance, which basically saturates when Q is further
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Fig. 3. OTA NR FR2 400 MHz linearization performance at EIRP ≈ 43 dBm, with original and signed algorithms with a) damped GN and b) block-LMS.
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Fig. 4. OTA NR FR2 100 MHz linearization performance at EIRP ≈ 41
dBm, when varying the LUT entry size, Q = 8, 16, 32, 64.

increased to 64. Compared to the results in [10], the injection-
based DPD structure seems to allow for lower entry sized non-
interpolated LUTs, while the sign algorithms further reduce
the processing and learning complexities. The linearization
performances lie only 0.2 dB (SRA) and 3-3.5 dB (sign, sign-
sign) from the unclipped MP-LUT model. The 5G NR ACLR
limit of 28 dBc, measured using the total radiated power (TRP)
[4] approach, is fulfilled in all cases except when considering
the sign and sign-sign algorithms with Q = 8.

V. CONCLUSIONS

In this paper, we formulated various signed closed-loop
DPD learning algorithms for LUT-based memory DPD, assum-
ing the injection-based DPD structure. Due to the injection-
based DPD design, the LUT entry size required in the DPD
models was decreased, such that 16 or 32 entries were enough
for efficient linearization. Additionally, the use of LUTs
avoided rank deficiencies in the SRA and sign-sign algorithms,
thus eliminating the need for additional matrix transformations
required by earlier approaches. Extensive measurements using
a state-of-the-art 28 GHz active antenna array and up to
400 MHz 5G NR waveforms were reported to validate the
techniques. These results, together with a complexity analysis,

demonstrate that the proposed models have a very favorable
complexity-performance tradeoff.
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Abstract—This article studies advanced digital self-interference
(SI) cancellation algorithms for wireless full-duplex (FD)
transceivers. While the majority of works in this area consider
linear SI models and corresponding cancellation algorithms, we
take also both the transmitter (TX) and receiver (RX) nonlineari-
ties into account. Specifically, we develop a Hammerstein-Wiener
type of digital SI cancellation system where the two involved non-
linearities are efficiently implemented through spline-interpolated
look-up tables (LUTs). Also, adaptive parameter estimation solu-
tions are pursued and discussed, and comprehensive cancellation
performance examples and processing complexity comparisons
are provided. The obtained results show that taking both the
TX and RX nonlinearities into account in the digital cancellation
stage can be beneficial, particularly when the TX power amplifier
is operating close to saturation and when the RF isolation and
RF cancellation prior to the RX low-noise amplifier (LNA) is
limited, such that also the LNA is distorting the SI waveform.

Index Terms—Self-interference, spline interpolation, in-band
full-duplex, cancellation, look-up table, adaptive, nonlinear dis-
tortion

I. INTRODUCTION

The potential of full-duplex technology has been demon-
strated by several research groups [1]–[5], but much more
implementation-oriented research is needed to fulfill the po-
tential. In theory, full-duplex is capable of doubling the
spectral efficiency of a wireless communication system by
transmitting and receiving information simultaneously at the
same frequency channel. The resulting data rate increase is
particularly sought within the heavily congested ultra high
frequency (UHF) radio frequency spectrum, since full-duplex
operation does not require any additional bandwidth.

Although full-duplex may be a key technology for future
wireless networks, also new challenges appear. A particular
challenge is the inevitable self-interference (SI), which can be
more than 100 dB stronger than the weak desired signal at the
receiver input [6]. The SI is caused by the own transmit signal
which is leaked back to the full-duplex receiver, overlapping
the desired received signal both temporally and spectrally. Any
full-duplex device must be capable of suppressing it in order to
operate properly, and many coexisting techniques are typically
used, as shown in the transceiver block diagram in Fig. 1. The
digital cancellation stage is the last cancellation stage, with
the aim of reducing the SI level below the noise floor, by
accurately modeling and accounting for the coupling channel
effects [5], [7]. Since any full-duplex device must perform the
SI cancellation, it is key to explore ways of minimizing the
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Fig. 1: Simplified generic full-duplex transceiver block diagram,
showing the main sources contributing to the SI.

involved computational complexity, while at the same time
provide the required SI cancellation.

In this paper, we propose a Hammerstein-Wiener type
of digital SI cancellation system which utilizes spline-
interpolated look-up tables (LUTs) [7], [8] to efficiently model
the two involved nonlinearities in the cascaded model. Both
nonlinearities aim at modelling the transmit (TX) power am-
plifier (PA) and the receiver (RX) low noise amplifier (LNA),
thus taking into account both the TX and RX path effects.
Spline modeling allows for significant complexity reduction
when compared to classical models, as already discussed in
our earlier work [7]. Additionally, adaptive parameter esti-
mation solutions, based on the steepest gradient-descent, are
derived and discussed for each involved parameter. A detailed
complexity analysis is also presented to assess the complexity-
performance trade-offs of the presented models.

