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A B S T R A C T

Medical artificial intelligence (AI) systems have been remarkably successful, even outperforming human
performance at certain tasks. There is no doubt that AI is important to improve human health in many ways
and will disrupt various medical workflows in the future. Using AI to solve problems in medicine beyond
the lab, in routine environments, we need to do more than to just improve the performance of existing AI
methods. Robust AI solutions must be able to cope with imprecision, missing and incorrect information, and
explain both the result and the process of how it was obtained to a medical expert. Using conceptual knowledge
as a guiding model of reality can help to develop more robust, explainable, and less biased machine learning
models that can ideally learn from less data. Achieving these goals will require an orchestrated effort that
combines three complementary Frontier Research Areas: (1) Complex Networks and their Inference, (2) Graph
causal models and counterfactuals, and (3) Verification and Explainability methods. The goal of this paper is
to describe these three areas from a unified view and to motivate how information fusion in a comprehensive
and integrative manner can not only help bring these three areas together, but also have a transformative role
by bridging the gap between research and practical applications in the context of future trustworthy medical
AI. This makes it imperative to include ethical and legal aspects as a cross-cutting discipline, because all future
solutions must not only be ethically responsible, but also legally compliant.
. Introduction and motivation

Artificial intelligence in medicine is on everyone’s lips. Politicians
round the world have declared its use a worthy goal. Industry sees
ts use as a huge driver of growth, and medicine sees it as a great
pportunity for solving medical problems, providing new insights, and

∗ Corresponding author at: Medical University Graz, Austria.
E-mail address: andreas.holzinger@medunigraz.at (A. Holzinger).

improving the quality of decision support. AI and machine learning
will, and already are, transforming many workflows. As a result, society
has recently seen an upsurge of success stories and use cases in which AI
has played a major role in realizing unprecedented levels of diagnostic
performance [1–9].
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Fig. 1. Graphical abstract: Information Fusion as integrative cross-sectional topic.
In order to use AI to solve problems in medicine, biology, and life
sciences outside of our labs and in routine settings, there is an urgent
need to move beyond mere benchmarking and improve the perfor-
mance of methods that work only with independent and identically
distributed (i.i.d.) data. Even the best current machine learning models
do not generalize well, have difficulty with small training datasets [10],
and are sensitive to even small perturbations [11–13]. Moreover, the
most promising approaches are difficult for human experts to interpret,
however, most importantly, they are not able to infer causal relation-
ships. Therefore, explainability and robustness have been declared by
the European Union as the most important properties for successful
medical AI. Robustness and explainability are also important prerequi-
sites for discovering causal relationships and enabling the verifiability
of machine decisions by a human expert in a given context. This cannot
be achieved by a single approach, but requires concerted action from
complementary disciplines.

Research and teaching are trying to keep up with these trends in
order to meet these functional requirements for medical AI. A system-
atic and up-to-date treatment of the topic in research-led teaching is
therefore not only necessary but crucial for the practical and effective
implementation of AI in the future in order to secure the increasing
demand for highly qualified specialists in Europe and worldwide. The
task of this new generation of experts will be to bring the latest
developments into daily application.

The goal of this position paper is to identify the most relevant
pioneering frontier research areas and make the case for why and how
they can contribute to a concerted integrative effort to make future
medical AI efficient and effective in practice. Specifically, we discuss
on three Frontier Research Areas (FRA):

(1) Complex Networks and their Inference (CNI);
(2) Graph Causal models and Counterfactuals (GCC); and
(3) Verification and Explainability Methods (VEM).

All through the above FRA, we advocate for information fusion as
the integrative cross-cutting catalyst that unleashes a great chance to
unify and synergize these three FRA. The new ‘‘AI spring’’ is causing
an exponential increase not only in interest in AI, but also an actual
increase in the use of AI in all areas of life, including medicine. This
inevitably raises questions of reliability, safety, fairness, as well as
moral and ethical integrity [14], in addition to questions of robustness
and explainability. Therefore, ethical and legal aspects must always
be included. All future solutions must not only be ethically responsi-
ble [15], but also legally compliant [16]. The European Union has taken
a clear stance on AI: AI must be human-centered and trustworthy. To be
trustworthy, any AI must comply with applicable rules and regulations,
adhere to ethical principles [17], and be implemented in a secure and
264
robust manner, as defined by the EU High-Level Expert Group on AI.1
To this end, and following 1, a cyclic, iterative, agile human-centered
AI redesign process, based on agile user-centered design methods [18]
is needed to intertwine the proposed frontier topics with respect to
the proposed information fusion approach, eventually reaching the
degrees of trustworthiness, robustness and explainability required to
fully harness the potential of medical AI.

This paper is organized as follows: for each Frontier Research Area,
we begin with a few selected specific problems to show what problems
each FRA addresses. We proceed by describing why the topic under
study by every FRA is a problem for medical AI, and the extent to
which the current state of the art falls short of what is needed to solve
the problem. We then describe how the problem can be addressed,
and present some promising work in the literature that goes in the
right direction for this FRA. In a subsequent section, which we refer
to as ‘‘Desiderata’’, we list some general characteristics and features
that future technical achievements in this FRA should have for this
application domain. We conclude each section by highlighting the
practical benefits of realizing this FRA and how it will help bridge the
gap between scientific achievements and their practical implementation
in the medical domain.

2. Frontier research area 1: Complex networks and their inference

2.1. What: Fighting complex diseases poses many problems in the integra-
tion and scalability of machine learning methods

Exploring and researching complex diseases such as arthritis, brain
disorders, cancer, or infectious diseases such as COVID-19 requires
novel medical decision support systems that are able to incorporate not
only humans into the loop, but also integrative analyses combining di-
verse omics datasets along with clinical information from a wide variety
of modalities [19], using scalable methods for data fusion and min-
ing [20], machine learning, statistics, graph theory and graph visual-
ization into low-dimensional representations because human cognition
is not optimized to work well in high-dimensional spaces. Among the
myriads of properties describing genome, epigenome, transcriptome,
microbiome, phenotype, lifestyle, etc., no single data type, however,
can capture the complexity of all the factors relevant to understanding
a phenomenon such as a disease. A key challenge is the identification of
effective models to provide a relevant systems view [21].

Additional insights can be gained and in vivo validations better
planned by trying to understand the conservation of deregulated genes,
networks, and pathways across organisms [22,23] – which is a major
and, to date, unsolved problem.

1 https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai (access:
June, 17, 2021).

https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
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Developing effective knowledge repositories to support the gover-
nance, processing, inference, analysis and interactive visualization of
integrated omics [9] and network data is essential [24–38]. Integrating
diverse assays and algorithms, in turn, helps to address both false
positives and false negatives [39,40].

