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Abstract. Carbon steels can be heat treated to produce different 

microstructural variations and mechanical properties. At high temperatures 

the material plasticity and strength can be influenced by diffusional effects 

like the Portevin-Le Chatelier effect, leading to a commonly observed 

increased strength at elevated temperatures. The diffusional effects are 

influenced by the chemical composition, but also the heat treatment history 

that affects the local composition and especially the concentrations of free 

solute atoms. In this work, a numerical approach was implemented to 

reproduce the thermomechanical behaviour of two different microstructural 

variants of steel grade C45. The experimental data used to calibrate the 

model includes information of the plastic behaviour of material subjected to 

dynamic compression loading at a wide range of temperatures. Special 

emphasis was focused to describe the effects of the dynamic strain aging 

(DSA) on the flow stress. A strategy based on machine learning was 

implemented to obtain a model that reproduces the strengthening of the 

material due to diffusional effects. Cubic Support Vector Machine models 

were trained for both microstructure variants of the steel and different 

surfaces were obtained to describe the topology of the flow stress as function 

of temperature and strain rate. The model predictions were compared to the 

behaviour described by the Johnson-Cook model to estimate the influence 

of the DSA effect on the strength of the material at high strain rates and 

temperatures. Furthermore, the model quantifies how the microstructure 

affects the strength of the material and the strength of the DSA-hardening.   

1 Introduction 

It is well known that the plastic behaviour of metallic materials depends on temperature and 

strain rate.  There are several industrial processes involving high strain rates and temperatures 

where prediction of the operating conditions is useful for accurate selection of process 

parameters considering the expected material responses. There are models that are widely 

accepted and used in the industry to predict the dependence of the flow strength on applied 

strain, temperature, and strain rate, such as the Johnson-Cook Model (JCM) [1]. However, 
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there are complex phenomena that can arise under certain circumstances which modify the 

behaviour of the metals leading to significant discrepancies between the observed flow stress 

and the predicted tendencies. One good example is the diffusional process of solute atoms to 

the cores of dislocations pinning them and consequently leading to an increase of strength. 

This is widely known as Dynamic Strain Aging (DSA) or Portevin Le-Chatelier effect [2]. 

Some commercial steels are known to be sensitive to diffusional migration of interstitial 

solute atoms like Carbon and Nitrogen. Consequently, the behaviour of such materials can 

include serrated flow at low strain rates, thermal hardening, and even negative strain rate 

sensitivity. See that the JCM only accounts for continuous thermal softening and positive 

strain rate sensitivity, and therefore, the presence of DSA leads to very significant errors, as 

shown in the work of Saffarini for C45 steel [3]. Their work revealed that the model is only 

applicable bellow a critical temperature where DSA started to be noticeable. A previous work 

by Hokka et al. [4] reported that the microstructure has a strong influence on the strength of 

the DSA effect in C45 steel, showing that the diffusional effects had a greater influence in a 

globular microstructure with respect to a lamellar one. This observation is consistent with the 

reports of Brandaleze [5], which show that the dissolution of cementite during the heat 

treatment to obtain globular pearlite increases the amount of Carbon in solid solution.  

Furthermore, the work of Min et al. [6] showed that the amount of plastic deformation also 

influences the strength of the DSA effect, because the binding energy between Carbon atoms 

and dislocation cores is higher than the cementite’s affinity to carbon. Thus, an increase in 

the dislocation density promotes the dissolution of cementite as dislocations draw carbon 

atoms towards them more strongly than the cementite particles, and in consequence the 

amount of available Carbon in solid solution increases. On the other hand, it has been 

demonstrated that the cementite dissolution due to plastic deformation depends on different 

microstructural features [5, 7], and therefore the strain dependence of DSA also seems to 

vary from one steel microstructure to another.  

There is significant effort in the literature oriented to modelling of the DSA effect in 

metals, including numerical fitting approaches like the work of Devotta et al. [8], in which a 

polynomial decomposition of the JCM parameters is presented to account for the appearance 

of DSA. On the other hand, there are complex physically based constitutive models like the 

one presented by Voyiadjis et al. [9] who reported a microstructural-physically based model 

which accounts for the DSA effect. Other physically based models have been developed 

especially by Nemat-Nasser and co-workers, who set a modeling framework based on 

describing the flow stress as the sum of the athermal and thermal components of flow stress. 

