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Featured Application: Tire, conveyor belt.

Abstract: The objective of the study was to investigate the effect of the partial replacement of carbon
black (CB) by nanodiamonds (NDs) on the vulcanization, mechanical and dynamic properties of
a natural rubber—butadiene rubber compound, a typical elastomer compound found in several
applications (the tire and mining industry, for example). A studied hybrid filler system resulted
in a 28% increase in tensile strength and 29% increase in 300% modulus at low ND loadings even
though the total weight fraction of the filler system was kept constant at 25 parts per hundred rubber.
The hybrid filler system improved dispersion of both fillers as was proven by scanning electron
microscopy and the Payne effect study. In addition, the replacement of 2.5 and 5 phr CB by NDs
resulted in 62% improvement in wear resistance. The DMA study showed that a certain ND-CB filler
combination has a positive effect on tire properties such as wet grip and rolling resistance.

Keywords: nanodiamond; carbon black; natural rubber; butadiene rubber; tire properties

1. Introduction

A rubber compound consists of several components. One of the most important
additives are fillers that are added for several purposes, such as to enhance the mechanical
properties of rubber, reduce costs or improve a specific property, e.g., electrical conductivity.
Carbon black (CB) has been the main reinforcing filler in rubbers over a century. A high
reinforcing ability of CB is related to small particles and aggregate size and high structure
(shape and level of branching of aggregates) of the filler resulting in a large surface area
available to interact with polymer chains and create chemical and physical bonding with
rubber [1]. However, CB has a negative influence on dynamic properties compared to silica,
the second traditional reinforcing filler, which is currently used, for example, in tire treads.
This, together with a high carbon footprint of the CB manufacturing process, increases the
requirement for new filler solutions [2].

Nanosized fillers, such as carbon nanotubes (CNTs) and layered silicates, have been
widely studied during the last decades [3–11]. They are promising fillers due to their
small particle size and high surface area, and thus they have, in theory, a high reinforcing
potential already at low filler concentrations. The practice has shown that the mixing
of these nanofillers into rubber is challenging due to the high surface energy and their
tendency to form large agglomerates. Several publications have claimed that solution
mixing is required for a good dispersion of CNTs [3,12,13], but it is not yet an industrially
viable method. Instead, the CB-nanofiller hybrid filler systems have been found to lead
to improved filler dispersion and improved mechanical properties [14–16]. For example,
by combining up to 5 parts per hundred rubber (phr) of CNTs with CB, a good dispersion
of CNTs is achieved in a conventional rubber mixing process [14,16]. In addition, the
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hybrid filler system improves the CB dispersion and results in improved mechanical
properties [17,18] leaving, however, the dynamic properties still compromised [14].

Furthermore, natural rubber latex containing a filler combination comprising of CNTs,
graphite oxide and CB was found to have better fatigue, crack growth resistance and
mechanical properties than the single CB filler system [19]. This was also related to the
improved dispersion and synergistic effect. Similar conclusions were made in a study where
a graphene nanoplatelet and CB hybrid filler system was studied in ethylene propylene
diene rubber [20]. The partial replacement of CB by graphene nanoplatelets was mentioned
to reduce the CB aggregation. Moreover, a surface modified expanded graphite was
reported to improve the mechanical properties of the CB-filled NR composite [21] as well as
an intercalated graphene—CB hybrid filler system in styrene-butadiene rubber (SBR) [22].

A less studied nanofiller type, nanodiamonds (NDs), are considered as a non-reinforcing
filler but together with CB it could result in good dynamic properties, as they have been
found to decrease the losses of rubbers [23], including low mechanical hysteresis [24]. Such
an effect may be related to the reduced internal friction due to the dry lubricating behavior
of NDs facilitating the orientation of macromolecules upon the applied stress [23,25]. Single
detonation-produced NDs are 4–6 nm spherical particles consisting of sp3-carbon core, thin
sp2-carbon transition layer and an active surface mostly containing carboxyls, hydroxyls,
lactones, ketones and ethers [26,27]. NDs are known to exhibit synergistic effect with
other carbon-based fillers in SBR [28] and epoxy, and the addition of NDs to some rubbers
has been shown to improve e.g., elongation at break [29,30]. The CNT-ND hybrid filler
system improved the dispersion of individual filler particles but had a negative influence
on mechanical properties compared to CNT filled SBR [28].

