
IFAC PapersOnLine 54-1 (2021) 845–850

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.08.099

10.1016/j.ifacol.2021.08.099 2405-8963

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

Software Toolkit for Development of
Interoperable Communications in

Data-driven Systems

Petri Kannisto ∗ Antti Kätkytniemi ∗ Matti Vilkko ∗∗

David Hästbacka ∗

∗ Faculty of Information Technology and Communication Sciences,
P.O. box 553, 33014 Tampere University, Finland (e-mail:
petri.kannisto/antti.katkytniemi/david.hastbacka@tuni.fi)

∗∗ Faculty of Engineering and Natural Sciences, P.O. box 589, 33014
Tampere University, Finland (e-mail: matti.vilkko@tuni.fi)

Abstract: The ease of software development, maintenance, commissioning and reconfiguration
is paramount in industrial systems, because these must be adaptable to changes in customer
demand and the evolution of production assets. Such adaptations are a core motivator in the
fourth industrial revolution. Additionally, software applications should be able to communicate
over the logical and geographical borders of production plants, regardless of software platforms
and vendors. However, these issues remains unaddressed in current software tools, although a
solution is reachable with a proper software toolkit. As a solution, this article introduces such
a toolkit to support the development of industrial software systems. The toolkit implements
a communication stack with both a communication protocol and an information model. The
long-term goal is to enable all communication in industrial plants with such a toolkit regardless
of software products, vendors and platforms. Additionally, the toolkit provides auxiliary tools
to help in the development of industrial software, such as services to provide historical data for
simulation purposes. As an outcome, the toolkit provides insight about the development needs
of industrial communications.

Keywords: Message-oriented Middleware, Systems Integration, Service-oriented Architecture,
Loose Coupling, Scalability, Industrial Cyber-physical Systems, Copper Smelting, Steel
Production, Online Life Cycle Assessment

1. INTRODUCTION

The industrial community lacks software tools for the
development of communications in Industry 4.0 (I4.0).
Among other goals, I4.0 aims at interoperability in a multi-
vendor environment as well as reconfigurability and scala-
bility to growing data volumes in communication (Panetto
et al., 2019). To reach these goals, there are fundamental
technologies, but these are merely basic components that
lack supportive tools for development. For instance, OPC
UA PubSub (2017) aims at combining both scalability and
interoperability but lacks an architecture for a plant-wide
communication system. Therefore, unaddressed issues re-

� This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 723661. This study reflects only the authors’ views, and
the Commission is not responsible for any use that may be made
of the information contained therein. The authors want to express
their sincere gratitude to the funder and the project partners in
COCOP project (Coordinating Optimisation of Complex Indus-
trial Processes, https://www.cocop-spire.eu/). Additionally, this
work was supported by the Academy of Finland (grant 310098).

main, as studied in the project Coordinating Optimisation
of Complex Industrial Processes (COCOP, 2020).

To solve the challenges of I4.0 in communications, this
paper presents the COCOP Toolkit. The first part of
the toolkit implements a communication stack as re-
usable Application Programming Interfaces (API). The
stack is based on a common information model and a
message-oriented middleware as the communication proto-
col (AMQP 0-9-1; Advanced Message Queueing Protocol).
With the APIs, the software developers can concentrate
on application logic rather than communication-related
details while still maintaining a scalable, interoperable
system architecture. AMQP has been designed for growing
message volumes and even supports load balancing. There-
fore, the toolkit contributes to data-driven systems, which
are in the core of smart production (Cheng et al., 2018).
The second part of the toolkit consists of auxiliary tools
that help in application development in industrial context.
These include, for instance, a data source simulator and a
message logger.

This paper has the following research objective:

Present a software toolkit for the development of loosely
coupled, scalable, interoperable industrial systems, backed
with proofs of concept

846	 Petri Kannisto et al. / IFAC PapersOnLine 54-1 (2021) 845–850

Next, Section 2 overviews the background of the research.
Section 3 introduces the software toolkit followed by proofs
of concept in Section 4. Finally, Section 5 discusses and
concludes the paper.

2. BACKGROUND

Earlier projects have suggested architectures for either
interoperability or data-driven scenarios but not for both
in the scope of plant-wide systems. de Souza et al. (2008)
propose a Web-Service-based middleware called Socrades,
but this is restricted to devices and the applied technolo-
gies are less concerned with scalability. Karnouskos et al.
(2014) introduce IMC-AESOP, a framework to realise a
‘service cloud’ for the needs of production systems, but
this lacks a communication medium. Theorin et al. (2017)
propose a message-bus-based architecture LISA that fo-
cuses on equipment rather than the plant-wide scope,
and there is no focus on applying existing standards in
communications. MONSOON by Sarnovsky et al. (2018)
aims at facilitating the processing of industrial big data
but omits the goal to reduce heterogeneity in communica-
tions. Respectively in DISIRE, Goldin et al. (2017) focus
on data rather than interoperability. Finally, Gosewehr
et al. (2017) propose the PERFORM middleware with a
common data model but no attempt to unify the commu-
nication protocol.