2.2. Why: Integrating data with networks makes it possible to identify novel
relationships between data silos

Currently, explainable AI (XAI) developments are mostly uni-modal.
However, enriched, more feasible explanations in the medical do-
main can be achieved if they consider multimodality. Integrating data
with networks – protein interactions networks, transcription regula-
tory networks, microRNA-gene networks [41], metabolic and signaling
pathways – enables to identify relationship among data silos [42].
Further analyzing these annotated networks with graph theory algo-
rithms or knowledge engineering tools provides insights into their
structure [43,44], which in turn, can characterize the function of
these proteins, transcription factors and microRNAs [45]. Combining
machine learning, data mining and graph theory is difficult, but critical
to maximize the impact on translational research [46], enable more
accurate and explainable modeling, increase our understanding of com-
plex diseases [47,48] and, ultimately, support P4 medicine (precision,
personalized, participatory, preventive) medicine [49–51].

Challenges at the intersection of machine learning and network biol-
ogy for Next-Generation Machine Learning for Biological Networks, which
ould impact disease biology, drug discovery, microbiome research,
nd synthetic biology are discussed in Camacho et al. (2018) [52].

.3. How: Quantitative graph theory can help interpret integrated omics
ata within diseases

Graphs have been used in life sciences for a long time. In re-
ent years, there is a growing trend to combine elements of graph
heory, machine learning, and statistical data analysis, which offers
remendous opportunities especially to support interactive knowledge
iscovery for personalized medicine [53]. In network analysis, com-
lex biomedical graph data is examined, and the increasingly easy
eneration of large amounts of genomics, proteomics, metabolomics
tc., and signaling data enables the construction of large networks
hat provide a framework for understanding the molecular basis of
hysiological and pathological conditions. Such complex networks have
een investigated extensively for several purposes [54,55]. On the one
and, networks have been explored in the context of studying complex
ystems by means of graphs. Examples thereof are biological, linguistic,
hemical and technical networks [56]. Other contributions in this area
elate to study motifs and modules within complex networks [55]. On
he other hand, lots of quantitative analyses on networks have been
erformed [57].

To shed light on this problem, we briefly sketch Quantitative Graph
heory, introduced by Dehmer and Emmert-Streib [58]. Quantitative
raph Theory can be divided into two major categories, namely Com-
arative Network Analysis, Network Characterization and networks ex-
lainable by design. Comparative Network Analysis relates to measuring
he structural similarity between networks [59]. This can be done by
sing so-called exact or inexact graph matching, see [60,61]. Exact
raph matching is based on the concept of graph isomorphism. Inexact
raph matching relates to determining a gradual change on the simi-
arity between graphs by utilizing graph invariants. Another approach
or measuring the similarity between graphs is based on utilizing topo-
ogical indices as an input when using distance or similarity measures
or real numbers [62].

Next, Network Characterization using quantitative graph complexity
easures can be employed. A network measure is a function that maps
etwork instances to positive real numbers. In mathematical chemistry,
265

hey are often referred to as topological indices [63]. Many complexity
measures for graphs have been developed, e.g., based on distances,
vertex degrees, graph automorphism and so forth. We refer to [63–65]
for more details. One promising domain for the future is the emerging
field of geometric deep learning, which is an umbrella term for new
techniques that attempt to generalize (structured) deep neural models
to non-Euclidean domains, such as graphs and manifolds [66]. Machine
learning of networks is promising and has recently been used very
successfully to fight Covid-19 [67].

With respect to networks explainable by design, compositional part-
based object detecting and classifying neural symbolic explainable
models [68] can aid the explanations based on not only on coarse
grained labels, but more fine grained findings, and provide a wider
provenance that traces the explanation to the very source, i.e., at the
data acquisition stage. This goes beyond current XAI techniques that
limit their explanations to provide rationale only for a given input
and output sample data [69–71]. Going beyond uni-modal explanations
makes the information fusion aspect to be of paramount importance in
the explanation process, to allow traceability from the data collection,
to the output explanation interfaces with a diverse set of audience pro-
files that participate in the medical and clinical processes characterized
by different backgrounds and expertise.

Apart from the methods sketched above, networks have also been
used in other areas including data mining, machine learning, lexical
semantics, information fusion [72–75] and integrative computational
biology, such as cell differentiation [44].

Despite inherent noise present in interaction datasets, systematic
analyses of these networks uncover biologically relevant information,
such as lethality [76,77], functional organization [78–81], hierarchi-
cal structure [44,82,83], modularity [45,84–87] and network-building
motifs [43,88,89], even across time [50]. This suggests that networks
have a strong structure-function relationship [43], which can be used
to help interpret integrated omics data within diseases [42,90], across
diseases [91] and across organisms [36,37], understand drug mecha-
nism of action and toxicity [92], and performing causal inference on
big data [93].

2.4. Desiderata: Fusing machine learning with systematic graph theory pro-
motes the knowledge gain of multi-modal data and their interrelationships

Many interactions are transient, so networks change in different
tissues or under different stimuli [37,94–96]. Studying the dynamics
of these networks is an exponentially complex task. Many stable com-
plexes show strong co-expression of corresponding genes, whereas tran-
sient complexes lack this support [97,98]. These contextual network
dynamics must be considered when linking interactions to phenotypes
and when studying the networks topology. Analyzing such insights on
the network dynamics towards the identification and minimization of
different biases of individual detection methods, the simple intersection
of results achieves high precision at the cost of low recall.

Systematic graph theory analyses of dynamic changes in interac-
tion networks, combined with probabilistic modeling [99], and inte-
grated with gene and protein cancer profiles enable comprehensive
analyses of complex diseases such as cancer [100–102], generating
new insights [42,51], robust biomarkers [90,91,103] and models that
explain causal relationships through network inference [104,105]. Im-
plementing algorithms using heuristics fine-tuned for interaction net-
works [106–108] will ensure their scalability. Finally, we also highlight
achievements reported lately on the use of Deep Learning methods to
undertake modeling problems formulated over interaction networks,
which have so far elicited promising results [7,109].

2.5. What for: Pushing the boundaries in this FRA will help understanding
complex diseases

There are many benefits emerging from early steps taken along this

FRA. For instance, some of the most successful network-based methods
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of gene group identification for class prediction have been the score-
based sub-network markers [110–113]. Sub-networks identified using
these approaches were recently shown to be highly conserved across
studies and to perform better than individual genes or pre-defined gene
groups at predicting breast cancer metastasis [111]. Improving these
methods by considering network modularity results in better prediction
of aging [45]. Combining existing known and predicted interactions
with novel local co-expression annotation of existing edges will elu-
cidate disease-specific dynamics and identify local network structures
(graphlets, [107,114]) that are the most aberrant components in the
cancer network, as compared to a normal control case. Network dynam-
ics [94], in turn, enable explainable modeling of healthy and disease
signaling cascades [115], or modeling cancer progression [50].

