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• Background Woody plants (trees and shrubs) play an important role in terrestrial ecosystems, but their size and 
longevity make them difficult subjects for traditional experiments. In the last 20 years functional–structural plant 
models (FSPMs) have evolved: they consider the interplay between plant modular structure, the immediate envir-
onment and internal functioning. However, computational constraints and data deficiency have long been limiting 
factors in a broader application of FSPMs, particularly at the scale of forest communities. Recently, terrestrial 
laser scanning (TLS), has emerged as an invaluable tool for capturing the 3-D structure of forest communities, thus 
opening up exciting opportunities to explore and predict forest dynamics with FSPMs.
• Scope The potential synergies between TLS-derived data and FSPMs have yet to be fully explored. Here, we 
summarize recent developments in FSPM and TLS research, with a specific focus on woody plants. We then 
evaluate the emerging opportunities for applying FSPMs in an ecological and evolutionary context, in light of 
TLS-derived data, with particular consideration of the challenges posed by scaling up from individual trees to 
whole forests. Finally, we propose guidelines for incorporating TLS data into the FSPM workflow to encourage 
overlap of practice amongst researchers.
• Conclusions We conclude that TLS is a feasible tool to help shift FSPMs from an individual-level modelling tech-
nique to a community-level one. The ability to scan multiple trees, of multiple species, in a short amount of time, is 
paramount to gathering the detailed structural information required for parameterizing FSPMs for forest communi-
ties. Conventional techniques, such as repeated manual forest surveys, have their limitations in explaining the driving 
mechanisms behind observed patterns in 3-D forest structure and dynamics. Therefore, other techniques are valuable 
to explore how forests might respond to environmental change. A robust synthesis between TLS and FSPMs provides 
the opportunity to virtually explore the spatial and temporal dynamics of forest communities.

Key words: Functional–structural plant models, terrestrial laser scanning, plant architecture, forest dynamics, 
vegetation modelling, remote sensing.

INTRODUCTION

How individual trees and shrubs occupy 3-D space is a defining 
feature of forest ecosystem dynamics (Dı́az and Cabido, 2001; 
McDowell et al., 2020). Plant architecture, the physical form 
of a plant as derived from the balance between internal and ex-
ternal processes, is a central but often overlooked element of 
forest ecology and evolution (Barthélémy and Caraglio, 2007). 
Individual-level form and function, in combination with the en-
vironment, ultimately contributes to overall forest ecosystem 
level processes, determining the biodiversity found within 
them, as well as the regulation of energy, water and nutrient 
fluxes. There are still many unanswered questions regarding the 
mechanisms that give rise to observable patterns of biodiver-
sity, form and function in forests worldwide (Givnish, 1999; 

Condit et al., 2006; Bohn and Huth, 2017). Elucidating the role 
of structure in these mechanisms is a crucial step in predicting 
the ecological and evolutionary responses of vegetation to 
forecasted climate change, deforestation or species invasions at 
the scale of forests and also at the scale of individual trees and 
shrubs (henceforth referred to as ‘woody plants’).

One way to characterize the relationship between biodiver-
sity and the structure of forest environments is through the lens 
of structural diversity (Tews et al., 2004), which denotes ‘the 
physical arrangement and variability of the living and non-living 
biotic elements within forest stands’ (LaRue et al., 2020), and 
acts on its own as a good predictor of many ecosystem func-
tions (Felipe-Lucia et al., 2018; LaRue et al., 2019). Recently, 
efforts have been made to formalize the role of structural trait 
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diversity in forest ecology and evolution with the development 
of a ‘plant structural economic spectrum’ to complement the 
existing ‘wood economic spectrum’ and ‘leaf economic spec-
trum’ (Verbeeck et al., 2019).

Structural diversity is generated through spatially varying fac-
tors that determine the availability of microhabitats within the 
area, setting preconditions for the existence of different species 
with varying niche requirements (Svenning, 1999; Dymytrova 
et al., 2016). Spatially varying microhabitats arise from factors 
such as small-scale variation in soil properties (Matkala et al., 
2020), landscape topography (Zuleta et al., 2020), hydrological 
features of the terrain (Francis et  al., 2020), and the inflows 
and outflows of biologically active material (including plants, 
animals, fungi, microbes, nutrients) to and from the forest of 
interest (Honkaniemi et al., 2021).

Further structural diversity is generated (1) through dynamic 
3-D growth and development of woody plants and other herb-
aceous vegetation within a forest stand and (2) through con-
stantly changing environmental factors, such as weather, and 
a wide choice of unpredictable anthropogenic and natural dis-
turbances (land use, global warming, wind, fire, snow, pest out-
breaks, landslides etc.), as well as (3) through temporal changes 
in the inflow and outflow of biologically active material. The 
growth of woody plants alone causes temporal changes, be-
cause it alters individual plant architecture (3-D spatial arrange-
ment of the plant structure), creating within-plant structural 
diversity through microenvironments within branches and fo-
liage, i.e. due to different structural features (Escudero et al., 
2017; Asbeck et  al., 2019), self-shading (Ventre-Lespiaucq 
et  al., 2016) or weather (Nock et  al., 2016). Heterogeneous 
microenvironments inside a crown can thus alter growth habits 
(Koyama et  al., 2020) and the functioning of foliage (Ngao 
et al., 2017; Curtis et al., 2019). Growth of individual plants 
changes the spatial structure of the whole forest stand (e.g. 
canopy layers, canopy cover, gap dynamics, tree size variation), 
and, in combination with the flow of dead material from woody 
plants to the ground, generates further changes in the structural 
diversity and choice of microhabitats available (Kaufmann 
et  al., 2018). This results in the well-known natural succes-
sion of forest stands over decades (Boukili and Chazdon, 2017; 
Hilmers et al., 2018). In yet longer temporal scales, this results 
in evolution over centuries to millennia as biological adapta-
tions to changing and often unpredictable growth conditions 
appear (Areces-Berazain et al., 2021).

Given all the constituents of structural diversity, it is clear that 
representative sampling of dynamically changing individual 
woody plant and forest characteristics is challenging. Even at 
the scale of individual woody plants, for instance in studies of 
the growth and architectural form of particular species, it can 
be challenging to explain the observations without information 
about the spatial structure of the growing site (Lintunen and 
Kaitaniemi, 2010; Kunz et al., 2019; Hildebrand et al., 2021), 
about the architectural structure and functioning of the indi-
vidual itself (Posada et al., 2009; Kennedy 2010), and without 
information about the temporal dynamics that are likely in the 
typical growth environment (Ishii et al., 2018).

Traditional forest research can be labour-intensive and time-
consuming. Detailed structural measurements of individual 
woody plants across a large stand have often been considered 

impossible and, instead, allometric or other structural relation-
ships are used as proxies for multiple structural traits (Condés 
et al., 2020). Destructive sampling or special climbing construc-
tions have been essential to reach the top of large trees (Barker 
and Pinard, 2001). In addition, a long time-series beyond a typ-
ical researcher’s career would be required to capture the full 
dynamics of individual and stand development over time.

Now there is a potential game changer: a combination of ter-
restrial laser scanning (TLS) and highly detailed functional–
structural plant models (FSPMs) that mimic actual plants (e.g. 
Louarn and Song, 2020) Together, they provide a pair of tools 
that fulfil many prerequisites for addressing challenges with re-
search questions related to the structural dynamics of forests. 
Terrestrial laser scanning, optionally complemented with scan-
ning from unmanned aerial vehicles, is a method that enables 
capturing the full 3-D structure of a forest stand with close to 
centimetre-level detail in a short amount of time (Liang et al., 
2016; Calders et al., 2020), including the identification of indi-
vidual trees and their species (Xi et al., 2020), the ground vege-
tation (Muumbe et al., 2021) and the topography of the terrain 
(Diamond et al., 2020). Methods for collecting additional spec-
tral information to estimate the state of various physiological 
processes within trees along with the structural scanning are 
also being developed (Junttila et al., 2021).

Functional–structural plant models, in turn, are models that 
aim to integrate the dynamic development of 3-D plant architec-
ture, the associated physiological functions of the plant, and the 
simultaneous influence of external factors present in the growth 
environment (Fig. 1). As they operate with the 3-D architec-
tural form of plants and plant stands, FSPMs are suitable for 
exploring the effects of different constituents of structural di-
versity on the dynamic behaviour of ecosystems. However, the 
applicability of FSPMs has so far been limited, much due to 
the amount of required data and high computational demands 
of the models; hence the existing models typically cover the 
spatial extent of just a few tree individuals (Sievänen et  al., 
2008; Zhang and DeAngelis 2020). On the other hand, one of 
the former limitations in the development of FSPMs, the avail-
ability of structural data for the construction and validation of 
models, is now changing as FSPMs are suited to directly utilize 
data provided by TLS, and use it to develop models that explore 
long-term dynamic processes within trees and stands (Sievänen 
et al., 2018).