The later strategy considers that the athermal contribution depends on the structure of the 

material, while the thermal component includes the dynamic effects in addition to the 

influence of microstructure. By means of the later framework the group of Nemat-Nasser 

developed models for different strain rate regimes and also describing the dynamic strain rate 

effects for various metals and alloys [10, 11, 12].  

One common feature in modelling complex plasticity phenomena is that every analysis 

can turn unpractical when approaching it from a fundamental point of view. Consequently, 

statistical modelling techniques are new tools utilized to recognize implicit patters of input 

data with no necessity of explicit description of phenomena. Such data driven approaches are 

widely known as Machine Learning and have been utilized by different authors to recognize 

and quantify the influence of strain rate and temperature on the plastic behaviour of diverse 

metallic alloys [13]. The work of Li et al. [14] reported the use of a modified Johnson-Cook 

model conjugated with an artificial neural network model to predict the flow stress of DP800 

steel over a wide range of temperatures and strain rates.   

In the present work a simple and accurate approach is presented to estimate the DSA 

contribution to the flow stress. This approach is presents the flow stress as the sum of two 

contributions: one related to forest dislocation interactions and a second one related to 
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frictional interactions between dislocations and solute atoms [15, 16]. Consequently, a 

Support Vector Machine (SVM) model was trained with experimental data measured at 

different strain rates and temperatures to predict the overall behaviour of the flow stress. 

Additionally, a JCM was adjusted with experimental data measured at low temperature where 

the DSA effects can be neglected, considering such temperature range as adifusional. Then 

the contribution of the frictional interactions between interstitial atoms and dislocations were 

calculated by the difference between the overall behaviour described by the model and the 

adifusional JCM. The approach was applied to two microstructural variants of the C45 steel 

and their DSA contributions to the flow stress were compared from one another. 

2 Materials and methods 

The material studied in this work has been investigated previously, and the microstructural 

characterization and the mechanical behaviour are reported in detail in ref. [4]. Therefore, 

only a summary of the materials and the experiments are given here. Four variants of the C45 

standard steel were prepared with different heat treatments, and two of them are considered 

in this study. The Reference (R) microstructure was acquired by austenization annealing 

followed by isothermal annealing below the austenization temperature. The globular pearlite 

(GP) structure was obtained by adding an additional annealing cycle to the reference heat 

treatment. SEM images of the microstructures, the phase fractions, and chemical composition 

are given in ref. [4]. In this work we use the results of the mechanical testing carried out at 

different strain rates and temperatures for the R and GP structures. The tests were carried out 

with a Split Hopkinson Pressure Bar device with high temperature capabilities. The exact 

description of the test equipment is given in references [4, 17, 18, 19]. 

3 Numerical approach  

A common assumption in the literature is to consider that the flow stress comprise the two 

different components; one related to the dislocation forest interactions and the other related 

to frictional interactions between dislocations and solute atoms [15, 16]. The modelling 

framework used in this work consist of a model that predicts the total overall flow stress and 

a second part model that estimates only the component related to dislocation forest 

interactions. Thus, the DSA contribution is estimated by the difference between the two 

mentioned models. 

 An SVM model was trained in MATLAB to predict the flow stress as a function of strain, 

strain rate, and temperature (𝜎𝑇(𝜀, 𝑇, 𝜀̇)). The measured strain, strain rate, and temperature 

data were considered as predictors and the experimental flow stress as the corresponding 

responses. 

 The JCM was utilized to estimate the material response in absence of DSA. The latter 

model assumes a multiplicative decomposition of the flow stress in three contributions. 

Firstly the work hardening contribution, secondly the thermal softening, and thirdly the strain 

rate dependence, as shown in the following Equation: 

 

𝜎𝑎𝑑𝑖𝑓𝑓(𝜀, 𝑇, 𝜀̇) = (𝑎 + 𝑏 𝜀𝑛) (1 − (
𝑇 − 𝑇𝑟𝑒𝑓

𝑇𝑚 − 𝑇𝑟𝑒𝑓
)

𝑚

) (1 − 𝑐 ln (
𝜀̇

𝜀̇𝑟𝑒𝑓
)),   

 

( 1) 

 

where 𝑎, 𝑏, 𝑛, 𝑚 and 𝑐 are the standard Johnson-Cook model parameters. 

