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Abstract. Metastable austenite containing steels, i.e., steels capable of
undergoing solid-state phase transformation from austenite to α´-martensite
during plastic deformation, offer a very good combination of ductility,
strength, and above all, exceptional strain hardening capability. In effect, in
suitable plastic deformation conditions the relatively soft austenitic phase
can transform to the harder α´-martensite, which increases the strain
hardening rate of the material through various mechanisms. This special
feature gives these kinds of alloys several beneficial properties, such as
resistance against flow instabilities and increased capability to absorb
deformation energy. For this reason, metastable austenite containing alloys
have been extensively studied in the past. However, several open questions
still remain, especially in the field of high rate deformation. This can be
related to the great number and complexity of the related microstructural
phenomena and their combined effects on the material response. The open
questions affect both the metallurgy of the material and the numerical
modeling of material behavior. The current contribution addresses some of
these questions and their possible solutions, as well as gives an outlook on
the possible future development directions.

1 Introduction
Metastable austenite containing steels have been studied, developed, and used for decades.
The attention, which this group of materials has received, is well justified. In general, the
metastable nature of austenite in steels and the resulting phase transformation to hard α’-
martensite brings about excellent means to control the mechanical properties of the material
via heat treatments. In the case of so-called strain-induced α´-transformation, in which the
phase transformation takes place during plastic deformation, there exists a great potential to
develop materials with well controlled strength, ductility, and strain hardening properties. In
the field of high rate loading, the above mentioned properties are often related to the energy
absorption capability of the material.

Despite the years of research, the topic continues to receive interest, as new alloys, such
as those based on the Quench and Partitioning treatment are developed and as the knowledge
on older alloys is deepened. In the case of high rate loading, one major challenge seems to
persist: in general, the tendency towards strain-induced α´-transformation decreases as the
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rate of deformation increases. This observation is old and has been repeated numerous times
in the field. One could even say that it has been almost accepted as an unsurmountable matter
of fact. However, if one could somehow make the phase transformation persist at high rates
of deformation, then one would be rewarded with a material that has outstanding strength
and ductility properties on a wide range of loading rates. Therefore, in the authors’ opinion,
the topic deserves further attention.

It is suggested here that the research methodology concerning the strain rate dependent
behavior of metastable austenite containing alloys should be somewhat reoriented. As will
be shown below, it seems that the conventionally used approaches do not reveal all the
aspects of the strain rate dependent plasticity of metastable austenite. Thus, both the use of
existing alloys and the development of new ones, as well as material model development,
might be unnecessarily limited due to insufficient knowledge of the underlying phenomena.

2 On the limitations of constant strain rate tests
Usually the strain rate dependent response of metastable austenite containing steels is
measured, analyzed and modeled based on conventional stress-strain data, i.e., based on a
test series where the strain rate (and sometimes temperature) is varied between the tests in
the series but kept constant during any individual tests. This approach is in general sound and
well-established in materials science and mechanical engineering: the underlying premise is
that other variables (such as temperature) are kept constant while one variable (here strain
rate) is systematically changed.

In the case of metastable austenite containing steels the above mentioned approach can
be subjected to criticism, which is explained by referring to Fig. 1a: a mechanical test (e.g.
uniaxial tension or compression) carried out at a sufficiently low strain rate allows to maintain
constant strain rate and temperature, whereas plastic strain and material microstructure (such
as volume fraction of strain induced α´-martensite) change during the test. In a similar test
carried out at a higher strain rate the same reasoning applies, except that the material
temperature tends to increase during the test due to the conversion of plastic deformation
work into heat under the conditions of insufficient heat transfer.

Fig. 1. Schematic illustration of the different approaches used to study the strain rate effects in
materials: a) evaluation based on comparing tests carried out at different strain rates involves a
comparison between different microstructures and material temperatures, b) sudden change in strain
rate (jump) reveals the effects of strain rate on flow stress and strain hardening rate in constant
microstructure with small or negligible change in temperature.
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The statement regarding the microstructural evolution appears almost trivial at the first
glance but becomes crucial when one considers the way the test data obtained at different
strain rates is interpreted (Fig. 1a). Typically, a certain value (e.g., 10 %) is selected for the
plastic strain and the corresponding flow stress values are read from the stress-strain curves
corresponding to various strain rates (with strain rate being constant in an individual test).
The possible differences in the flow stress are then interpreted as the “strain rate effect”. The
main question raised here is: an effect respect to what? Except for the yield strength (zero
plastic strain), the flow stress values read from the curves of different tests do not correspond
to the same microstructure nor temperature. For example, the data published by Vázquez-
Fernández [1] for metastable austenitic stainless steel EN 1.4318 shows that in the specimens
deformed at different strain rates a 40 percentage point difference in the α´-martensite volume
fraction and over 40 K difference in the material temperature can develop towards the end of
the test. It is evident that in such case it must be carefully considered how the differences in
the flow curves measured at different strain rates are interpreted.