First released in 2006, Open Platform Communications
Unified Architecture (OPC UA, 2017) aims at enabling
interoperability within industrial plants with a series of
standards for multiple aspects in communication. OPC
UA is supported in multiple software environments, and
there is a selection of tools from a number of vendors
(OPC Products, 2020). As the conventional client-server
approach lacks loose coupling and scalability to data-
intensive applications, OPC UA PubSub (2017) has been
released. However, from the viewpoint of plant-wide com-
munications, an essential shortcoming is the lack of mes-
sage routing. Therefore, the current PubSub mainly pro-
vides a data link rather than an all-round communication
solution, which is a goal in COCOP project.

Fig. 1 illustrates the system architecture specified in
COCOP project. The architecture aims at connecting
all systems in the plant-wide scope with a single mes-
sage bus. The message bus enables interoperability with
two aspects: a single communication protocol and com-
monly agreed information model. First, as the concrete
protocol, AMQP 0-9-1 (2008) has been chosen, as the
newer AMQP 1.0 lacks a support for message routing.
From the beginning, AMQP was designed for a data-
intensive environment (O’Hara, 2007). In COCOP, the
AMQP implementation is RabbitMQ, which is an open-
source product. The second aspect, information model,
is based on the work of two standardisation bodies that
provide data structures in Extensible Markup Language
(XML). Generic data is serialised using standards from
the Open Geospatial Consortium (OGC, 2020). Observa-
tions and Measurements, TimeseriesML and Sensor Web
Enablement Common Data Model, among others, enable
the delivery of industrial data. Respectively, production
schedules are serialised in the ANSI/ISA-95-based Busi-
ness to Manufacturing Markup Language (B2MML, 2013).

Earlier COCOP publications have elaborated the COCOP
concept (Kannisto and Hästbacka, 2018) and explained
work-in-progress about the information model (Hästbacka
et al., 2018b).

COCOP message bus
- Single communication protocol
- Common information model

User interfaces
in control rooms

Internet
connectivity

Equipment Process
databases

Software for
optimisation

Control systems

Fig. 1: COCOP Architecture enables plant-wide interop-
erability with a message bus.

COCOP Toolkit is different from Enterprise Service Bus
(ESB) because ESBs implement not only communication
but also the adapters required for various communication
protocols and data models that the connected software
systems support (Boyd et al., 2008). Consequently, ESBs
tend to contain business logic, which adds difficulty to
maintenance by mixing the role of software solutions and
the channel of communication.

3. SOFTWARE TOOLKIT

The COCOP message bus only requires a support for one
communication protocol and certain information models
to enable communications. However, the tasks of software
development introduces issues that can be relieved with
appropriate tools, as explained in this section.

3.1 Message Serialisation

A common information model is essential for interoperabil-
ity, but its serialisation requires effort that could be re-used
between applications if these run on the same platform.
Thus, libraries were developed.

Cocop.MessageSerialiser.Meas API implements a data
model based on selected standards from the OGC (2020).
These include Observations and Measurements for meta-
data, Sensor Web Enablement Common Data Model and
Geography Markup Language for measurements, data
records and other data types as well as TimeseriesML
for timeseries. Additionally, Sensor Observation Service
enables the request-response communication of data,
whereas Sensor Planning Service provides structures for
the remote control of long-running tasks. The API has
been implemented for .NET and Java.

Respectively, the API Cocop.MessageSerialiser.Biz imple-
ments structures for production schedules. There struc-
tures come from B2MML (2013) based on the standard
ANSI/ISA-95. The API exists for .NET and Java.

3.2 Request-Response and Publish-Subscribe

The communication scenarios sometimes need a request-
response approach and sometimes publish-subscribe. Re-
quest-response means that a piece of data is explicitly
requested for as needed (‘pull’), whereas publish-subscribe
means that the data source informs any interested parties
about changes in data (‘push’). Of these, publish-subscribe
is native in AMQP. Request-response can be built on top
of it, but this requires additional effort that should be re-
usable between applications.

To re-use the implementation of request-response over
AMQP, Cocop.AmqpRequestResponseHelper API was im-
plemented. The API exists in C#/.NET and Java. To
implement request-response, the developers could instead
use Hypertext-Transfer-Protocol-based (HTTP) web ser-
vices, but this would require a parallel communication
channel. Furthermore, HTTP would require a mechanism
to manage host addresses in the network, whereas the
AMQP-based request-response implementation only needs
topic names in the RabbitMQ server.

3.3 Connectivity of Optimisation Tools

In a plant-wide systems, optimisation tools must be con-
nected to the network. AMQP 0-9-1 has client APIs for
multiple platforms, but this excludes the platforms made
for mathematics. In COCOP, there is a need to connect
Matlab R© with the message bus.