 The calibration of the JCM was done using the stress strain curves obtained in a range of 

temperature bellow 800 K. The reference conditions were a temperature of 298 K and a strain 
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rate of 2000 s−1. The identification of the model parameters was decomposed in to two 

numerical optimization processes: 

1. Identification of the parameters  𝑎, 𝑏, and 𝑛 by means of experimental data at 

reference conditions, for which Equation ( 1) reduces to 𝜎(𝜀, 𝑇, 𝜀̇) = (𝑎 + 𝑏 𝜀𝑛). 

This step was performed using the Levenberg-Marquardt algorithm to minimize the 

distance from the model predictions to the experimental data. 

2. Identification of parameters 𝑚 and 𝑐 using the full experimental data set. This step 

was performed using a hybrid optimization approach to minimize the distance from 

the model predictions to the experimental data. Thus, the process initially uses the 

genetic algorithm implemented in MATLAB to find the neighbourhood of the 

global minimum in the search space. Afterwards, a local method is utilized to find 

the local minimum that is closest to the global algorithm solution, yielding the 

parameter combination that best fit the experimental data. 

 The parameters of the JCM model for both microstructures are shown in the Table 1. 

 
Table 1: Computed JCM parameters for the R and GP configurations 

Microstructure a b n m c 

R 686 869 0.49 0.63 0.057 

GP 553 890 0.57 0.59 0.053 

 

 Once the JCM was calibrated, the DSA components of the flow stress as a function of 

strain, strain rate, and temperature were computed by the difference 𝜎𝑇(𝜀, 𝑇, 𝜀̇) −
𝜎𝑎𝑑𝑖𝑓𝑓(𝜀, 𝑇, 𝜀̇). 

4 Results and discussion  

Figure 1 presents the flow stress as a function temperature and strain rate at different strains 

predicted by the SVM learning models for the R and GP microstructures. It is possible to see 

that the machine learning approach is capable in obtaining models that are in good agreement 

with the experimental data. Furthermore, the obtained behaviours are smooth and consistent 

for a wide range of strains.  

 The DSA contribution of the flow stress was calculated by the difference between the 

flow stress predicted by the SVM learning model and the JCM as shown in Figure 2 for the 

R and GP microstructures at 20% of strain and at strain rate of 4500 𝑠−1.  It is possible to see 

that the JCM does not account for the rise of the flow stress at high temperature due to the 

dislocation pinning by solutes atoms, while the SVM model can reproduce the material 

strengthening with increasing temperature. The difference between the two models is 

interpretated as the DSA component, and the maximum absolute values of the diffusive 

components in the R and GB microstructures were 310 MPa and 295MPa, respectively. Even 

though the absolute value of the DSA contribution to the flow stress is slightly higher in the 

reference microstructure, the relative contributions of the DSA on the total flow stress for the 

two structures are 33% for the reference structure and 42% for the globular pearlite. 
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Therefore, the globular pearlite structure seems approximately 9% more sensitive to DSA 

than the reference structure.    

5 Conclusions 

A numerical approach was developed to estimate the contribution of the DSA effect on the 

flow stress of C45 steel at wide range of strain rates and temperatures. The methodology is 

based on an additive decomposition of the flow stress into two different contributions. First, 

a component describing the dislocation forest interactions, which is independent of the 

concentration of solute atoms and was modelled using the Johnson-Cook model. Second, the 

diffusive contribution related to the interactions between solute atoms and dislocations was 

Figure 1 : Flow stress as a function of temperature and strain rate: a) R structure at 2% strain, a) R 

structure at 20% strain, c) GP structure at 2% strain, and d) G structure at 20% strain 

Figure 2: Flow stress as a function of temperature at 20% strain and 4500 𝑠−1predicted by the SVM 

model, the JCM, and the DSA component of the flow stress in a) reference structure and b) globular 

pearlite structure 
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computed by the difference between the predictions obtained with the Johnson-Cook model 

and a cubic SVM learning model used to interpolate the material behaviour between 

experimental data points. 

The predicted behaviour obtained by the machine learning model is smooth and consistent 

with the empirically observed flow stress. Thus, it showed to be an accurate tool to reproduce 

the material behaviour in the range of strain rates and temperature bounded by the available 

experimental data. Such a tool can be readily used to generate constitutive information for 

finite element simulations. 

The modelling approach used in this work also allows quantitative evaluation of the 

strength of the DSA effects in different microstructures. The maximum absolute strength (in 

MPa) of the DSA effect is slightly higher for the reference microstructure. However, the 

relative contribution of the diffusive phenomena of the total flow stress is approximately 9% 

higher for the globular pearlite.   
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