In this review, we will focus on recent developments of TLS 
and FSPMs, evaluate their current capabilities in data collec-
tion and modelling capacity, and evaluate the current and an-
ticipated future applicability of these techniques in solving 
ecological and evolutionary questions when used in combin-
ation. In the first of the following three sections we will address 
the impact of plant architecture on vegetation modelling from 
the individual plant level to the forest level and the impacts of 
forest evolution. In the second section we will explore FSPMs 
and their three different sub-models: (1) physiological, (2) en-
vironmental and (3) architectural. In the third section we will 
evaluate the realm of TLS and the benefits that this field has 
to scale up FSPMs from an individual-level modelling para-
digm to a community-level modelling paradigm. In the third 
section we also propose a potential TLS to FSPM workflow, 
evaluating the advantages and disadvantages of data collection 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/128/6/663/6381668 by U

niversity of Tam
pere Library user on 02 D

ecem
ber 2021



O’Sullivan et al. — Integrating TLS with FSPMs for ecology and evolution of forest communities 665

and software involved. Lastly, we discuss the current and fu-
ture synergies between TLS and FSPM for modelling forest 
communities.

MODELS OF INDIVIDUAL WOODY PLANT 
STRUCTURE AND FUNCTION

The form and function of woody plants, primarily trees, has cap-
tured the attention of biologists, mathematicians and artists alike 
for centuries. Since Da Vinci’s first mathematical formalization 
of tree structure, a large body of work has been dedicated to-
wards understanding the mechanisms responsible for the array 
of tree shapes found across different habitats (Richter, 1970). 
Woody plants are dynamic organisms, composed of numerous 
self-similar and semi-autonomous parts, continually growing and 
developing from germination until death (White, 1979). In an ef-
fort to better understand the multitude of potential shapes, two 
botanists, Hallé and Oldeman, developed a qualitative system 
of describing different tree architectures found throughout trop-
ical forests (Hallé et al., 1978). The concept of tree architecture 
eventually gave rise to the discipline of ‘architectural analysis’, 
which aims to investigate how underlying genetics and environ-
mental adaptation contribute to ultimate tree form and function 
(Barthélémy and Caraglio, 2007).

Tree form and function have been studied using various 
hypotheses on how the extension growth, space-filling by the 
crown and thickening of already existing woody axes and 
root growth and the assimilation yield are related (West et al., 
1999; Pałubicki et al., 2019). For example, regular scaling be-
tween woody axes and growing shoots or leaves has been ob-
served and explained by several theories/models (Shinozaki 
et al., 1964; West et al., 2009). Such detail is sufficient for 
accurate characterization of crown and tree development 
(Sterck and Schieving, 2011), but since the physiological 
mechanisms for the processes are only partially known, the 
approach needs to rely on empirically determined or theoret-
ical principles. Further, the parameter values of the scaling 
relationships vary with growing conditions and with tree 
crowns (Bentley et al., 2013).

Other approaches have also been used in the investigation of 
woody plant form and function: context-sensitive rules of de-
velopment in crown dynamics can be applied that are related to 
physiology, including a carbon–nitrogen balance (Valentine and 
Mäkelä, 2012), photosynthesis (Peltoniemi et al., 2012) or trans-
port of carbohydrates within the crown (Nikinmaa et al., 2013). 
Alternatively, rules can be defined by self-organization in branch 
growth (Pałubicki et al., 2009). It has also been argued that the 
crown development actually follows resource optimization 
(Givnish, 1984; Mäkelä et al., 2008; Sterck and Schieving, 2011;  
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Fig. 1. Structural heterogeneity of forest vegetation results from the interplay among multiple factors that influence structure and functioning of individual 
plants within forest stands over space and time. Current FSPMs largely focus on the encircled core of the system and consider the external factors with varying 

detail.
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Franklin et al., 2020). Understanding the mechanisms of indi-
vidual resource partitioning in woody plants and how this in-
fluences the 3-D shapes we see in nature underpins the overall 
structure of forests. One important area of active research is the 
accurate estimation of above-ground biomass (AGB) in forests 
globally, especially in the context of rapidly changing envir-
onments (Brienen et al., 2015). This inevitably relies on how 
well carbon allocation towards the different woody plant organs 
can be quantified. Formalized tree allometric models have been 
widely used to estimate carbon stocks and balance in forests 
(Chave et al., 2005, 2014). Whilst this is important for prac-
tical management and conservation, predicting future states of 
individual trees and their relative contributions to AGB requires 
further investigation of the driving processes of individual form 
and function in the context of their respective communities.

Models of forest communities

Unravelling the mechanisms of woody plant form and func-
tion in forest communities, across different habitats, is crucial 
for furthering ecological theory, designing forest management 
plans and informing global land surface models (Franklin et al., 
2020; Ruiz-Benito et  al., 2020). However, the precise mech-
anisms that determine form and function of woody plants in 
forest environments have been largely overlooked in ecology 
until recently (Malhi et al., 2018). In addition to the barriers 
in collecting data on forest communities (i.e. the impracti-
cality of dealing with large, long-lived individuals and de-
structive harvesting), which make woody plants less than ideal 
subjects for experimental investigation, there remain a number 
of barriers in how organisms with a sessile but highly adaptive 
growth habit are sampled. Many of the methods typically used 
in ecology, such as counting individuals of varying age and 
size class, are insufficient to explain the broad intraspecific and 
interspecific variation found in forests (Harper, 1977, 1980). 
Furthermore, community ecology research had been dominated 
by a ‘mean field theory’ approach for years, which emphasizes 
differences between co-occurring species rather than differ-
ences between individuals of the same species (McGill et al., 
2006; Weiher et al., 2011).

It is only in the last decade that efforts have been made to 
revisit the importance of intraspecific variation as a driver 
of community assemblage and integrate it into community 
ecology (Violle et al., 2012; Hildebrand et al., 2021). This is 
particularly pertinent for forests, where potentially high levels 
of intraspecific variation but low levels of interspecific variation 
can occur, as individuals converge on a common limiting re-
source (MacFarlane and Kane, 2017). Comparisons between 
mean field theory approaches and spatially explicit individual-
based models (IBMs) have indicated that the spatial distribution 
of individuals in a forest can better explain ecosystem function 
and biomass production seen in nature, as opposed to a mean-
field approach at the community level (Pacala and Deutschman, 
1995). Woody plants interact on a local rather than a global scale, 
and therefore individual functional variability and growth strat-
egies have clear implications for models at higher levels of eco-
logical organization, such as dynamic global vegetation models 
(DGVMs) (Scheiter et al., 2013). Spatially explicit IBMs have 

been used for decades in plant and forest ecology and forest 
science to better address heterogeneity amongst individuals in a 
community (Houston et al., 1988; Grime, 2006). These models 
are able to capture many key elements of plant competition, 
such as individual variation and heterogeneous distribution of 
resources (Fisher et al., 2017). However, they traditionally lack 
a mechanistic explanation of these phenomena (Canham et al., 
2004). Moreover, these models do not interpret how individuals 
modify their local environment through 3-D adaptive behaviour 
(Grime, 2006; Brooker et al., 2008).

Moving away from ‘mean’ approaches, whether that be in 
practical vegetation modelling or the development of paradig-
matic theories, is paramount to fully exploring the drivers of 
forest structure and dynamics. In summary, a model with an 
applicability for diverse studies of evolutionary and ecological 
questions involving woody plant communities should possess 
the following properties in order to account for the role of vege-
tation structure and function in the processes investigated: it 
should account for the main processes of plant development 
(Sorrensen-Cothern et al., 1993; DeAngelis 2018): (1) resource 
capture as a response to the immediate environment; (2) allo-
cation of growth that results from resource capture to the de-
velopment of the 3-D crown architecture; and consequently 
(3) modification of the immediate environment, described as 
a 3-D distribution of the resource flux. The model should also 
have modules that are sufficiently easily parameterized for (4) 
physiological processes (growth engine) and (5) morphological 
development (crown architecture) for different species. It 
would be beneficial if (6) different plant parts (organs) could be 
singled out (e.g. node, internode, leaf, bud) without simplified 
representations, such as spatial distributions. Further, (7) the 
model should be able to cover the whole life span of the woody 
plant, from seedling to maturity, including some measure of fe-
cundity and mortality. (8) Spatially explicit individual-based 
simulations of a sufficiently large plant community are neces-
sary. (9) An easy link with structural measurements would be 
useful, and finally (10) the model should be able to incorporate 
temporal variation.