AMQP Math Tool Connector is an API for AMQP con-
nectivity from Matlab. The API was developed in Java
and can execute in Matlab as such. Therefore, the API
connects Matlab algorithms and models with any soft-
ware via AMQP. Furthermore, the Java implementation
of Cocop.MessageSerialiser is functional in Matlab, which
enables a full compliance with COCOP message bus.

3.4 Testing and Debugging

To enable safe, secure and efficient operation, it is essential
to discover errors in software as early as possible. In soft-
ware development, ‘testing’ refers to a systematic process
of error detection. Testing should be applied even to data-
intensive tools that optimise plant operation. However,
such testing can be difficult especially if the tools are
stateful and must observe long time periods of production
to be operable. Testing can occur even online in the real en-
vironment, but this hampers observations from untypical
conditions. Besides, this is slow if the production dynamics
is slow, and the repeatability of tests is restricted. There-
fore, there should be tools for early testing with offline
data.

To enable offline testing, COCOP delivered the web ser-
vices Process Data Simulator and Requested History Data
Publisher. Process Data Simulator reads earlier recorded
data from a spreadsheet file (Comma Separated Values)
and saves the values to a local database. Then, it can

publish these values to the message bus as if they came
from an online production system, which enables the test-
ing of simulation tools. The same tests can run as many
times as needed, so the tools under test can be fine tuned.
Process Data Simulator can even accelerate clock time,
which makes testing faster if the related production pro-
cesses have slow dynamics. The application has a Rest
interface for remote operation. Respectively, Requested
History Data Publisher serves past data in the request-
response pattern. This enables the population of values
to applications that otherwise receive data with publish-
subscribe. With publish-subscribe, such population is slow
if the frequency of data publishing is low. For instance,
if the state of a process changes only a few times per
hour, it is better to retrieve the current state explicitly
as applications start up.

Furthermore, in a system of systems, there should be
tools to monitor how the systems interact, as this helps
in resolving errors not only during development but also
in commissioning. Therefore, a message-oriented environ-
ment should have a message log. For this need, the desktop
application Message Logger was developed. Message Log-
ger can monitor all traffic in the message bus, store these
messages in the hard disk and display these.

3.5 Relationship of Items

Table 1 summarises the items of the toolkit. The source
code of each piece of software has been opened in Github 1 .
Therefore, these are available for anyone to exploit or even
develop further.

Fig. 2 shows how the toolkit items relate to COCOP
message bus. The MessageSerialiser APIs implement the
information model for more convenient access in software.
As an example, Message Logger shows how added value
is generated from the APIs. AMQP Math Tool Connector
and AmqpRequestResponseHelper provide an API solely
for AMQP, but they can co-exist with MessageSerialiser
as needed for data processing. The web services Process
Data Simulator and Requested History Data Publisher
communicate via AMQP using the message structures of
COCOP information model.

3.6 Deployment and Use

The deployment and use of the toolkit is straightforward.
The software components are distributed as Dynamic Link
Libraries (.NET) or Java Archives, which are the native
component formats of the platforms. The Message Logger
is a desktop application and only requires .NET platform
to run. The web services can be installed on any computer
that runs NodeJs.

Listing 1 is an example about (1) serialising a message
and (2) deserialising another in an object in C# language.
The example is minimalistic but shows how straightfor-
ward the MessageSerialiser API is. After serialisation, the
XML data would travel along the AMQP message bus.
More thorough code examples are available in each API
documentation 1 .

1 https://kannisto.github.io/Cocop-Toolkit/

	 Petri Kannisto et al. / IFAC PapersOnLine 54-1 (2021) 845–850	 847

Respectively, the API Cocop.MessageSerialiser.Biz imple-
ments structures for production schedules. There struc-
tures come from B2MML (2013) based on the standard
ANSI/ISA-95. The API exists for .NET and Java.

3.2 Request-Response and Publish-Subscribe

The communication scenarios sometimes need a request-
response approach and sometimes publish-subscribe. Re-
quest-response means that a piece of data is explicitly
requested for as needed (‘pull’), whereas publish-subscribe
means that the data source informs any interested parties
about changes in data (‘push’). Of these, publish-subscribe
is native in AMQP. Request-response can be built on top
of it, but this requires additional effort that should be re-
usable between applications.

To re-use the implementation of request-response over
AMQP, Cocop.AmqpRequestResponseHelper API was im-
plemented. The API exists in C#/.NET and Java. To
implement request-response, the developers could instead
use Hypertext-Transfer-Protocol-based (HTTP) web ser-
vices, but this would require a parallel communication
channel. Furthermore, HTTP would require a mechanism
to manage host addresses in the network, whereas the
AMQP-based request-response implementation only needs
topic names in the RabbitMQ server.

