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Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, 33720, Tampere, Finland   

A R T I C L E  I N F O   

Keywords: 
Anfis 
Fuzzy sets 
Shear modulus 
Soil dynamics 
Very small strain 

A B S T R A C T   

Realistic estimation of soil behavior is dependent on considering very small and small strain domains. Lengthy 
formulas proposed in the literature have limited predictive power for estimation of maximum shear modulus, G0. 
The aim of this study is to overcome this drawback. Theoretical aspects of fuzzy sets and adaptive neuro-fuzzy 
inference system (Anfis) are presented. Then, Anfis is implemented within a logical platform that adapts itself 
with available data to estimate and describe G0.   

1. Introduction 

As shown in equation (1) only two parameters of shear wave velocity 
Vs and total mass density ρ are needed for measuring the maximum shear 
modulus, G0 which is a key property of the soil at very small strain re
gion. However, shear modulus G starts decreasing significantly right 
after passing the very small strain threshold (around 0.001%). In addi
tion, shear modulus depends on many factors, but it is mainly affected by 
stress, stress history and density [1,2]. The in-situ measured value might 
thus not be the correct one for an engineering project. While laboratory 
determination is easily influenced by sample disturbances and need high 
accuracy of measurements, it is fair to say that determining shear 
modulus at the small strain region is not straightforward. 

G0 =V2
s ρ (1) 

One review covering 372 experiments from 140 different soils with a 
high amount of scattering in terms of state properties pointed out 
confining stress p′ and initial void ratio e0 as the main parameters 
affecting G0 [3]. This finding is exploited to estimate G0 in this study. 

2. Database 

Dataset used in this study contains 62 experimental results [4–12]. 
This data has a good divergence in terms of confining stress p′, and void 
ratio e0. To better understanding the wide domain of soils studied in this 
research, confining stress versus void ratio graph is presented in Fig. 1. 
Thorough details and evaluation of this valuable dataset are presented in 

Refs. [13,14]. 
The performance of two equations in the literature (equations (2) 

and (3)) was checked for the considered database [4–12]. The suitability 
for selection of considered relations was that adequate information was 
available on considered data to enable evaluation to be conducted. 
Estimation accuracy of these equations is shown in Fig. 2. As shown in 
this figure, the formula presented by Ref. [3] gives better approximation 
compared to the other formula based on calculated error criteria. The 
proposed solution for better approximation of G0 is explained in the 
following sections [3,15]. 
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3. Fuzzy sets 

Fuzzy inference system (FIS) represents a versatile platform to 
describe complex phenomena within a simple mathematical framework. 
As once stated by the Father of fuzzy logic, Professor Zadeh: “In almost 
every case, you can build the same product without fuzzy logic, but 
fuzzy is faster and cheaper” [16]. There are quite many references 
related to theoretical aspects of fuzzy logic following the well-known 
paper in which Professor Zadeh introduced a unique way of 
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characterizing non probabilistic uncertainties in 1965 [17]. Among few 
available publications about application of fuzzy logic in soil mechanics, 
there is a very good state of the art paper that discusses suitability of this 
out of the box idea for different types of geotechnical problems [18]. 
Besides, fuzzy systems have shown the benefit of simplicity, decreasing 
the number of time-consuming tests, and getting rid of lengthy formu
lations in approximation of nonlinear stress-strain behavior [19]. In 
mathematical language classical and fuzzy sets are presented via equa
tions (4) and (5), respectively. Where X is the universe of discourse, x is 
an element in the X and, μF(x) is the membership function of x in F. 

C = {x|x ∈ X} (4)  

F ={(x, μF(x))|x∈X, μF(x) ∈ [0, 1]} (5) 

In general, FIS consists of 5 steps. In the following, brief description 
of each step is given:  

1. Fuzzification: Input variables are crisp values, but FIS converts these 
crisp values into one or more subgroups (i.e. An input can belong to 

various groups but with different membership degrees) via definition 
of membership functions which take the values from zero to one.  

2. Inference mechanism and rule base: Next step is setting If-Then rules 
between input and output variables and applying fuzzy operators 
(AND or OR operators) on fuzzy inputs to come up with a result for 
each rule. In general, AND operators are minimum and product while 
OR operators are maximum and probabilistic methods.  

3. Implication: Implication operators are the same as AND operators (i. 
e., minimum which truncates or product which scales output fuzzy 
sets) acting on consequent of each rule.  

4. Aggregation: In this step, fuzzy outcomes of each rule are combined 
by simple mathematical methods like summation of the rule outputs.  

5. Defuzzification: In the last step, aggregation results are “defuzzified” 
through different methods like centroid, bisector, average, etc. 
Therefore, result will be a crisp number again. 

Similar to input, output can also be defined as membership functions 
which is called Mamdani type FIS [20] or it can be an equation instead 
and in this case is referred to as Sugeno type FIS [21]. Schematic of 
Mamdani type and Sugeno type FISs are shown in Fig. 3a and Fig. 3b, 
respectively. Where pi, qi, and ri are called consequent parameters and 
for a zero-order Sugeno type FIS, outputs are constant values (i.e., pi = qi 
= 0). 