Then, extensive RF cancellation results at 28 GHz (5G NR
band n257 [9]), utilizing a state-of-the-art 64-element active
antenna array and 5G NR like OFDM waveforms, are re-
ported and analyzed, incorporating standard-compliant channel
bandwidths of 100 and 400 MHz. The classical Wiener and
Hammerstein models, where the instantaneous nonlinearity
is also implemented with spline-interpolated LUTs, are also
measured and reported as a reference. The obtained cancella-
tion results, together with the provided detailed complexity
analysis, demonstrate the favorable performance-complexity



trade-off of the proposed model.
The rest of this article is organized as follows. In Section II,

the proposed Hammerstein-Wiener model is described, along
with the derived adaptive parameter update learning equations.
Section III presents a detailed complexity analysis of the pro-
posed algorithm, in terms of real multiplications per sample.
After this, the cancellation performance of the proposed and
reference models is evaluated and compared in Section IV,
with real RF measurements. Finally, Section V concludes and
summarizes the main findings of this paper.

Notation used in this paper

In this paper, vectors are represented with boldface low-
ercase letters. By default, all vectors consist of complex-
valued elements represented as columns vectors (i.e., x ∈
CN×1 = [x0 x1 · · · xN−1]T ). Matrices are expressed with
boldface capital letters (i.e., A ∈ CN×M ). Ordinary transpose
of vectors is represented as (·)T . Moreover, the complex
conjugate, absolute value, and floor operator are denoted by
(·), | · |, and b·c, respectively.

II. SPLINE-BASED HAMMERSTEIN-WIENER MODEL

In this section, we study the spline-based Hammerstein-
Wiener model (denoted here as SPHW), a block-oriented
system that serially connects elementary linear and nonlinear
blocks to ideally model a system whose structure is alike [10],
[11]. The SPHW method has two nonlinear blocks and a
linear finite impulse response (FIR) filter block connected in
between, as illustrated in Fig. 2. In this work, the nonlinear
blocks are implemented with an injection-based uniform spline
interpolated LUT, and the linear block is implemented as an
FIR filter. In the context of in-band full-duplex, and following
the nomenclature used in Fig. 1, the LUT-based nonlinear
elementary blocks model the nonlinear responses of the TX
PA and the RX LNA, and the FIR filter models the multipath
channel response. The output signal of the model is then the
estimated SI signal, denoted as y[n]. The digital SI canceller
(DSIC) will subtract this perturbation from the received signal,
d[n], in order to suppress its interfering effect. The SPHW
structure and the spline interpolated LUTs are adopted due to
its inherent low complexity, while they still achieve excellent
levels of SI cancellation, as demonstrated in later sections.

A. SI Regeneration and Cancellation

Following the serial order described above, and making
reference to Fig. 2, the regenerated SI signal, y[n], is obtained
as follows.

First, a preceding nonlinear block is considered, providing
the output signal l[n]. The spline interpolated LUT scheme
divides the input magnitude, |x[n]|, in C regions. Each region
is modelled with a spline polynomial of order P . The charac-
terization of the regions is given through the index, abscissa,

and abscissa vector local parameters, which constitute the basis
for the spline interpolation scheme [12], and read

in =

⌊
|x[n]|
∆x

⌋
+ 1, (1)

un =
|x[n]|
∆x

− (in − 1), (2)

un ∈ R(P+1)×1 =
[
uPn uP−1

n · · · 1
]T
, (3)

where ∆x represents the region spacing. According to this
definition, in corresponds to the region number, and un is the
normalized value within each spline region.

Once the region parameters are characterized from the
input sample, the injection-based interpolation scheme can be
applied to obtain the output value, l[n], as

l[n] = x[n]ΨT
n (1 + cn). (4)

Here, 1 ∈ RC×1 is a vector of all ones, cn ∈ CC×1 contains
the complex LUT control points used in the interpolation
scheme, and the vector Ψn ∈ RC×1 contains nonzero values
starting from index in, such that only the appropriate control
points are selected as weights for the interpolation scheme (i.e.
(cin cin+1 · · · cin+P )). It is formally defined as

Ψn ∈ RC×1 = [0 · · · 0 uT
nBP 0 · · · 0]T , (5)

where BP ∈ R(P+1)×(P+1) corresponds to the spline basis
matrix, which depends on the considered spline order, and
can be found in, for instance, [8], [13].

It is worth noting that the injection-based scheme, in
combination with the spline interpolated LUT, allows for
two main things. First, the gain ambiguities between the
linear and nonlinear cascaded blocks are effectively removed.
Second, the dynamic range of the LUT control point vector
is reduced, requiring less bits and thus making fixed-point
implementations more efficient [14].