In this study, CB is partially replaced with a small amount of NDs in a natural rubber
(NR)—butadiene rubber (BR) compound. Up to 5 phr of NDs is used as the earlier studies
conclude percolation threshold below 4 phr [29]. The main aim of the study is to increase
polymer-filler interaction and dispersion of fillers and thus improve the mechanical and
dynamic properties of rubber. Carboxylated NDs contain a high amount of surface carboxyl
groups, as well as some lactones, phenols and anhydrides, groups that match to functional
groups of CB [31]. The presence of these polar groups is expected to have limited interaction
with non-polar elastomers but to contribute to the possible dry lubricating action of NDs.
The effect of ND-CB combinations on the filler dispersion, vulcanization, mechanical and
dynamic properties of NR-BR compound is investigated.

2. Materials and Methods

The studied NDs were carboxylated NDs (uDiamond® Vox P) from Carbodeon Oy, Vantaa,
Finland. According to the manufacturer, the diameter of the NDs varied between 2 and 6 nm.
The other materials used in the compound and formulation are presented in Table 1.

Elastomers and other ingredients were mixed in a Brabender 350E mixer (Brabender
GmbH, Duisburg, Germany) for six minutes. The mixing sequence is presented in Table 1.
The starting temperature was 50 ◦C and the rotor speed was 60 rpm. The reference com-
pound (ND0) contained only CB as filler in a concentration of 25 phr. In other compounds,
0.5, 1, 2.5 or 5 phr of CB was replaced by the same weight amount of NDs. The name of the
compounds is related to the ND loading.

Curing characteristics were measured with an Advanced Polymer Analyzer, APA
2000 from Alpha Technologies (Hudson, OH, USA). The measurements were carried out at
150 ◦C for 25 min. The compounds were then vulcanized to their t’90 value, which means
the time required to reach 90% of the maximum rheometric torque.

The apparent crosslink densities were studied by a swelling test. Approximately 0.4 g
vulcanized rubber pieces were soaked in toluene for 72 h. The apparent crosslink density
was determined from the swelling coefficient by 1/Q:

1
Q

=

(
w0

wt − w0

)
ρ1

ρ2
, (1)
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where w0 is the initial weight of the sample and wt is the weight at time t, ρ1 and ρ2 are
densities of the solvent and unswollen vulcanizate, respectively [32]. Three measurements
per compound were done and the averages and standard deviations were calculated.

Table 1. The formulation and mixing sequence of the studied rubber compounds.

Ingredient Type/Producer Amount (phr) Mixing (min)

NR SMR10 80 0

BR Buna-cis-132/Dow Chemical Company
(Midland, MI, USA) 20

ND uDiamond® Vox P/
Carbodeon

x = 0/0.5/1/2.5/5 1

CB
6PPD
TMQ
ZnO

N-234/Evonik (Cologne, Germany)
Lanxess (Brunsbüttel, Germany)
Lanxess (Brunsbüttel, Germany)

Grillo Zinkoxid GmbH (Goslar, Germany)

25 − x
2.0
1.0
5.0

1.5

TDAE-oil Vivatec 500/Hansen & Rosenthal GmbH (Hamburg, Germany) 8.0
2 *Stearic acid Oleon N.V (Oelegem, Belgium) 2.0

Ceresine wax Sasosl Wax GmbH (Hamburg, Germany 1.5

CBS
Sulphur

Lanxess (Cologne, Germany)
Struktol (Hamburg, Germany)

1.5
1.5 Mill: 5

6PPD: N-(1,3-dimethylbutyl)-N’-phenyl-1,4-benzenediamine; TMQ: 2,2,4-trimethyl-1,2-dihydroquinoline; TDAE-oil: treated distillate
aromatic extract oil; CBS: N-cyclohexyl-2-benzothiazolesulfenamide; * After incorporation of all ingredients, mixing for 4 min.

