
European Journal of Mechanics / A Solids 92 (2022) 104454

A
0
(

Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Stochastic continuum approach to high-cycle fatigue: Modelling stress
history as a stochastic process
Tero Frondelius a,d, Terhi Kaarakka b, Reijo Kouhia c,∗, Jari Mäkinen c, Heikki Orelma c,
Joona Vaara a

a Wärtsilä Marine Solutions, R&D and Engineering, Järvikatu 2-4, 65100 Vaasa, Finland
b Tampere University, Unit of Computing Science/Mathematics, Korkeakoulunkatu 10, 33720 Tampere, Finland
c Tampere University, Unit of Civil Engineering, Structural Mechanics, Korkeakoulunkatu 10, 33720 Tampere, Finland
d University of Oulu, Erkki Koiso-Kanttilan katu 1, 90014, Oulu, Finland

A R T I C L E I N F O

Keywords:
High-cycle fatigue
Out-of-phase loading
Stochastic loading
Ornstein–Uhlenbeck process
Lifetime distribution
Safety factor distribution

A B S T R A C T

In this article, the continuum-based high-cycle fatigue analysis method, introduced by Ottosen, Stenström and
Ristinmaa in 2008, is extended to cases where the stress history is a stochastic process. The basic three-
parameter Ornstein–Uhlenbeck process is chosen for stress description. As a practical example, the theory is
applied in both finite and infinite life cases. A definition for the safety factor is introduced, which is reduced
to a minimization problem of the value for the endurance surface. In the stochastic case, the values of the
endurance surface form a stochastic process and the cumulative distribution function can be constructed for
its maximum values.
1. Introduction

Mechanical fatigue phenomena occur when a material is subjected
to the repeated application of stresses or strains, which produces
changes in the material microstructure, initiation, growth and coa-
lescence of microdefects, thus degrading the material properties, see
Bolotin (1999), Suresh (1998), Murakami (2002) and Vaara et al.
(2017). It is customary to distinguish between high-cycle (HCF) and
low-cycle fatigue (LCF). In low-cycle fatigue, plastic deformations occur
at the macroscopic scale, while when the loading is in the high-cycle
fatigue regime, the macroscopic behaviour can be considered primarily
as elastic. If the loading consists of well-defined cycles, the transition
between LCF and HCF regimes is typically considered to occur between
103 and 104 cycles.

In this study, only high-cycle fatigue is considered. Classical meth-
ods for HCF analysis can be broadly classified as stress invariant-,
critical plane-, strain energy- and average stress based approaches.
These approaches are well-defined if the loading consists of well-
defined cycles. For arbitrary loading histories, they need the definition
of an equivalent uniaxial loading cycle. Another deficiency is that
heuristic damage accumulation rules have to be applied. To remove
these shortcomings, Ottosen et al. (2008) proposed a continuum-based
model where they postulated a moving endurance surface in the stress
space where the movement and damage evolution are governed by
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properly formulated evolution equations. This evolution equation-based
continuum approach to HCF is also used by Brighenti et al. (2012, 2013),
Lindström et al. (2020) and Suresh et al. (2020, 2021), where this
approach is called the time continuous fatigue analysis method. Exten-
sion to transverse isotropy is given in Holopainen et al. (2016b) and
gradient effects are included in Ottosen et al. (2018). Recently, Lind-
ström (2020) modified the original approach to improve the fatigue
life predictions for non-proportional stress histories. In the evolution
equation-based approach, the stress history need not to be stored when
computing the fatigue life, which is a great advantage in large scale
computations (Lilja et al., 2020).

Other continuum mechanics approach for high-cycle fatigue include
the two scale models where scale transition from the micro-scale plas-
ticity to the macro-scale is implemented using the Eshelby–Kröner
localization law, see (Lemaitre and Desmorat, 2005, Section 6.2.3),
(Desmorat et al., 2007; Mareau et al., 2013; Mareau and Morel, 2019).

Micro-mechanically motivated crystal plasticity models have been
used especially in low-cycle fatigue analysis (Manonukul and Dunne,
2004; Grilli et al., 2015; Zhang et al., 2020), see also a recent overview
by Abdul-Latif (2021).

There is inherently a stochastic nature to fatigue phenomena. The
fatigue life has a characteristic scatter even under a constant cyclic
loading. The Weibull weakest link theory Weibull (1939) has been used
vailable online 6 November 2021
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to describe the statistically distributed flaws and defects in the material
that is reflected in the fatigue behaviour (Böhm and Heckel, 1982;
Bomas et al., 1999; Flaceliere and Morel, 2004; Wormsen et al., 2007).
Under real-life loading conditions there always exist random fluctua-
tions, and thus the stress history can only be described by statistical
distributions. For irregular loading histories, the classical method to
predict a lifetime is the Rainflow method, which is based on a construc-
tion of an equivalent cycle. The method is essentially one-dimensional,
but can be extended to the multiaxial case considering equivalent stress
criteria. It could also be extended to a stochastic case, see Banvillet
et al. (2004), Liu and Mahadevan (2007), see also Cristofori et al.
(2011), Carpinteri et al. (2016), Wei et al. (2020). A comparison of
classical ‘‘static’’ multiaxial fatigue models under random loading is
presented in Portugal et al. (2019). A common process is to estimate the
autocorrelation function from the obtained stress data, then the spectral
density function can be found by using the fast Fourier transform, and
the lifetime can be approximated with a level crossing formula, usually
the so-called Rice’s formula, see e.g. Kratz (2006).

The stochastic Rainflow method works best in one-dimensional
cases, because the generalization to a multiaxial case is somewhat
artificial. Considering only one equivalent stress process is a gross
simplification. Another problem is that its generalization is difficult
and limited. This paper describes a stochastic extension to the evolu-
tion equation-based multiaxial high-cycle fatigue model proposed by
Ottosen et al. (2008), which is applicable for arbitrary loading histories
and treats the fatigue phenomenon as a process and not as a specific
state of cyclic stress causing fatigue.

