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This work investigates qubit entanglement in rolled-up and plasmonic rectangular epsilon-near-zero (ENZ) waveguide
reservoirs. We explore the robust entanglement of qubits coupled to these reservoirs using the concurrence metric
formalism and the emergence of driven steady-state entanglement under continuous pumping. The results indicate that
the proposed rolled-up ENZ waveguide shows a high long-range entanglement of qubits embedded within as compared
to the rectangular ENZ waveguide channel.

Entanglement or non-separability of qubits is relevant in
quantum cryptography, quantum teleportation, and other two-
qubit quantum processes1–4. Entanglement, which was ini-
tially used in systems such as optics, atoms, and ions, is be-
coming increasingly accessible in quantum physics5,6. Short
distance entanglement, in particular, has been realized for
spin degrees of freedom in quantum dots, nanotubes, or
molecules7–9. However, long-range qubit-qubit interactions
are required for long-distance information transfer. As a re-
sult, the correlation between the two qubits could be mediated
by a reservoir composed of artificially engineered metamate-
rials that can support unique virtual bosons.

Metamaterial formations are one of the prominent engi-
neering techniques that help to explore the classical, semi-
classical, and quantum phenomena in the nanoscale. They
are coined as tailoring the optical properties of a material to
the desired value by designing its subwavelength nanostruc-
tures that help in attaining interesting optical phenomena10,11.
From its inception, numerous techniques have been imple-
mented to study their unique optical properties12–16. In par-
ticular, epsilon-near-zero (ENZ) metamaterials have been a
material of interest due to their unique optical properties
such as near-zero refractive index, decoupling of electricity
and magnetism, large nonlinearity effect, and infinite phase
velocity17,18. ENZ waveguides operating around its cutoff
wavelength excites an effective zero-index mode. Typically,
plasmonic waveguides excite unique extended ENZ modes at
their corresponding cutoff wavelengths and can be integrated
with quantum emitters to exhibit interesting atomic-field inter-
actions. Numerical studies on rectangular ENZ reservoir19,20

showed that ENZ mediums outperform the subwavelength
distance limitations of qubits cooperative emission in a ho-
mogeneous medium. However, the difficulties to incorporate
quantum emitters in a rectangular waveguide and their fabri-
cation challenges in the nanoscale regime have hampered their
practical use. As a result, achieving zero-index features neces-
sitates a controlled and practical 3D manufacturing method.
Rolled-up tubes have been shown to be easily fabricated us-
ing a self-rolling mechanism that could be practically utilized
to incorporate emitters within16,21–24. Recently, Habib et al.16

experimentally fabricated a cost-effective rolled-up tube com-
posed of gold (Au) and SiO2 using a self-rolling mechanism as
compared to the rectangular ENZ waveguide with fabrication

challenges25. These rolled-up waveguides have been shown
to provide enhanced resonance energy transfer and good en-
tanglement of qubits at their corresponding cutoff wavelength
as compared to qubit-qubit cooperative emission in a homo-
geneous medium26.

FIG. 1. Schematics of (a) rolled-up ENZ, and (b) rectangular ENZ
waveguide with their corresponding cross-section in the x-y plane.
E1 and E2 represents the two quantum emitters interacting with the
corresponding ENZ waveguides. (c) The electric |E| and magnetic |H|
fields of the fundamental TE11 mode (zero-index mode) of the rolled-
up ENZ waveguide, and (d) the fundamental TE10 mode (zero-index
mode) of the rectangular ENZ waveguide.

Here, we focus on rolled-up and rectangular ENZ waveg-
uides serving as reservoirs to mediate qubit-qubit interactions
at long distances and the emergence of driven steady-state
entanglement under continuous double pumping. Based on
these two experimentally proven ENZ waveguide channels,
we numerically calculated their relations with quantum emit-
ters when used as a quantum reservoir to determine the fi-
nal state of a quantum system. We envisage that the different
reservoirs seen by quantum emitters (qubits) will lead to dif-
ferent dyadic responses and, therefore, result in different long-
range entanglements. Our study adopts ENZ waveguides into
quantum systems which are foreseen to generate unique opti-
cal sources, durable entangled states, and other novel optical
applications in different fields of study.