The signal l[n] is then carried through the linear block,
implemented as a FIR filter. Its output can be directly written
as

s[n] = wT
n ln, (6)

where wn ∈ CM×1 = [w0 w1 · · · wM−1]T are the FIR filter
coefficients, and ln ∈ CM×1 = [s[n] s[n− 1] · · · s[n−M +
1]]T is the signal regression of l[n].

Finally, the obtained signal s[n] is passed through the
second nonlinear block. The process is the same as presented
above, but considering now a spline order K, and number
of created regions Q. Mimicking the expressions presented
in (1), (2), (3), (5), but considering s[n] as the input signal,
the interpolation scheme is built, and the model output signal,
y[n], is obtained, as

y[n] = s[n]ΦT
n (1 + qn), (7)

where qn ∈ CQ×1 corresponds to the second LUT control
point vector, and Φn ∈ RQ×1 is defined in the same way as
in (5).
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Fig. 2: Block diagram of the proposed spline-based Hammerstein-Wiener system for identifying and cancelling the SI signal.

It is noted that different parametrization (spline order and
number of regions) can be used in each individual nonlinearity.
This can be useful if one of the amplifiers exhibits deeper
nonlinear effects than the other. The parametrization can be
consequently increased or decreased accordingly to optimize
performance and/or complexity.

Finally, once the SI signal y[n] is regenerated, it can be
suppressed in the final digital cancellation stage by subtracting
it from the received signal (i.e., d[n]− y[n]).

B. Learning Updates

In order to estimate and track the involved parameters in
the SPHW unknown system, three different learning rules are
derived to adapt each of the considered parameters (i.e. cn,
wn, and qn). Firstly, let us denote the error signal used in the
estimation as

e[n] = d[n]− y[n], (8)

where d[n] denotes the received signal the digital canceller
aims at suppressing, and y[n] is the SI regeneration obtained
in the previous section. At this point, the problem lies in ob-
taining the mathematical formulation that minimizes e[n], for
each parameter. To this end, we utilize the least mean square
(LMS) gradient-based adaptation, in which the parameters are
adapted following the negative steepest descent direction of
the cost function, given by the gradient. The cost function
depending on cn, wn, qn, can be defined, in turn, as

J(cn,wn,qn) = e[n]e∗[n]. (9)

At this point, three assumptions can be made regarding the
cascaded structure of the SPHW model:

• The first nonlinearity, cn, depends on the FIR filter and
second nonlinearity.

• The FIR filter, wn, depends on the second nonlinearity,
but not on the first.

• The second nonlinearity, qn, does not depend on the first
nonlinearity nor the FIR filter.

Taking these assumptions into account, the general form of
the learning rule for the first nonlinearity, cn, can be written
as

cn+1 = cn − µc∇cn
J(cn,wn,qn), (10)

where µc is the learning rate for the update, and ∇·(·) refers
to the complex gradient operator. Making use of elementary
differentiation rules, the derivative with respect c∗n, keeping
the other parameters fixed, can be calculated as

∂J(cn,wn,qn)

∂c∗n
= e[n]

∂e∗[n]

∂c∗n
+ e∗[n]

∂e[n]

∂c∗n

= −e[n]
∂s∗[n]ΦT

n (1 + q∗
n)

∂c∗n
+ 0

= −e[n]
∂lHn
∂c∗n

w∗
nΦT

n (1 + q∗
n)

= −e[n]ΣT
nX∗

nw∗
nΦT

n (1 + q∗
n), (11)

where Xn ∈ CM×M = diag(x[n], x[n − 1], · · · , x[n −M +
1]), and Σn = (ΨnΨn−1 · · ·Ψn−M+1)T . Additionally, it is
assumed that the rate of change of cn over the span of the filter
length M is negligible, i.e., cn ≈ cn+M . This assumption is
made considering the small value of µc.

Therefore, the final expression for the learning rule of cn
reads

cn+1 = cn + µce[n]ΣT
nX∗

nw∗
nΦT

n (1 + q∗
n). (12)

Secondly, the learning rule for the FIR filter, wn, can be
expressed as

wn+1 = wn − µw∇wn
J(cn,wn,qn), (13)

where µw is the learning rate. Again, by obtaining the deriva-



TABLE I: Computational complexity in terms of real multiplications per sample of the SPHW model, as a function of the modelling
parameters P , K M , and τ . In the third column, a numerical example is presented, when P = 3, K = 3, M = 76, and τ = 5.