2. Continuum-based fatigue model

Ottosen et al. (2008) proposed a continuum approach for HCF
modelling which is based on a moving endurance surface and a set of
internal variables characterizing its movement and damage. Change of
these internal variables is governed by evolution equations. Such an
approach treats multiaxial stress states and arbitrary loading sequences
in a unified manner, and the heuristic cycle-counting techniques are not
needed.

The original form of the endurance surface proposed in Ottosen
et al. (2008) for isotropic high-cycle fatigue has the following form

𝛽 = 1
𝜎oe

(�̄� + 𝐴𝐼1 − 𝜎oe) = 0, (1)

where 𝐼1 is the first invariant of the stress tensor 𝝈, i.e. 𝐼1 = tr 𝝈, and
the effective stress �̄� is defined by the second invariant of the reduced
deviatoric stress 𝒔 − 𝜶 as

�̄� =
√

3𝐽2(𝒔 − 𝜶) =
√

3
2 tr(𝒔 − 𝜶)2. (2)

The deviatoric stress tensor is 𝒔 = 𝝈 − 1
3 tr(𝝈)𝑰 , where 𝑰 stands for the

dentity tensor.
Brighenti et al. (2012, 2013) used a more complicated form for the

ndurance surface, which can result in a better fit to the experiments.
owever, the simple interpretation of the model parameters is lost and

he estimation of model parameters is more involved.
It is shown in Ottosen et al. (2008, Section 4) that in the special

ase of uniaxial cyclic loading, where the stress varies between 𝜎m − 𝜎a
nd 𝜎m + 𝜎a, a linear relation between the mean stress and amplitude,
.e. a linear Haigh diagram, 𝜎a+𝐴𝜎m−𝜎oe = 0, is obtained. As it can be
oticed, the non-dimensional positive parameter 𝐴 is the opposite value
f the slope in the Haigh diagram and 𝜎oe equals the fatigue limit 𝜎−1 in
he fully reversed loading case. Thus, 𝐴 can be determined, e.g. using
he formula 𝐴 = (𝜎−1∕𝜎0) − 1, where 𝜎0 is the fatigue limit amplitude
or tensile pulsating loading.

Brighenti et al. (2012, 2013) used a more complex form for the
ndurance surface. This makes the interpretation of the model pa-
2

ameters more difficult and the parameter estimation more involved. (
enetic algorithms were used for parameter estimation in Brighenti
t al. (2012).

A back stress-like deviatoric tensor 𝜶 is a history variable. Its
ovement determines the movement of the endurance surface (1) in

he stress space. The physical meaning of the 𝜶-tensor in the infinite life
egime is possibly linked to microscale plasticity. Solution problem for
he stationary value of the 𝜶-tensor (14) is identical to the shakedown
inmax-problem for solution of the plastic strain, see e.g. Polizzotto

t al. (2001), Nguyen (2003). When applied to cases more close to
he low-cycle regime, it might contain information from macroscale
lasticity too. However, in the true low-cycle fatigue due to the mean
tress relaxation the influence of the Bauschinger effect is decreasing.
volution of the deviatoric 𝜶-tensor is governed by the evolution
quation

̇ = 𝐶(𝒔 − 𝜶)�̇�, (3)

here 𝐶 is a positive dimensionless material parameter and the super-
mposed dot denotes time rate. The shape of the endurance surface (1)
n the deviatoric plane is circular and the meridian lines are straight,
s with the case of the Drucker–Prager model in plasticity, see Figs. 1
nd 2. The explicit form for the time differentiation of 𝛽 is

̇ = 1
𝜎−1 + 𝐶�̄�

( 3
2
(𝐬 − 𝜶)

�̄�
+ 𝐴𝑰

)

∶ �̇�,

where ∶ denotes the double dot product between second order tensors,
i.e. 𝑨 ∶ 𝑩 = tr(𝑨𝑩T). In the model, all the stress tensors 𝝈, 𝐬 and 𝜶 are
functions of space and time. Since gradient effects are not considered
in this paper, the variation of stress at some fixed point is of particular
interest. For this reason, we can think that the stress depends only on
time, i.e. geometrically they are curves 𝝈(𝑡), 𝐬(𝑡) and 𝜶(𝑡) in a stress
pace associated with a point of the body.

Fatigue damage is modelled by using an isotropic damage variable
unction 𝐷 taking values in [0, 1], for which the evolution is given in
he form

̇ = 𝐾
(1 −𝐷)𝑘

exp(𝐿𝛽)�̇� (4)

where 𝐾 > 0, 𝐿 > 0 and 𝑘 ≥ 0 are material parameters. Since damage
never decreases, i.e. �̇� ≥ 0, it then follows that damage evolution takes
place only when �̇� ≥ 0. The life or failure time 𝑇f is the time when the
damage variable attains the value one, i.e. 𝐷(𝑇f ) = 1. In contrast to rate-
independent plasticity, the stress state can lie outside the endurance
surface. When the stress state is outside the endurance surface and
moves away from this surface the evolution of the 𝜶-tensor and damage
takes place

𝛽 ≥ 0 and �̇� > 0, (5)

see Fig. 1.
The damage variable 𝐷 try to indicate the damage, which accu-

mulates in the microscopical scale near surface intrusions/extrusions,
voids and inclusions inside the material. It is not coupled to the
constitutive behaviour thus facilitating also easy post-processing HCF-
analysis.

