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ABSTRACT

Jukka Ilari Ahonen: Image coding for machines
Master’s Thesis
Tampere University
Master’s Programme in Information Technology
November 2021

Machine vision tasks such as object detection and instance segmentation are becoming more
and more popular these days due to the quickly increasing performance of deep neural networks.
Consequently, more and more multimedia content such as images will presumably be consumed
by machines in the years to come. Since the images coded with state-of-the-art traditional codecs
such as Versatile Video Coding (VVC) are designed to maximize the subjective quality perceived
by humans, they may not be optimal for machine consumption. Hence, to address this, new
codecs designed solely for machines are needed.

There are roughly three different directions on machine-oriented compression methods ex-
plored in the literature. First type of methods are based on adapting the existing traditional codecs,
for example, by changing their parameters, while the second type of methods are based fully on
End-to-End (E2E) learned neural networks. The third type of methods are hybrids, which combine
the traditional codecs with learned approaches. The hybrid methods are usually performance-
wise superior to the solely traditional based methods, while they also have intriguing properties,
which E2E based methods might lack. These include certain benefits such as real-time decoding,
hardware implementation availability and interoperability.

In this regard, this thesis introduces a hybrid system to train post-processing filters that aim to
enhance the performance of the VVC reconstructed images on different machine tasks. One of
these filters called Task Specific Enhancement (TSE) filter achieves 45% and 49% Bjøntegaard
Delta Rate (BD-rate) gains over plain VVC on instance segmentation and object detection tasks,
validated on a subset of Open Images validation dataset with Mask R-CNN and Faster R-CNN
based models, respectively. Moreover, another filter called Task Agnostic Enhancement (TAE)
filter also achieves over 40% BD-rate gain when validated similarly. It also generalizes well, pre-
serving a high performance even when the validation dataset and the model are changed.

Keywords: compression, image compression, image coding for machines, learned compression,
neural networks, autoencoder, VVC

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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Koneiden välinen kommunikointi ja erityisesti niiden käyttökohteet, kuten kohteen tunnistami-
nen ja segmentointi (engl. object detection ja instance segmentation) ovat jatkuvassa kasvussa ja
niiden voidaan sanoa olevan nykyään jo melko arkipäiväistä. Tämä johtaa suurella todennäköisyy-
dellä siihen, että tulevaisuudessa suurin osa multimedialiikenteestä on koneiden välistä. Koneiden
väliselle dataliikenteelle tarvitaan siis täysin omanlaisensa kompressiokoodekit, sillä jo olemassa
olevat koodekit on tehty ihmisiä varten, eivätkä ne sen takia ole optimaalisimmillaan konekäytös-
sä.

Kirjallisuudessa esitetyt tekniikat voidaan jakaa karkeasti kolmeen eri ryhmään. Ensimmäises-
sä ryhmässä ovat metodit, jotka perustuvat jo olemassa olevien koodekkien, kuten Versatile Video
Coding (VVC) muokkaamiseen koneille sopivammiksi esimerkiksi parametreja muuttamalla (engl.
traditional based methods). Toiseen ryhmään kuuluvat täysin neuroverkkopohjaiset koodekit (engl.
End-to-End learned methods) ja kolmannessa ryhmässä ovat ns. hybridijärjestelmät (engl. hybrid
methods), joissa perinteiseen koodekkiin yhdistetään neuroverkkopohjaisia tekniikoita. Erityisesti
hybridijärjestelmien etuna on niiden nopeus yhdistettynä korkeaan suorituskykyyn sekä mahdolli-
suus hyödyntää jo olemassa olevia laitteistotason toteutuksia.

Tässä diplomityössä esitellään hybridijärjestelmä, joka perustuu Versatile Video Codingilla pa-
kattujen kuvien parantamiseen autoenkooderipohjaisella (engl. autoencoder) ratkaisulla. Versatile
Video Codingiin verrattuna, hybridijärjestelmällä valmistettu Task-Specific Enhancement (TSE) -
suodatin parantaa Open Images tietoaineistossa (engl. dataset) kohteen tunnistamistehtäviä 45
prosenttia Bjøntegaard Delta -asteikolla (BD-rate) ja kohteen segmentointitehtäviä 49 prosenttia
samalla asteikolla mitattuna. Task-Agnostic Enhancement (TAE) -suodatin saavuttaa keskimäärin
yli 40 prosentin Bjøntegaard Delta -asteikon parannuksen VVC-koodekkiin nähden, kun se eva-
luoidaan samalla tavalla. TAE-suodatin säilyttää korkean suorituskykynsä, vaikka evaluoinnissa
käytetty tietojoukko tai neuroverkko vaihdettaisiin täysin erilaisiksi.