Operation Symbolic real multiplications Numerical real multiplications

Model identification

l[n] P 2 + 4P + 8 + sqrt 29

s[n] 4M 304

y[n] K2 + 4K + 8 + sqrt 29

Total P 2 +K2 + 4P + 4K + 4M + 16 + 2sqrt 362

Coefficient update

qn+1 2K + 8 14

wn+1 K2 + 3K + 6M + 15 + div 489

cn+1 4P + 2Pτ + 6τ + 10 82

Total 4P + 2Pτ + 6τ +K2 + 5K + 6M + 33 + div 585

Total per iteration P 2 + 8P + 2Pτ + 6τ + 2K2 + 9K + 10M + 49 + div + 2sqrt 947

tive with respect to w∗
n, we obtain

∂J(cn,wn,qn)

∂w∗
n

= e[n]
∂e∗[n]

∂w∗
n

+ e∗[n]
∂e[n]

∂w∗
n

= −e[n]
∂wH

n l∗nΦT
n (1 + q∗

n)

∂w∗
n

− e∗[n]
∂wT

n lnΦT
n (1 + qn)

∂w∗
n

= −e[n]ΦT
n (1 + q∗

n)l∗n −
l∗ns[n] Re{e[n]ẏ[n]}

∆s|s[n]|
,

(14)

where ẏ[n] = s∗[n]u̇T
nBK(1 + q∗

n,in
) and the vector qn,in

makes reference to the column qn,in ∈ C(K+1)×1 =
[qin · · · qin+K ]T .

Thus, the final expression for the learning update of the FIR
filter, wn, reads

wn+1 = wn + µwl∗n

(
e[n]ΦT

n (1 + q∗
n) +

s[n] Re{e[n]ẏ[n]}
∆s|s[n]|

)
.

(15)

Finally, the learning rule for the second nonlinearity, cn,
can be expressed as

qn+1 = qn − µq∇qnJ(cn,wn,qn), (16)

where µq is the learning rate. Differentiating with respect q∗
n,

we obtain

∂J(cn,wn,qn)

∂q∗
n

= e[n]
∂e∗[n]

∂q∗
n

+ e∗[n]
∂e[n]

∂q∗
n

= −e[n]
∂s∗[n]ΦT

n (1 + q∗
n)

∂c∗n
+ 0

= −e[n]s∗[n]Φn. (17)

And thus, the final learning rule reads

qn+1 = qn + µqe[n]s∗[n]Φn. (18)

These learning equations can thus be executed iteratively to
track possible dynamic changes in the system, or kept fixed if
the system is expected to remain static.

III. COMPLEXITY ANALYSIS

In this section, we study the computational complexity
involved in the proposed SPHW method. Together with the
experimental results presented in the next section, it will allow
to assess the performance-complexity trade-off of the SPHW
model.

In this paper, the computational complexity is divided in
two stages, cancellation and coefficient update, and it is
presented in terms of real multiplications per sample. Real
multiplications constitute a critical metric for digital signal
processing (DSP) implementations, while additions are essen-
tially free [15]. For the analysis, it is assumed that one complex
multiplications costs 4 real multiplications, and one complex-
real multiplication is calculated with 2 real multiplications.

Table I presents the symbolic computational complexity
expressions as a function of the spline order, P (first nonlinear
block), and K (second nonlinear block), and as a function of
the FIR filter memory taps, M . Additionally, a complexity
reduction method in the learning update of cn is proposed in
order to ease the coefficient update. This method is formulated
by considering the additional parameter τ , which truncates the
time dimension of Σn (row dimension), by only considering
a specific number of past samples in the update. This process
is motivated as follows. Σn is usually a big matrix if M is
large, however, the most significant memory taps contributing
to the learning update are usually the most recent ones, thus
by selecting only these, the computational complexity can be
greatly reduced, while the cancellation performance is almost
not affected. Note that if τ = M , no approximation is done.

Finally, the second column of Table I shows the exact
numerical complexity as an specific example, when the spline
order is considered as P = 3, K = 3, the filter memory
is considered as M = 76, and the complexity reduction
coefficient is chosen as τ = 5. This parameterization is the
same as the one used for validating the results in the next
section.

IV. EXPERIMENTAL RESULTS

This section presents the RF measurement setup utilized to
evaluate the performance of the SPHW method, along with
the corresponding obtained RF SI cancellation results.
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Fig. 3: RF measurement setup including the Keysight M8195A
AWG and Keysight N5183B-MXG LO signal generator (1), upcon-
version to 28 GHz (NR Band n257) and pre-amplifying stage (2),
Anokiwave AWMF-0129 active antenna array (3), metallic reflector
to generate the coupling SI (4), horn antenna as receiver (5), AD
HMC1040LP3CE LNA (6), and Keysight UXR0402AP digitizer (7).

A. Measurement Setup

In order to evaluate the cancellation performance of the
proposed SPHW, the mmW RF test setup presented in Fig. 3
has been utilized. The proposed setup consist on the following
elements. First, and arbitrary waveform generator (AWG) is
utilized to generate the transmit I/Q data, which is then
upconverted to 28 GHz and pre-amplified in order to facilitate
a sufficiently high saturation power in the TX array. Then,
the signal is transmitted over-the-air (OTA) by an Anokiwave
AWMF-0219, which is a 64-element active antenna array
transmitter. A metallic reflector was placed at 2 meters from
the system to generate a possible environmental reflection,
which is leaking to the FD receiver causing the SI. Finally,
the received OTA signal is captured by a horn antenna, driven
through a LNA, and inputted back to the digitizer in order
to facilitate the corresponding post-processing in a host PC,
where the DSIC algorithms are executed.