Originally in Ottosen et al. (2008), the value 𝑘 = 0 was used.
t means that in a constant amplitude cyclic loading, the damage
ncrease per cycle will saturate to a constant value. However, in reality
he damage rate increases with increasing damage and an alternative
ormulation with 𝑘 = 1 is used in Holopainen et al. (2016b). In that
ase, i.e. 𝑘 ≥ 0, the damage rate per cycle increases with increasing
amage, see the results in Holopainen et al. (2016a, Figures 6 and 7).

Although the parameter 𝑘 results in a non-linear damage evolution,
t has no effect to the fatigue life in a two-step loading, i.e. it results
n the linear Palmgren–Miner damage accumulation law irrespective of
he value of 𝑘. This could indirectly be seen also in the derivation given
y Suresh et al. (2020). If 𝑘 is changed, then only parameter 𝐾 need to
e changed to obtain the same SN-curve. For instance in Ottosen et al.

2008) the parameters are calibrated to the SAE4340 steel with 𝑘 = 0
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Fig. 1. (a) Movement of the endurance surface and damage growth occur when the stress is outside the endurance surface and moving away from it. (b) When the stress is
outside the endurance surface but the stress increment is directed towards the endurance surface, damage and back stress does not evolve.
Fig. 2. Endurance surface presented in a meridian plane as the backstress is (a) 𝜶 = 𝟎 and (b) 𝜶 ≠ 𝟎.
resulting in 𝐾 = 2.65 ⋅ 10−5. If 𝑘 is changed to 𝑘 = 1 or 2, the value of
𝐾 changes to 𝐾 = 1.325 ⋅ 10−5 or 8.835 ⋅ 10−6, respectively.

The behaviour of the model for various loading cases has been
demonstrated in Ottosen et al. (2008), Holopainen et al. (2016b) in-
cluding the mean stress effect, the phase shift and phase difference
effects (between two normal stresses and between a normal stress and a
shear stress). Qualitatively and quantitatively the mode responses are in
accordance to the experimental findings. In variable amplitude loading
the model with a constant 𝑘 results in a linear Palmgren–Miner damage
accumulation rule. However, if the parameter 𝑘 depends on the stress
state, like

𝑘(𝛽) = 𝑘0 exp(−𝑘1𝛽), (6)

where 𝑘0 and 𝑘1 are dimensionless parameters a non-linear damage
accumulation in a two-level cyclic test is obtained. The parameter 𝑘1
then controls the deviation from the linear damage accumulation.

To demonstrate that by selecting the parameter values as 𝑘0 = 2
and 𝑘1 = 10, and calibrating the other parameters to the SAE 4340
steel SN-curve given in Ottosen et al. (2008), the following values are
obtained

𝐴 = 0.225, 𝐶 = 1.35, 𝐾 = 1.05 ⋅ 10−5, 𝐿 = 17.8.

In a two-level fully reversed cyclic normal stress test with the highest
amplitude of 1.3𝜎−1 and the lowest either 1.2𝜎−1 or 1.1𝜎−1, the results
are shown in Fig. 3. The results are in a qualitative agreement of the
experimental findings that a high-amplitude loading followed by a low-
amplitude loading is more damaging than loading in the opposite order.
If compared to the model by Chaboche and Lesne (1988), the present
model results in milder non-linearity. However, the linear accumulation
is usually considered to be adequate in random fatigue analysis.

For two level loading with a normal and shear stress the model
predictions are shown in Fig. 4. They are qualitatively in accordance
to the results presented in Kalluri and Bonacuse (2000).
3

Fig. 3. Two-level cyclic normal stress loading with 𝑅 = −1.

3. Stochastic approach to continuum-based fatigue model

The deterministic continuum-based fatigue model, described in the
preceding section, is mathematically based on differential equations.
A natural step further is to consider these equations as stochastic
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Fig. 4. Two-sequence fully reversed cyclic normal and shear loading.

differential equations, and this observation opens the way to formulate
the whole theory in the context of stochastic analysis.

It is assumed that the reader is familiar with the basics of proba-
bility theory, stochastic processes and stochastic differential equations,
e.g. Lindgren (2013), Sobczyk (1991).

To obtain a stochastic formulation, we assume that 𝝈(𝑡), 𝜶(𝑡) and
𝐷(𝑡) are continuous stochastic processes, where 𝑡 ≥ 0 is a real parame-
ter. To be more precise, the first two are tensor-valued stress processes,
i.e. time-depended random variables defined in a probability space
(𝛺,𝛤 ,P), where 𝛺 is a set containing all possible outcomes, 𝛤 is a set of
events and P is a function relating events to probabilities. In practice,
this probability space is hard to define explicitly. Usually it is enough
to assume that time point-wise distributions of stochastic processes are
Gaußians. Hence, we may ignore the question about probability space.

In this paper, we assume that the stress process 𝝈(𝑡) is given. Usual
choices for proper stochastic processes are so-called ergodic processes,
see e.g. Lindgren (2013).

Let us consider computed or measured stress data 𝝈0,𝝈1,… ,𝝈𝑛
recorded at the time instants 𝑡0, 𝑡1,… , 𝑡𝑛 in [0, 𝑇 ]. The fundamental
problem is to find a stochastic stress process 𝝈(𝑡) such that the stress
data may be seen as an approximation for realizations of the process.

When the stress process 𝝈(𝑡) is fixed using some methods, we simply
proceed as follows. In the deterministic case, the lifetime 𝑇f for given
stress history 𝝈(𝑡) is defined via the equation 𝐷(𝑇f ) = 1 and it is a
real number. In the stochastic case, we solve the system for various
realizations of the process 𝝈(𝑡) and obtain the distribution of life times.
Hence, the lifetime 𝑇f is a random variable. In real life, this is of course
more realistic. After the next section, we will discuss more what kind
of different possibilities we have to use it in applications.