Numerous plant community models are capable of fulfilling 
at least some of the above criteria. For example, process-based 
models can describe growth derived from physiological pro-
cesses interacting with the environment (criteria 2 and 4 above) 
and have been used successfully for many years in agronomy 
(Bouman et al., 1996; Marcelis et al., 1998) and forest sciences 
(Mäkelä et al., 2000). However, they lack the 3-D spatial and 
structural information of individuals which ultimately modifies 
fine-scale resource capture and growth in forest environments. 
Alternatively, gap models (Botkin et al., 1972) include detailed 
life cycles and can differentiate between different species (cri-
teria 1 and 5), which is beneficial for modelling plant commu-
nity interactions. However, neither the specific 3-D form of 
individuals nor their spatial distribution in a simulation (criteria 
2, 3 and 8) is explicit. There also exist ‘cohort-based models’, 
which act as an intermediary between IBMs and DGVMs, 
whereby plants are grouped by age, size or functional types 
(Fisher et al., 2017). These models are not as computationally 
heavy as IBMs but reduce the resolution of functional diversity 
(Fisher et al., 2010). The placement and specific architecture 
of individuals within a community and their relative distances 
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to each other are important factors for determining the strength 
of interactions between neighbours. Individual woody plant 
structure determines forest community structure, but this is 
itself determined by the structure of neighbouring woody 
plants. Models without 3-D structural variation will not capture 
within- and between-plant microenvironments, therefore losing 
information regarding fine-scale patterns of form and function 
in heterogeneous environments.

Indeed, many community models have been developed 
which account for forest structure and spatial heterogeneity 
including SORTIE (Pacala et  al., 2011), LPJ-GUESS (Smith 
et al., 2014), ED/ED2 (Moorcroft et al., 2001) and FORMIND 
(Köhler and Huth, 1998). These models have been able to an-
swer a number of ecological and evolutionary questions with 
regard to forest structure and dynamics, including the effect of 
shading and crowding on neighbours (Canham et  al., 2004). 
Nevertheless, all these models have a simplistic representation 
of 3-D structure, omitting explicit branching and growth asym-
metry, which can impact the presence of microenvironments. 
Indeed, high-level vegetation models including landscape forest 
models (Mladenoff, 2004) and DGVMs (Prentice et al., 2007) 
rely on assumptions derived from plant community models, and 
thus it is important to investigate and evaluate the relative 3-D 
structural contributions of individuals in forest communities 
and how these ultimately impact vegetation assembly and dy-
namics (Zhang and DeAngelis, 2020).

Evolutionary models

Evolutionary woody plant and community models typically 
operate with simplified or purely theoretical communities, and 
often focus on identifying different adaptive strategies and dif-
ferences in niche utilization that are suggested to enable the 
development and coexistence of diverse woody plant species 
(Lamanna et al., 2014). In recent years, these models have in-
cluded the performance of individual plants that are growing in 
spatially explicit positions within a model system (May et al., 
2015; Coelho and Rangel, 2018; Wickman et al., 2019). An ac-
cumulating line of evidence suggests that there can exist mul-
tiple alternative functional–structural tree designs that share an 
equal value of a fitness measure (Dias et al., 2020), which is in 
line with the ideas of Pareto optimal plant design (Farnsworth 
and Niklas, 1995; Conn et al., 2017) and the neutral theory of 
biodiversity (Hubbell, 2001). For example, Falster et al. (2017) 
demonstrated that the inclusion of few mechanistic details in a 
spatial forest model enabled diverse competitive coexistence in 
a manner that closely resembled the situation where different 
plant species are functionally identical. Xiao et  al. (2007) 
concluded that there is no single evolutionarily stable height 
strategy for a plant population. Kennedy (2010) showed that al-
ternative branch morphologies can compensate for water stress 
while simultaneously maximizing carbohydrate gain.

While increasing realism may sound beneficial, it can also 
easily lead to an added amount of model uncertainty due to 
practical challenges in specifying numerous parameter values 
with sufficient reliability. Equal performance of alternative de-
signs also suggests that increasing the level of detail beyond a 
certain point may not produce further changes in model pre-
dictions, if the model simply depicts these alternative designs. 

However, detailed analyses of the roles of different functional 
and structural traits can be warranted in situations such as the 
need to select plants with favourable trait combinations for spe-
cific purposes (Picheny et  al., 2017). Hidden differences be-
tween alternative trait combinations may also become realized 
if the environment changes.

Franklin et al. (2020) suggested that the potential problems 
of model complexity in vegetation models could be circum-
vented by applying only three evolutionarily justified organ-
izing principles to predict individual variation: natural selection, 
self-organization and entropy maximization. There are already 
examples where self-organizing principles alone can produce a 
high diversity of tree forms (Pałubicki et al., 2009) and simu-
late long-term dynamic development of forest vegetation over 
a wider topographically variable area (Makowski et al., 2019).

GENERAL FEATURES OF FSPMS

Functional–structural plant models are complex 77models, but 
in light of increasing data availability, they now have the po-
tential to be useful as tools for investigations on forest com-
munities from the dynamic and evolutionary point of view 
and fulfil all the desired criteria outlined above (Louarn and 
Song, 2020). The FSPMs appeared in the mid-1990s with the 
aim of unifying classic process-based plant models with geo-
metric models (Sievänen et  al., 2000; Godin and Sinoquet, 
2005). FSPMs differ from earlier models of plant growth by 
considering an individual plant as a collection of semi-autono-
mous, interconnected elementary units. Metabolites allocated 
to those units are determined through availability derived from 
metabolic processes in the context of their environment (Fig. 
2). The resulting model is structurally and functionally realistic 
and expresses highly responsive behaviour in relation to the 
prevailing growth conditions, which gives insight into the nu-
ances of 3-D structure otherwise overlooked in other modelling 
techniques (Fig. 3). A good sample of previous research into 
FSPMs and related topics can be found in special issues of New 
Phytologist 166 (3), 2005; Functional Plant Biology 35, 2008; 
Annals of Botany 101 (8), 2008, 107 (5), 2011, 108 (6), 2011, 
114 (4), 2014; 121 (5), 2018 and 126 (4), 2020; and Ecological 
Modelling 290 (1–2), 2014.

Table 1 shows a sample of FSPMs applied for simulation of 
growth of woody plants. The most popular purpose of model 
construction is in the realms of horticulture and agronomy. This 
is understandable since the FSPMs are well suited for increasing 
understanding of resource flux to desirable products and simula-
tion of management effects such as pruning. A clear driver in the 
development of these models is to improve our understanding 
of the interplay between resource acquisition and architectural 
development. Notably, these models are all based on resource 
capture of aerial parts only. Some models include roots but only 
as a passive part of the plant. There are numerous functional–
structural models of root systems (Barczi et al., 2018; Schnepf 
et al., 2018) but none of them have been linked to the models 
listed here. Some of the models have been realized using a dedi-
cated software for FSPMs. Notable examples of such software 
include AmapSim (Barczi et al., 2018), GroIMP (Hemmerling 
et  al., 2008), Virtual Laboratory/L-studio, (http://www.
algorithmicbotany.org/virtual_laboratory/; Prusinkiewicz, 2000)  
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and OpenAlea/OpenAleaLab (https://team.inria.fr/virtualplants/
software/; Pradal et al., 2008). Amongst the many FSPMs that 
have been developed, significant variation can be found in their 
implementation. Nevertheless, FSPMs always feature three 
main components or sub-models: a physiological model, an en-
vironmental model and a structural model.

The main focus of the FSPM studies has been in the re-
sponses of single plants, either isolated or as a part of a plant 
community. If they have been part of a plant community, the 
effect of other plants has been modelled assuming some sort of 
homogeneity of the surrounding canopy. For example, Sterck 

et al. (2005) assume the surrounding canopy be characterized 
by its height and a homogeneous leaf distribution. Nevertheless, 
in spite of the predominant focus on individuals of FSPM tree 
applications, five of the 12 models listed in Table 1 are capable 
of simulating interacting tree individuals, i.e. scaling up from 
elementary units to tree community. Host et  al. (2008) used 
the ECOPHYS model (Table 1) to simulate the growth over 
8 years of individual aspen and Populus trees on a patch of 64 
trees with an hourly time step. They observed how the growth 
differed between various clones for which the parameters of 
e.g. leaf-level light interception, carbon allocation, canopy 

1 0.25 0.0625 0.0277

Density (plants m–2)

0.0123 0.01

Fig. 3. Example of FSPM function under changing environmental factors (Cournède et al., 2008). In this case, the density of individuals decreases from left to 
right, highlighting the impact of growing conditions on tree structure.
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architecture and phenological events had been determined. 
Cournède et al. (2008) simulated the effect of interplant com-
petition for light and density on interacting individual trees in 
heterogeneous conditions using the GreenLab model (Table 1). 
Hemmerling et al. (2008) showed a simulation using the model 
GroImp (Table 1) of a landscape consisting of 700 individual 
beech and spruce trees for 11 years with an annual time step 
when the trees were interacting through radiation interception.

Computational requirements are no longer a major obstacle 
in the development of FSPMs at the community level. Taking 
the LIGNUM model (C++ implementation, Sievänen et  al., 
2008) as an example of computational requirement of multitree 
simulation, a rough estimate is as follows. The elementary units 
tree segment and bud can take 300 and 200 bytes, respect-
ively. A  tree with 50  000 units will consume 25  megabytes 
of memory. Extending this to 3000 trees (per ha) the memory 
requirement would be ~75 gigabytes. The second memory re-
quirement comes from environmental modelling. One way 
to represent the growth space of plants is to discretize it to 
cubic volume elements using voxel space. For example, in the 
LIGNUM model, the individual elementary cubic element (a 
voxel), requires ~300 bytes. Assuming a voxel with 20 cm side 
length (roughly the size of an elementary unit tree segment) and 
the requirement for a 1-ha forest plot 40 m high, the number of 
voxels would be 50 million. This amounts to a roughly 15 giga-
byte memory requirement for the voxel space.