B. BW 100 MHz Digital Cancellation Results

This section evaluates the digital cancellation performance
over a signal bandwidth of 100 MHz. The generated signal
is a 3GPP 5G new radio (NR) Release-15 frequency range 2
(FR-2) compliant OFDM waveform, with 120 kHz subcarrier

spacing (SCS) and 66 allocated resource blocks (RBs). This
configuration maps to the aforementioned signal bandwidth of
100 MHz [9]. Additionally, the initial peak-to-average power
ratio (PAPR) of the digital waveform is 9.5 dB, when measured
at the 0.01 % point of the instantaneous PAPR complementary
cumulative distribution function (CCDF), and is then limited
to 7 dB through iterative clipping and filtering. An additional
time-domain window is also applied to suppress the inherent
OFDM signal sidelobes.

The parametrization chosen for the SPHW model is P =
K = 3, C = Q = 7 for the spline order and LUT size,
and Mpre/Mpost = 25/50 for the pre-cursor and post-cursor
memory taps in the FIR filter. Additionally, the spline-based
Wiener (SPW) and Hammerstein (SPH) models, configured
with K = 3, Q = 7 (SPW), P = 3, C = 7 (SPH), and
Mpre/Mpost = 25/50, have also been measured and presented
for reference. The experimental results are then presented
in Fig. 4, and summarized in Table II. It can be seen that
the best SI cancellation performance is obtained with the
proposed SPHW model (32 dB), followed by the SPH model
(26 dB), and finally by the SPW model (22 dB). This result
can be explained as follows. The SPHW approach has richer
modeling capabilities than the other two models, as it includes
two instantaneous nonlinear functions in its cascaded structure,
which successfully model the behavior of both TX PA and RX
LNA. Secondly, the inherent cascaded structure of the SPH
approach is able to successfully model the TX antenna array,
which is the predominant source of nonlinear distortion in
this system. Finally, the SPW approach is not fully capable of
modeling the distortion injected by the antenna array, due to its
cascaded structure, thus providing a somewhat more degraded
cancellation performance.

Finally, it can be seen from Fig. 4b that the convergence
speed is reduced when considering the SPHW approach,
compared to SPW or SPH. The former model has an increased
number of parameters to be estimated, thus it takes more
iterations to reach the final steady-state.

C. BW 400 MHz Digital Cancellation Results

The second experiment further pushes the performance
boundaries by considering an increased signal bandwidth of
400 MHz. The generated FR-2 NR signal has now 264
allocated RBs, while the SCS and PAPR remain the same as
before, thus yielding a bandwidth of 400 MHz [9].

In this experiment, the parametrization chosen for the
SPHW model is P = K = 3, C = Q = 7 for the spline
order and LUT size, and Mpre/Mpost = 25/60 for the pre-
cursor and post-cursor memory taps in the FIR filter. The
SPW and SPH models have also been measured for reference,
configured with K = 3, Q = 7 (SPW), P = 3, C = 7
(SPH), and Mpre/Mpost = 25/60. The overall memory of
the models have been increased to better model the wider SI
coupling channel. The obtained results are then presented in
Fig. 5, and summarized in Table III. The proposed SPHW
model is capable of obtaining the best SI cancellation (29
dB), followed by the SPH approach (25 dB), and finally by
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Fig. 4: Power spectral densities in (a) and residual power with respect to the iteration index in (b) of the overall signal after the different
digital cancellers for 100 MHz signal bandwidth.
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Fig. 5: Power spectral densities in (a) and residual power with respect to the iteration index in (b) of the overall signal after the different
digital cancellers for 400 MHz signal bandwidth.

the SPW scheme (18 dB). Similar observations to those of the
previous experiment can be drawn. Since the SPHW model
takes into account both TX and RX nonlinearities, it is capable
of achieving an enhanced cancellation performance, while the
SPW and SPH models, only considering either the TX or RX
nonlinearity, lie somewhat behind.

It is also noted that the convergence speed of the SPHW
approach is somewhat slower compared to SPW or SPH, as
seen from Fig. 5b, since the model has a greater number of
parameters to be updated.