3.3 Connectivity of Optimisation Tools

In a plant-wide systems, optimisation tools must be con-
nected to the network. AMQP 0-9-1 has client APIs for
multiple platforms, but this excludes the platforms made
for mathematics. In COCOP, there is a need to connect
Matlab R© with the message bus.

AMQP Math Tool Connector is an API for AMQP con-
nectivity from Matlab. The API was developed in Java
and can execute in Matlab as such. Therefore, the API
connects Matlab algorithms and models with any soft-
ware via AMQP. Furthermore, the Java implementation
of Cocop.MessageSerialiser is functional in Matlab, which
enables a full compliance with COCOP message bus.

3.4 Testing and Debugging

To enable safe, secure and efficient operation, it is essential
to discover errors in software as early as possible. In soft-
ware development, ‘testing’ refers to a systematic process
of error detection. Testing should be applied even to data-
intensive tools that optimise plant operation. However,
such testing can be difficult especially if the tools are
stateful and must observe long time periods of production
to be operable. Testing can occur even online in the real en-
vironment, but this hampers observations from untypical
conditions. Besides, this is slow if the production dynamics
is slow, and the repeatability of tests is restricted. There-
fore, there should be tools for early testing with offline
data.

To enable offline testing, COCOP delivered the web ser-
vices Process Data Simulator and Requested History Data
Publisher. Process Data Simulator reads earlier recorded
data from a spreadsheet file (Comma Separated Values)
and saves the values to a local database. Then, it can

publish these values to the message bus as if they came
from an online production system, which enables the test-
ing of simulation tools. The same tests can run as many
times as needed, so the tools under test can be fine tuned.
Process Data Simulator can even accelerate clock time,
which makes testing faster if the related production pro-
cesses have slow dynamics. The application has a Rest
interface for remote operation. Respectively, Requested
History Data Publisher serves past data in the request-
response pattern. This enables the population of values
to applications that otherwise receive data with publish-
subscribe. With publish-subscribe, such population is slow
if the frequency of data publishing is low. For instance,
if the state of a process changes only a few times per
hour, it is better to retrieve the current state explicitly
as applications start up.

Furthermore, in a system of systems, there should be
tools to monitor how the systems interact, as this helps
in resolving errors not only during development but also
in commissioning. Therefore, a message-oriented environ-
ment should have a message log. For this need, the desktop
application Message Logger was developed. Message Log-
ger can monitor all traffic in the message bus, store these
messages in the hard disk and display these.

3.5 Relationship of Items

Table 1 summarises the items of the toolkit. The source
code of each piece of software has been opened in Github 1 .
Therefore, these are available for anyone to exploit or even
develop further.

Fig. 2 shows how the toolkit items relate to COCOP
message bus. The MessageSerialiser APIs implement the
information model for more convenient access in software.
As an example, Message Logger shows how added value
is generated from the APIs. AMQP Math Tool Connector
and AmqpRequestResponseHelper provide an API solely
for AMQP, but they can co-exist with MessageSerialiser
as needed for data processing. The web services Process
Data Simulator and Requested History Data Publisher
communicate via AMQP using the message structures of
COCOP information model.

3.6 Deployment and Use

The deployment and use of the toolkit is straightforward.
The software components are distributed as Dynamic Link
Libraries (.NET) or Java Archives, which are the native
component formats of the platforms. The Message Logger
is a desktop application and only requires .NET platform
to run. The web services can be installed on any computer
that runs NodeJs.

Listing 1 is an example about (1) serialising a message
and (2) deserialising another in an object in C# language.
The example is minimalistic but shows how straightfor-
ward the MessageSerialiser API is. After serialisation, the
XML data would travel along the AMQP message bus.
More thorough code examples are available in each API
documentation 1 .

1 https://kannisto.github.io/Cocop-Toolkit/

848	 Petri Kannisto et al. / IFAC PapersOnLine 54-1 (2021) 845–850

Table 1: The items of COCOP Toolkit.

Item Platform(s) Description

– – APIs (software components)

Cocop.MessageSerialiser.Meas .NET, Java APIs to serialise generic data as XML

Cocop.MessageSerialiser.Biz .NET, Java APIs to serialise production schedules as XML

Cocop.AmqpRequestResponseHelper .NET, Java APIs to implement request-response communication via
AMQP

AMQP Math Tool Connector Java API to connect Matlab R© with AMQP

– – Web services

Process Data Simulator NodeJs Pushes historical process data to AMQP for simulation
purposes; operated with Rest API

Requested History Data Publisher NodeJs Serves historical data over AMQP; request-response API
over AMQP

– – Desktop applications

Message Logger .NET Application to store and display messages from AMQP

AMQP 0-9-1
Protocol

COCOP information model (XML)
- Generic data structures (from OGC standards)
- Production schedules (B2MML/ISA-95)

MessageSerialiser.Meas
MessageSerialiser.Biz

AmqpRequestResponseHelper

Message Logger

Requested History
Data Publisher

AMQP Math
Tool Connector Process Data

Simulator

Implements

Uses

Uses

Uses

Uses
UsesUses

Uses Uses

API
WEB SERVICE WEB SERVICE

API

DESKTOP APP

API

Fig. 2: The items in COCOP Toolkit and their relationship
with the message bus.