A modern high-performance computing system can have hun-
dreds of gigabytes or even terabytes of available memory (see 
examples at docs.csc.fi computing environment). Therefore, 
the large number of elementary units does not create an in-
surmountable computational obstacle as long as physiological 
processes can be computed in linear time, O(n), in terms of 
elementary units, as is the case in most of the models in Table 1,  
including the calculation of light transmission in canopy or 
tree crowns, for example, with the aid of voxel space (Sievänen 
et al., 2008). These examples indicate that the FSPMs are cap-
able of simulating heterogeneous natural forests as interacting 
individual trees.

Major strides have been made in the physiological models, the 
environmental model and the structural model, particularly for 
non-woody plants, namely, the development of state-of-the-art 
light models (Dieleman et  al., 2019), below-ground exten-
sions of 3-D architecture (Barczi et al., 2018; Schnepf et al., 
2018) and numerous physiological advances (Louarn and Song, 
2020). So far, FSPM development has been largely dedicated 
towards modelling crop products: for example, grapes (J. Zhu 
et al., 2018; Schmidt et al., 2019; Prieto et al., 2020), tomatoes 
(Sarlikioti et al., 2011; Dieleman et al., 2019; Vermeiren et al., 
2020), soybeans (Coussement et al., 2020; Song et al., 2020). 
The development of FSPM components in agronomy has been 
pivotal to the extension and improvement of FSPMs in general 
(Vos et al., 2010; de Reffye et al., 2021), but careful consider-
ation must be taken when applying these models to ecological 
and evolutionary questions. For example, many agronomy-
based FSPMs target fruit production (Table 1) and thus include 
detailed source–sink components that may be unnecessary for 
modelling natural forest stands (Allen et al., 2005). It is also 
worth noting that agronomy FSPMs often simulate growth and 
development in optimum environments, without any nutrient, 
water or light shortages (Auzmendi and Hanan, 2020), which is 

far removed from natural conditions. In short, each sub-model 
(environmental, structural and physiological) must be evaluated 
in turn to ascertain trade-offs between reality, generality and 
simplicity at larger spatial and temporal scales.

Physiological sub-models

The modular nature of FSPMs means that almost any physio-
logical models (empirical or mechanistic) can be included and 
exchanged depending on the research question. Whilst this 
has benefits in testing and exploring a range of theories, it can 
quickly become overwhelming for non-experts. The growth and 
development of woody plants can be split into two categories of 
physiological processes: the ‘fast processes’ of photosynthesis 
and respiration and the ‘slow process’ of carbon allocation. 
Carbon is assimilated through photosynthesis and allocated ei-
ther towards new growth or maintenance, whilst carbon losses 
occur through respiration and senescence. Photosynthesis has 
been represented in FSPMs in a number of ways, including 
implicit models (Mäkelä and Hari, 1986), empirical models 
(Le Roux et  al., 2001) and biochemical models, notably the 
Farquhar–von Caemmerer–Berry (FvCB) model for C3 photo-
synthesis (Farquhar et al., 1980; von Caemmerer and Farquhar, 
1981), which has been scaled up for whole canopies in Medlyn 
et  al. (2003). Biochemical models have the added benefit of 
representing instantaneous responses at small time steps of 
minutes and hours, which may be beneficial for particular 
studies, for example in modelling fast-growing species (Lu 
et al., 2011). However, these short physiological time steps may 
not be necessary, or appropriate, for modelling forest structure 
and dynamics at larger spatial and temporal scales.

Notably, most of the FSPMs listed in Table 1 either ignore 
acclimation or prescribe fixed parameter values for each spe-
cific species. However, vascular plants are known to adapt their 
‘fast’ physiological processes depending on their environmental 
conditions (Walters, 2005). For photosynthesis, a mechanistic 
approach, such as that employed by the P-model (Stocker et al., 
2019) may be more appropriate for simulating the acclimation 
of photosynthesis over time. Here, an optimality-based theory 
is used to predict the acclimation of leaf-level photosynthesis 
to its environment. Moreover, a recent global analysis of forest 
production efficiency by (Collalti et  al., 2020) observed that 
respiration rates varied with temperature far less steeply than 
observed in short-term responses, indicating acclimation over 
time. ‘Fast’ physiological processes in FSPMs are usually 
based on these instantaneous responses and it will be important 
in future development to consider the impact of this aspect on 
simulations at the scale of weeks, months and years. In the 
FSPM modelling paradigm, which is based on the concept of a 
plant’s adaptability to its local environment, it is imperative not 
to underestimate the importance of acclimation in basic physio-
logical responses. Some areas to consider are CO2 acclimation 
as implemented in mCanopy-soybean (Song et al., 2020) or the 
light acclimation simulations of sugar maple trees in LIGNUM 
(Posada et al., 2012).

The ‘slow’ process of carbon allocation towards new 
growth and maintenance of existing organs is particularly im-
portant in FSPMs, but also one of the least well understood. 
Carbon allocation methods are difficult to compare between 
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FSPMs because different models employ different groupings 
of parts (Zhang and DeAngelis, 2020). Most FSPMs include 
a carbon allocation model based on the pipe model theory 
(PMT) proposed by Shinozaki et  al. (1964) over half a cen-
tury ago (Godin, 2000; Le Roux et al., 2001; Lehnebach et al., 
2018). Whilst this model provides a useful framework for 
investigating functional–structural relationships, many of its 
assumptions are outdated. Notably, in their comprehensive re-
view of the PMT, Lehnebach et al. (2018) find that the property 
of sapwood area preservation is almost never valid, and that 
the ratio of leaf mass to a cross-sectional area of sapwood can 
vary greatly depending on internal and external properties. As 
an alternative, the authors suggest an additional model step not 
included in the PMT, which robustly quantifies foliage and sap-
wood partitioning regardless of species, age or stand condition. 
A broad uptake of such methods could be useful for comparing 
between FSPM models, particularly with regard to how carbon 
allocation is represented in models of herbaceous and woody 
plants. Furthermore, it permits explaining potential physio-
logical adaptations found between individuals in a given forest 
community. It is worth noting that physiological sub-models 
of FSPMs are one of the greatest contributors of model com-
plexity and still one of the most difficult to parameterize ef-
fectively, so a move towards simpler physiological sub-models 
would be greatly beneficial to FSPMs, particularly when ap-
plied to natural, multitree scenarios.

Environmental sub-models

Simulations of realistic local environmental conditions are 
a key determinant of how woody plants adjust to external 
processes. In FSPMs there are many ways to represent en-
vironmental conditions and these methods come with varying 
levels of reality and detail. A  select few FSPMs have been 
able to capture detailed below-ground processes in herb-
aceous plants, notably C-Root Box (Schnepf et  al., 2018), 
but the majority of FSPMs focus on above-ground processes. 
Thus, in terms of resource capture, light conditions are funda-
mental to understanding how individuals optimize form and 
function within their respective communities. Recent FSPM 
studies have indicated that light competition reduces indi-
vidual plant defence against herbivory (de Vries et al., 2018, 
2019). In addition, Douma et al. (2019), have shown that it is 
not only the quantity of light that contributes to plant defence, 
but also the quality of available light.

Thus, modellers must evaluate the potential options for 
representing an accurate light environment when developing 
FSPMs and scaling up from organ level to a forest patch by 
simulating the growth of individual trees. As the development 
of tree individuals takes place in terms of a collection of elem-
entary units without simplifying assumptions of crown shape 
(if it was, it would be contrary to the idea of FSPMs), it is not 
easy to make use of stand-level simplifications in the calcula-
tion of radiation conditions. Rather, the analysis of radiation 
conditions needs to be made on the basis of actual positions of 
all individual shading units (foliage) and it is a computationally 
complex problem (Host et al., 2008). Although computers have 
advanced rapidly in recent years, the choice of light model can 

add a significant computational burden to the overall FSPM so 
trade-offs are inevitable.

Most methods of light simulation involve computing how 
much photosynthetically active radiation (PAR) is intercepted 
or absorbed by plant structural elements. To speed up radi-
ation calculations, spatial discretization, such as the method of 
voxel space (Li et al., 2018), or some other means, like tech-
niques based on Monte Carlo sampling in path tracing (Cieslak 
et  al., 2008), can be applied. Alternatively, shadow propaga-
tion (Pałubicki et al., 2009) has been used, which is a fast ap-
proach to compute a coarse estimate of the exposure of each 
bud to light. In this approach the space is divided into a grid of 
voxels each with associated shadow value. Each plant segment 
occupying a particular voxel creates a pyramidal penumbra at 
the voxels underneath. All segments are sequentially processed 
to produce a 3-D grid of accumulated shadow values.