Avainsanat: kompressio, pakkaus, neuroverkot, koneoppiminen, koodekki

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.



iii

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Traditional compression . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Lossless compression . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Lossy compression . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Versatile Video Coding . . . . . . . . . . . . . . . . . . . 5

3. Deep neural networks. . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Convolutional neural networks . . . . . . . . . . . . . . . . . . 12

3.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Image compression for machine consumption . . . . . . . . . . . . . . 15

4.1 Object detection and instance segmentation with neural networks . . . . 15

4.1.1 Region Based Convolutional Neural Networks . . . . . . . . . 16

4.1.2 YOLOv5 . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Common machine task metrics . . . . . . . . . . . . . . . . . . 19

4.3 Existing methods on image compression for machines . . . . . . . . . 22

5. Implementation of a hybrid image compression system for machines . . . . . 24

5.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 VVC encoding/decoding of the images . . . . . . . . . . . . 25

5.1.2 Post-processing filter . . . . . . . . . . . . . . . . . . . 26

5.1.3 Task network. . . . . . . . . . . . . . . . . . . . . . . 27

5.1.4 Perceptual loss component . . . . . . . . . . . . . . . . . 28

5.1.5 Enhancement filter types . . . . . . . . . . . . . . . . . . 29

5.2 Luma partition maps on filter inputs . . . . . . . . . . . . . . . . 30

5.3 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.1 Performance against VVC . . . . . . . . . . . . . . . . . 33

5.4.2 Impact of luma partition maps . . . . . . . . . . . . . . . . 35

5.4.3 Visual impact . . . . . . . . . . . . . . . . . . . . . . 36

5.4.4 Performance improvement visualization . . . . . . . . . . . . 38

6. Conclusion and further work . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



iv

LIST OF FIGURES

2.1 Basic idea of compression . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Common lossy compression pipeline . . . . . . . . . . . . . . . . . . . . 5

2.3 VVC structure on a high level [15] . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Example of a feedforward fully connected neural network, circles denote

neurons [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Neuron of a feedforward neural network. Triangle denotes multiplication

and Sigma denotes summation. . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Comparison of ReLu and PReLU [19] . . . . . . . . . . . . . . . . . . . . 9

3.4 Comparison of the learning speed of Adam optimizer with other optimizers

[21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Underfitting and overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Example structure of a CNN . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Structure of an autoencoder including lateral and residual connections . . 14

4.1 Example of a bounding box and a segmentation mask . . . . . . . . . . . 16

4.2 R-CNN network structures . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Architecture of YOLOv5 [43] . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Precision-recall curve for person class [45] . . . . . . . . . . . . . . . . . 21

4.5 Different methdods for image coding for machines on a high level . . . . . 22

5.1 The system pipeline. Triangles denote gain, i.e. multiplication by the corre-

sponding weight inside of them. Sigma denotes summation. Components

on green are used on training stage only, whereas blue components are

used on both training and inference stages. [6] . . . . . . . . . . . . . . . 25

5.2 Anchor creation pipeline, dashed lines represent where the post filtering

will happen and are not part of the anchor creation. [49] . . . . . . . . . . 26

5.3 Structure of the post-processing filter. x and x̂ denote the VVC encoded

image and output of the post-processing filter, respectively. TCONV de-

notes a transposed convolutional layer. C denotes the number of output

channels and S the stride for all the convolutional blocks. Parameters of

the children blocks are inherited from their parent blocks. [6], [38] . . . . . 27

5.4 Feature extraction and perceptual loss calculation [6], [38]. Sigma denotes

summation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Training pipelines of the three enhancement filters . . . . . . . . . . . . . 30