V. CONCLUSIONS

In this article, we proposed a novel digital self-interference
canceller for in-band full-duplex devices. The proposed model
was a Hammerstein-Wiener type of system such that both TX

and RX nonlinearities can be taken into account. Specifically,
the instantaneous nonlinearities in the model were imple-
mented through spline-interpolated look-up tables. Efficient
adaptive parameter estimation solutions, based on the steepest
gradient-descent algorithm, were also presented and discussed.
Moreover, a detailed complexity analysis of the proposed
model was reported, in terms of real multiplications per sam-
ple. Then, comprehensive RF measurements showing the can-
cellation performance of the proposed model were presented
and compared to other existing solutions. The obtained results
showed that taking both TX and RX nonlinearities into account
can be beneficial, particularly when the TX power amplifier
is operated close to saturation, and when the RF isolation and
RF cancellation cannot provide sufficient SI cancellation, such



TABLE II: The RF measurement and model parameters in the DSIC experiment 1. The complexity in the cancellation and parameter update
stages is presented in the last two columns, in terms of real multiplications per sample.

System parameters Value Model P/C Mpre/Mpost K/Q Canc. Mul. - canc. Mul. - update

Transmit waveform 100 MHz NR OFDM @ 28 GHz SPW DSIC - / - 25 / 50 3 / 7 23 dB 333 503

EIRP 43 dBm SPH DSIC 3 / 7 25 / 50 - / - 26 dB 333 384

Received power (d[n]) 11 dBm SPHW DSIC 3 / 7 25 / 50 3 / 7 32 dB 362 585

TABLE III: The RF measurement and model parameters in the DSIC experiment 2. The complexity in the cancellation and parameter update
stages is presented in the last two columns, in terms of real multiplications per sample.

System parameters Value Model P/C Mpre/Mpost K/Q Canc. Mul. - canc. Mul. - update

Transmit waveform 400 MHz NR OFDM @ 28 GHz SPW DSIC - / - 25 / 60 3 / 7 18 dB 373 563

EIRP 43 dBm SPH DSIC 3 / 7 25 / 60 - / - 25 dB 373 424

Received power (d[n]) 11 dBm SPHW DSIC 3 / 7 25 / 60 3 / 7 29 dB 402 645

that also the LNA is distorting the SI waveform. All in all,
the obtained results, together with the complexity analysis,
indicated a very favorable performance-complexity trade-off
of the proposed spline-based Hammerstein-Wiener model.
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Abstract—This paper studies closed-loop digital predistortion
systems, with special focus on linearization of mmW active
antenna arrays. Considering the beam-dependent nonlinear dis-
tortion and very high DPD processing rates, a modified self-
orthogonalized (SO) learning solution is proposed, which is
capable of reducing the computational complexity compared
to other similar solutions, while at the same time obtaining a
comparable linearization performance. The modified SO consists
of a novel method for efficiently calculating the inverse of the
input data covariance matrix. Thorough RF measurement results
at 28 GHz band featuring a state-of-the-art 64 element active
array and channel bandwidths up to 800 MHz, are reported.
A complexity analysis is also carried out which, together with
the obtained results, allow to asses the performance-complexity
trade-offs. Altogether, the results show that the proposed methods
can facilitate efficient mmW active antenna array linearization.

Index Terms—Array transmitters, mmW frequencies, nonlin-
ear distortion, digital predistortion, self-orthogonalization, co-
variance matrix, real-time complexity, EVM, TRP ACLR.

I. INTRODUCTION

Modern communication systems utilize spectrally efficient
waveforms which typically infer high peak-to-average power
ratio (PAPR) values, complicating the power-efficient oper-
ation of power amplifiers (PAs). In order to ensure a high
efficiency in the transmitter system while still maintaining low
levels of distortion, digital predistortion (DPD) can be applied.
Various DPD techniques have been studied in the literature,
with good examples shown in [1], [2], and references therein.

One particular modern DPD use case is the linearization
of mmW antenna arrays [3], [4]. Linearizing such frequency
range 2 (FR-2) systems is generally challenging, as the ef-
fective nonlinear distortion has been reported to be dependent
on the array beam direction [4], [5]. This issue calls for fast
DPD tracking to estimate the DPD as the beam is steered.
Also, the 3GPP 5G NR Release 15 [6] already considers very
wide channel bandwidths (BWs), which lead to high DPD
processing rates. These issues call for low-complexity DPD
solutions, which is the main focus of this paper.

Good overviews of 5G mmW array transmitters can be
found in [3], [4], while [7]–[10] focus more deeply on
DPD and linearization methods. In [7], authors proposed an
efficient memory polynomial (MP) DPD with decorrelation
based learning. However, an additional basis function (BF)
orthogonalization was applied, increasing the processing com-
plexity of the model. In [8], authors proposed a closed-loop
1-bit observation system in combination with a sign-based GN
algorithm. In [9], a closed-loop MP model was presented,
where the DPD model was estimated with damped Gauss-
Newton (GN), in combination with a sign regressor algorithm

Digital
predistorter

Tx
chain

Coefficient 
update

ICM
Calculation

+
-

Rx

Co-phasing & combining

or

OTA feedback

Fig. 1. Closed-loop DPD system for mmW active array linearization. The
main novelty in this paper is in the DPD learning system.