3. Frontier research area 2: Graph causal models and counterfac-
tuals

3.1. What: Causal learning from observational data is a central problem
relevant to many application domains

Causal learning from pure observational data and predictive mod-
eling is a general problem relevant for many application domains. It is
gaining much interest recently and has been largely tackled by the AI
community [116,117]. There are a number of fundamental problems
that have existed for a long time and have not yet been solved. The
renowned American philosopher Charles S. Peirce argued that human
induction must be guided by special aptitudes for guessing right, which
led to the challenge of simplicity or parsimony, which is even going
back to Occam’s razor. Alone, the concept of simplicity poses a lot of
problems for both causal machine learning [118] and causal human
learning [119]. If causal inference has a rational basis, we would expect
the resulting causal knowledge to allow the formulation of coherent
answers to a variety of causal questions.

Two main problems about causal relationships can be distinguished
in the literature: (1) ‘‘What is the probability that a cause causes (or
prevents) an effect?’’ and (2) ‘‘What is the probability that a causal
relationship exists between these two variables?’’ Or, put another way,
‘‘Does the cause have a nonzero probability of producing (or prevent-
ing) the effect?’’ [120]. The generality and wide spectrum of practical
scenarios in which such questions can be formulated makes the discov-
ery of causal relationships from data a subject under vibrant study in
diverse fields and disciplines. AI-based medicine is not an exception,
with specific tasks such as diagnosis and treatment calling for further
advances in causality inference that unveil novel interventional and
prescriptional strategies from medical data.

3.2. Why: Typically, the underlying causal model that accounts for all
factors affecting an outcome variable of interest is missing

A common challenge in applying causal analysis is the lack of an
underlying causal model that can account for all factors influencing an
outcome variable of interest. Recent progress has been done on causal
signal extraction from images [121,122]. Causality has also been ap-
plied to generative neural networks and proxy variables in an attempt
to better deal with the kind of data used by Deep Learning [123,124].
Nevertheless, the international research community agrees that there
are a lot of shortcomings and many open problems to be solved, for
instance, dealing with the all possible underlying, and often unknown,
factors of variation and variables on which causality is feasible to be
266

studied in practice [117,125,126].
3.3. How: XAI with counterfactual explanations and causal algorithmic
recourse can help determine what is causally related

Formal reasoning about causal relations between features 𝐗 =
𝑋1,… , 𝑋𝑑 ] can be done by using a structural causal model, i.e. a
on-parametric model with independent errors according to Judea
earl [127,128]. In the following we introduce some basics to show
ow this can be helpful. For more extensive introductions, please refer
o [120,129]. The data-generating process of 𝐗 is described by an
unknown) underlying structural causal model  of the general form:

= (𝐒, 𝑃𝐔), 𝐒 = [𝑋𝑟 ∶= 𝑓𝑟(𝐗𝑝𝑎(𝑟), 𝑈𝑟)]𝑑𝑟=1, 𝑃𝐔 = 𝑃𝑈1
×⋯ × 𝑃𝑈𝑑

. (1)

The structural equations 𝐒 are a set of assignments generating each
bserved variable 𝑋𝑟 as a deterministic function 𝑓𝑟 of its causal parents
𝑝𝑎(𝑟) ⊆ 𝐗⧵𝑋𝑟 and an unobserved noise variable 𝑈𝑟. Here it is important

o note that 𝑃𝐔 is a factorizing joint distribution over background
ariables which introduces uncertainty due to the lack of observations.
he assumption of mutually independent noises (i.e., a fully factorized
𝐔) entails that there is no hidden confounding and is referred to as
ausal sufficiency. For an experimental proof, we refer to Karimi et al.
2020) [129].

Structural causal models are often represented by a so-called causal
raph . Such causal graphs can be obtained by drawing a directed edge
rom each node in 𝐗𝑝𝑎(𝑟) to 𝑋𝑟 for 𝑟 ∈ {1,… , 𝑑}.

Figs. 2(b) and 2(c) show a typical textbook example. We assume
enceforth that  is acyclic. In this case, the data-generating process 

implies a unique observational distribution 𝑃𝐗, which factorizes over ,
defined as the push-forward of 𝑃𝐔 via 𝐒.

The structural causal model framework allows for the study of inter-
ventional distributions, describing a situation in which some variables
are manipulated externally. The structural causal model also implies
distributions over counterfactuals, i.e. statements about (hypothetical)
interventions that were all else being equal (Ceteris Paribus, namely, the
analysis of the effect of one variable on another, assuming that all other
variables remain the same).

When formulated in the context of classification via a model ℎ, a
popular approach to the study of counterfactuals is to find so-called
(nearest) counterfactual explanations [130] where the term ‘‘counterfac-
tual’’ is meant in the sense of the closest possible ‘‘fact’’ with a different
outcome. Counterfactual predictions consist of asking ourselves what
would have been the effect of something if we had not taken an
action, i.e., alternative scenarios [131], or modifications of the input
data that could eventually alter the original prediction of the model
ℎ, and help the user understand the performance boundaries of the
model for improved trust and informed criticism. Interventional clinical
predictive models require the calculation of counterfactuals, apart from
the correct specification of cause and effect [131]. Just to give an
example, to analyze counterfactuals based on the structural causal
model , an intervention (also known as do operator) can be used
to indicate that a set of variables 𝐗′ ⊆ 𝐗 is fixed to 𝜸, which is
often denoted as 𝑑𝑜(𝐗′ = 𝜸). The corresponding distribution of the
remaining variables 𝐗 ⧵ 𝐗′ can be computed from  by replacing the
structural equations for 𝐗′ ∈ 𝐒 to obtain the new set of equations
𝐒(𝑑𝑜(𝐗′ = 𝜸)). The interventional distribution 𝑃𝐗′

|𝑑𝑜(𝐗′=𝜸) is then given
by the observational distribution implied by the manipulated structural
causal model (𝐒𝑑𝑜(𝐗′ = 𝜸), 𝑃𝐔).

Given observations 𝐱𝑜𝑏𝑠, the definition of the 𝑑𝑜(⋅) interventional
perator permits, for example, to ask what would have happened if 𝐗′

ad instead taken the value 𝜸.
An answer to this question departs from the definition of the coun-

erfactual variable by 𝐗(𝑑𝑜(𝐗′ = 𝜸))|𝐱𝑜𝑏𝑠, and the distribution of this
ounterfactual variable can be computed in three steps [128]:

1. Abduction: first compute the posterior distribution over back-

ground variables given 𝐱𝑜𝑏𝑠, 𝑃𝐔|𝐱𝑜𝑏𝑠 .
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Fig. 2. Counterfactual explanations (a) treat features as independently manipulable inputs to a given fixed and deterministic classifier ℎ ∶  → {1,… , 𝐿} trained to make decisions
bout i.i.d. samples from the data distribution 𝑃𝐗. In the causal approach to algorithmic recourse taken in this work, we instead view variables as causally related to each other
hrough a structural causal model  (in (b)) with associated causal graph  (c) [129].
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2. Action: perform the intervention to obtain the new structural
equations 𝐒𝑑𝑜(𝐗′=𝜸); and

3. Prediction: then compute the counterfactual distribution
𝑃𝐗(𝑑𝑜(𝐗′=𝜸))|𝐱𝑜𝑏𝑠 induced by the resulting structural causal model
𝐒𝑑𝑜(𝐗′=𝜸), 𝑃𝐔|𝐱𝑜𝑏𝑠 .