The discussion presented above points out that the approaches used to study the strain
rate effects in metastable austenite containing steels should be critically evaluated. A general
approach, which seems to offer a robust base for the analysis as well as for material model
development, can be briefly summarized in the equation form as:

𝜎 = 𝑓൫𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟,𝑇, 𝜀𝑝൯ (1)

𝑑(𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟)
𝑑𝜀

= 𝑔൫𝑇, 𝜀𝑝൯ (2)

As is evident in Equation 1, strain is not used to describe the flow stress of the material.
The reasoning behind this is that strain cannot be considered as a true state variable, since it
does not take into account the full history of deformation. As discussed above, two test
specimens might have undergone exactly the same amount of strain prior to the point of
evaluation but have a completely different microstructural state due to the differences in their
loading history (such as strain rate and/or temperature). Strain rate, in contrast, can be
considered as a state variable, since it is a measure of the rate at which the microstructure is
currently deforming. It should also be noted that even though Equation 1 explicitly includes
strain rate and temperature, this alone is not enough to describe the thermomechanical
response of the material since, as shown in Equation 2, also the microstructural evolution can
be a function of strain rate and temperature, as noted above.

The above presented argument has been made several times in the literature in
conjunction with various materials, and the authors believe that it is very important also in
the case of metastable austenitic alloys, in which extensive microstructural changes take
place during plastic deformation. In fact, the above discussed “dilemma” of different
microstructures in constant strain rate tests disappears, when one discards strain as the
“leading” variable in the analysis. Furthermore, in this approach constant strain rate
experiments are only one means to study material behavior, i.e., they are mainly used to study
the effects of deformation conditions on microstructure evolution, not to evaluate the
properties of a certain microstructure. For the latter purpose, the so-called jump tests are more
feasible. For example, in a strain rate jump test the imposed strain rate is suddenly changed
during the test and the resulting changes in the flow stress and the slope of the stress-strain
curve are measured (Fig. 1b). This method gives direct information on the strain rate
sensitivity of a certain microstructure with negligible or only small change in the material
temperature during the jump.

A review on the literature shows that, although not being numerous, reports on strain rate
jump tests for metastable austenite containing steels have been intermittently published over
the last decades [1-7]. These studies vary in their focus. In some works, strain rate jumps
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were used to determine the strain rate sensitivity index [2-4], whereas for example Callahan
et al. [6] used the jump tests to analyze the interaction between dynamic strain aging and α´-
martensite transformation. In another group of works, the effects of strain rate and adiabatic
heating on the phase transformation kinetics were analyzed using strain rate jump tests [1, 5,
7]. The high strain rate tests on prestrained material reported by Larour et al. [8] can also be
counted in this group. These works reveal an interesting but so far relatively little studied
aspect of the strain-induced α´-martensite transformation: it appears that in addition to
adiabatic heating, which is the common explanation for the increased austenite stability at
high strain rates, also the strain rate itself seems to play an important role in the
transformation kinetics. This finding will be discussed below in more detail.

3 Direct strain rate effects on the α´-transformation
The possible direct effects of strain rate on the strain-induced α´-phase transformation

were discussed already in the late 1970s [9,10]. According to these studies, high strain rate
may to some extent promote the transformation, since the resulting higher flow stress can
increase the number of nucleation sites such as the intersection volumes of shear bands,
which are themselves composed of overlapping stacking faults. This effect is, however,
limited to small strains before adiabatic heating starts to suppress the phase transformation.
Later, Talonen [11] concluded that the above mentioned effect takes place to some (minor)
extent in a relatively stable stainless steel alloy (EN 1.4301) but is absent in a readily
transforming alloy (EN 1.4318). Furthermore, Hokka [12] found no evidence of a positive
strain rate effect in a low alloyed TRIP steel; in fact, according to his results the phase
transformation is suppressed at high strain rates already at low strains when the amount of
bulk adiabatic heating should be low.

However, as noted above, during the recent years experimental evidence has been
mounting that strain rate has a direct and notable effect on the α´-phase transformation and
the strain hardening rate also at high strains. This evidence can be briefly summarized as
follows: 1) Isakov et al. [5] observed that when the strain rate is instantaneously increased
from the low strain rate isothermal conditions to the high strain rate adiabatic conditions,
both the strain hardening rate and the α´-phase transformation rate decrease rapidly. Later,
Vázquez-Fernández [1] repeated the mechanical tests with in-situ IR-measurements and
showed that macroscopic adiabatic heating following the strain rate jump is modest and
appears to be too low to cause the observed immediate decrease in the α´-phase
transformation rate. Furthermore, recent independent measurements by Sunil and Kapoor [7]
verify the instantaneous effect of strain rate change on the strain hardening rate, and a similar
conclusion can be drawn from the data by Larour et al. [8], i.e., the strain hardening rate
during a high rate test is more or less independent of the preceding prestraining. 2) If a high
strain rate adiabatic test is interrupted and the specimen is reloaded in low strain rate
isothermal conditions, the phase transformation proceeds readily without apparent
“incubation strain”, i.e., the transformation conditions are otherwise suitable during high rate
deformation, but for some (yet unknown) reason the phase transformation does not proceed
[5]. 3) The strain hardening and α´-phase transformation rates observed in a high rate
adiabatic test cannot be replicated in a low rate test by applying external heating to mimic
the macroscopic adiabatic temperature increase [13]. 4) Similarly, incremental loading at a
high rate, which allows the specimen to cool down between the loadings, does not lead to the
same phase transformation tendency as observed in low rate loading [7].