4. Periodic stress history with a stationary noise

It is now assumed that the stress process can be divided as

𝝈(𝑡) = 𝝈 (𝑡) + 𝝈 (𝑡), (7)
4

p n
where 𝝈p(𝑡) is the deterministic part of the stress and 𝝈n(𝑡) is the noise
part. The deterministic part 𝝈p(𝑡) is assumed to be a function and 𝝈n(𝑡)
a stationary stochastic process. Hence, if 𝝈(𝑡) is a recorded realization
of the process, we may compute a realization for noise as

𝝈n(𝑡) = 𝝈(𝑡) − 𝝈p(𝑡),

and using the estimation method, we may construct a noise pro-
cess 𝝈n(𝑡). In this section, we assume that the noise is an Ornstein–
Uhlenbeck process, which is a well-known and easily handled station-
ary stochastic process. See also Kaleva and Orelma (2021) for another
model for the stochastic part.

4.1. Noise stress process as an Ornstein–Uhlenbeck process

To simplify the notation, we drop the subscript 𝑛 indicating the
noise contribution of the stress process. A one-dimensional Ornstein–
Uhlenbeck process is usually given as a stochastic differential equation1

𝑑𝜎(𝑡) = 𝜆(𝜇 − 𝜎(𝑡))𝑑𝑡 + 𝜂𝑑𝑊 (𝑡). (8)

The process is a stationary Gauß-Markov process depending on three
parameters 𝜆 > 0, 𝜇 and 𝜂 > 0, and the process tends to drift towards
its long-term mean. In (8), 𝑊 (𝑡) denotes the Brownian motions or
Wiener processes. The Wiener process 𝑊 (𝑡) represents Gaußian white
noise, which describes in our case random fluctuation of the stress.
The parameter 𝜂 describes the size of the fluctuation and together with
the Wiener process, the term 𝜂𝑑𝑊 (𝑡) is called the ‘‘white noise’’ and
𝜆(𝜇 − 𝜎(𝑡))𝑑𝑡 the ‘‘mean reverting’’ or ‘‘drift’’ term. Here, 𝜆 describes
how strongly the system reacts to perturbations, and 𝜇 is the asymptotic
mean of the process.

Solution of the stochastic differential Eq. (8) can be written as, see
e.g. Gardiner (1997)

𝜎(𝑡) = 𝜇 + (𝜎0 − 𝜇)𝑒−𝜆𝑡 + 𝜂 ∫

𝑡

0
𝑒−𝜆(𝑡−𝑠)𝑑𝑊 (𝑠). (9)

The integral term of the preceding formula is the so-called Itô integral
with respect to the Wiener process, see e.g. Sobczyk (1991), Kloeden
and Platen (1992), and 𝜎(0) = 𝜎0 is an initial condition of the process.
From the formula (9), we obtain the conditional expectation

E[𝜎𝑛(𝑡) ∶ 𝜎(0) = 𝜎0] = 𝜇 + (𝜎0 − 𝜇)𝑒−𝜆𝑡 (10)

and the variance

Var[𝜎(𝑡) ∶ 𝜎(0) = 𝜎0] =
𝜂2

2𝜆
(1 − 𝑒−2𝜆𝑡). (11)

In the sequel, we use the Voigt notation for the symmetric tensors 𝝈
and 𝜶, i.e. they are considered as 6-dimensional vectors. Hence, the
present application of the Ornstein–Uhlenbeck process is a stochastic
process with 18 parameters written in the vector form

𝑑𝝈(𝑡) = 𝝀(𝝁 − 𝝈(𝑡))𝑑𝑡 + 𝜼𝑑𝐖(𝑡),

where the Voigt notation is used for the stress

𝝈(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎11(𝑡)
𝜎22(𝑡)
𝜎33(𝑡)
𝜎12(𝑡)
𝜎23(𝑡)
𝜎13(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜇11
𝜇22
𝜇33
𝜇12
𝜇23
𝜇13

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐖(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊11(𝑡)
𝑊22(𝑡)
𝑊33(𝑡)
𝑊12(𝑡)
𝑊23(𝑡)
𝑊13(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

𝝀 = diag(𝜆11, 𝜆22, 𝜆33, 𝜆12, 𝜆23, 𝜆13), 𝜼 = diag(𝜂11, 𝜂22, 𝜂33, 𝜂12, 𝜂23, 𝜂13).

1 As usual, the standard ‘‘small 𝑑’’ notation for stochastic differential
equations is used. The fundamental reason to use this notation is that the
Wiener process 𝑊 (𝑡) is nowhere differentiable, i.e. 𝑑𝑊 (𝑡)∕𝑑𝑡 does not exist,
that is, it is impossible to use classical time differentiable notation. For more
information, see e.g. Sobczyk (1991), Kloeden and Platen (1992). Notice that
the unit of the Wiener process 𝑊 is

√

time and for 𝜂 it is stress/
√

time.
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4.2. Stochastic evolution equations

After fixing the form of the stress process, we may write the stochas-
tic differential equation system, which describes the fatigue behaviour
at the point. Considering 𝜶(𝑡) as a vector-valued stochastic process, we
btain the real valued stochastic processes 𝛽(𝜶(𝑡),𝝈(𝑡)) and �̇�(𝜶(𝑡),𝝈(𝑡)).

As in (7), it is now assumed that the stress 𝝈(𝑡) can be additively
decomposed, i.e.

𝝈(𝑡) = 𝝈p(𝑡) + 𝝈n(𝑡),

where the noise part 𝝈n is an Ornstein–Uhlenbeck process. Then we
need to solve the following stochastic differential equation system

𝑑𝜶(𝑡) =

{

�̇�(𝜶(𝑡),𝝈(𝑡))𝐶(𝐬(𝑡) − 𝜶(𝑡))𝑑𝑡, if 𝛽 > 0, �̇� > 0,
0, otherwise,

𝑑𝐷(𝑡) =

{

𝐾(1 −𝐷(𝑡))−𝑘�̇�(𝜶(𝑡),𝝈(𝑡))𝑒𝐿𝛽((𝜶(𝑡),𝝈(𝑡)))𝑑𝑡, if 𝛽 > 0, �̇� > 0,
0, otherwise.