Causal inference and counterfactual prediction for actionable health-
are are discussed in Prosperi et al. (2020) [131]. In medical applica-
ions, some of the tests for measuring robustness of estimated effects on
on pharmaceutical interventions include intervention models doing
ifferent structural assumptions and validation of such assumptions
hen they do not hold. An example of such interventions against
OVID-19 includes generalization over countries presented in [132].

n cases where causal effect estimation is aimed at individual-level rec-
mmendations, alerting decision makers when predictions are not to be
rusted is crucial. Therefore, identifying failure with uncertainty-aware
odels (e.g., when covariate shift makes training and test datasets

ary), as proposed in [133], facilitates uncertainty communication to
ecision-makers. Generally, uncertainty enables deep learning methods
o be adopted into clinical workflows [134].

A different but intuitively similar concept related to the charac-
erization of counterfactuals is that of contrastive explanation [135],
hich consists of explaining not only why an event occurred, but also
hy it occurred as opposed to some alternative event. They are con-

idered necessary for agents to achieve moral responsibility, although
debate exists on contrastive explanations entailing causal determin-

sm [136,137]. Approaches producing contrastive explanations serve
o learn more efficiently from data. For example, using pertinent neg-
tives [138] is one among such approaches, and relates to learning
tructural descriptions from examples. Another example is using active
earning, which can help select the most informative pairs of labels
o elicit contrastive natural language explanations from experts, while
ynamically changing the model [139].

Equally important is the integration of ‘‘Big Data’’ methods with
xplanations that involve a causal analysis. This integrated analysis
s key, especially in omics and imaging for causal inference [93]. An
xample of such tight integration is the use of deep feature selection
or causal analysis in Alzheimer’s Disease [140]. Other example is the
lignment of domain expert knowledge with Deep Learning models
n order to achieve more expert-compatible explainability. Neural-
ymbolic learning and reasoning systems can be used for this purpose
ith different kinds of integration schemes [68,141].

.4. Desiderata: Disentangling influential factors from multivariate obser-
ations and plausible yet diverse counterfactuals

A concern with causal AI in medicine is how to disentangle cor-
elated factors of influence in high-dimensional settings. One way to
267

eal with the independent manipulation of as set of correlated factors t
s to disentangle the influence of correlated factors from multivari-
te observations with interventions. An example of such is Back-to-
ack regression [142], to help identifying the causal contributions
f co-linear factors in multi-variate and multi-dimensional magnetic
esonance imaging observations. Back-to-Back regression produces an
nterpretable scalar estimate for each factor from a set of correlated
actors to estimate those that most plausibly account for multidimen-
ional observations. As a result, this method disentangles respective
ontributions of collinear factors to identify the causal contribution of
ovarying factors.

In regards to counterfactual explanations, the plausibility, feasibil-
ty, and diversity of the obtained counterfactual explanations (whether
hey are contrastive or not) are particularly relevant aspects that should
e considered in the medical domain. In this regard we advocate for
n increasing prevalence of modern generative learning approaches ap-
lied to the discovery of counterfactuals. The capability of such meth-
ds to model the distribution of existing multi-dimensional data yields
proxy generator of plausible hypothesis that can be of utmost help to

nsure that counterfactual instances can occur in reality. Further along
his line, the diversity of counterfactuals can be a conflicting objec-
ive with their plausibility as per 𝑃𝐗, hence counterfactual generation
ethods should also properly balance among such objectives [143].

.5. What for: Causality and counterfactual generation may reduce diag-
ostic results, increase quality of care and life, reduce overall costs, and
ree up clinicians’ time

As in other fields with strong human interaction, in designing a
edical AI system it is critical to consider who will use it. Furthermore,
hen the system is used for diagnostics, it is also crucial to ensure
roper balance between sensitivity and specificity, and to optimize the
ser interface and workflow integration. There are numerous examples
hat support these claims from pathology, radiology and dermatology,
.g. a smartphone based melanoma classifier would likely be used by
eneral public as a first step in screening for skin diseases.

Here the main goal – specially when the treatment for the disease to
e diagnosed is invasive or has serious side effects for the health of the
atient – is to maintain a low false negative rate. On the other hand, a
ystem for radiologists should automatically classify common cases, and
eave the decision on more complex cases for the expert, aiming at a
igh true positive rate. Properly using such systems would reduce false
egatives and false positives, increase quality of treatments and quality
f life of patients, decrease the overall cost and free-up clinicians’ time,
hich becomes more critical as decision-making situations become
ore patient-centered [144].

Advances on graph causal modeling and counterfactuals can be a
ajor step towards realizing such objectives. On one hand, interven-

ional clinical studies can be driven by the results of causal analysis of
ulti-dimensional medical data, thereby eliciting new diagnostic and
reatment criteria that in turn, produces data from such new cases
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that can be fed back to the AI-based models. On the other hand,
counterfactuals can increase the trustworthiness of the medical expert
on the decisions issued by the AI model, discerning when it must not
be fully relied as a result of a counterfactual being close to the case
to be diagnosed/treated. This augmented information offered to the
expert could reduce the amount of false positives, thereby favoring the
aforementioned decrease of costs and efforts.

4. Frontier research area 3: Verification and explainability meth-
ods

4.1. What: The use of AI requires the ability to verify correctness and causal
accuracy

In the medical domain, the use of AI and machine learning mod-
els that are explainable and verifiable by human medical experts is
an absolute necessity, primarily for legal reasons [145]. The central
problem is that no AI method will be deployed if its results cannot
pass a verification process for correctness and causal accuracy by a
human expert on demand. Making these assessments is difficult if the AI
methods in question do not provide explanations to users. The problem
becomes clear when we consider the classic problem described by
Caruana et al. (2015) [146], where an AI system trained to predict a
person’s risk of pneumonia came to incorrect conclusions, and applying
this model would have increased, not reduced, the number of patient
deaths. At the same time, this is also a good example of the usefulness of
having a human-in-the-loop [147], because physicians can easily verify
the results based on their experience – namely, that such results of an
AI system are not correct after all. Moreover, a human in-the-loop ap-
proach can bring in contextual understanding, implicit knowledge and
experience to statistical machine learning methods, and consequently
provide prior knowledge. However, one core open problem remains,
namely, how to integrate this knowledge into the machine learning
pipeline.