The evidence listed above may not be conclusive, but it gives reasonable grounds to
suspect that the commonly presented theory, which explains the suppression of the α´-
transformation with bulk adiabatic heating, might be insufficient. This notion is in the
authors’ opinion extremely important; if the underlying mechanisms are better understood,
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perhaps the negative effects of high rate loading on the phase transformation tendency can
be alleviated.

So far, the overall picture is still unclear. However, at least two (competing) hypotheses
can be formulated. The first one considers microscale heating in lieu of bulk adiabatic heating
(Fig. 2), i.e., the local slip activity near the newly formed α´-embryos and the heat release
from the phase transformation might lead to the formation of “hot spots” in the
microstructure, and thus the local temperature during high rate deformation might be
considerably higher than the bulk macroscopic temperature. This idea was put forth by
Talonen [11], and it is tempting since it is in agreement with the known growth mechanism
of the α´-martensite, i.e., repeated nucleation and coalescence [10], and it can at least
qualitatively explain many of the observations listed above. The rapid and notable decrease
in the strain hardening and phase transformation rates following a sudden strain rate increase
could happen because the α´-transformation is suddenly inhibited in the preferential
microstructural locations, which quickly heat up after the strain rate is increased. Similarly,
the “mismatch” observed between the high strain rate tests and the low strain rate tests with
external heating [13] might take place because the external heating cannot reproduce the
nonhomogeneous heating at the microstructural level. Similar reasoning applies to the
incremental tests carried out by Sunil and Kapoor [7]; loading of the material incrementally
only helps to cool down the material between the increments, but within each high rate
increment the loading conditions are still adiabatic and local hot spots might form in the
microstructure. At the moment, however, this theory lacks experimental evidence and thus
remains only speculative. However, recent numerical simulations [14] have indicated that
such hot spots are indeed plausible. This theory, if proven correct, might open up possibilities
to mitigate the adiabatic heating effects on the phase transformation via tailoring of the
microstructural morphology.

Fig. 2. Schematic illustration of the hypothesized inhibition mechanism of α´-transformation at high
strain rates: increased slip activity and heat release from the phase transformation increase the local
temperature (T) in the microstructure and suppress further nucleation and coalescence of martensite
embryos.

The hypothesis presented above can be challenged by an alternative hypothesis, i.e., that
there exists a direct strain rate effect besides adiabatic heating. In fact, Sunil and Kapoor [7]
hypothesized that reduced thermal activation at high strain rates decreases the stacking fault
width, thus decreasing the number of nucleation points for the α´-martensite. However, this
theory might be too simplistic and it also lacks experimental evidence: as noted above, high
strain rates have been observed to rather promote than suppress the formation of shear bands,
which are composed of stacking faults [9-11]. A direct strain rate effect might, though, take
place via other means. In [5] it was shown that the strain rate dependency of the
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α´-transformation rate can be phenomenologically modeled with the well-known Olson-
Cohen model [9] with a combination of adiabatic temperature increase and strain rate
dependent nucleation probability at the shear band intersections. This finding also requires
more experimental evidence, but it sheds some light on the possible mechanism: perhaps the
strain-induced α´-phase transformation involves a thermally activated part, which is related
to the dislocation motion taking place in conjunction with the formation of the α´-martensite
embryos?

4 Conclusions
To summarize, in this paper some of the key challenges related to the high strain rate

deformation of metastable austenite containing steels were addressed. Firstly, the choice of
the test methodology affects both the metallurgical analysis and the material model
development. The conventionally used approach of comparing monotonous tests carried out
at different strain rates does not reveal all the important features of the strain rate dependency
of metastable austenite containing steels. It is argued here that such test data should be
supplemented with tests involving changes of strain rate within one test in order to reveal all
the effects of strain rate on these materials. Secondly, the recently acquired experimental
evidence indicates that the kinetics of the strain-induced α´-martensite transformation during
high strain rate deformation are not fully understood, i.e., the common theory based on bulk
adiabatic heating appears insufficient in explaining all the experimental observations. Some
alternative hypotheses reviewed in this paper highlight the necessity to continue the work on
this topic.
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