To determine the fundamental mode of the correspond-
ing ENZ waveguide, numerical Finite Element EigenMode
(FEEM) simulations were implemented in Ansys Lumerical
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software to determine the cutoff wavelength of both the rolled-
up and rectangular ENZ waveguide. Figure 1 illustrates the
schematics (top panel) and field distributions (lower panel)
(i.e. electric |E| and magnetic |H| fields) of the rolled-up and
the rectangular ENZ waveguide. The numerically calculated
fundamental modes of the proposed quantum reservoirs ex-
hibit TE11 mode for the rolled-up ENZ waveguide with the
existence of both radial and axial components of the trans-
verse fields due to its symmetry as compared to the TE10 mode
of the rectangular ENZ waveguide transverse to its propaga-
tion direction. The dimensions of the waveguides were set
and optimized to attain the same cutoff wavelength of λ0 ≈
1400 nm. The rolled-up ENZ waveguide has a diameter (D)
of 700 nm and thickness (t) of 180 nm (i.e. 12 layers) with 5
nm of gold (Au) and 10 nm of SiO2. The corresponding plas-
monic (Au) rectangular ENZ waveguide has a dimension of
650×350 nm2 (i.e. width (L) and height (H)), respectively.

Additionally, to confirm the obtained cutoff wavelength
of the ENZ waveguide channels, we simulated the radiative
power of a single qubit embedded within the waveguide as
a function of different dipole positions and spectral wave-
lengths. Figure 2 corresponds to the total average power (W)
emitted from the dipole (qubits) as a function of the dipole’s
axial position along the rolled-up and rectangular ENZ waveg-
uide reservoirs at different orthogonal orientations (i.e. verti-
cally and horizontally polarized). The heatmap of the rectan-
gular waveguide shows dipole emission power above the cut-
off wavelength due to its sharp edge effects compared to the
rolled-up ENZ waveguide. The results show a uniform emit-
ted power and hence a uniform decay rate enhancement along
the axis of the waveguide at a cutoff wavelength of λ0 ≈ 1400
nm where the refractive index of the corresponding waveg-
uide n ≈ 0. This zero-index medium exhibits a uniform field
amplitude along the waveguide channel and is envisioned to
mediate the long-range interaction of qubits embedded within
these waveguide channels.

FIG. 2. Dipole emission average power (W) as a function of position
along the (a) rolled-up waveguide and (b) rectangular waveguide at
different spectral regions. The dash line represent the cutoff wave-
length of the two ENZ waveguides.

After identifying the photonic properties of the ENZ
waveguide channels, we initiated the entanglement calcula-
tions of qubits coupled with the corresponding ENZ reser-
voirs. Note that the measure of entanglement of qubits cou-
pled to a reservoir2,6 can be described by the concurrence C
metric formalism by Wootters27. To determine the concur-
rence C metric formalism, it is pertinent to obtain the dyadic
response of an emitter coupled to the rolled-up ENZ waveg-

uide compared to the rectangular ENZ waveguide to deter-
mine their respective coupling parameters.

To start with, we considered two identical qubits with the
same transition frequency ω0 embedded within the aforemen-
tioned ENZ channels. The dynamic evolution of quantum sys-
tems coupled to lossy plasmonic environments is described
by the dyadic Green’s function in conjunction with the quan-
tum master equation formalism. Note that the dyadic Green’s
function is a classical quantity used to study the spontaneous
decay of quantum emitters coupled to a quantum reservoir.
The quantum master equation describes the dynamics of the
density matrix ρ of a two-qubit system near a reservoir. As-
suming a weak excitation and weak coupling regime, the
Born-Markov, and rotating wave approximations can be used
to compute the master equation, which is expressed as 28:
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where the Hamiltonian describing the coherent part of the evo-
lutionary dynamics is expressed as:
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From Eqn. (1), ρ depicts the density matrix of the two-qubit
system. σ

(
σ†
)

represents the destruction (creation) opera-
tor applied to the qubits. The photonic Lamb shift gii due to
the self-interaction of each qubit embedded within the ENZ
waveguide is usually minimal and neglected in our formula-
tions. gi j also represents the coherent dipole-dipole interac-
tions of the two identical qubits expressed as:

gi j =
(
ω

2
0/ε0h̄c2)Re [µ∗i ·G(ri,r j,ω0) ·µ j] , (3)

where the dyadic Green’s tensor G(ri,r j,ω0) satisfies the
classical electromagnetic equations for a point dipole source
located at a position r j.