The term verification comes from both software engineering and
medicine and was used in AI as well [148], the term explainability
is used to technically highlight decision-relevant parts of machine
representations, i.e., parts that contributed to the accuracy of a par-
ticular prediction. However, such a technical explanation does not
refer to a human model. For this, explainability must be extended
to include the concept of causability [149], which refers to a human
model. Causability was introduced in reference to the well-known term
of usability [150]. While explainability is about implementing trans-
parency and traceability, causability is about measuring the quality
of explanations, i.e., the measurable extent to which an explanation
of a statement achieves a certain level of causal understanding for a
user with effectiveness, efficiency, and satisfaction in a given context of
use [151]. In other words, causability measures whether an explanation
achieves a given level of causal understanding for a human. This is
a major challenge in the medical field, as many different modalities
contribute to a single outcome, requiring multimodal causability [19].

4.2. Why: The best machine learning methods to date lack robustness and
are difficult to interpret

Currently, the most important and most lacking aspect of AI in
eneral, and in medical AI in particular, is robustness. Recent success
n machine learning has led to an explosion of AI applications, resulting
n high expectations being placed in autonomous systems, such as
utonomous vehicles [152,153], medical diagnosis [154,155], indus-
rial prognosis [156,157], or cybersecurity [158]. These developments
equire that we recognize and understand the fundamental limitations
f current intelligent systems, which often apply across many different
pplication areas. This crucial deficit of robustness of current systems
oncretely relates to their lack of ability to adapt to changes in the
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nvironment. In medicine, this is even more profound, as data changes p
because of changes in patient cohorts, due to advancements of instru-
ments and assays that generate images and omics data, and as a result
of changes of treatment modalities and our understanding of health and
disease states at physiological and molecular levels.

The field of machine learning deals with the development of suc-
cessful adaptation strategies and attempts to enable machines to rec-
ognize or respond to changing conditions for which they have not
been specifically programmed or trained. So far, however, most work
in machine learning has been based on the ‘‘independent identically
distributed’’ assumption. That is, the machine must be able to process
new input data that have not been seen during training, but that they
conform to the same statistical distribution. As the i.i.d. assumption
is a strong assumption that is rarely met in practice, the field of
machine learning is currently working extensively on theoretical and
empirical approaches to develop learning strategies that do not require
this assumption to hold. These efforts are particularly related to the
concepts of ‘‘transfer learning’’ [159,160], ‘‘domain adaptation’’ [161–
163], ‘‘adversarial training’’ [164–167] and ‘‘lifelong’’ or ‘‘continual
learning’’ [168,169].

Even if non-i.i.d. issues are circumvented or simply do not occur,
an obstacle to reach fully actionable medical AI is the lack of explain-
ability. In particular, modern Deep Learning models that nowadays
monopolize modeling approaches for medical imaging usually remain
‘‘black-boxes’’ [69,170,171] that are unable to explain the reasons for
their predictions or recommendations. This property largely precludes
the diagnosis and correction of defects, and only favors conservative
safety assessments of the behavior of a learning model. Both problems
are very much related to a lack of understanding of cause–effect re-
lationships. This hallmark of human cognition is a necessary (though
not sufficient) component for machine learning methods achieving
human-like intelligence, which would provide the basis for a much
broader application of AI in industry and business. A grand issue in
the task of learning from a set of observed samples is to estimate the
generalization error of learning algorithms. The problem with these
typical measurements, e.g., the training error, is that they are biased,
particularly if the available amount of data is small. Traditionally this
is measured by complexity measures such as the Vapnik–Chervonenkis
VC) dimension [172,173], or stability [174].

In the race towards properly characterizing and understanding med-
cal AI-based models, one cannot ignore the importance of providing
mportant features for explainable models, which becomes particularly
ssential for image processing algorithms [140]. Furthermore, these
ystems need to be integrated with existing research and clinical work-
lows. Importantly, proper independent verification and explainability
ethods may highlight that well-performing AI systems are report-

dly superior to humans in some clinical systems (or e.g., radiologist-
evel [175]), and unveil the reasons why their outperforming behavior
an degrade severely in other healthcare systems as a result of poten-
ially non-identically distributed data resulting from a context-induced
ias [176].

.3. How: Causal approaches and explainability methods can contribute to
chieving target trials, transportability, and predictive invariance

From the previous section it is clear that robustness is a key aspect
o be addressed in medical AI-based systems. Performance guarantees
an only be given if models are proven to be robust against different
henomena that compromise their generalization capability. An inter-
sting approach to study generalization of learning algorithms from
he perspective of robustness was presented in [177], which derived
eneralization bounds for learning algorithms based on their algorithmic
obustness. The assumption is that if a testing sample is ‘‘similar’’
o a training sample, then the testing error is close to the training
rror, which is different from the traditional complexity or stability
rguments mentioned earlier that concentrate on solely optimizing pure

erformance measurements.
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Indeed, in the machine learning community the overall trending
goal seems to be maximizing standard accuracy, and many papers from
the biomedical domain report increasing accuracy levels for different
medical diagnostic tasks by virtue of models of increasing complexity
and sophistication. However, such models still yield erroneous cases,
which should motivate doctors to retrace and find the rooting cause
of such errors. However, a non-automated inspection and verification
of such cases is often unfeasible due to the multi-modality of data
and the efforts it requires from the medical expert. At this point a
new opportunity arises for causality and explainability as enablers to
automate this medical verification process.

Unfortunately, observational biomedical studies are affected by con-
founding and selection biases among other biases [178], which makes
causal inference infeasible unless robust assumptions are made. These
require a priori domain knowledge, as data-driven predictive models
can be used to infer causal effects. However, neither their parameters
nor their predictions necessarily have a causal interpretation.

Consequently, we firmly call for the use of causal approaches and
learning causal structures by using certain linchpins to develop and test
intervention models [131], namely: (1) target trials, (2) transportabil-
ity, and (3) prediction invariance. To begin with, target trials refer to
algorithmic emulation of randomized studies. Transportability [179] is
a license to ‘‘transfer causal effects learned in experimental studies to a
new population, in which only observational studies can be conducted’’.
Akin to transportability is prediction invariance, where a ‘‘true causal
model is contained in all prediction models whose accuracy does not
vary across different settings’’. When a causal structure is available or
a target trial design can be devised, the evaluation of model trans-
portability for a given set of action queries (e.g., treatment options or
risk modifiers) is recommended; while for exploratory analyses where
causal structures are to be discovered, prediction invariance could be
used. In this way, as advocated by Prosperi et al. (2020) [131], trans-
portability and prediction invariance could become guideline core tools
and part of reporting protocols for intervention models, for a better
alignment with the standards for prognostic and diagnostic models of
medicine and biomedical practice today.