5.6 Example of a luma partiton map from VVC encoded image (QP 42) . . . . 31



v

5.7 Rate-performance curves of different methods [6] . . . . . . . . . . . . . . 34

5.8 Example of TAE losses at QP 47 with and without luma partition maps . . . 36

5.9 Example of each filter and their difference images compared to plain VVC

at QP 52 on X1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.10 Examples of machine task performance improvements on object detection

and instance segmentation at QP 42 (top images) and QP 47 (bottom im-

ages) [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



vi

LIST OF TABLES

5.1 Comparison of average BD-Rates (%) of the different filters over VVC-only

decoded images [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Average BD-Rate (%) and PSNR [dB] gains of the three enhancement fil-

ters over the plain VVC in RGB color space for X1 [6] . . . . . . . . . . . . 37



1

1. INTRODUCTION

Today, most of the data moved around the Internet consist of images and videos. Be-

cause of the fast development in domains of artificial intelligence and machine vision in

general, most of this data will probably be consumed by machines in a couple of years.

Cisco Annual Internet Report [1] gives an estimate that by the year 2023, half of the

internet traffic will be between machines. In this regard, there is a demand for better

compression codecs, which can handle the increasing bandwidth. Moreover, the exist-

ing traditional state-of-the-art codecs for video coding such as the High Efficiency Video

Coding (HEVC) [2] and the Versatile Video Coding (VVC) [3] are developed for human

consumption. This means that they emphasize the visual quality of the decoded data and

thus the performance may not be the best for machine vision tasks. Codec for machine

consumption is currently a highly researched area. For example, JPEG-AI, which is a

subgroup of Joint Photographic Experts Group (JPEG) [4] has started a standardization

process for Image Compression technologies for Machines (ICM). Similarly, Video Coding

for Machines (VCM), which is a Ad-hoc group of Moving Picture Experts Group (MPEG)

[5] has done the same, but for video compression technologies.

The main contribution of this thesis is to introduce a hybrid system, which is based on

learned post-processing filters. Some of these results are also published on a research

paper [6]. This will be done in the implementation part of the thesis. Note that the terms

post-processing filter, post filter and enhancement filter mean the same thing in the scope

of this thesis and will be referred interchangeably for now on. However, in order to under-

stand the subjects discussed, this thesis starts by introducing the basics of compression

in chapter 2. Some methods are discussed from the domains of lossless and lossy com-

pression with heavy weight on the image compression point of view. More importantly, a

state-of-the-art traditional codec called Versatile Video Coding (VVC) is introduced, since

it is the codec used to encode and decode the images that the post-processing filters

trained in the implementation part are actually filtering. Moreover, the VVC also works

as a benchmark for the filters. Next, some basics about the deep neural networks (DNN)

and their sub-types such as convolutional neural networks (CNN) and autoencoders (AE)

are discussed in chapter 3. This is due to the fact that all the trained enhancement fil-

ters have a structure of a convolutional autoencoder. After this, image compression for

machines is further discussed in chapter 4. It includes a introduction to machine tasks
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such as object detection and instance segmentation, along with some example neural

networks built specifically for these tasks and also used in the implementation part in

chapter 5. Also, some common machine task metrics are introduced. Finally, three of

the most common types of methods/systems in ICM are introduced on a high level along

with existing technologies based on each method. This concludes the theory part. The

implementation part in chapter 5 introduces a hybrid image compression system for ma-

chines. With this system, three types of enhancement filters are trained: Baseline Fidelity

Enhancement (BFE) filter, Task Specific Enhancement (TSE) filter and Task Agnostic En-

hancement (TAE) filter. These enhancement or post-processing filters are used to filter

the VVC reconstructed images in order to boost the performance on machine tasks. The

performance of all the filters are evaluated on object detection and instance segmenta-

tion tasks and compared to the plain VVC. Finally, conclusion is given and further work

discussed in chapter 6.

Essentially, this thesis aims to answer for the need of a new image compression codec

aimed for machines by introducing a hybrid compression codec, which utilizes deep learn-

ing based post-processing filters. Here are listed the most important questions that arise

considering the post-processing filters:

Task performance and generalization – How well the post-processing filters enhance

the machine task accuracy of the images reconstructed by the state-of-the-art traditional

codec VVC? Furthermore, what affects to the generalization of the post-processing filters

for different task networks?

Filtering speed – What is the filtering speed of the filters? This is important, since the

filtering happens completely on the decoder side. Thus, the system needs to be relatively

fast.

Visual impact – What is the visual impact of filtering images with a post-processing filter?