More recently, with improved parallel processing and the 
use of graphics processing units (GPUs), it has become pos-
sible to model detailed absorption, transmission and reflect-
ance for the full light spectrum using ray-tracing models 
(Henke and Buck-Sorlin, 2017). A normal forward ray-tracing 
is based on the point of view of the radiation source (sky). 
This means that the rays from the source are traced to the 
elements of interest (i.e. leaves, buds, branches). However, 
this approach becomes problematic when the number of 
elements becomes large, because to sample them sufficiently 
and accurately requires a very large number of rays that 
sample the incoming radiation. Even then, there can be large 
errors in individual elements. The idea of reverse ray-tracing 
is to change the point of view from the radiation source to 
the entities themselves. Thus, the rays from every element 
are traced to the source, which ensures that each element is 
sampled properly and the errors are bounded. This approach 
has been used in a number of static FSPMs, including Helios 
(Bailey, 2018, 2019), and the FSPM generation platform 
GroIMP (Kniemeyer and Kurth, 2008; Hemmerling et  al., 
2008).

Architectural sub-models

One of the most widely known and commonly used 
methods of representing the 3-D structure of woody plants is 
through Lindenmayer systems, otherwise known as L-systems 
(Prusinkiewicz, 2000). L-systems are parallel rewriting strings 
that act on sequences of symbols. Woody plants can be rep-
resented by an L-system with an alphabet of symbols and a 
set of rewriting rules, known as productions. Each symbol in 
the alphabet represents a distinct botanical unit, such as buds, 
leaves or flowers. This system of rewriting allows for dynamic 
growth rather than just a static configuration of plant architec-
ture in space. Numerous FSPMs use L-systems directly or soft-
ware based on them, such as L-studio, L + C and L-Py (Table 1)  
to define plant structure. Creating successful L-systems that 
reflect realistic plant forms is an art in itself (Prusinkiewicz, 
2004). It can quickly become laborious when multiple species 
with different growth habits, or individuals of different ages, 
need to be defined. Parameterizing L-systems in an informative 
way requires many structural parameters, which were difficult, 
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if not impossible, to attain until the recent application of TLS 
technology to forest communities.

THE REALM OF TLS

In recent years, TLS has emerged as a revolutionary tool for 
measuring above-ground 3-D tree architecture and forest struc-
ture (Malhi et al., 2018; Disney, 2019; Calders et al., 2020). 
TLS is a ground-based remote sensing method of determining 
distance and is one of a wider choice of laser scanning tech-
niques that provide often complementary information for dif-
ferent measurement scales and research purposes (Beland 
et  al., 2019). Here, we consider TLS to also cover scanning 
from unmanned aerial vehicles capable of accessing the upper 
parts of the canopy (Slavík et al., 2020). There are numerous 
TLS instruments available commercially, and whilst they vary 
greatly in their specifications, they all function in the same 
way, by emitting a laser light onto a 3-D object and measuring 
the distance to the object. Three-dimensional representations, 
called point clouds, can then be generated based on the dis-
tances and directions of the laser beams. The potential benefits 
of this technology for elucidating forest structure and dynamics 
can hardly be overstated. TLS is a non-destructive technique 
that can produce measurements to within even millimetre ac-
curacy, depending on the equipment used, without the need to 
fell trees. This significantly reduces the time required for taking 
detailed measurements of individuals and leaves the habitat in-
tact for potential resampling at a later date. As TLS technology 
matures, so does the ability to scan larger areas with excellent 
resolution. The large quantities of high-accuracy structural data 
provided by TLS are invaluable for elucidating the underlying 
mechanisms of individual tree form and thus the whole-forest 
organization. Despite the promises and potential, the applica-
tion of TLS to questions in forest ecology and evolution is still 
in its early days. In a recent review, Malhi et al. (2018) out-
line a number of areas suitable for testing and extending eco-
logical theory on tree form and function in the context of TLS, 
including seed dispersal, structural mechanics and resource 
distribution. The opportunities are indeed exciting; however, 
tackling such theoretical questions with TLS requires careful 
coordination of elements spanning many disciplines.

In practice, TLS is time-efficient in relation to the gained 
precision and is easy to use; however, there are a number of 
nuances that must be taken into consideration to ensure overlap 
of practice between researchers. Some challenges will be pre-
sent regardless of the equipment used or environmental con-
ditions, which include, but are not limited to, occlusion, leaf 
and wood separation, irregularity of form and validation. Many 
of the commercially available TLS instruments are able to re-
duce common difficulties associated with scanning individuals, 
stands and large areas of mixed-species forests. The potential 
to test and further expand ecological theory stems largely from 
the ability to gain an accurate representation of how organs of 
a tree are arranged in 3-D space and how multiple trees in this 
space are arranged relative to each other. Similar to choosing 
the correct environmental and physiological elements to in-
clude when creating FSPMs, correctly planning both the data 
collection and data processing prior to beginning a project is 
key to maximizing the benefits of TLS. If all the trees in a forest 

plot are targeted, Wilkes et al. (2017) suggest a sampling grid 
of 10 m × 10 m in dense areas and 20 m × 20 m in open areas 
to produce a good-quality point cloud that effectively resolves 
higher-order branches down to a few centimetres in diameter in 
up to 30 m canopies. If individual woody plants are targeted, 
the sampling grid can be designed on a case-by-case basis to 
maximize the visibility of the individual.

A highly important use of TLS has been in quantifying 
AGB. Estimating AGB is crucial to our understanding of 
carbon stocks and fluxes but has been plagued by systematic 
error due to the difficulty in obtaining manual measurements, 
bias towards temperate regions and an over-reliance on allo-
metric scaling equations. New TLS-derived measurements 
have deconstructed previous assumptions about AGB esti-
mates and challenged the validity of many of the widely used 
allometric scaling equations (Disney et  al., 2018). Notably, 
TLS estimates of AGB are free from the constraints of allo-
metric models and can thus provide well-justified levels of 
uncertainty. Estimates of AGB derived from TLS tend to per-
form well in a number of scenarios, including tropical and 
urban environments; however, it should be noted that it is 
not a mature enough tool to be used as a standalone method-
ology (Wilkes et al., 2017; Lau et al., 2019). Currently, meas-
urements from destructive harvests are frequently required 
to validate AGB estimates from TLS. It is also noteworthy 
that allometric models can be refined towards more flexible 
functional models using the type of data that is available 
from TLS (Kaitaniemi et al., 2020; Kaitaniemi and Lintunen, 
2021). Alternatively, quantitative structural models (QSMs), 
which are a hierarchical collection of cylinders (Fig. 4), can 
be used to compute an array of detailed structural tree met-
rics, including AGB. There are published and freely available 
methods to reconstruct QSMs from TLS data; these include 
TreeQSM (Raumonen et  al., 2013; Calders et  al., 2015a; 
Raumonen, 2020), SimpleTree (Hackenberg et  al., 2015), 
AdTree (Du et  al., 2019) and CompuTree (Piboule et  al., 
2013). SimpleTree is currently known as SimpleForest and it 
is a plugin for CompuTree. The accuracy and level of details 
available in the QSMs is heavily dependent on the quality of 
the input point clouds. For example, if a tree is sampled poorly 
such that a lot of branches are completely missing in the data, 
then these methods cannot reconstruct the missing branches.

Differentiating between individual trees remains a key chal-
lenge when working with scans containing multiple trees. 
Whilst this is simple enough to do manually using open-source 
software such as CloudCompare, it becomes increasingly time-
consuming relative to the size of the area covered as well as 
the density and structural detail of trees. Automated or semi-
automated methods can help to streamline this area of TLS data 
processing (Fig. 5). However, error propagation arising from 
TLS automated workflows is a known issue and human assist-
ance should be used where appropriate (Martin-Ducup et al., 
2021). There are at least two open-source software options 
available that tackle this issue in different ways. Firstly there is 
treeseg (Burt et al., 2018) and 3dforest (Trochta et al., 2017), 
both developed with C++, which use a number of standard 
point cloud processing techniques; and secondly there is LidR 
(Roussel et al., 2020), written in the R environment, intended 
for use with airborne LiDAR, but easily applied to TLS. These 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/128/6/663/6381668 by U

niversity of Tam
pere Library user on 02 D

ecem
ber 2021



O’Sullivan et al. — Integrating TLS with FSPMs for ecology and evolution of forest communities 673

software options are invaluable for reducing the amount of time 
for point cloud processing in forest environments. However, 
due to the popularity of the R language in biological sciences 
compared with C++, LidR has the added benefit of accessibility.