Also, γi j represents the dissipative and noncoherent term of
the master equation which is expressed as a function of the
imaginary part of the dyadic Green’s function:

γi j =
(
2ω

2
0/ε0h̄c2) Im [µ∗i ·G(ri,r j,ω0) ·µ j] . (4)

To solve the master equation and to obtain the density ma-
trix, a convenient basis for the two-qubit system vector space
must be defined. It is easier to work in the Dicke basis:
|3〉 = |e1〉⊗ |e2〉 = |e1,e2〉 , |0〉 = |g1〉⊗ |g2〉 = |g1,g2〉 ,
and |±〉 = 1/

√
2(|e1,g2〉± |g1,e2〉), when studying identical

emitters in equivalent positions, i.e. γ11 = γ22 = γ , where, |ei〉
(|gi〉) represents the excited (ground) state of the i -th qubit.
The basis selected is appropriate to characterize the response
of the two-qubit system since it leads to a diagonalized Hamil-
tonian. In general, the entanglement between two qubits can
be quantified by computing the concurrence C introduced by
Wootters27 expressed as:

C = max(0,
√

u1−
√

u2−
√

u3−
√

u4) , (5)

where ui represents the eigenvalues of the matrix ρρ̃ . ρ̃ =
σy ⊗ σyρ∗σy ⊗ σy is the spin-flip density matrix and σy is
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the Pauli matrix. The degree of concurrence is determined
between 1 (completely entangled state) and 0 (unentangled
state). However, to gain insight about the entanglement pro-
cess between two emitters when only one of the emitter is ex-
cited, a transient concurrence formulation can be derived from
the master equation which is expressed as:

C(t) = 0.5
√[

e−(γ+γ12)t − e−(γ−γ12)t
]2
+4e−2γt sin2 (2g12t)

(6)
Note that the pure dephasing term γ ′ normally part of Eqn.
(6)2 is considered to be relatively small compared to the ra-
diative decay rate of qubits coupled to an ENZ structure at
low temperatures29,30. Thus, its contribution is insubstantial
and considered as zero in our formulation. Interestingly, Vov-
cenko et al.30 has recently showed that higher dephasing con-
tributes to entanglement. Thus, dephasing is not only linked
to the relaxation of the non-diagonal terms of the density ma-
trix but can potentially lead to transitions between super- and
sub-radiant states, thereby, leading to entangled states. Also,
from Eqn. (6), C(0) = 0, since at t = 0, the quantum system
is initially at an unentangled state. As time progresses, t > 0,
the concurrence becomes larger than zero, meaning that the
emitters become entangled. However, at some point the con-
currence starts to decay with time and becomes zero again,
C(t) = 0, after a long period of time (t → ∞). Thus, the sys-
tem needs to be sustained by an external source to prolong the
entanglement.

External pumps with the same frequency (ωp) can, there-
fore, be used to pump each emitter embedded within the ENZ
waveguide channels, to prevent the transient concurrence from
decaying after some time and to achieve steady-state entangle-
ment. In that case, an additional term 1/ih̄[V,ρ] needs to be
introduced in the right-hand side of the quantum master equa-
tion, where the operator:

V =−
2

∑
i

h̄
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Ωie−i∆itσ
†
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∗
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)
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characterizes the interaction between the pump field and the
emitter. The parameter Ωi = µ ·E0i/h̄ is the effective Rabi
frequency of the pump that depends on the induced electro-
magnetic field E0i from the optical source pumping the i -th
qubit. The parameter ∆i = ω0−ωp is the detuning parameter
due to the pump frequency ωp. After expressing ρ in the usual
basis |e1,e2〉 , |e1,g2〉 , |g1,e2〉, and |g1,g2〉, one can calculate
the steady-state concurrence Css by solving numerically the
master equation where the Rabi frequency and detuning pa-
rameter due to the external pumping have been included.