Listing 1: Serialising a measurement value with Co-
cop.MessageSerialiser.Meas API (C#.NET version).

// 1 . Create measurement message with metadata
var read ing = new Item Measurement (” Cel ” , 2 2 . 7) ;
var obs = new Observation (read ing) {

FeatureOf In te r e s t = ”Plant2 /Area200/TI203 ” ,
Resu l tQual i ty = DataQuality . CreateGood ()

} ;

// S e r i a l i z e the message to pub l i sh to AMQP bus
byte [] xmlBytes = obs . ToXmlBytes () ;

// . . .
// 2 . D e s e r i a l i z e r e c e i v ed message and
// get s enso r read ing
byte [] xmlBytesIn ; // Raw data recvd from AMQP
var obse rva t i on In = new Observation (xmlBytesIn) ;
double t i203Reading = ((Item Measurement)

obse rva t i on In . Result) . Value ;

4. PRACTICAL INDUSTRIAL APPLICATIONS

COCOP Toolkit was utilised in communications in three
prototypes. The domains include copper smelting, steel
refinement and environmental assessment.

4.1 Plant-wide Coordination in Copper Smelter

The first use case is the plant-wide coordination of a cop-
per smelter. The example smelter produces copper from
sulfide ores with unit processes, such as flash smelting,
converting and anode refining and casting. To operate
efficiently, the processes must be coordinated, as each has a
stateful nature and must control factors, such as the heat
balance and composition of the material. The operation
necessitates human expertise, but computerised advisory
tools help, as the observation of processes is difficult due
to heat, dirt and toxic substances. Besides, plant-wide
coordination is a complex optimisation problem (Korpi
et al., 2019).

The prototype is a mixture of publish-subscribe commu-
nication and legacy or proprietary technologies. The users
are operators that receive advisory from user interfaces
executed in Outotec ACT (Advanced Control Tool). This
includes advisory for individual unit processes as well as
a plant-wide scheduler. Furthermore, ACT manages the
execution of tools that estimate the state of each unit pro-
cess. For state estimation, all process data is retrieved over
Open Platform Communications Data Access (OPC DA).
However, state estimation also uses laboratory results and
crane data retrieved from Structured Query Language
(SQL) databases and communicated over the message bus
whenever new information appears. The actual plant-wide
coordination occurs in a scheduling software that instructs
operators about the timing and parametrisation of the unit
processes to reach what is considered the global optimum.
The scheduler was developed with Matlab R©. For illustra-
tion about the prototype, see Fig. 3 (a). In the message
bus, all communication occurs with the publish-subscribe
pattern. In the future, at least OPC DA communication
should occur via the message bus instead.

COCOP message bus

Crane
database
SQL

COCOP msg bus COCOP message bus

LCA server
FMI, Sulca

Control system
Valmet DNA
OPC UA

Monitoring
Outotec ACT

Parametrisation
server

Control room
client

(a) Copper smelter (b) Steel plant (c) Online LCA

Laboratory results
database
SQL

Scheduler
Matlab

Advisory for unit processes;
scheduler view
Outotec ACT

Process data
OPC DAʃ Ƹ f

Fig. 3: Prototypes illustrated.

Because existing systems lack a compatible interface,
adapters were developed. Matlab uses AMQP Math Tool
Connector, whereas all other adapters were implemented
in .NET with the APIs Cocop.MessageSerialiser.Meas and
Cocop.MessageSerialiser.Biz.

4.2 Parametrisation in Steel Production

The second use case is to reduce the occurrence of surface
defects in micro-alloyed steel products. In steel production,
COCOP Toolkit was utilised in a prototype made for the
parametrisation of the unit process continuous casting. To
parametrise this process appropriately with steel temper-
ature and thickness, related knowledge is necessary. This
knowledge can be modelled in an advisory tool to help the
operators.

The steel prototype receives advantage from the support
for multi-paradigm communications in COCOP Toolkit.
The user interface of operators is a client, and the actual
parametrisation task occurs in a server. The task can take
an arbitrary time to finish, so pure request-response would
appear unresponsive to the user. Instead, an immediate
response is returned to acknowledge the task, and the
actual result is delivered later with the publish-subscribe
pattern. For a better user experience, the task could return
intermediate information about progress, but this was left
as a future task. Furthermore, the prototype omits the
connection with an actual knowledge module but still
indicates the suitability of COCOP Toolkit for the applica-
tion. For illustration, see Fig. 3 (b). The COCOP Toolkit
APIs utilised are Cocop.AmqpRequestResponseHelper and
Cocop.MessageSerialiser.Meas implemented in .NET.