4. Adaptive neuro-fuzzy inference system (Anfis) 

There are critics regarding FIS application since it has the spirit of 
“rule of thumb” used by humans rather than a precise engineering tool, 
and its results are highly dependent on expert knowledge and preference 
who sets the membership functions and fuzzy rules. To overcome such 
drawbacks, authors decided to use a developed version of FIS called 
adaptive neuro-fuzzy inference system (Anfis) which was introduced in 
1993 in this research [22]. Anfis is a fuzzy inference system with pa
rameters adapted via neural networks which minimizes expert’s inter
pretation using a hybrid learning procedure [22]. The decision-making 
process in Anfis (i.e., tuning membership function parameters and 
setting the rules) is handled by neural networks instead of a human 
expert. 

Among quite many intelligent models available in the literature Anfis 
has a unique characteristic which is discussed briefly in the following. 

Fig. 1. Confining stress versus initial void ratio.  

Fig. 2. Performance of two formulas proposed in literature for estimating G0: a) [3] and b) [15]. In addition to measured versus calculated data, a 1:1 line is given.  
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Both FIS and neural networks have their advantages and disadvantages. 
Since the FIS concept originated from human decision-making it has an 
understandable and clear procedure but may not have sufficient preci
sion. On the other hand, neural network provides definite solutions but 
lacks proper clarification of decision making. As a result, combination of 
these two methods created a complementary concept (i.e., Anfis) that 
benefits from both methods’ bright sides which are transparency and 
accuracy. These capabilities of Anfis makes it a potentially useful tool for 
geotechnical problems where accuracy of estimation and transparency 
of input-output relations are a challenge. 

The architecture of a two inputs-one output Anfis structure equiva
lent to the Sugeno type FIS presented in Fig. 3b is illustrated in Fig. 4. As 
shown in this figure, Anfis consists of five layers (here the output of node 
i in layer 1 is denoted as Ol

i):  

1. Layer 1 (Fuzzification layer): This layer takes crisp input values and 
assigns membership functions to them. Here Gaussian membership 
function is used where z and m are tuning parameters. 

O1
i = g(x; z,m)= μAi(x)= e

− (x− m)2

2z2 (6)    

2. Layer 2 (Rule layer): In this layer firing strength of each rule is 
generated by product operation (Π). 

O2
i = wi = μAi(x).μBi(y), i = 1, 2 (7)    

3. Layer 3 (Normalization layer): In this step, firing strength of each 
rule is normalized by the total firing strength. 

O3
i =wi =

wi

Σn
i=1wi

(8)    

4. Layer 4 (Defuzzification layer): This layer receives normalized values 
and consequent parameters (pi, qi, and ri) as input. After combination 
of these parameters the defuzzified values are returned. 

O4
i =wifi = wi(pix+ qiy+ ri) (9)    

5. Layer 5 (Output layer): The resulting output is the weighted average 
of each rules’ output. 

O5
i =

Σn
i=1wifi

Σn
i=1wi

(10)  

5. Estimation result 

In the following, G0 is approximated utilizing two physically mean
ingful variables mentioned earlier as G0 governing parameters (i.e., e0 
and p′). Anfis results for 52 training data are shown in Fig. 5. As illus
trated in this figure, due to very high scatter of the data, parameter 
coupling effects are too complicated. Nevertheless, Anfis was capable of 
estimating G0 by only four simple fuzzy rules. Moreover, one example of 
Anfis computation is presented in Fig. 5a where If e0 = 1.72 AND p′ = 50 

Fig. 3. Mamdani (a) and Sugeno (b) type FISs schematics [22,23].  

Fig. 4. A typical Anfis structure [22].  

A. Vatanshenas and T.T. Länsivaara                                                                                                                                                                                                       



Soil Dynamics and Earthquake Engineering 153 (2022) 107105

4

kPa, Then G0 = 110 MPa. While only the last two rules are activated. It 
means that for this particular case (i.e., e0 = 1.72 and p′ = 50 kPa) data 
does not belong to some fuzzy clusters and as the result their member
ship degree for those clusters is zero. However, as shown in the 3rd and 
4th rule rows in Fig. 5a, e0 and p′ belong to two fuzzy clusters each with 
different membership degrees. Fig. 5a clarifies the input-output relation 
for each possible case and Fig. 5b presents the general 3D coupling 
schematic of considered parameters. Note that as mentioned earlier, in 
addition to estimation, Anfis describes continuous coupling effects based 
on lumped data and forecasts missing datapoints via its fuzzy clustering 
characteristic which is a significant benefit compared to many other 
intelligent models. 

Anfis accuracy for estimating G0 is presented graphically in Fig. 6. In 
addition, error criteria for test data are also given in this figure. Anfis 
approximates G0 with R2 = 0.89 for test data which is a considerable 
enhancement compared to the lengthy equations’ performance shown in 
Fig. 2. Higher estimation accuracy is reachable by adding more 
complexity to the system, but this amount of error is acceptable since G0 
is usually highly affected (up to 20%) due to soil disturbance [3]. 

6. Conclusion 

Fuzzy sets and Anfis concepts were presented and further imple
mented for approximating G0. In short, instead of introducing a lengthy 
formula, a logical framework was utilized that adapts itself with 
considered data and forecasts missing data points. G0 was estimated 

from few easily obtainable parameters with clear physical meaning (i.e., 
e0 and p′) utilizing a novel notion called Anfis. Investigating the appli
cation of Anfis in other geotechnical problems is recommended for 

Fig. 5. G0 computation block (a), and its resulting input-output relation (b).  

Fig. 6. Performance of Anfis for estimating G0. In addition to measured versus 
calculated data, a 1:1 line is given. 
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future studies. In addition, interested readers are welcome to contact the 
authors for further details regarding the implementation of Anfis for 
research purposes. 
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