Most importantly, are those filtered images still acceptable for human consumption? If

there is no big degradation in the visual quality, the resulting images could be consumed

also by humans.
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2. TRADITIONAL COMPRESSION

Before talking about the image compression for machines, one must first know the basic

concepts of traditional compression. "Traditional" in this context means that no learned

methods are used and the compression is aimed for human consumption. This chapter

goes through very briefly about what is meant by compression, the concept of information

entropy, lossless compression and lossy compression. Also, a state-of-the-art video com-

pression codec called Versatile Video Coding (VVC) is introduced on a high level, since

it will also be used as the benchmark codec on the implementation part of the thesis.

Moreover, the images being post filtered by the implemented enhancement filters will be

first encoded and decoded by the VVC. Other compression codecs, albeit important, are

not discussed thoroughly, other than briefly mentioned.

Compression in the information theory means that the data is encoded by a fewer amount

of bits than it has in the original format. This is especially important considering video and

image data, because they already consume the most of the internet bandwidth and the

trend is predicted to only increase in the future [1].

Figure 2.1. Basic idea of compression

The basic idea of compression can be seen from Figure 2.1, where the original data,

which can be e.g. an image, is first compressed by an encoder into a bitstream. This
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bitstream or compressed data takes up a smaller space than it did in the original format.

After this, a decoder decompresses the bitstream back into the original form. A system,

which uses this kind of encoder decoder structure is called a codec. In image compres-

sion, a metric often used to describe the amount of compression, is called Bits Per Pixel

(BPP). It measures the amount of bits on the compressed bitstream needed to code each

pixel of the original image.

Information entropy, first introduced by Claude Shannon in [7] for discrete probabilities is

defined as

H = −
∑︂

Pi logPi, (2.1)

where the Pi denotes the outcome of some discrete event and the base of the logarithm

determines the output unit, e.g. base 2 yielding bits and base e yielding nats. Thus, the

information entropy describes how predictable the data is. Moreover, if considering the

encoded data as a string of symbols, the formula can be used to estimate the average

number of units needed to code the data losslessly, based on the frequency of the sym-

bols in the string. This type of coding, which uses the entropy information along with other

statistics of the data to code it is called entropy coding.

2.1 Lossless compression

In lossless compression, no information is lost when encoding and decoding the data.

This means that with optimal form of lossless compression the bits used to encode a sym-

bol should approach the number of bits pointed by the entropy formula (2.1). Techniques

where the number of bits to code a different symbols varies are called variable-length cod-

ing. Maybe the most popular techniques of variable-length coding/entropy coding being

Huffmann coding and arithmetic coding [8], [9]. There exists also many lossless codecs

for images such as: PNG, GIF and JPEG-LS, see [10, pp. 301–310, 371–390] for further

information. As one might guess, the lossless compression is used in the areas where

the data being losslessly stored is very important. These include e.g. medical imaging,

text compression and remote sensing. [10, p. 207] However, this thesis is more inter-

ested in lossy compression, which is the method often used when compressing images

for machines.

2.2 Lossy compression

Lossy compression on the other hand loses information on the compression, meaning the

decompressed data isn’t exactly the original anymore. Therefore, it is used in applications

where the loss of the information is not so critical, such as storing common images,

videos or sound. [10, pp. 432, 440] The main reason lossy compression is used, is that it

achieves much higher compression ratio than its lossless counterpart. Compression ratio



5

in this context means the ratio of the size of the uncompressed data and compressed

data. One of the most common methods in the lossy compression is called transform

coding, where the data is first transformed into some other representation, where it is then

quantized and further processed to achieve more efficient compression with lower amount

of loss as in the original domain. Quantization in this context means that the sample

values are mapped from one range to another with less precision. Popular transform

methods include a discrete cosine transform (DCT) [11] and a discrete wavelet transform

(DWT) [12]. DCT, being more popular option of the two, is used for example in JPEG, AVC,

HEVC and VVC [2], [3], [13], while the most famous DWT-based codec is JPEG-2000 [14].

Furthermore, all of these codecs also utilize a form of lossless entropy encoding on their

pipeline, which is generally very common in a lossy compression pipeline. Example of

this can be seen from Fig. 2.2, where after some transformation and quantization, the

uncompressed image xgt is losslessly entropy encoded into its final form of bitstream and

the decoding part is just the inverse of the encoding procedures to get the reconstructed

image x.