4.3 Online Life Cycle Assessment

The third use case implements Online Life Cycle Assess-
ment (Online LCA) to estimate the environmental impacts
of production processes during operation. This approach
enables LCA to guide plant operators in an active man-
ner rather than restrict to offline estimates. In COCOP,
Online LCA was implemented in a distillation column of
industrial ethanol in a laboratory. The column runs actual
industrial equipment, such as pumps and valves, and a
Valmet DNA control system. To perform experiments, an
LCA server was developed to estimate the realised contri-
bution of the process to climate change (carbon dioxide
equivalent) and acidification (sulfur dioxide equivalent).

The developed prototype consists of three components
that communicate via COCOP message bus (see Fig. 3

(c)). First, LCA results are visualised in Outotec ACT that
has been connected to the message bus via an adapter.
ACT also shows actual measurement values from the
distillation process. Second, the measurement values come
to the message bus from Valmet DNA via another adapter
that retrieves them from an OPC UA interface. Third, the
actual LCA occurs in an Online LCA server that receives
measurement values from the message bus and publishes
the respective LCA results. The LCA model has been
exported from a tool called Sulca and has a Functional
Mockup Interface (FMI) connected to the message bus
with an adapter. All adapters were implemented in .NET
with Cocop.MessageSerialiser.Meas API. The architecture
was earlier presented by Kannisto et al. (2019).

5. DISCUSSION AND CONCLUSIONS

This paper presented COCOP Toolkit to implement indus-
trial communications in a loosely coupled, interoperable
manner. The toolkit helps in implementing the COCOP
architecture, which is based on AMQP 0-9-1 protocol and
a common information model (Hästbacka et al., 2018a).
These enable interoperability between software platforms
in the plant-wide scope as well as data-driven applications,
both of which gain importance in future industrial systems
(Panetto et al., 2019).

COCOP Toolkit comprises various software items that aid
the developers of software and simulation tools. An API
facilitates the implementation of request-response commu-
nication, whereas another provides an API for message
serialisation. A third API enables connectivity with a
mathematics environment (Matlab R©). Furthermore, web
services feed historical data to enable the testing of state-
ful simulation models. This enables the unit testing of
optimisation modules with real data, which an important
but not always easy task. However, the unit testing can
reduce development time and costs, as it enables early
corrective actions. Finally, a logging application facilitates
error detection, which helps not only in development but
also in commissioning if problems occur.

The control software presented in Section 4 demonstrated
the applicability of the toolkit. A total of three solutions
was introduced, each in a different production system: cop-
per smelter, steel plant and distillation column for ethanol.
In each solution, the toolkit reduced development effort in
communications, so the developers could concentrate on
application logic instead.

	 Petri Kannisto et al. / IFAC PapersOnLine 54-1 (2021) 845–850	 849

COCOP message bus

Crane
database
SQL

COCOP msg bus COCOP message bus

LCA server
FMI, Sulca

Control system
Valmet DNA
OPC UA

Monitoring
Outotec ACT

Parametrisation
server

Control room
client

(a) Copper smelter (b) Steel plant (c) Online LCA

Laboratory results
database
SQL

Scheduler
Matlab

Advisory for unit processes;
scheduler view
Outotec ACT

Process data
OPC DAʃ Ƹ f

Fig. 3: Prototypes illustrated.

Because existing systems lack a compatible interface,
adapters were developed. Matlab uses AMQP Math Tool
Connector, whereas all other adapters were implemented
in .NET with the APIs Cocop.MessageSerialiser.Meas and
Cocop.MessageSerialiser.Biz.

4.2 Parametrisation in Steel Production

The second use case is to reduce the occurrence of surface
defects in micro-alloyed steel products. In steel production,
COCOP Toolkit was utilised in a prototype made for the
parametrisation of the unit process continuous casting. To
parametrise this process appropriately with steel temper-
ature and thickness, related knowledge is necessary. This
knowledge can be modelled in an advisory tool to help the
operators.

The steel prototype receives advantage from the support
for multi-paradigm communications in COCOP Toolkit.
The user interface of operators is a client, and the actual
parametrisation task occurs in a server. The task can take
an arbitrary time to finish, so pure request-response would
appear unresponsive to the user. Instead, an immediate
response is returned to acknowledge the task, and the
actual result is delivered later with the publish-subscribe
pattern. For a better user experience, the task could return
intermediate information about progress, but this was left
as a future task. Furthermore, the prototype omits the
connection with an actual knowledge module but still
indicates the suitability of COCOP Toolkit for the applica-
tion. For illustration, see Fig. 3 (b). The COCOP Toolkit
APIs utilised are Cocop.AmqpRequestResponseHelper and
Cocop.MessageSerialiser.Meas implemented in .NET.