This is called the stochastic evolution system. The system consists of the
evolution equations for the back stress and damage. In the next section,
we will consider methods of how to find matrices 𝝀, 𝝁 and 𝜼 from a
iven noise.

.3. On parameter estimation

Like we saw in the preceding section, we model the recorded noise
ata as an Ornstein–Uhlenbeck process

𝝈n(𝑡) = 𝝀(𝝁 − 𝝈n(𝑡))𝑑𝑡 + 𝜼𝑑𝐖(𝑡).

To calibrate this model to recorded data, we have two options, namely
the calibration using least square regression and Maximum Likelihood
estimates. The methods are well-known and in the Gaußian case they
are the same. Without loss of generality, we can consider only a one-
dimensional case since the components of the vector-valued process (8)
are uncoupled.

Let 𝜎0, 𝜎1,… , 𝜎𝑛 be the recorded values of a stress on the time
interval [0, 𝑇 ]. Let the corresponding recording times be 0 = 𝑡0 < 𝑡1 <
⋯ < 𝑡𝑛 = 𝑇 . Let 𝜎(𝑡0), 𝜎(𝑡1),… , 𝜎(𝑡𝑛) be points of a corresponding sample
of the stationary process (8). The problem is to find the parameters
(𝜇, 𝜆, 𝜂) such that the resulting process would describe the stochastic
behaviour of the original recorded process as well as possible.

A well-known method of estimating the parameters of a statistical
model is called the maximum likelihood estimation, and it governs
the set of values of the model parameters that maximizes the so-
called likelihood function. A reference for the theory is, e.g. James and
Webber (2000), Pfanzagl (1994).

Since the Ornstein–Uhlenbeck process 𝜎(𝑡) is Gaußian, the probabil-
ity distribution function has the form

𝑓𝜎(𝑡)(𝜏;𝜇, 𝜆, 𝜂) =
1

√

2𝜋𝜁 (𝑡; 𝜎0)
𝑒
− (𝜏−𝜖(𝑡;𝜎0))

2

2𝜁 (𝑡;𝜎0)

where the expectational value 𝜖(𝑡; 𝜎0) = E[𝜎(𝑡) ∶ 𝜎(0) = 𝜎0] and the
variance 𝜁 (𝑡; 𝜎0) = Var[𝜎(𝑡) ∶ 𝜎(0) = 𝜎0]. Since the Ornstein–Uhlenbeck
process is also a Markov process, the future depends only on the value
and it is independent its past, we may compute the density function of
the joint probability distribution of 𝜎(𝑡0), 𝜎(𝑡1),… , 𝜎(𝑡𝑛) as

𝑓joint(𝜏0, 𝜏1,… , 𝜏𝑛;𝜇, 𝜆, 𝜂)

= 𝑓𝜎(𝑡0)(𝜏0;𝜇, 𝜆, 𝜂)𝑓𝜎(𝑡1)|𝜎(𝑡0)(𝜏1;𝜇, 𝜆, 𝜂)⋯ 𝑓𝜎(𝑡𝑛)|𝜎(𝑡𝑛−1)(𝜏𝑛;𝜇, 𝜆, 𝜂).

The maximum likelihood principle says that we need to find (𝜇, 𝜆, 𝜂) such
that the joint probability distribution takes its maximum subject to
𝜎(𝑡0) = 𝜎0, 𝜎(𝑡1) = 𝜎1, . . . , 𝜎(𝑡𝑛) = 𝜎𝑛. In other words, we determine the
parameters such that the probability to get back the recorded values is
5

the highest possible.
The Ornstein–Uhlenbeck process is a strictly stationary process,
i.e. its statistical properties do not change by time. This means that the
random vectors (𝜎(𝑡0), 𝜎(𝑡1),… , 𝜎(𝑡𝑛)) and (𝜎(𝑡0+𝑡′), 𝜎(𝑡1+𝑡′),… , 𝜎(𝑡𝑛+𝑡′))
have the same distribution under a time shift 𝑡′. We denote the time
increments by 𝛥𝑡𝑗 = 𝑡𝑗 − 𝑡𝑗−1. Due to stationarity, we may write the
density functions in the form

𝑓𝜎(𝑡𝑗 )|𝜎(𝑡𝑗−1)(𝜏𝑗 ;𝜇, 𝜆, 𝜂)

= 1
√

2𝜋𝜁 (𝛥𝑡𝑗 ; 𝜏𝑗−1)
exp

(

−
(𝜏𝑗 − 𝜖(𝛥𝑡𝑗 ; 𝜏𝑗−1))2

2𝜁 (𝛥𝑡𝑗 ; 𝜏𝑗−1)

)

= 1
√

𝜋
1

√

𝜂2
𝜆

(

1 − 𝑒−2𝜆𝛥𝑡𝑗
)

exp
(

−
𝜆
(

𝜏𝑗 − 𝜇 − (𝜏𝑗−1 − 𝜇)𝑒−𝜆𝛥𝑡𝑗
)2

𝜂2
(

1 − 𝑒−2𝜆𝛥𝑡𝑗
)

)

for 𝑗 = 1,… , 𝑛 and 𝑡0 = 0 we have

𝜎(𝑡0)(𝜏0;𝜇, 𝜆, 𝜂) =

√

𝜆
√

𝜋𝜂
𝑒
− 𝜆(𝜏0−𝜇)

2

𝜂2 .