(SRA). The SRA, however, can lead to rank-deficiencies in
the BF matrix, while extra Walsh-Hadamard matrix transfor-
mations are also needed. Finally, [10] presented an MP model
where the polynomials were replaced with look-up tables
(LUTs), reducing the overall complexity. However, the model
performance was also degraded with respect to canonical MP
model, due to the quantization effects of the limited-size
LUTs.

In this article, in the context of active array transmitters
shown in Fig. 1, a closed-loop MP DPD system in combination
with a novel reduced-complexity self-orthogonalized (SO)
learning rule is adopted. Specifically, an efficient approach
to estimate the inverse covariance matrix (ICM) is presented,
which constitutes the most complex term in the SO rule. This
is particularly so in dynamic scheduling based systems where
the waveform is also dynamic, in terms of e.g. modulation
order and allocated BW. The modified learning rule achieves
great complexity reductions in the learning path, while at the
same time obtaining a similar linearization performance when
compared to the original SO or reference GN methods. The
adopted closed-loop DPD system together with the inherent
low complexity of the novel SO learning algorithm, allow
for continuous learning and fast real-time adaptation. Finally,
to assess the performance of the proposed techniques, RF
measurements at 28 GHz mmW band are carried out, utilizing
a state-of-the-art 64 element active antenna array and channel
BWs up to 800 MHz. The obtained results, along with a
complexity analysis, show that efficient linearization can be
obtained through the proposed methods, meeting in all cases
the 3GPP NR Release 15 [6] requirements at FR-2.

II. DPD SYSTEM AND PROPOSED METHOD

The proposed method builds on the classical MP DPD
model [1], whose input vector ψ[n] at time instant n, with
polynomial order P and memory depth M , is shown in (1). It



ψ[n] =
(
x[n] · · · x[n−M + 1] x[n]|x[n]|2 · · ·x[n−M + 1]|x[n−M + 1]|2 · · · x[n]|x[n]|P−1 · · · x[n−M + 1]|x[n−M + 1]|P−1

)T
(1)

is combined with the closed-loop SO learning rule to estimate
the DPD coefficients, αααk, with low complexity. The SO reads

αααk+1 = αααk + µs(R
∗)−1ΩH

k ek, (2)

where k indicates the iteration index, µs is the learning rate, ek

is the closed-loop error signal, Ωk is the BF matrix stacking
ψ[n] for different time instants, and R = E[ψ[n]ψH [n]] is the
ensemble covariance matrix (CM). Using the classical sample
estimation method, the CM can in practice be estimated as

R̂ =
1

N

N∑
n=1

ψ[n]ψH [n], (3)

where N is the total number of input vectors over which
the estimate is calculated. The proposed method, instead of
directly calculating (3), utilizes the Bussgang’s theorem to
estimate the CM. Thus, a Gaussian input signal is assumed
in the following derivations, while the practical experiments
are carried out with true OFDM-based waveforms.

The first step is to express the CM exclusively as a function
of the autocorrelation function of the input signal, denoted
herein as x[n]. The autocorrelation function is defined as

RX(τ) = E{x[n]x∗[n− τ ]}, (4)

where τ is a sample delay. The second-order terms in R, on its
first line, are obtained directly from (4), as R(1, 1)=RX(τ=0),
R(1, 2)=RX(τ=1), and, in general, R(1,M)=RX(τ=M).
Higher order terms in the CM (e.g., E{x[n]|x[n− τ ]|p}, p =
2, 4, . . . ), stemming from the nonlinear BFs, can be expressed
through the cross-correlation function, as

RXY(τ) = E{x[n]y∗[n− τ ]}, (5)

where y[n] = f(x[n]) is a nonlinear function of x[n]. To this
end, the Bussgang’s theorem states that the cross-correlation
of a Gaussian signal passing through a nonlinear operator can
be expressed as the product between its autocorrelation and a
scaling constant. Formally, this is expressed as

RXY(τ) = ξRX(τ), (6)

where the Bussgang’s coefficient, ξ, can be obtained assuming
complex-circular Gaussian distribution as

ξ =
1

πσ4
x

∫ ∞
−∞

x∗[n]f(x[n])e
− |x[n]|2

σ2x dx. (7)

In (10), σ2
x denotes the variance of x[n], which is typically

smaller than 1 to obtain a small condition number in the CM.
Using (6), the higher-order CM terms can be expressed as

E{x[n]x∗[n]|x[n]|2} = ξ1RX(τ = 0), (8)

E{x[n]x∗[n− 1]|x[n− 1]|2} = ξ1RX(τ = 1), (9)

E{x[n]x∗[n]|x[n]|4} = ξ2RX(τ = 0), (10)

E{x[n]x∗[n− 1]|x[n− 1]|4} = ξ2RX(τ = 1), (11)
...
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Fig. 2. The 5G mmW/FR-2 OTA measurement setup utilized to carry out the
experimental measurements at 28 GHz.

where ξx is the corresponding Bussgang’s coefficient. By
having all terms in the CM expressed as a function of RX(τ)
and the Bussgang’s coefficients, the complete CM reads, for
a generic polynomial order P and memory depth M , as

R =


R0 R1 R2 · · · RbP2 c
R1 R2 R3 · · · RbP2 c+1

...
...