Bound rubber (BDR) measurements were performed by dissolving 0.2 g of uncured
rubber in toluene for 96 h. Toluene was exchanged every 24 h. After immersion, the
samples were dried and weighed. The BDR content was calculated by the formula:

BDR (%) =
m0 − (m1 − m2)

m0
× 100 (2)

m0 = ms ×
100
cpd

(3)

where m0 is the rubber content in the sample, m1 is the combined weight of the bag and
the sample, m2 is the weight of the dried bag and the sample, ms is the weight of the
dry sample, and cpd is the total amount of rubber and filler in the compound in phr [33].
Three measurements per compound were done and the averages and standard deviations
were calculated.

The Payne effect was studied with a dynamic mechanical analyzer (DMA, DMA/SDTA861e
from Mettler Toledo, Columbus, OH, USA). The measurements were conducted for a circular
sample with a diameter of 6 mm in strain sweep from 0.5 to 1200 µm with a frequency of 1 Hz at
room temperature.

The state of dispersion of the CB and ND particles in the compounds was investigated
by scanning electron microscopy (Zeiss ULTRAplus, Oberkochen, Germany). The fracture
surfaces of the tensile test specimens were coated with a thin carbon layer to ensure the
conductivity of the samples.

Tensile tests of the samples were carried out by testing 5 specimens/rubber compound
with Instron 5967 universal tester (Instron, Darmstadt, Germany) according to ISO 37 sam-
ple type 3 [34]. Tear resistance was tested with the same equipment according to ISO 34
with trouser type specimens (3 specimen/rubber compound) [35]. The crosshead speeds
for the tensile and tear tests were 200 mm/min and 100 mm/min, respectively.

Wear resistance was determined with CETR UMT-2 pin-on disk (Bruker Co, Billerica,
MA, USA). Rubber samples with a diameter of 10 mm were rotated on a smooth AISI304
steel plate for 60 min with a force of 40 N. The rotation speed was 60 rpm. The change in
mass was measured. The mass loss was converted to volume loss using the density of the
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compounds for more comparable results. The density of the compound was determined
with a Wallace X21B electronic densimeter (H.W. Wallace & Co Ltd., Dorking, Surrey,
England) by weighing the samples in air and in water.

Shore A hardness was determined with a Bareis hardness tester (Bareis Prüfgerätebau,
Oberdischingen, Germany) according to ASTM D 2240 [36]. The Shore A value was
recorded instantaneously after dropping durometer. Five measurements were performed
for each sample.

Dynamic properties were studied with a Pyris Diamond DMA from PerkinElmer
Instruments (Waltham, MA, USA), operating in tension mode. The measurements were
done from −80 to +80 ◦C with a heating rate of 3 K/min, an amplitude of 40 µm, and a
frequency of 1 Hz.

The standard deviation in the results were determined by:√
∑(xi − x)2

(n − 1)
(4)

where xi is the measured value, x is the average and n is the number of measurements.

3. Results and Discussion

The replacement of small amounts of CB by NDs can be expected to shorten the
vulcanization time due to the high thermal conductivity of NDs [37,38] and thus due to the
more efficient thermal energy transfer and faster temperature increase in rubber. This kind
of behavior has been observed for CNTs [39] and for the CNT-CB filler combinations [14]
as well as in the earlier ND studies [40]. However, the effect of NDs was opposite in the
current case. Figure 1 and Table S1 (Supporting Information) shows that both the scorch
time and the vulcanization time increases when the concentration of NDs increases. The
carboxyl functional groups are known to adsorb the accelerator [41]. Further, NDs decrease
the maximum torque values (Table S1). Although NDs have similar functional groups on
the surface than CB, the surface of NDs is more polar. This has a negative influence on the
polymer-filler interaction and affects the maximum torque together with the adsorption of
curatives. This indicates a lower reinforcing ability of NDs.

Although the rheometric torque indicated lower networking for the compounds
containing NDs, the apparent crosslink density determined by the swelling study increases
marginally when a part of CB was replaced by NDs, as seen in Table 2. Although swelling
study is commonly accepted as a qualitative method for crosslink density, the filler volume
and filler dispersion influence the swelling study results [42] as the swelling behavior of
bound rubber and occluded rubber differ from the unfilled rubber. Replacing CB by the
same weight amount of NDs decreases the total volume fraction of fillers as NDs have
higher particle density than CB [43,44], but probably increases the total interfacial area
through the improved CB dispersion, which leads to the increased apparent crosslink
density determined by the swelling study.