hen we may define the likelihood function

(𝜇, 𝜆, 𝜂) = 𝑓𝜎(𝑡0)(𝜏0;𝜇, 𝜆, 𝜂)
𝑛

∏

𝑗=1
𝑓𝜎(𝑡𝑗 )|𝜎(𝑡𝑗−1)(𝜎𝑗 ;𝜇, 𝜆, 𝜂)

=
( 𝜆
𝜋𝜂2

)
𝑛+1
2 𝑒−

𝜆(𝜏0−𝜇)
2

𝜂2

𝑛
∏

𝑗=1

exp

(

−
𝜆(𝜏𝑗 − 𝜇 − (𝜏𝑗−1 − 𝜇)𝑒−𝜆𝛥𝑡𝑗 )2

𝜂2(1 − 𝑒2𝜆𝛥𝑡𝑗 )

)

√

1 − 𝑒−2𝜆𝛥𝑡𝑗
.

Since the process is Gaußian, it is easier to maximize the so-called
log-likelihood function, defined by

𝐾(𝜇, 𝜆, 𝜂) = ln𝐿(𝜇, 𝜆, 𝜂) = 𝑛 + 1
2

ln
( 𝜆
𝜋𝜂2

)

−
𝜆(𝜏0 − 𝜇)2

𝜂2

− 1
2

𝑛
∑

𝑗=1
ln(1 − 𝑒−2𝜆𝛥𝑡𝑗 )

− 𝜆
𝜂2

𝑛
∑

𝑗=1

(𝜏𝑗 − 𝜇 − (𝜏𝑗−1 − 𝜇)𝑒−𝜆𝛥𝑡𝑗 )2

1 − 𝑒2𝜆𝛥𝑡𝑗
.

From the necessary condition for the existence of an extremum
𝜕𝐾
𝜕𝜆

= 𝜕𝐾
𝜕𝜇

= 𝜕𝐾
𝜕𝜂

= 0,

a system of non-linear equations is obtained, from which the maximum
likelihood estimates can be solved in the following explicit form

𝜆 = − 1
𝛥𝑡

ln(𝑏1),

𝜇 = 𝑏2,

𝜂2 = 2𝜆
𝑏3

1 − 𝑏21
,

where

𝑏1 =
𝑛
∑𝑛

𝑗=1 𝜎𝑗𝜎𝑗−1 −
∑𝑛

𝑗=1 𝜎𝑗
∑𝑛

𝑗=1 𝜎𝑗−1

𝑛
∑𝑛

𝑗=1 𝜎
2
𝑗−1 −

(
∑𝑛

𝑗=1 𝜎𝑗−1
)2

,

2 =

∑𝑛
𝑗=1(𝜎𝑗 − 𝑏1𝜎𝑗−1)

𝑛(1 − 𝑏1)
,

𝑏3 =
1
𝑛

𝑛
∑

𝑗=1
(𝜎𝑗 − 𝑏1𝜎𝑗−1 − 𝑏2(1 − 𝑏1))2,

nd 𝜎0, 𝜎1,… , 𝜎𝑛 are the observations of the process. It should be
emphasized that in general explicit estimators do not exist and the
estimation is usually done by solving numerically a non-linear algebraic
equation system.

4.4. Simulation of the noise part of the stress process

For stochastic differential equations there exist similar numeri-
cal solution schemes as for the deterministic equations (Kloeden and



European Journal of Mechanics / A Solids 92 (2022) 104454T. Frondelius et al.
Platen, 1992; Sobczyk, 1991). In the following, we use the simplest
possible scheme, the Euler–Maruyama integrator. Let us here recall
some basic ideas of the methods. The aim is to construct a numerical
approximation of the stochastic differential equation

𝑑𝝈(𝑡) = 𝝀(𝝁 − 𝝈(𝑡))𝑑𝑡 + 𝜼𝑑𝐖(𝑡). (12)

For notational simplicity, the subscript ‘‘n’’ denoting the noise part of
the stress process is omitted above and in the following. If we want to
construct a time-discrete approximation of this equation on 0 ≤ 𝑡 ≤ 𝑇 ,
we proceed as in the deterministic case. We split the time interval 0 =
𝑡0 ≤ 𝑡1 ≤ ... ≤ 𝑡𝑁 = 𝑇 and write 𝝈𝑘 = 𝝈(𝑡𝑘). Then the Euler–Maruyama
method for the stochastic differential Eq. (12) is

𝝈𝑘+1 = 𝝈𝑘 + 𝝀(𝝁 − 𝝈𝑘)(𝑡𝑘+1 − 𝑡𝑘) + 𝜼(𝐖(𝑡𝑘+1) −𝐖(𝑡𝑘))

starting from 𝝈0 = 𝝈(0). The main difference compared to the deter-
ministic equation is that we need to generate the random increments
𝐖(𝑡𝑘+1)−𝐖(𝑡𝑘). In practice, we make it as follows. To simplify notation,
the procedure is shown only for a single component of 𝐖. It is observed
that

𝑊 (𝑡𝑘+1) −𝑊 (𝑡𝑘) ∼ 𝑊 (𝑡𝑘+1 − 𝑡𝑘),

which means that both sides of the similitude have the same (nor-
mal) distribution N(0, 𝑡𝑘+1 − 𝑡𝑘). The classical connection between
a normal and the standard normal distribution is N(0, 𝑡𝑘+1 − 𝑡𝑘) =
√

𝑡𝑘+1 − 𝑡𝑘 N(0, 1), thus for the increment it can be written

𝑊 (𝑡𝑘+1) −𝑊 (𝑡𝑘) ∼
√

𝑡𝑘+1 − 𝑡𝑘𝑟𝑘,

where 𝑟𝑘 has a distribution N(0, 1). In the numerical implementation,
𝑟𝑘 can be computed using a random number generator, which usually
delivers N(0, 1) distributed random numbers.