Another phenomenon placing at risk the trustworthiness and verifi-
cation of medical AI models is their robustness to adversarial attacks.
Technically, we assume a model processing unseen examples from the
underlying distribution 𝑃𝐗. In general, the goal of model training is to
reach a minimum of a expected loss function [180]. However, many
machine learning models, particularly deep neural networks [181],
are susceptible to be deceived by the presence of adversarial exam-
ples [182]. Adversarial examples can be conceived as modified data
instances resulting from small yet intelligently tailored perturbations
made to original examples. Even if they are not even visible to the
human eye, such perturbations yield dramatic effects when processed
through the machine learning model, provoking a wrong output with
high confidence.

Fig. 3 depicts a schematic diagram showing the different reasons
by which model verification and robustness assessment are of utmost
necessity in the medical domain. XAI methods can help determining
what a model observes in an input when predicting its output, ascer-
taining the presence of biases inherited from data or purposely inserted
by adversarial attacks. Likewise, counterfactual explanations can also
benefit for stronger input–output causal relationships discovered from
data, stepping beyond the production of correlation-based counterfac-
tuals to the generation of interventional what-if stories. This might be a
major step in the medical AI field to trascend from verifiable models for
diagnosis towards verifiable AI-based solutions for medical prescription
and treatment.

A pause must be done before proceeding further to highlight,
once again, the importance of having a human-in-the-loop as the
ultimate stakeholder to decide whether an AI-based model is robust
enough [147]. Even if the verification process can be partly auto-
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mated by XAI and causality inference methods, trustworthiness always
requires a qualitative assessment of the overall verification process,
both in terms of their starting assumptions (e.g. is a certain adversarial
attack strategy for a medical AI-based model plausible and likely to occur
in the context in which data are produced?) and the results it conveys
(corr. is the detected bias inherited from data? Can we reduce this bias
by preprocessing or improving the data collection process anyhow?). All
in all, humans, even if we make mistakes, can be considered a ro-
bust proxy in decision making when informed with quantitative and
well-summarized measures of algorithmic robustness.

4.4. Desiderata: Adversarial training can contribute to better robustness and
explainability

A very different use of adversarial training is to make models more
robust and interpretable. The work in [183] shows that adversarial
training improves the interpretability of gradient-based saliency maps
in medical imaging diagnosis of skin cancer. In particular, adversarially
trained convolutional neural networks are significantly sharper and
more visually coherent than non-adversarial traditionally trained CNNs.
What many of these robustness tests highlight is the needs for veri-
fication and validation methods for deep learning techniques beyond
academic toy datasets. It is clear that much of the research efforts
have focused on overfitting deep learning models with ever-increasing
numbers of parameters to a small selection of research benchmark
datasets [184].

Even results reported in carefully curated international challenges
such as PASCAL VOC [185] later turned out to be largely based on
spurious correlations (e.g., ships were classified by the presence of
water, or horses were linked to copyright watermarks). In a similar
vein, popular text classification datasets have been shown to contain
biases, meaning that only parts of the input are needed to make the
correct predictions [186]. This type of cheating is also referred to as
‘‘Clever Hans effect’’ [187].

In spite of permitting the incremental improvement and incredible
advances in the field, natural image datasets can normally be very
different from real life datasets, which are more sparse, noisy and in un-
controlled settings. Language differences aside, similar conclusions can
be derived from medical text data collected in diverse environments,
which ground on cultural, geographical or individually-induced biases
present in such data. Generalizing to real life datasets is thus a part of
the desiderata of having robust machine learning models for medical
application. For this to occur, we envision that explainability tools
will become increasingly relevant, becoming a core part of prospective
studies reporting successful real-world cases.

4.5. What for: The most important practical benefit of implementing this
FRA theme is maintaining trust

In the medical domain, the use of AI methods that are verifiable,
comprehensible and interpretable by human experts will not only be
mandatory for legal reasons in the future, but also offers a number
of other technical and non-technical advantages. Advantages from the
technical point of view include that developers get a better under-
standing of the medical system endowed with AI-based functionalities,
thus are able to improve existing methods (e.g., by reducing com-
plexity or model size) with increased knowledge about the niches and
directions along which such improvements can be attained. Bias identi-
fication [188] or adversarial attack detection [189] can be arguably the
most evident examples of technical advantages granted by XAI methods
for model verification.

Above all, the big advantage for the medical expert and the end
user affected by decisions issued by verified medical AI models lies
in the increased trust on their outcomes, the remaining responsibility
of the human being (human-in-control) and the avoidance of bias and
discrimination. Medical decisions can pose a turning point in the life

of a patient, so trustworthiness on the suitability of decisions issued by



Information Fusion 79 (2022) 263–278A. Holzinger et al.
Fig. 3. Schematic diagram exemplifying the different circumstances under which robustness of a medical AI-based systems (in this case, for diagnosing a melanoma) must be
verified: adversarial attacks, counterfactual explanations and biases. Causality inference and explainability methods can enable automated means to perform such a verification
procedure.
such models is a must at many different levels of the medical workflow,
from the diagnosis (confidence of predictions), to the design of the
treatment (suitability of prescribed therapies/medication by a model)
and the acceptability of the patient (causability to ensure that he/she
understand that the AI-informed decisions are the best ones for his/her
disease). When understanding this need for trustworthiness at multiple
levels of the medical workflow, one can realize the enormous relevance
of AI verification and explainability in the medical realm.

5. A unified view on the integrative role of information fusion in
medical AI

Encoding multidimensional data, but also tabular data and data
of temporal sequential nature, is an open challenge for the latest DL
models to assimilate incomplete and irregular healthcare data. Rein-
forcement learning and explainable models to fully control this family
of AI black-box models [190] can better use this data for sequential
decision making from observational multi-modal data if meaningful
representations are learned and used to represent a patient state [191].

In this context, local and global explanations are equally important,
i.e., assessing machine learning model output with respect to a single
input data point, also called ‘‘decision understanding’’ (e.g., as done
by methods such as Local Interpretable Model-Agnostic Explanations
— LIME [192] or Layer-wise Relevance Propagation — LRP [193]),
but also verifying and certifying the full model at a global scale,
also called ‘‘model understanding’’ [194]. Likewise, [195] advocates
for explanations in cooperative decision making in medicine to be
mutual, implicitly implying a continual fusion of explanations. Mu-
tual explanations [196] are introduced in a context of transparent
expert companions towards medical decision support systems where
interactive and explainable HRI [197] machine learning plays a key
role. Mutual explanations naturally provide the understanding of verbal
explanations, i.e., based on dialog incremental processes to provide
human machine learning users with trust and deeper involvement in
the learning process. When explanations are not accepted, the human
cannot only ask for them but also correct them. This way, expert
domain knowledge is used in learning and inference through expla-
nation sketches that are applied as constraints for the inductive logic
programming system Aleph.