From the above theory, we numerically compute the dyadic
Green’s response of a single emitter coupled to the ENZ
waveguide channels. From the dyadic Green’s function, we
obtain the decay rate (γ1,2) and dipole-dipole coupling inter-
actions (g12) of the qubit coupled to the waveguide channels.
These coupling parameters (i.e. γ12, g12) are used in the quan-
tum master equation to determine the evolutionary dynamics
of the quantum system. Figure 3 (a) and (b) illustrates the
normalized decay rate γ12/γ and the dipole-dipole interactions
g12/γ of qubits coupled to the rolled-up ENZ waveguide and

the rectangular ENZ waveguide channels, respectively. We
obtain that the decay rate of the rectangular ENZ waveguide
is faster as compared to the rolled-up ENZ waveguide. It can
be seen that the decay rate of the rolled-up ENZ waveguide ex-
ceeds a normalized interatomic distance r12/λ0 of 1.5 before
it goes to zero as compared to the rectangular ENZ waveg-
uide. Due to the high propagation and non-radiative losses of
the rectangular waveguide as compared to the rolled-up ENZ
waveguide, we see a faster decay rate γ12/γ = 0 at normal-
ized interatomic distance r12/λ0 < 1.5. Also, the normalized
dipole-dipole interactions g12/γ of the rolled-up ENZ waveg-
uide increase appreciably above zero (0) at normalized inter-
atomic emitter distance r12/λ0 < 0.5 as compared to the rect-
angular waveguide. Both waveguide channels exhibit a mono-
tonic decrease in the spontaneous decay rate γ12 and dipole-
dipole coupling g12 as a function of normalized interatomic
distance r12/λ0.

FIG. 3. Normalized decay rate enhancement γ12/γ and dipole-dipole
interaction g12/γ as a function of normalized interatomic emitter dis-
tance r12/λ0 of (a) rolled-up ENZ waveguide and (b) rectangular
waveguide. Measure of entanglement as a function of concurrence
C for (c) rolled-up ENZ tube and (d) rectangular ENZ waveguide.

After identifying the coupling parameters relevant for the
quantum master equation, we compute the concurrence C met-
ric measure of entanglement as a function of normalized in-
teratomic distance r12/λ0 and normalized evolution time tγ as
shown in Fig. 3 (c) and (d). We see relatively good transient
concurrence C in both the rolled-up ENZ waveguide shown in
Fig. 3 (c) and the rectangular waveguide presented in Fig. 3
(d). However, in both cases, we see a decrease in the concur-
rence as a function of time t which depicts the depopulation
of emitters in the excited state due to both radiative and non-
radiative losses. Typically, electron-phonon, ohmic loss, in-
herent losses of the excited ENZ mode, and propagation losses
contribute to the transient nature of qubits entanglement me-
diated by an ENZ medium20. Also, the qubit-qubit dissipative
coupling induces modified collective decay rates i.e., superra-
diant γ + γ12 and subradiant states γ− γ12 which exhibits pure
superradiant emission when γ = γ12 condition is satisfied29.

In order to compensate for the depopulation of the emitter
excited state, we introduce an external pump into the master
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equation to compute the steady-state concurrence Css as well
as the population dynamics of the qubits. Figure 4 shows the
population dynamics of the qubits embedded within the two
ENZ reservoirs at a normalized interatomic distance r12/λ0 =
0.5. Figure 4 (a), (c), and (e) illustrates the population dynam-
ics of qubits inside the rolled-up ENZ waveguide at different
pump intensities (i.e. antisymmetric Ω1 = 0.8γ,Ω2 = 0, sym-
metric Ω1 = Ω2 = 0.5γ , and asymmetric Ω1 = −Ω2 = 0.5γ

pumping cases). The corresponding Fig. 4 (b), (d), and (f)
shows similar dynamics for qubits embedded within a plas-
monic rectangular waveguide reservoir.