Extensive point clouds of multiple trees become even more 
difficult to handle when they include different materials (i.e. 
leaf and wood) (Côté et al., 2012). It is often recommended to 
complete scanning campaigns in leaf-off conditions but there 
are many scenarios where that may not be possible, or even 
desired, such as when calculating leaf area index or leaf area 
distribution. Therefore, a method of separating leaf and wood 
from point clouds is essential for working with TLS data in 
an ecological context. Indeed, calculations of leaf area index 
can be overestimated if woody material in the canopy is un-
accounted for (Woodgate et al., 2015). Similarly, woody AGB 
estimates can be overestimated if leaf points are unaccounted 
for. Methods for separating leaf and wood fall largely into two 
groups: geometric-based separation and intensity-based separ-
ation. Intensity-based methods use the measured intensity of the 
laser beam as a marker of the material, using a simple threshold 
value for the classification. However, this kind of simple ap-
proach does not perform well in general. The intensities may 
still be useful for classification as one of the information 
sources (X. Zhu et al., 2018). Geometry-based methods com-
pute multiple geometrical features characterizing each point’s 
neighbourhood and then train a leaf–wood classifier based on 
those features. With the variety of approaches available it can be 
daunting to select an appropriate method for a particular study. 
More recently, a method has been described with a high level 
of automation as well as options for flexibility. TLSeparation is 
an open-source Python library offering custom workflows and 
automated scripts (Vicari et al., 2019). This software performs 
with a 90 % accuracy for separating leaf and wood in field TLS 
data, which is a beneficial step towards efficient TLS data pro-
cessing of large forest scans. There are other geometric-based 
published methods with similar accuracies (Wang et al., 2018, 
2020; Moorthy et al., 2020).

Species identification

An area of TLS research with exceptional benefits to eco-
logical modelling is the development of automatic species 
identification algorithms. A handful of studies have investi-
gated potential methodologies in different scenarios. Othmani 
et al. (2013) used bark texture to identify five species from 
a sample size of 75 individuals using a random forest classi-
fication with an accuracy of 85 %. While this method can be 
useful for identifying species that are mostly different only 
in their bark, the required accuracy and resolution levels re-
quire close-range scanning. Barmpoutis et al. (2018) classi-
fied four species of Caatinga trees using the fast-marching 
method for tree skeletonization, subsequently classifying 
skeletons with descriptors that account for a combination 
of dynamic, appearance and noise parameters. Whilst this 
method outperformed alternative approaches based on geo-
metric characteristics, the sample size (15 individual trees) 
is too low to determine whether or not it would be feasible 
to apply this methodology to large forest scans with lots of 
individuals.

Fig. 4. Example of a quantitative structural model (QSM). QSMs are vital for 
extracting detailed structural measurements of woody plants useful in down-
stream analysis such as FSPM input or validation and calibration. Cylinders 
are used to reconstruct 3-D structure from point cloud data. Here, the different 

colours represent the different branches of the tree.
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Some success has been found with large sample sizes in 
studies using QSMs to obtain structural features and machine 
learning for classification. Åkerblom et al. (2017) obtained an 
average classification accuracy of >93 % in a single-species 
forest plot, with lower accuracy found in mixed-species 
plots. A more recent study by Terryn et al. (2020) expanded 
on this work using a mixed species plot of 760 trees across a 
1.4-ha study area to compare classification. They were able to 
achieve a classification success rate of 80 %, but with lower 
accuracies for three out of the five target species. High intra-
specific variation alongside low inter-specific variation led to 
classification complications, which are difficult to overcome 
in mixed-species plots. The authors find that the greatest 
factor contributing to classification success is canopy class. 

Whilst these results are not entirely surprising, they do ex-
emplify the frustrating difficulty in applying quantitative 
techniques to organisms with high levels of local adaptation. 
Moreover, Martin-Ducup et al. (2020) found a convergence 
of tree architecture with increasingly dominant crown canopy 
positions in tropical trees. They interpreted this convergence 
as resulting from a liberation effect of canopy trees from 
side-shading constraints. These results also point to the chal-
lenges of using structural metrics for species identification. 
Further research is required in this area as FSPMs require 
species-specific information to function reliably, and any 
ability to automatically identify species across large areas 
would greatly improve the potential to apply FSPMs to larger 
ecological questions.

Fig. 5. Segmentation of individual trees from a whole-forest scan. Although manual segmentation is possible, automation or semi-automation of this process can 
greatly speed up the processing of TLS data. The different colours delineate between individual trees in the forest community.
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TLS in studies of vegetation dynamics

TLS data, often with derived QSMs, have been used to gain 
new understanding of forest dynamics and structure. For ex-
ample, Seidel et  al. (2011) showed how crown plasticity in 
terms of crown asymmetry is used by trees to avoid competi-
tion. They concluded that TLS offers an opportunity to achieve 
a better understanding of the dynamics of canopy space explor-
ation, which can produce valuable advice for the silvicultural 
management of mixed stands. Kunz et al. (2019) studied the 
crown plasticity more thoroughly by scanning thousands of 
trees in large-scale forest experiment plots with variable spe-
cies mixtures with TLS. They found that crown complemen-
tarity and crown plasticity increased with species richness. 
Furthermore, trees growing in more species-rich neighbour-
hoods showed enhanced above-ground wood volume in trunks 
and branches, and over time the diversity induced shifts in 
wood volume allocation in favour of branches. Martin-Ducup 
et al. (2018), in turn, found that the foliage distribution of sugar 
maple shifted towards the crown base in mixed stands when 
compared with pure stands. Recently, van der Zee et al. (2021) 
introduced a novel method of quantifying the phenomenon of 
‘crown-shyness’ by applying a 3-D surface complementarity 
metric to TLS data. With this method they were able to exem-
plify local adaptive responses in neighbouring trees and the 
relationship between crown complementarity and individual 
‘slenderness’ mirroring previous results. Applying TLS in a 
functional context, Hildebrand et al. (2021) found no support 
that functional dissimilarity promoted crown complementarity 
in a mixed-species forest stand. Rather, they find that the rela-
tive efficiency of different species in occupying canopy space 
is better explained by phenotypic changes related to crown 
morphology and branch plasticity. This has interesting impli-
cations for how we view woody plant interactions, highlighting 
the need for a thorough 3-D approach to forest community 
ecology.

The phyllotactic patterns of many herbaceous plants are gen-
erated by a constant divergence angle between successive buds 
that first appears at the shoot. Beyer et al. (2021) investigated 
whether the branches along tree trunks exhibit a similar con-
stant divergence angle. From branch skeleton data derived from 
TLS data they empirically estimated the distributions of the di-
vergence angles between successive branches along the trunks. 
They found that, rather than having species-specific branch di-
vergence angles, mature European beech, Norway spruce and 
Scots pine trees feature statistical properties characteristic of a 
uniform distribution. They hypothesized this to be the result of 
the stochasticity in bud development and branch shedding, and 
showed that the distribution of branch divergence angles will 
approximate a uniform distribution if bud mortality and branch 
shedding rates are high.

Calders et al. (2015b) monitored the timing of recurring sea-
sonal dynamics through the plant area index (PAI). From TLS 
data they estimated vertical plant profiles, which describe the 
plant area per unit volume as a function of height. They gen-
erated a time series from 48 measurement days in a deciduous 
forest and the start of season was observed to depend on the 
species composition. They concluded that phenological dif-
ferences will be more pronounced in multi-layered forests, 
and TLS was shown to have the potential to study seasonal 

dynamics not only as a function of time, but also as a func-
tion of canopy height. An exciting advancement in the area of 
TLS time series for monitoring forest dynamics is described 
by Campos et al. (2021), where they outline the creation of an 
automated and permanent TLS measurement station. This new 
monitoring station is the first to collect long-term TLS data at 
1-h intervals. In preliminary results they were able to identify a 
number of short-term and long-term changes in a boreal forest, 
notably the short-term circadian rhythms in silver birch trees 
over 30 h, and longer-term phenological chances of spring leaf-
sprout and stem diameter growth.

A number of studies have used TLS to investigate relation-
ships between environmental factors and woody plant structure. 
TLS data and the derived QSMs of trees have been used for 
mechanical modelling of the trees under critical wind speeds 
(Jackson et al., 2019). Mechanical stability is a vital compo-
nent of woody plant form and function and here it was found 
that the difference in critical wind speed is driven by tree size 
and architecture, rather than material properties. In this study a 
trade-off between critical wind speeds and growth rate was also 
observed. Van der Zande et al. (2010) combined TLS measure-
ments with a voxel-based light interception model to examine 
the relationship between variable light conditions and the dis-
tribution of leaves in 3-D space; their results exemplify the im-
pact of neighbourhood crown size on the available light in the 
canopy.