The polymer-filler interaction was studied by the bound rubber content. The bound
rubber describes the polymer fraction adhered to filler by strong covalent bonds or by weak
physical bonds. The bound rubber decreases the mobility of the polymer chains and makes
the adhered polymer insoluble to solvents and thus reinforces the polymer. The higher
the bound rubber content, the better the polymer-filler interaction. Table 2 shows that the
bound rubber content decreases slightly at 0.5 and 1 phr ND loadings but increases back to
the same level with the compound containing only CB at higher ND loadings. However, on
the basis of the standard deviation, the direct conclusions are impossible to make. In this
study, the physical and chemical bonds were not separated. Thus, the bound rubber results
contain also the physically bonded or mechanically trapped rubber, i.e., occluded rubber.
Due to the polar functional groups on the surface of NDs, covalent bonds with non-polar
NR and BR are not likely to occur [24,45], and the rubber chains could slide along the
surface of NDs showing some plasticizing effect. Thus, a decrease in bound rubber content
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is natural, especially if the ND particles are well dispersed and distributed. CB exists in
aggregates and polymer chains can be trapped into the voids of these aggregates. In well
dispersed NDs, these voids do not exist, and the amount of occluded rubber is reduced.
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Table 2. Apparent crosslink density, bound rubber content and the Payne effect of the rubber
compounds.

Apparent Crosslink
Density (-) Bound Rubber (%) Payne Effect, G0.56–G∞

(MPa)

ND 0 0.36 ± 0.01 43.7 ± 3.1 0.94
ND 0.5 0.39 ± 0.01 42.4 ± 6.7 1.39
ND 1 0.35 ± 0.01 41.8 ± 4.0 1.44

ND 2.5 0.41 ± 0.06 44.3 ± 1.3 1.3
ND 5 0.45 ± 0.03 43.2 ± 6.1 0.74

The state of dispersion was analyzed by the Payne Effect and SEM. The Payne Effect is
determined by the difference between the complex shear modulus at low strain and at high
strain. At low strain, filler-filler interaction is strong, and fillers stay in agglomerated form.
When the strain is increased, the filler particles are pulled apart and the filler agglomerates
are broken into smaller aggregates, and the modulus of rubber decreases. Hence, the
Payne effect describes the filler-filler interaction. The higher the Payne Effect, the higher
the filler-filler interaction and, in the case of nanofillers, the more likely the formation of
a three-dimensional filler network instead of an aggregated filler structure [46]. Table 2
shows that the Payne effect increases after addition of NDs. The change can partly be
explained by the increased total surface area of the fillers but NDs may also suppress
the interfacial interaction of CB particles by locating between them. This improves the
dispersion of CB and enables the formation of a filler network. At 5 phr ND loading, the
Payne effect decreases again indicating worse filler dispersion.

The SEM images (Figure 2) show some differences in filler dispersion and distribution
in different compounds, although ND particles cannot be distinguished separately. The
reference compound (Figure 2a) containing only CB as filler has well dispersed areas
but also unfilled and agglomerated areas. In addition, the compound containing 0.5 phr
(Figure 2b) NDs has an irregular surface caused by the large agglomerates, which is
evidence of insufficient dispersion. Figure 2c,d shows that the filler dispersion is improved.
The surface is rather smooth, large filler agglomerates do not exist (except for the two
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filler agglomerates in Figure 2d), and the fillers seem to be more evenly distributed than
in the reference compound. The improved dispersion explains the earlier Payne effect
results. At 5 phr ND concentration, the filler dispersion becomes poorer again and the
large agglomerates are found (Figure 2e), which is the reason for the decreased filler-filler
interaction observed from the Payne effect.
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(e) ND5.

Although the clear evidence of improved polymer-filler interaction was not obtained
from the bound rubber results, the tensile strength of the rubber compound is improved
remarkably after addition of NDs as seen in Figure 3. This is new evidence of the im-
proved dispersion. The benefits of the hybrid filler system are partly lost with higher ND
concentrations (>2.5 phr) due to the worse filler dispersion and decreased polymer-filler
interaction, but the tensile strength is still at a higher level than without NDs. Furthermore,
the standard deviation is the highest for the compounds containing 0 or 5 phr NDs, which
indicates inhomogeneous compounds due to the poorer filler dispersion. Hence, the tensile
strength results support the SEM analysis. The tensile modulus at 300% elongation (M300)
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increases first but decreases when the amount of NDs is increased. Moreover, a minor de-
crease in elongation at break is observed after the addition of NDs for the compounds with
the highest M300, but the changes are between the error bars. The decreased elongation at
break is commonly attributed to the restricted mobility of the polymer chains.
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Figure 3. The effect of NDs on the mechanical properties (a) tensile strength, (b) elongation at break,
(c) 300% modulus, and (d) tear resistance.