Verbal interpretability perspective [198] is achieved by ensuring
that the model is capable of providing humanly understandable state-
ments, e.g., logical relations, showing positive words drawing to a
conclusion, verbal chunks or sentences [199] that indicate causality,
and that the model produces explanations which are non-contradictory,
non-redundant, fluent and cover all important aspects related to the
prediction [200].

Also related to human expert alignment are the needs for developing
models for clinical acceptance. An example of such good practice
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is shown in [201], where such acceptance test is done through rat-
ings by ophthalmologists on the correlation of the attribution method
scores with diagnostic features. In this context, in addition to local
explainable models of a single sample, approaches to test global expla-
nations such as TCAV (Testing with Concept Activation Vector) [202]
or SpRAy (Spectral Relevance Analysis) [187] are desired in order to
explain beyond a single data point example. However, they may not
be fully considered as global method, as they only consider the set
of all training examples from a given class [198]. Another critique
of current Natural Language Processing (NLP) models provided with
verbal interpretability is the lack of provision of the actual underlying
mechanisms to generate texts. Generating free text explanations is
often framed as a summarization task — either as extractive settings,
where salient sentences from provided evidence documents are selected
as explanations [200], or abstractive settings, where, given evidence
documents, the explanation is produced from scratch using a generative
model [203]. While the latter can result in more fluent explanations
and incorporate further background knowledge not explicitly present
in the evidence documents, it is known that, as for example used for
EHR generation from conversations in [204], fake facts are hallucinated
by neural generators [205]. Yet other works rely on hybrid approaches,
where extractive summarization is followed by abstractive summariza-
tion [206,207]. However, as also advocated by [198], further work
on providing explanations of the process and shape of the embedding
optimization is needed.

The role of natural language in information fusion and XAI is two-
fold: on the one hand, language is one of the data modalities, in which
complex facts and relationships are expressed, e.g. in electronic health
records (EHRs) or medical literature. On the other hand, language is
the prime channel of explanation: verbalizing the algorithmic reasoning
enables the health practitioner to easily detect whether the reason for
the algorithmic decision is acceptable.

For both variants, the use of cross-modal representations that link,
e.g., textual, image and omics data will be crucial for AI in multimodal
data as present widely in the medical domain. Challenges lie in the
harmonization and curation of cross-modal datasets aligned across two
or more modalities enabling the cross-modal transfer, either by learning
a common subspace via methods such as DCCA [208] or by projection
learning [209]. While suitable datasets are becoming available in the
public domain, they are yet to be constructed for medical data.

For processing and generating language in a transparent way, fu-
ture work will have to concentrate on NLP models with provenance,
i.e., models that provide the data on which their output is based on. In
the case of automatic summarization, for example, this would be the
statements that lead to the formulation of a summarizing sentence; for
semantic processing it could be the use of hybrid models that combine
sparse representations [74] with dense representations, e.g., [210]. For
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Transformer-based architectures (e.g., [159]), in the absence of human
rationales to train a model to generate explanations, this could be
realized with attention scores, although they only loosely correspond to
human-acceptable explanations [13,211,212]. An alternative could be
to investigate the utility of diagnostic properties, such as Faithfulness,
Dataset Consistency and Confidence Indication [71]. These have been
shown to be useful for automatically evaluating the quality of explana-
tions, and might be suitable as objectives for generating explanations
in an unsupervised way. Another option is the use of (intransparent)
NLP technologies to identify and extract information with provenance,
as for example done in [213] for metadata extraction from biomedical
literature to increase reproducibility of studies.

Metrics worth assessing beyond model understanding through sub-
space explanation (MUSE) induce fidelity (based on instances disagree-
ment between model and explanation), unambiguity (in terms of rule
overlap and cover), or interpretability (in terms of triple rule set size,
width, and predicate size) [214].

One strand of future methods strives for high quality data in order
to produce better predictions, the requirements to deploy AI systems in
medicine advocate as well for natural handling of noisy and incomplete
data, which is much more realistic in healthcare, where many informa-
tion silos due to the distributed nature of domain expert knowledge
bases and respective EHR. In this line, techniques to complete partial
data from missing sensor readings through data level- and feature level
information fusion to improve the overall data quality include, for
instance, kernel random forests in fog computing for heart disease
prediction [215]. Another example showing improved results with
extra fused data includes the use of self-attention architectures for CT-
image and non visual features for immunotherapy treatment response
prediction [216]. In fog computing, a similar approach to federated
learning in terms of data decentralization, the ability to access all
data at once is not possible. However, fusing the different sensors
available for different users makes all data actionable [131], and the
full set richer, and of better quality. Recent work showed that it is
even possible to train largely personalized models in such distributed
settings [217]. Other strand of ideology advocates for approaches that
incorporate a natural handling for anomalies and outliers [218], as well
as incomplete, dirty and irregular datasets, as a common feature of
medical AI systems [219]. The latter work also warns for the poten-
tially large impact of unintended consequences of machine learning in
medicine from an empirical and technical viewpoint. These and other
pitfalls in data-driven decision making [131] are to be considered in
the development of the frontier topics discussed in this paper, hand in
hand with experts-in-the-loop.

Integrative computational biology and AI algorithms play a central
role in precision medicine. Individual analyses can be combined using
multiple networks, including transcription regulatory, microRNA-gene,
physical protein interactions, metabolic and signaling pathways [220].
Such analyses help identify better prognostic and predictive signatures,
drug mechanism of action, combination therapies, and possible novel
drug targets. These networks can be further annotated with tissues and
diseases to form richly-annotated typed graphs, which in turn can be
analyzed with graph theory algorithms to form explainable models.
For example, Bhattacharyya and colleagues integrated a pathway-based
patient model with multi-scale Bayesian network to predict specific
treatment options [221]. Similarly, exploring the possible links between
AKT1 (Akt is a Protein kinase B that plays a key role in glucose
metabolism, apoptosis, cell proliferation, transcription and cell migra-
tion) and BTK (Bruton’s tyrosine kinase that plays a crucial role in B
cell development and signaling), we obtain 1,862 proteins connected
by 2,324 edges (i.e., direct physical protein interactions, 437 uni-
directional, 84 bi-directional and the rest non-directional), as shown
in Fig. 4. The network in this figure highlights which of the interac-
tions are relevant to arthritis, neuro-degenerative diseases, or cognitive
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disorders.
Importantly, once a hypothesis and model are created from an
integrative analysis, such as the one highlighted in Fig. 4, one would
need to select the most appropriate – and ideally, the least costly
– organism to act as the model for further functional studies and
validation. Considering this network, the mouse would be the best
model organism, as about 98% of all interactions in the network are
conserved from human to mouse, while the rabbit has only 33% of
the network conserved, and fly, worm and yeast have none of these
interactions present (Fig. 4, a). Using analogous selection, the most
relevant tissues for functional validation include adipose, lung, spleen
and bone (81%–85%), falling to just around 50% for heart and brain
(Fig. 4, b). Considering diseases, only cancer has a substantial set of
annotated interactions in this network with almost 60% of the network
being annotated to diverse cancers (Fig. 4, c). (See Fig. 5.)