Using TLS to parameterize FSPMs

Once the individual trees are isolated from the TLS point 
cloud, and the points from leaves are removed if necessary, 
it is possible to calculate many useful structural metrics. 
Straightforward calculations are available for macroscopic 
metrics, such as height, crown diameter and convex bounding 
volumes. But more specific metrics, such as diameter at breast 
height, stem volume, crown ratio and branch lengths and vol-
umes, require more processing, often some kind of segmen-
tation of the point cloud into suitable tree parts. An effective 
way of reconstructing the whole woody structure is through the 
implementation of QSMs. The use of QSMs generates possi-
bilities to use TLS data for FSPMs (Fig. 6). Firstly, simulating 
physiology and environment in a static context can directly use 
empirical tree models derived from TLS data. Secondly, these 
empirical structure models are useful for providing data needed 
to validate and test the 3-D structure of FSPMs against empir-
ical data in order to estimate their accuracy and usefulness more 
generally. For example, measuring detailed and complete struc-
tural information, such as branching topology and diameters, 
of large trees with manual measurements is very laborious or 
even practically impossible. With TLS it is possible to quickly 
collect such data from a large number of individuals that form a 
representative sample. This often requires that the TLS data are 
first transformed into QSMs, from which the structural tree data 
can be computed and inferred. However, much of the required 
structural information can be estimated from TLS data without 
full QSMs, namely overall measures such as crown dimensions 
and woody plant height. Moreover, useful information about 
the leaves, such as total leaf area (Béland et  al., 2011) and 
leaf orientation (Zheng and Moskal, 2012) together with their 
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spatial distributions, can be estimated from TLS data. Thirdly, 
the non-destructiveness of TLS allows for repeated measure-
ments over a span of time, for example over a growth season 
or many years. This way it is possible to produce an empirical 
time series of 3-D architecture and sample growth dynamics. 
These time series can similarly be used to validate and test the 
accuracy of the dynamic modelling of woody plant growth in 
a given FSPM. Lastly, time series data are useful for initial-
ization, calibration or optimization of the FSPM parameters to 
make them correspond better to the observed form and function 
of woody plants.

A concrete example of using TLS data for parameterization 
and validation of FSPMs, at a proof-of-concept level, was given 
by Sievänen et al. (2018). In this study, pine trees of different 
ages but in the same location were scanned with TLS. This cre-
ated a pseudo-time series of growth of a single tree. From the 
TLS data, empirical cylindrical QSMs were reconstructed to 
model the tree architecture at each age interval of the tree. To 
complete the models with needle information, the location of 
needles was also estimated from the TLS data and together with 
needle allometry their area was estimated. The empirical tree 
models were thus similar in form as in LIGNUM. Then within 
the LIGNUM model many different crown development mech-
anisms were formulated and their parameters were optimized 
so that the resulting models matched as closely as possible 
many architectural attributes of the corresponding empirical 
tree models. The hypothesized mechanisms that most closely 
matched the empirical tree models were then considered more 
likely to capture the details of real crown development mechan-
isms. TLS data and QSMs were similarly used by Potapov et al. 
(2016), where they proposed a stochastic version of LIGNUM 
for producing tree structures consistent with detailed TLS data. 
They did the matching by iteratively finding the best corres-
pondence between the empirical QSMs and the stochastic 
choices of the algorithm. They concluded that the proposed 

approach is a viable solution for realistic plant models based on 
data and accounting for the stochastic influences. The trees pro-
duced with their data-based model resemble the real measured 
trees and are statistically similar but not copies of each other. 
Later they expanded the idea to general stochastic structure 
models and showed how to generate data-based morphological 
tree structure clones (Potapov et al., 2017).

Figure 6 specifies the principal steps in the TLS to FSPM 
workflow for simulation of tree communities. Although this 
paper has shown examples of these steps, there are still many 
obstacles that have to be overcome in order for the workflow to 
be an easy one to apply. For example, in step 1, when scanning 
a forest from multiple positions, there comes a point when the 
density of woody plants is too great to allow for efficient place-
ment of TLS instruments. This in turn results in high occlusion 
of woody branches or missing areas entirely if it is not possible 
to reach all areas of a survey site. One way of overcoming this 
issue is by using LiDAR-mounted unmanned aerial vehicles 
(UAVs) to complement ground-based TLS in order to minimize 
data gaps (Brede et al., 2019; Schneider et al., 2019). Density 
of woody plants in a forest stand can also greatly impact step 
2. if there is significant branch overlap between neighbouring 
plants, automated and semi-automated methods may struggle 
to distinguish which branches belong to which plant. Species 
can also impact individual isolation from a point cloud if there 
are many species with a low, shrubby growth habit. Many of the 
separation algorithms rely on the ability to identify a distinct 
trunk close to the ground, and if this is not possible manual iso-
lation may be required.

After step 2 the challenge of step 3 and its applications for 
FSPMs is acquiring botanically accuracy in QSM reconstruc-
tion. The way QSMs are reconstructed usually cannot produce a 
botanically faithful architectural structure. For example, it may 
be that e.g. internodes are not correctly identified or foliage (if 
it is detected) is placed in internodes that botanically cannot 

1. Scan a forest stand from
multiple positions

2. Isolate the indivual trees
from the point cloud

3. Reconstruct QSMs capturing
the woody structure of the trees

4. Extract empirical architectural
information on the trees

5a. Static FSPMs:
architectural information as a direct input for simulation
of environment and physiology

5b. Dynamic FSPMs:
-Test and calibrate FSPMs to match TLS-derived metrics
-Test different ecological and evolutionary hypotheses

Fig. 6. A potential TLS to FSPM workflow. 1. To minimise occlusion and gain an even point coverage, individuals should be scanned from multiple positions at 
regular intervals (see Wilkes et al. 2017). 2. Trees can be segmented from the large scan using segmentation software, LidR (Roussel et al. 2020) treeseg (Burt 
et al. 2018) or 3DForest (Trochta et al., 2017). 3. Generate QSMs for each individual in the scan (Raumonen et al. 2013) 4. Extract the appropriate structural 
information for use in FSPMs. 5a. Structural information can be used directly to simulate function with static woody structure and changing environmental con-
ditions. 5B. Alternatively, structural information can be used to initialise FSPMs, aid validation and calibrate dynamic models with changes in woody structure.
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carry it. For some species and with good enough quality data, 
it is possible to post-process QSMs to proper botanic form. 
However, for example if dead branches are broken off the stem, 
this may not leave any discernible trace in the TLS data and 
thus it is impossible, at least reliably, to reconstruct botanic-
ally correct QSMs. Following this, step 4, deriving architectural 
metrics, is just one part of FSPM parameterization. In this step, 
in addition to architectural structure, FSPMs require data for 
environmental and physiological sub-models. Such data are not 
available from TLS measurements, except for optical properties 
of foliage and woody parts. These data can be obtained from 
other models, flux towers or trait databases or existing litera-
ture. Differences between parameter requirements of different 
of FSPMs will dictate the difficulty of finding these values. In 
addition, the parameter values vary with growing conditions, 
e.g. site quality. Therefore, if the TLS scan does not provide in-
formation on foliage, the foliage must be generated using add-
itional information contained in parameter values or calculated 
(Lintunen et al., 2011). If a TLS scan is used to initialize forest 
structure for a simulation, then also the initial values of all vari-
ables in a FSPMs dynamical equations are required (i.e. amount 
of sapwood). This is best accomplished using a special module 
of the FSPM that calculates initial values as a function of the 
architectural structure and parameter values. Lastly, a botanic-
ally correct architectural structure, including positions of buds 
that flush to produce growth (Fig. 2), is preferable for starting 
of simulation.

DISCUSSION

TLS has already transformed the way we collect data on forest 
communities, providing unparalleled information about the 
spatial arrangement of individuals and their interactions in 3-D 
space, yet currently largely limited to the detection of static 
and transient patterns between the diversity of vegetation struc-
ture and other community features (Davies and Asner, 2014; 
D’Urban Jackson et al., 2020). FSPMs are capable of scaling 
structural relationships between different organs of the same 
plant to the structural relationships of whole plants in the same 
community. Using TLS together with FSPMs, in turn, forms 
a promising toolkit to explore questions involving longer time 
spans in forest community ecology and evolution. The avail-
ability of structural data for a wide range of species, across a 
wide range of habitats is key for shifting the focus of FSPMs 
from a practical use to a more paradigmatic one. Indeed, TLS 
data are already available for forest communities in numerous 
databases (Guzmán et  al., 2020), with more data being col-
lected and openly shared over time. Both TLS and FSPMs 
are associated with large amounts of data and parameters and 
high computational demand; however, no other combined 
method is capable of capturing, testing and investigating the 
spatiotemporal dynamics of forest communities in such detail. 
When used in tandem, FSPMs and TLS could be used to test 
hypotheses for dynamic relationships between biodiversity and 
productivity, ecosystem functioning and resilience to species 
losses or invasions in forest communities. Whilst these ques-
tions have been explored through several experimental studies, 
the studies that cover all phases of structural development of 
existing vegetation have exclusively been carried out with 
herbaceous plants and so have a limited applicability for forest 

ecosystems (Naeem et al., 1994; Tilman and Downing, 1994). 
Several experimental studies of tree diversity have been estab-
lished but even the oldest ones cover only ~20 years of forest 
development (https://treedivnet.ugent.be). Time is a difficult 
barrier to overcome in experimental studies of forest structure 
and dynamics. Whilst sudden changes in a forest community 
such as tree fall are easily detectable, long-term patterns may 
take decades to emerge. Using TLS and FSPMs together to gen-
erate models of forest development maintains a high level of 
structural realism and overcomes the limiting factor of time by 
simulating changing environmental conditions. The potential of 
this synergy is exciting but there are still a number of challenges 
that need to be overcome before it can reach its full potential.