In tear resistance results the trend is opposite (Figure 3d). The tear resistance decreases
when 0.5–2.5 phr CB is replaced by NDs but increases again at 5 phr NDs. This is related
to the plasticizing effect of NDs and filler dispersion. The poor interface between NDs
and rubber as well as the reduced mechanical trapping of polymer chains weakens the
tear resistance at low ND loadings. The big standard deviation at higher ND loadings
also indicates the poor dispersion of fillers. In addition, wear resistance is improved after
addition of 2.5 and 5 phr NDs, although change in hardness is nonexistent (Figure 4). The
harder surface of NDs helps rubber to slide on the smooth steel surface. The improvements
in wear resistance as well as reduction in friction coefficient after addition of NDs has also
been found for acrylonitrile butadiene rubber, fluororubber and epoxy [25,45,47]

Dynamic properties play an important role in several rubber applications, such as
tires or dampers. Figure 5 presents the storage and loss moduli of the compounds as a
function of temperature. The storage modulus curve can be divided into three stages: the
glassy region, glass transition and the rubbery region. In the rubbery plateau region, the
storage modulus is the highest when 0.5 phr CB is replaced by NDs, possibly due to the
improved filler dispersion. When the ND loading increases, the storage modulus decreases.
At the same time, a reduction in loss modulus is observed for higher ND loadings due to
the plasticizing effect [25] and decreased polymer-filler interaction.
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The loss factor of the compounds is presented in Figure 6. The gradual replacement
of CB by NDs has only minor influence on the peak intensity. This behavior differs from
the behavior of CNTs. The height of the loss factor peak decreases when CB is partially
replaced by them due to the restricted mobility of the polymer chains [14]. In this case, only
the compound containing 0.5 phr NDs show this effect, and still the effect is minimal. The
addition of the higher amount of NDs results in the higher peak, thus NDs improve the
mobility of the polymer chains. However, they do not affect the glass transition temperature.
The loss factor curve is used to predict the tire properties, such as wet grip and rolling
resistance. At −20 ◦C, the loss factor is improved when 1 or 2.5 phr CB is replaced by NDs,
which indicates better grip on ice. At 0 ◦C, the temperature used to predict the wet grip,
the compound containing 1 phr NDs shows the highest loss factor and thus the best wet
grip in tire applications. The loss factor values at 60 ◦C are used as an indicator for the
rolling resistance. At this temperature the loss factor is increasing when 0.5 or 1 phr CB
is replaced by NDs, indicating the poorer polymer-filler interaction of NDs and the chain
slipping of polymers. However, at a 2.5 phr ND concentration, the loss factor is remarkably
lower than without NDs. Hence, the ND-CB filler combination has potential to reduce the
rolling resistance in tires with proper concentrations.
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4. Conclusions

The effect of a nanodiamond—carbon black hybrid filler system on the properties
of a natural rubber—butadiene rubber compound was studied by gradual replacement
of a small amount of carbon black by nanodiamonds. Significant enhancement in tensile
strength was achieved by replacing 1 phr carbon black by nanodiamonds, which was due
to the improved filler dispersion. The hybrid filler system facilitated the dispersion of both
fillers, and the stronger filler network was achieved. In addition, the hybrid filler system
improved the wear resistance of the compounds after addition of 2.5 and 5 phr NDs. Hence,
the studied hybrid filler systems have a great potential for improved performance in several
industrial sectors, such as mining and paper manufacturing, although further studies are
still required. Moreover, the partial replacement of carbon black by nanodiamonds has
the potential to increase the wet grip as well as to decrease the rolling resistance in tire
tread compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app112110085/s1, Table S1: The curing parameters of the compounds obtained from the
rheometric curves.
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