4.3 Online Life Cycle Assessment

The third use case implements Online Life Cycle Assess-
ment (Online LCA) to estimate the environmental impacts
of production processes during operation. This approach
enables LCA to guide plant operators in an active man-
ner rather than restrict to offline estimates. In COCOP,
Online LCA was implemented in a distillation column of
industrial ethanol in a laboratory. The column runs actual
industrial equipment, such as pumps and valves, and a
Valmet DNA control system. To perform experiments, an
LCA server was developed to estimate the realised contri-
bution of the process to climate change (carbon dioxide
equivalent) and acidification (sulfur dioxide equivalent).

The developed prototype consists of three components
that communicate via COCOP message bus (see Fig. 3

(c)). First, LCA results are visualised in Outotec ACT that
has been connected to the message bus via an adapter.
ACT also shows actual measurement values from the
distillation process. Second, the measurement values come
to the message bus from Valmet DNA via another adapter
that retrieves them from an OPC UA interface. Third, the
actual LCA occurs in an Online LCA server that receives
measurement values from the message bus and publishes
the respective LCA results. The LCA model has been
exported from a tool called Sulca and has a Functional
Mockup Interface (FMI) connected to the message bus
with an adapter. All adapters were implemented in .NET
with Cocop.MessageSerialiser.Meas API. The architecture
was earlier presented by Kannisto et al. (2019).

5. DISCUSSION AND CONCLUSIONS

This paper presented COCOP Toolkit to implement indus-
trial communications in a loosely coupled, interoperable
manner. The toolkit helps in implementing the COCOP
architecture, which is based on AMQP 0-9-1 protocol and
a common information model (Hästbacka et al., 2018a).
These enable interoperability between software platforms
in the plant-wide scope as well as data-driven applications,
both of which gain importance in future industrial systems
(Panetto et al., 2019).

COCOP Toolkit comprises various software items that aid
the developers of software and simulation tools. An API
facilitates the implementation of request-response commu-
nication, whereas another provides an API for message
serialisation. A third API enables connectivity with a
mathematics environment (Matlab R©). Furthermore, web
services feed historical data to enable the testing of state-
ful simulation models. This enables the unit testing of
optimisation modules with real data, which an important
but not always easy task. However, the unit testing can
reduce development time and costs, as it enables early
corrective actions. Finally, a logging application facilitates
error detection, which helps not only in development but
also in commissioning if problems occur.

The control software presented in Section 4 demonstrated
the applicability of the toolkit. A total of three solutions
was introduced, each in a different production system: cop-
per smelter, steel plant and distillation column for ethanol.
In each solution, the toolkit reduced development effort in
communications, so the developers could concentrate on
application logic instead.

850	 Petri Kannisto et al. / IFAC PapersOnLine 54-1 (2021) 845–850

COCOP Toolkit is analogous with the OPC UA technol-
ogy family, as this aims at interoperability in multi-vendor
environments. However, COCOP Toolkit has features ex-
cluded from OPC UA, as this currently lacks publish-
subscribe communication with message routing supported
(OPC UA PubSub, 2017). Therefore, the future OPC
UA should address this issue, as this would enable more
scalable communications in the plant-wide scope.

There are still tasks of future research. COCOP Toolkit
could be experimented in additional industrial use cases.
Especially there could be studies in the manufacturing of
discrete products or assembling machines, as the previous
studies have observed only processes industry. Further-
more, the toolkit could be aligned with OPC UA and pos-
sibly aim at compatibility, although COCOP Architecture
has features excluded from OPC UA.

ACKNOWLEDGEMENTS

The following persons in particular contributed to the
development of the toolkit: Jussi Leinonen and Jukka
Jääskeläinen from Metso Outotec, Finland; Olli Suominen
and Tapio Vaaranmaa from Tampere University, Finland;
Kari Rainio from VTT Technical Research Centre of
Finland; Peter Craamer and Zigor Lopez from Mondragon
Sistemas, Spain.

REFERENCES

AMQP 0-9-1 (2008). AMQP: Advanced message queueing
protocol version 0-9-1. URL http://www.amqp.org/
specification/0-9-1/amqp-org-download [Retr. 27
Aug 2020].

B2MML (2013). Business to manufacturing markup
language. URL http://www.mesa.org/en/B2MML.asp
[Retr. 27 Aug 2020].

Boyd, A., Noller, D., Peters, P., Salkeld, D., Thomasma,
T., Gifford, C., Pike, S., and Smith, A. (2008). SOA in
manufacturing guidebook. MESA International. URL
ftp://public.dhe.ibm.com/software/plm/pdif/
MESA_SOAinManufacturingGuidebook.pdf [Retr. 11
May 2020].