In a recent review of agent-based models in plant science 
and ecology, Zhang and DeAngelis (2020) state that although 
FSPMs are set up in such a way that they should be able to 
address many of the same questions as population-level agent-
based models, it is not yet possible to apply FSPMs at the land-
scape level. It may not be even desirable to use FSPMs at that 
level. However, scaling up from organ to tree community level 
is necessary and interesting for problems of forest community 
ecology and evolution. There are only a few applications of 
FSPMs that simulate tree communities as interacting individ-
uals and this facet of FSPM research is not yet well developed. 
However, several of the models in Table 1 are able to cope with 
multitree simulation. The examples for computing environment 
requirements in the General features of FSPMs section show 
that FSPMs are able to simulate stand level forest communities 
with is no principal impediment to using them in such studies. 
Available computer resources are not an obstacle to simulating 
a sizable tree community either.

In order to increase the utility of FSPMs in ecology and evo-
lution of forest communities, the focus of development must 
shift towards a more general approach. Firstly, physiological 
processes must be easily parameterized. There are numerous 
ways of modelling basic physiological processes, and it would 
be beneficial to be able to parameterize the physiological sub-
model depending on the context of the study. The FSPMs of 
Table 1 have been parameterized for several tree species. 
The parameterizations are nevertheless very model-specific: 
using the parameter values in another model requires tedious 
handwork. If this problem could be alleviated, for example 
through a parameter database as a part of model website (www.
quantitative-plant.org), it would speed up applying FSPMs. 
Secondly, it is essential to have flexibility with regard to the 
architectural sub-model. For FSPMs to be broadly applied in 
the ecology and evolution of woody plants it is imperative that a 
range of structural forms are easily defined. Of the 21 different 
architectural forms described by Hallé and Oldemann, only a 
handful have been featured in published FSPMs (Hallé et al., 
1978). However, to exchange architectural sub-models, FSPMs 
could be better suited to deal with input parameter values. 
Many models apply a formalism [L-systems (Lindenmayer 
and Prusinkiewicz, 1990) in the first place] to deal with mor-
phological development. This opens possibilities of automatic 
transfer and translation of architectural information. Further, 
there exists a formalism to code architectural information, 
the multiscale tree graph (MTG, Godin and Caraglio, 1998), 
that can be used to transfer architectural information between 
FSPMs (Boudon et  al., 2012). Lastly, increasing the use of 
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TLS-derived data is one way of overcoming the lack of struc-
tural forms found currently in FSPMs; however, only one pub-
lished FSPM, HELIOS, features open-source TLS integration 
software (Bailey, 2019). For FSPMs to be readily scaled up to 
the population level, a dedicated TLS pipeline must become an 
integral part of FSPM development.

The sampling design proposed by Wilkes et al. (2017) for 
TLS studies could serve as a reasonable baseline for simu-
lating community-level FSPMs. As interest in using TLS for 
characterizing forest structure grows, so will the availability 
of TLS datasets. If TLS could be used to rapidly assess forest 
plots across a landscape, this could be used to inform mul-
tiple FSPM simulations across a larger geographical area. 
Moreover, repeated scans of the same area can provide invalu-
able temporal data, important to understanding phenology and 
sensitive responses over time highlighted by Campos et  al. 
(2021). The quality and quantity of structural data provided 
by TLS give FSPM developers the opportunity to make better 
decisions about the detail and scale of their models, as they are 
no longer being constrained by the specific set of parameters 
available. Data captured by TLS automatically covers several 
levels of structural detail with nearly the same sampling effort. 
Thus, the data captured by TLS enable the researcher to flex-
ibly make choices about the level of detail employed for re-
search and also to use the data and models to iteratively check 
how the ecological or evolutionary predictions depend on the 
level of detail utilized.

In Fig. 6 we describe a potential TLS to FSPM workflow, 
starting with a forest point cloud and ending with either architec-
tural input for FSPMs or validation and calibration. At each step 
of the workflow there are multiple software options available and 
a crucial step in expanding its uptake is a better understanding of 
the differences between these software options. Benchmarking 
and comparison have long been a shortcoming of FSPM develop-
ment, as noted in several reviews (Louarn and Song, 2020; Zhang 
and DeAngelis, 2020). Indeed, model complexity, inconsistency 
between sub-model representation, varied input parameters and 
a lack of open-source code has hindered a thorough evaluation 
of models (Table 1). However, a few groups have endeavoured 
to improve this situation, notably in the area of below-ground 
FSPM development. Schnepf et al. (2020) issued a call for par-
ticipation for a collaborative effort to compare root FSPMs via 
a two-step system, firstly by identifying a number of ‘bench-
marking scenarios’ and secondly by coupling these scenarios 
with specific research questions. This incremental method can 
therefore identify differences arising in step 1 which could im-
pact step 2 in ways that would otherwise go unnoticed. Above-
ground FSPMs could greatly benefit from a similar approach, 
and it will be important in upcoming years to improve communi-
cation between groups to tackle this issue.

From a TLS perspective, it is also important to ascertain areas 
of potential divergence in the workflow such as those related 
to the instrument used or QSM generation. To date, no formal 
comparison of TLS instruments exists, and it is possible for dif-
ferent instruments to return different results for the same target 
(Orwig et al., 2018). Scanning from multiple positions, as sug-
gested in Fig. 4, will reduce bias, but, depending on the terrain 
and equipment, could significantly increase the scanning time. 
Furthermore, there are limits to how well TLS instruments can 
capture fine branches and leaves in real field scenarios where 

even slight wind could introduce substantial noise. Any errors 
accumulated during the scanning process will only be exacer-
bated in downstream automatic and semi-automatic methods 
(Martin-Ducup et al., 2021). For example, low point densities 
may produce inaccurate QSMs, and without a manual method 
of validation it is unclear how this might impact architectural 
input parameters for FSPMs (Disney et al., 2019). Care must 
also be taken regarding woody plants that do not have a typ-
ical ‘tree-like’ structure. Most of the software available for 
individual segmentation and QSM construction assume that 
individuals have a singular trunk. However, forests globally 
contain a variety of forms and it is important that methods can 
be applied with equal accuracy across all architectural types. 
Furthermore, most TLS studies have been conducted in tem-
perate, boreal or tropical forest, with little representation in dry 
forest or savannahs, where woody plants tend to have a more 
shrub-like growth habit (Muumbe et al., 2021).

A key difference between using FSPMs in horticulture and 
agronomy and FSPMs in ecology and evolution is that devel-
opment will ultimately be driven by the search for emergent 
patterns. FSPMs have long been designed based on the research 
question at hand, usually for a specific species or outcome. This 
has made it relatively straightforward to select appropriate sub-
models depending on the context. However, designing FSPMs 
to represent emergent patterns of forest structure and dynamics 
will require a thorough evaluation of the sub-models included. 
Evers et  al. (2019) suggested guidelines for creating mixed-
species FSPMs, noting that any neighbourhood interactions 
should emerge only as a result of individuals requiring and ac-
quiring resources in a given community, and not as an explicit 
process in the model. The use of mixed-species FSPMs is a 
relatively recent direction of research but the empirical obser-
vations from TLS studies of vegetation dynamics can hopefully 
guide model development.

OUTLOOK AND CONCLUSIONS

Since the emergence of FSPMs over two decades ago, there has 
been an explosion of research into many different facets of this 
modelling paradigm, with many successes in agronomy and 
horticulture. Despite this, applications of FSPMs to forest com-
munity ecology and evolution have not proceeded at the same 
pace. We believe that FSPMs, in combination with TLS-derived 
data, can finally begin to address ecological and evolutionary dy-
namics in forests. For the potential of this synergy to be realized, 
a number of challenges need to be addressed. First, FSPM re-
search already spans many disciplines, including life sciences, 
computer science and mathematics. However, effectively using 
FSPMs for forest communities requires coordination between 
plant ecophysiologists, ecologists and evolutionary biologists. 
This will be essential for linking detailed organ-level processes 
with community-level processes to improve the explanatory 
power of FSPMs. Second, efforts must be made to enhance the 
generality of FSPMs. TLS-derived data have expanded the struc-
tural generality of FSPMs immensely, but general methods of 
implementing the physiological and environmental sub-models 
still require attention. One way of improving this is to encourage 
FSPM developers to produce open-source code and participate 
in benchmarking efforts. Third, TLS data have largely been col-
lected for ‘tree-like’ plants. For a comprehensive understanding 
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of woody plant form, TLS campaigns need to take place in a var-
iety of forest environments, including tropical dry forests. Both 
FSPMs and the use of TLS for forest surveying are still in their 
early days but there is a great deal of potential when these tools 
are combined. The ability to simulate realistic structure and dy-
namics in forest communities with FSPMs fulfils a specific niche 
in the spectrum of vegetation modelling. Phenomena that eventu-
ally contribute to regional and ecosystem structural diversity and 
vegetation patterns ultimately occur on a local scale, and thus it is 
essential not to neglect the impact of fine-scale changes in forest 
communities. 
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