...
. . .

...
RbP2 c

RbP2 c+1 RbP2 c+2 · · · R2bP2 c

 , (12)

where each subindex indicates the corresponding Bussgang’s
coefficient. Additionally, the sub-matrix Rk ∈ CM×M is
an Hermitian Toeplitz matrix, defined by the vector vk =
ξk[RX(τ = 0) RX(τ = 1) · · · RX(τ =M)]T , where ξ0 = 1.
Note that only the submatrices appearing in the first row
and last column of (12) need to be calculated to build the
whole CM for a given signal. The expression in (12) can be
alternatively expressed as a Kronecker product, as

R = Ξ⊗R0, (13)

where Ξ contains the set of Bussgang’s coefficients. Then, the
ICM is directly obtained as

R−1 = Ξ−1 ⊗R−10 . (14)

Thus, to calculate the ICM, only the autocorrelation function
of x[n] and the Bussgang coefficients are needed, both of
which can be calculated in advance. The Kronecker formu-
lation further reduces the required computational complexity.

III. RF MEASUREMENT RESULTS

1) Measurement Setup: All the experiments are carried out
with the state-of-the-art setup depicted in Fig 2. It consists
of a Keysight M8195A to provide the I/Q data samples,
additional equipment to upconvert the signal to 28 GHz, a
pre-amplification stage, and finally the Anokiwave AWMF-
0129 active antenna array. The signal is measured over-the-
air (OTA), at an effective isotropic radiated power (EIRP) of
+40.5 dBm, while then downconverted, digitized, and taken to
a host PC to execute the algorithms. In all cases, the closed-
loop MP DPD is configured with P = 9, M = 4, and K = 20
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Fig. 3. OTA linearization performance at EIRP≈ +40.5 dBm with the proposed SO learning rule (SO DPD, est. ICM), in (a) 200 MHz, (b) 400 MHz, and
(c) 800 MHz channel bandwidth cases. The GN method is also implemented, measured and shown for reference.

TABLE I
LINEARIZATION PERFORMANCE AND AVERAGE LEARNING COMPLEXITY

PER SAMPLE IN THE 800 MHZ CHANNEL BW CASE.

EVM

(%)

TRP ACLR

(dBc)

Learning path complexity

(real mul. per lin. sample)

Classical SO DPD 6.02 31.2 186.9

Proposed SO DPD 6.89 30.4 81.42

Reference GN DPD 5.09 32.3 1,681

ksamples per iteration, with a total of 20 DPD iterations. The
results also include and show the GN learning solution [8],
[9] as a reference, which reads

αααk+1 = αααk + µg

(
ΩH

k Ωk

)−1
ΩH

k ek, (15)

where µg is the learning rate. The performance of this model is
generally better compared to SO, since the term

(
ΩH

k Ωk

)−1
is calculated in all DPD iterations, however, it also clearly
infers larger complexity.

The adopted signals are 5G NR Rel-15 compliant OFDM
waveforms, with subcarrier spacing of 120 kHz, covering BWs
of 200 and 400 MHz at FR-2. An experiment with a further
extended BW of 800 MHz is also included, with the aim of
pushing the performance boundaries of the DPD system.

2) Measurement Results: The measured PSDs are depicted
in Fig. 3. In all BW cases, the proposed SO learning solution
provides a very favorable linearization performance, very close
to the GN solution. The error vector magnitude (EVM), adja-
cent channel leakage ratio (ACLR), and complexity numbers
are shown in Table I, for the widest signal BW of 800 MHz,
where the ACLR is measured using the total radiated power
(TRP) approach. The 5G NR EVM limit of 8%, and the
TRP ACLR limit of 28 dBc [6] are fulfilled in all cases,
regardless of the 56% complexity reduction with respect to
classical SO and 95% complexity reduction with respect to
GN. These performance and complexity results demonstrate
that the proposed solution is an intriguing approach for the
efficient linearization of mmW active antenna arrays.

IV. CONCLUSIONS

In this paper, an efficient method to estimate the inverse
covariance matrix of the DPD basis function samples was

proposed. The proposed method was shown to provide large
complexity reductions in the context of self-orthogonalized
(SO) DPD learning applications. The complexity-performance
trade-offs of the proposed overall DPD system were demon-
strated through extensive RF measurement results at 28 GHz,
featuring a state-of-the-art Anokiwave AWMF-0129 active
array, and very wide channel BWs up to 800 MHz. The
obtained performance results, together with the complexity
analysis, indicate that efficient mmW active antenna array
linearization can be achieved through the proposed technique.
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