6. Discussion

As we have seen in previous sections, for AI models in medicine,
there are several concerns with respect to the development of these
frontier topics. Besides them, another dimension with large concerns
in medicine whose importance can be exacerbated upon the fusion
of multimodal data is the privacy and confidentiality awareness of
medical AI-based models. Indeed, the compliance with patient privacy
normally hinders medical AI methods from excelling in practical set-
tings due to a diversity of reasons, such as the increased difficulty
of collecting data, restrictions to their use following ethical and legal
constraints, or the potential performance penalty obtained when data
are encoded prior to modeling. Ideas using the concept of differential
privacy [222], privacy-preserving representations [223] or along the
lines of privacy distillation [224] are key to further develop this line
of work. Privacy distillation [225] allows patients to decide the type
and amount of information they disclose to healthcare information
systems while retaining the model accuracy under a sufficient subset of
original privacy-relevant features. The idea behind this model-agnostic
mechanism is to balance accuracy of the model with the redacted
inputs of users. An example of application in a DL regression setting
for dose prediction is in [225]; it demonstrates to reduce the amount
of over-prescriptions and under-prescriptions of warfarin. To sum up,
we foresee that the growing amount and diversity of patient, medical
and clinical information combined and flowing together into medical
processes relying on AI-based models will give rise to unprecedented
challenges in what relates to the privacy of sensitive data, calling for
overarching strategies that maintain the confidentiality of protected
information of the patient all over the process.

One size does not fit all. While AI can solve standard cases with
similar accuracy to human experts, it cannot yet beat human specialists.
However, we rather stand with the synergy that flourishes when AI and
the specialist collaborate together, feeding each other with knowledge
that allow them performing better, more robustly and reliably in their
respective tasks. Human-in-the-loop systems would benefit from AI ap-
proaches, and even more from an ensemble of AI systems, implemented
using different approaches and algorithms, and trained and validated
on different patient cohorts. Conversely, AI-based systems can leverage
the qualitative verification of the knowledge captured from data, as
well as the conformity of explanations with the medical expertise and
the evidence recorded over the medical workflow.

Ignoring the implications of improper usability planning may lead
to incorrect results and reduced applicability. This requires one to
weigh up sensitivity with specificity to ensure specialist vs general use
cases or screening vs treatment planning. It is also important to ensure
clear understanding of limitations based on validation — which patient
cohorts may or may not be appropriate for a given trained model.
Besides explicitly acknowledging and recognizing the limitations of
these AI models and resulting systems, patient-centric medicine re-

quires models to provide specific confidence and uncertainty estimates
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Fig. 4. Exploring the connection between AKT1 and BTK. The physical protein interaction network from the Integrated Interactions Database (IID v.2020-05) [37] highlights the
Gene Ontology biological process (node color) and disease annotation from DisGeNET (edge color); specifically, arthritis, neurodegenerative diseases, cognitive disorders, and their
overlap (thicker, darker color edges).
Fig. 5. Conservation of the physical protein interaction network from Fig. 4 across (a) non-human species, (b) tissues, and (c) diseases.
on the recommendation for each patient, rather than simply provide
broad accuracy measures across cohorts.

To realize this holistic vision, it is important that ongoing studies
dealing with medical AI are verified swiftly, providing informed ev-
idence that AI-based models for medical practice can be trusted. On
the other side of the coin, research retractions should be managed
and resolved quickly, as done in recent COVID-19 related research
contributions (e.g., Mehra et al. (2020) [226] in The New England
Journal of Medicine and Lancet, Mulvey et al. (2020) [227] in Annals
of Diagnostic Pathology, and Zeng et al. (2018) [228] in Lancet-Global
Health.

However, the process takes a long time — mistakes are usually de-
tected and retracted within months, but fraud often takes years [229].
This has direct, negative implication for evidence-based medicine, and
a significant impact on computational biology and AI. Considering
requirements for training and validation of AI systems, data from
retracted papers may affect large number of workflows and analyses,
leading to incorrect models and interpretations. Training or validating
AI systems on flawed data may not be obvious immediately, and even
when the paper is retracted, data will likely exist in multiple forms on
the Web for years after.

To circumvent this latter issue, online data repositories are crucial,
but stringent curation processes are essential to ensure high quality,
reliable and properly annotated data. For example, the IMEx consor-
tium [24,25,230–232] curates interaction data from published litera-
ture to enable integrative computational biology analyses, and ensure
the implementation of data-driven medicine and the correct analysis
and interpretation of model results. The availability of such curated
repositories, and evidences of real-world AI-based models that largely
rely on advances over the frontier topics reviewed in this position paper
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would free-up specialists by solving straightforward cases automati-
cally, and comprehensively characterizing complex cases for further
consideration and inspection.

Finally, the important element of visualization must be included,
because it is ultimately what is presented to the expert end user [233].
The findings and knowledge from the long-established domain of vi-
sual analytics [234] must therefore be comprehensively taken into
account and integrated into future overall solutions [235] to build new
human–AI interfaces supporting explainability and causability [236].

7. Conclusion

From our experience, we have identified and outlined three key
Frontier Research Areas that need to be developed hand-in-hand within
AI and the application fields. These frontier topics would benefit enor-
mously from a Frontier Development Lab, an example of successful im-
plementation being the SETI-NASA-ESA FDL program for AI, Space and
Earth Sciences, which benefits from a catalytic environment for tackling
some of the most challenging interdisciplinary research problems. In
similar synergy, future biomedical AI would benefit from cross-domain
research teams solving challenges in the context of cross-science prob-
lems. New additional PhD schools that take such a research-based
approach can be of help.

Experts at the seam between AI and medicine are urgently needed
worldwide. In the European Union, there is a dramatic shortage of
qualified experts who understand both domains. Industry is desperate
for properly trained professionals [237]. Additionally, these experts
need also to understand ethical and legal issues, and how and by whom
AI is used. This requires that future experts are not only theoretically
educated in ethical and legal aspects, but also given the opportunity to
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put them into practice in both healthcare institutions and industry. This
is where agile, human-centered AI design methods can be beneficial
(refer to Fig. 1).

In our holistic vision of medical AI, we highlight the cohesive
role of information fusion as a technology to transport all medical
data modalities through the frontier research areas. New challenges
around multi-modal explanations, causality (cause–effect) and causabil-
ity (quality of explanations) analysis are still to be addressed by the
research community for achieving full trustworthy and robust medical
AI-based systems and the use of new types of human-AI interfaces and
supportive visualizations.
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