5. Processing results

In HCF analysis, two different analysis types can be defined, i.e. de-
termination of the finite lifetime when loading exceeds the fatigue limit
or computing the safety factor when requiring endurance for an infinite
lifetime. These two different analysis types will be considered in the
following.

5.1. Finite lifetime

In this case, we define the random lifetime variable 𝑇f by the
equation 𝐷(𝑇f ) = 1. Thus repeating the solution procedure, say 𝑁 times
for different realizations of the process 𝝈(𝑡), we obtain a collection of
failure times 𝑇f (𝑗), where 𝑗 = 1,… , 𝑁 . The normalized histogram of this
collection gives an approximation for the probability density function
of 𝑇f .

A model for the distribution of lifetimes has been widely studied,
see e.g. Nelson (2004). Usually either the log-normal or the Weibull
distribution is used.

5.2. Infinite lifetime on fatigue limit and safety factor

For the case of the infinite lifetime, the natural question is how close
a certain design is from it. This distance is measured by a safety factor
and its definition in the continuum model is explained next.

Let us look the evolution Eq. (3) for the back-stress 𝜶 in the case
when there exists a stable state �̇� = 0 for some 𝑡 ≥ 𝑇 . Observing that if

𝛽(𝝈(𝑡),𝜶𝑆 ; 𝜎−1) < 0, we may ‘‘shrink’’ the surface, i.e. the pa-
rameter 𝜎−1 such that stresses are still located inside the surface,
i.e. 𝛽(𝝈(𝑡),𝜶𝑆 ; 𝜎′) < 0 for 𝜎′ < 𝜎−1. The minimal possible value of the
parameter 𝜎′ is denoted 𝜎∗, and the safety factor can be defined as

 =
𝜎−1 .
6

𝜎∗
Fig. 5. A realization of a one-dimensional stress history, 𝜂 = 0.1𝜎−1∕
√

𝑡p.

Physically this means that we can choose for the structure being
analysed to have weaker mechanical properties. The safety factor tells
us how much weaker the material could be to sustain the loading for
infinite life.

If now 𝛽(𝝈(𝑡),𝜶𝑆 ; 𝜎∗) ≤ 𝑀∗ < 0, and 𝐷(𝑇 ) < 1, it is easy to see that

 = 1
1 +𝑀∗ ,

where

𝑀∗ = max
𝑡≥𝑇 ∗

𝛽(𝝈(𝑡),𝜶∗; 𝜎−1). (13)

The corresponding stable state 𝜶∗, can be found by the min–max
problem

min
𝜶

max
𝑡≥0

𝛽(𝝈(𝑡),𝜶; 𝜎−1), (14)

max
𝑡≥0

𝛽(𝝈(𝑡),𝜶; 𝜎−1) ≤ 0.

This can be solved by the classical penalty method of constrained
optimization.

If 𝝈(𝑡) is a stochastic process, we need to solve the problem for
realizations of the process and we obtain samples for 𝑀∗, which is a
random variable. See the example in Section 6.2.

6. Examples

In this section, some numerical examples are presented to demon-
strate the applicability of the stochastic continuum-based fatigue model.
Only a log-normal distribution for random variables will be used.

6.1. Uniaxial cyclic load — finite life

We consider a uniaxial stress process of the form

𝜎(𝑡) = 𝜎a sin(2𝜋𝑡∕𝑡p) + 𝜎m + 𝜂𝑊 (𝑡), (15)

i.e. a sinusoidal stress history with stationary noise, which is a special
case of Ornstein–Uhlenbeck type noise, see Fig. 5. Assuming that the
noise is of the form

𝜎n(𝑡) ∼ 𝜂𝑊 (𝑡) ∼ 𝜂N(0, 1) = N(0, 𝜂2),

that is, 𝜂2 is a variance computed from a point-wise sample of the
noise. Moreover, E(𝜎𝑛(𝑡)) = 0. Since the process 𝜎𝑛(𝑡) is assumed to
be stationary, the variance and the expected value does not depend
on time. Hence, we may compute the preceding estimators from the
one realization considering sufficiently many data points. Only the
parameter 𝜂 need be estimated.
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Fig. 6. Histogram approximation for a log-normal distribution of lifetime.
If recorded data 𝜎(𝑡) are of the similar sinusoidal type as (15), we
compute realization for the noise by

𝜎n(𝑡) = 𝜎(𝑡) − 𝜎a sin(2𝜋𝑡∕𝑡p) − 𝜎m

and the corresponding estimator for 𝜂 is 𝜂2 = Var{𝜎𝑛(𝑡𝑗 ) ∶ 𝑗 = 1,… , 𝑚},
i.e. it is enough to compute the variance of the noisy data.

The material parameters of the model are the same as in Ottosen
et al. (2008), i.e.

𝐴 = 0.225, 𝐶 = 1.25, 𝐾 = 2.65 × 10−5, 𝐿 = 14.4, 𝑘 = 0.

For the stress history, the following parameter values are used: 𝜎m =
0.8𝜎−1, 𝜎a = 𝜎−1 and 𝜂 = 0.1𝜎−1∕

√

𝑡p. We obtain an approximation for
a logarithmic probability density function of lifetime ln(𝑇f ), see Fig. 6.
Here, the fatigue life 𝑇f is the same as the cycle number, i.e. 𝑡p = 1 s.
Since the lifetime is log-normally distributed, ln(𝑇f ) ∼ 𝑁(10.7337, 6.239 ⋅
10−7). From this, the lifetime probabilities can be computed, e.g. the
lifetime with 95% probability 𝑇95% can be found from P(𝑇f > 𝑇95%) =
0.95, giving the result 𝑇95% = 4.5817 ⋅ 104 cycles.