We present here four density matrix elements ρgg, ρee, ρge,
and ρeg, which represent the probability of both qubits to be
in the ground state, both qubits being in the excited state, the
first qubit being in the ground state and the second being in
the excited state, and vice versa. Furthermore, we assumed an
initial state ρeg = 1. It can be seen that the qubits embedded
within the ENZ reservoirs show different population dynamics
for different external pumping cases. The symmetric pump-
ing case depicts a similar population steady-state ρeg = ρge
due to the identical pumping of the quantum system. The an-
tisymmetric and asymmetric pumping density elements grow
appreciably at normalized time tγ < 5 and decays to a con-
stant probability at normalized time tγ > 5. Yet, we obtained
a weak population state in the symmetric pumping case, for
both rolled-up ENZ waveguide and plasmonic ENZ reservoir,
as shown in Fig. 4 (c) and (d), respectively. At a high antisym-
metric pumping case, we obtain an appreciable high probabil-
ity of both qubits being in the excited state ρee as compared to
the other two coherent pump cases.

The high probability signifies the effect of strong pumping
on the dynamics of emitters coupled to a reservoir and how
it affects entanglement between two qubits. It is evident that
under strong pumping, the dynamics of qubits are defined by
the external pumps and not only by the dipole-dipole inter-
actions, thereby affecting the entanglement of qubits in such
vicinity. In the asymmetric pump case, we see a high popula-
tion state ρeg > ρge of the first qubit since the pump intensity
for the second qubit is negated. The aforementioned dynamics
of the different pump scenarios show the effect of pump inten-
sities on emitters’ interactions and how high coherent pump
intensities could potentially affect the entanglement property
of qubits embedded within an ENZ reservoir with similar be-
havior observed with incoherent pumping31,32.

Figure 5 also illustrates the heatmaps of steady-state con-
currence Css at normalized evolution time tγ = 90 as a func-
tion of two normalized pump intensities (i.e. Ω1/γ , Ω2/γ) at
different normalized interatomic distances r12/λ0. It is evi-
dent that the steady-state concurrence of the rolled-up ENZ
waveguide (in the top panel of Fig. 5 (a), (b), (c)) shows a
high measure of entanglement (max(Css)≈ 0.32) as compared
to the rectangular ENZ waveguide (max(Css) ≈ 0.2) shown in
the lower panel (i.e. (d), (e), (f)) at r12/λ0 = 0.5. Similar
results are presented for different normalized interatomic dis-
tances r12/λ0 = 1.0 and r12/λ0 = 1.5 respectively. The high
entanglement in the rolled-up ENZ waveguide depicts its rel-
evance to serve as a reservoir to mediate qubit entanglement
as compared to the rectangular ENZ waveguide. Note that the

FIG. 4. Dynamics of the density matrix elements for qubits under
external pumping. (a), (c), and (e) Population dynamics of qubits
inside the rolled-up ENZ waveguide. (b), (d), and (f) Similar dynam-
ics of qubits inside the plasmonic rectangular waveguide at different
pump intensities.

high steady-state concurrence of the proposed ENZ waveg-
uide channels is as a result of the large values of γ12 and
small values of g12. Also, the pump strength should not be
too high to achieve strong steady-state entanglement between
the qubits; otherwise, strong interactions between the pump
and the qubits as well as the reservoir will occur, eventually
leading to qubits decoupling and lasing.

To conclude, we have shown the long-range quantum entan-
glement between a pair of qubits mediated by a rolled-up ENZ
waveguide, which persists over extended periods and long dis-
tances. The response is compared to the corresponding plas-
monic rectangular ENZ waveguide. The theory of both tran-
sient and steady-state quantum entanglement, quantified by
computing the concurrence metric, is briefly introduced, and
utilized to determine the robust entanglement of qubits cou-
pled to the ENZ waveguide channel. This concurrence metric
formalism has a direct link with the cross-term second-order
coherence function that can be extracted from an experiment
(i.e., Hanbury Brown and Twiss (HBT) effect or two-photon
detection probability (PRR) measurement)20,29,33. We also
showed ways to improve the entanglement of qubits coupled
to the proposed reservoirs. We obtain that the rolled-up ENZ
waveguide system demonstrates an improved quantum opti-
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FIG. 5. Two pumps steady-state entanglement at different inter-atomic distance r12/λ0 for (top panel) rolled-up ENZ waveguide and (bottom
panel) rectangular waveguide.

cal and long-range entanglement performance with max(Css)
≈ 0.32 compared to the rectangular ENZ waveguide channel.
This study could open new avenues to explore entanglement
for quantum network applications, quantum information pro-
cessing, cryptography, and the development of ultra-sensitive
sub-wavelength metrology devices.
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