Cheng, Y., Chen, K., Sun, H., Zhang, Y., and Tao, F.
(2018). Data and knowledge mining with big data
towards smart production. J. Ind. Inf. Integr., 9, 1–13.
doi:10.1016/j.jii.2017.08.001.

COCOP (2020). COCOP SPIRE H2020 project. URL
https://cocop-spire.eu/ [Retr. 14 Aug 2020].

de Souza, L.M.S., Spiess, P., Guinard, D., Köhler, M.,
Karnouskos, S., and Savio, D. (2008). SOCRADES:
A web service based shop floor integration infrastruc-
ture. In The Internet of Things: First International
Conference IOT 2008, 50–67. Springer. doi:10.1007/
978-3-540-78731-0 4.

Goldin, E., Feldman, D., Georgoulas, G., Castano, M., and
Nikolakopoulos, G. (2017). Cloud computing for big
data analytics in the process control industry. In 25th
Mediterranean Conference on Control and Automation
(MED), 1373–1378. doi:10.1109/MED.2017.7984310.

Gosewehr, F., Wermann, J., Borsych, W., and Colombo,
A.W. (2017). Specification and design of an industrial
manufacturing middleware. In 2017 IEEE 15th Inter-
national Conference on Industrial Informatics (INDIN),
1160–1166. doi:10.1109/INDIN.2017.8104937.

Hästbacka, D., Kannisto, P., and Vilkko, M. (2018a).
Data-driven and event-driven integration architecture
for plant-wide industrial process monitoring and control.
In IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, 2979–2985. doi:10.1109/
IECON.2018.8591323.

Hästbacka, D., Kannisto, P., and Vilkko, M. (2018b). In-
formation models and information exchange in plant-
wide monitoring and control of industrial processes. In
10th International Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge Man-
agement - Volume 3: KMIS, 216–222. doi:10.5220/
0006960602160222.

Kannisto, P. and Hästbacka, D. (2018). Asynchronous
communication platform concept to coordinate large-
scale industrial processes. IFAC-PapersOnLine, 51(11),
1403 – 1408. doi:10.1016/j.ifacol.2018.08.325. 16th
IFAC Symposium on Information Control Problems in
Manufacturing INCOM 2018.

Kannisto, P., Hästbacka, D., Rainio, K., Leinonen, J.,
Alarotu, M., Pajula, T., Savolainen, J., and Vilkko,
M. (2019). Plant-wide communication architecture en-
abling online life cycle assessment. In Automaatiopäivät
23. URL https://pdfs.semanticscholar.org/b850/
3a07fd0cee2bda9cb2eb8b61ba07e57df04e.pdf [Retr.
28 Aug 2020].

Karnouskos, S., Colombo, A.W., Bangemann, T., Man-
ninen, K., Camp, R., Tilly, M., Sikora, M., Jammes,
F., Delsing, J., Eliasson, J., Nappey, P., Hu, J., and
Graf, M. (2014). The IMC-AESOP architecture for
cloud-based industrial cyber-physical systems. In A.W.
Colombo et al. (eds.), Industrial Cloud-based Cyber-
physical Systems: The IMC-AESOP Approach, 49–88.
Springer. doi:10.1007/978-3-319-05624-1 3.

Korpi, M., Suominen, O., Jansson, J., Pihlasalo, J., and
Vilkko, M. (2019). Plant-wide optimization of a copper
smelter: How to do it in practice? In European Metal-
lurgical Conference EMC 2019 Volume 1, 95–106.

OGC (2020). Open geospatial consortium. URL https://
www.ogc.org/ [Retr. 27 Aug 2020].

O’Hara, J. (2007). Toward a commodity enterprise middle-
ware. Queue, 5(4), 48–55. doi:10.1145/1255421.1255424.

OPC Products (2020). URL https://opcfoundation.
org/products [Retr. 27 Aug 2020].

OPC UA (2017). OPC unified architecture specification
part 1, overview and concepts, 1.04. OPC Foundation.

OPC UA PubSub (2017). OPC unified architecture spec-
ification part 14, PubSub, release 1.04.

Panetto, H., Iung, B., Ivanov, D., Weichhart, G., and
Wang, X. (2019). Challenges for the cyber-physical
manufacturing enterprises of the future. Annu. Rev.
Control, 47, 200–213. doi:10.1016/j.arcontrol.2019.02.
002.

Sarnovsky, M., Bednar, P., and Smatana, M. (2018). Big
data processing and analytics platform architecture for
process industry factories. Big Data Cogn. Comput.,
2(1), 3. doi:10.3390/bdcc2010003.

Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johns-
son, C., Lundholm, T., and Lennartson, B. (2017). An
event-driven manufacturing information system archi-
tecture for Industry 4.0. Int. J. Prod. Res., 55(5), 1297–
1311. doi:10.1080/00207543.2016.1201604.