The effect of 𝜂-parameter to the fatigue life is demonstrated in
Fig. 7. The mean value of 25 realizations decreases with increasing
𝜂 in the range (0.005 − 0.1)𝜎−1∕

√

𝑡p. The fatigue life is only 22% in
comparison to the deterministic case when 𝜂 = 0.1𝜎−1∕

√

𝑡p. Time step
used in integration of the evolution has been 𝛥𝑡 = 0.01 𝑡p. The standard
deviation at specific 𝜂 value is of the order of 20–70 cycles.

In Figs. 8–9 behaviour of the stochastic model is compared to the
deterministic one during the first half-cycle, where the difference is
more clearly seen. Quite amazingly the stochastic model shows more
quick adaptation to the loading, i.e. the evolution of the 𝜶-tensor is
more rapid than in the deterministic case. This results in a more slow
damage evolution at the beginning of the loading process. However,
after the transient period the damage evolution for the stochastic case
is faster, which is to be expected.
7

Fig. 7. Fatigue life as a function of 𝜂 in a uniaxial loading with 𝜎m = 0.8𝜎−1 and
𝜎a = 𝜎−1. The blue line connects the mean values and the red horizontal line shows
the deterministic value 57369 cycles, time step 𝛥𝑡 = 0.01 𝑡p. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

6.2. Safety factor analysis of a connecting rod

A connecting rod links a piston to a crankshaft. It is one of the
most loaded engine components. In particular, high-cycle fatigue cal-
culations are important, as is the ability to make them with stochastic
loading, because gas engines have cycle-to-cycle variations in cylinder
peak pressure, even though the engine is running a constant load
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Fig. 8. Damage and back-stress evolution for the cases 𝜂 = 0.1𝜎−1∕
√

𝑡p and for the
deterministic one 𝜂 = 0.

point.2 In this example, we consider stresses in a connecting rod of a
medium speed four stroke engine, see Mäntylä et al. (2017), Göös et al.
(2017) for details of the connecting rod calculations. Cylinder pressure
histories are recorded from 300 engine cycles and two representative
histories are shown in Fig. 10. A critical point from the connecting rod
was selected and its stress histories are computed. In Fig. 11, a stress
history is shown corresponding to one of the pressure curves shown in
Fig. 10.

Every pressure curve corresponds to a stress path in the stress space.
We interpret the stress paths as realizations {𝝈𝑗 (𝑡)}300𝑗=1, where −360 ≤
𝑡 ≤ 360. Time is thus interpreted as the rotation angle of the crankshaft.
We compute an asymptotically stable state 𝜶∗

𝑆 of their mean curve and
obtain

𝑀∗
𝑗 ≈ 𝛽(𝝈𝑗 (0),𝜶∗

𝑆 ; 𝜎−1), 𝑗 = 0,… , 300.

The cumulative distribution function of random variable 𝑀∗, defined
in (13), is given in Leadbetter and Rootzén (1988) by

𝐹𝑀 (𝑚) =

{

exp(−(−𝑎𝑚 − 𝑏)𝑐 ), when 𝑚 < 0,
1, when 𝑚 ≥ 0,

with parameters 𝑎 = 1, 𝑏 = −0.53 and 𝑐 = 17 (see Fig. 12).

2 Frondelius et al. (2018) provides a comprehensive review of engine
calculations.
8

Fig. 9. The endurance surface 𝛽 and the time rate �̇�. Only positive values shown due
to the fact that damage and the 𝜶-tensor only evolves when 𝛽 > 0 and �̇� > 0.

Fig. 10. Measured two extreme cylinder pressure histories.

For example, for the safety factor, 0.95, what is obtained with a
95% probability can be computed as follows

0.95 = P
(

 ≥ 
)

= P( 1 ≥  ) = P(𝑀∗ ≤ 1 − 1).
0.95 𝑀∗+1 0.95 0.95
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Fig. 11. Example of one computed stress history (minimum pressure curve in Fig. 10
marked in red) in a connecting rod. Stress components 𝜎13 and 𝜎23 are close to zero,
and are thus not shown. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Then the lower bound of the safety factor can be obtained as

𝑚0.95 =
1

0.95
− 1 thus 0.95 =

1
𝑚0.95 + 1

.

Since

0.95 = 𝐹𝑀 (𝑚0.95) = exp(−(−𝑚0.95 + 0.53)17),

we obtain 𝑚0.95 = −0.31 and 0.95 = 1.45.
The dependency of the safety factor  on probability P is shown in

Fig. 13.

7. Conclusions

In this paper, we extend the (deterministic) continuum model for
the high-cycle fatigue (Ottosen et al., 2008) to the case where the
stress history is assumed to be a stochastic process. This can be done
in a natural way, since the continuum fatigue method is based on
9

Fig. 13. Safety factor  = 1∕(1 +𝑀⋆) as a function of probability.

differential equations, i.e. the damage accumulation and the movement
of the endurance surface are governed by evolution equations written in
terms of time rates and not changes per cycle. Moreover, the approach
is inherently multiaxial and all stress components are treated in a
unified manner.

Here, the stochastic approach is applied in two different tasks
relevant to high-cycle fatigue analysis. The first one is related to
determining the lifetime when loading is above the fatigue limit but
still in the HCF range. Due to stochastic loading, the finite lifetime
is a stochastic variable for which the probability distribution can be
constructed. The second task governs analysis of the safety factor for
infinite life cases. A definition of the safety factor in the continuum-
based fatigue analysis method is given, which is related to finding the
maximum value of the endurance function for which the probability
distribution function can be computed.

Finally, two illustrative examples are presented showing the feasi-
bility of the proposed method.
Fig. 12. Cumulative distribution function of 𝑀⋆, defined in (13).
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