Transformation Quantization Entropy
encoding

Inverse
Transformation

Inverse
Quantization

Entropy
decoding

Uncompressed

image

Reconstructed
image

Compressed 

data/


 bitstream

Figure 2.2. Common lossy compression pipeline

2.2.1 Versatile Video Coding

At the moment when this thesis is written, Versatile Video Coding (VVC) [3] also known

as H.266 is the state-of-the art traditional video codec. VVC has both lossless and lossy

functionalities, but in the scope of this thesis, it is used only as a lossy image codec. VVC

is the successor of the High Efficiency Video Coding (HEVC) [2] aka. H.265, reducing

the bitrate over it roughly 50 %. HEVC, on the other hand, is a successor of a well known

video codec Advanced Video Coding (AVC) [13] aka. H.264, between those two there is

also a 50 % bitrate improvement. Furthermore, VVC is also able to handle more complex

formats than AVC or HEVC, such as 16K video. The only disadvantage VVC has over its

predecessors is the coding time, since it is a more complex codec. Next, a rather high

level overview is given of the VVC.

Fig. 2.3 shows the main parts of the VVC encoder and decoder. The basic principle of the
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VVC on the encoder side is exactly similar as was described on the lossy compression

pipeline in Fig. 2.2. It contains transformation with DCT, quantization and entropy encod-

ing. However, the input to the transform is not the actual image but rather the residual,

which is the difference between the predicted and uncompressed frame. In the begin-

ning, the input image is divided into blocks, which do not overlap. These blocks are then

divided to even smaller blocks, which are called Coding Units (CU). The shape of these

coding units are determined by the content, meaning that smaller blocks are chosen for

more detailed parts of the image, whereas larger blocks are assigned to the non-detailed

parts. These hierarchical partitions are called partition maps and they are predicted from

the earlier processed data. If inter-prediction / motion-compensated prediction is used,

the partitions are predicted from frames that have already been coded, taking advantage

of the temporal redundancies. The other option is to use intra-prediction, meaning that

the partitions are predicted only from the parts of the current frame that have already

been encoded. There exist an "all-intra" configuration, which causes the encoder to code

all the images independently. Since the tests in this thesis are later on conducted for

images rather than video, the all-intra configuration must be chosen for the VVC to act as

an image codec. At the decoder side, after the quantization of the residual coefficients,

they will be inverse quantized and inverse transformed to access the reconstructed resid-

ual. This reconstructed residual can then be summed together with either the intra or

inter predicted block to get the reconstructed block. The reconstructed frame or block is

yet filtered with in-loop filters to generate the final reconstruction. The encoder also uses

this reconstructed output to estimate the motion between the next input frame, and this

motion data is then sent back to the decoder in order to do the inter-prediction. [3], [15]

Figure 2.3. VVC structure on a high level [15]
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3. DEEP NEURAL NETWORKS

Alongside the traditional compression, a deep neural network (DNN) is an important con-

cept in order to understand the image compression for machines better. This is because

both the machine tasks and the compression methods of ICM often utilize DNNs. Thus,

this chapter introduces the basic principles behind a DNN. Their subtypes known as con-

volutional neural networks (CNN) and autoencoders (AE) will also be studied further,

since the enhancement filters trained in implementation part are all based on a convolu-

tional autoencoder.

Hidden layer

Hidden layer

Input layer

Output layer

Figure 3.1. Example of a feedforward fully connected neural network, circles denote
neurons [16]

A neural network is simply a statistical model, which tries to find some relationship be-

tween its input and output data. Basic neural networks learn to adaptively adjust their

parameters by learning from the examples given to them. As seen from the Figure 3.1, a
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feedforward neural network has three basic types of layers, which all consists of one or

more base units called neurons. First type of layer is called an input layer, which takes

the input data e.g. images as their input. Neurons in the input layer are connected to

the neurons in the next layer, which is called a hidden layer. Hidden layer consists of

neurons, which are "hidden" inside the network, these can be again connected to a next

hidden layer or to an output layer. Output layer is the last layer of the network and it yields

the wanted output of the network. The terms deep neural network and feedforward neural

network mean that there are several hidden layers in the NN and the information flows

to one direction, respectively. In addition to feedforward NN, there exists recurrent neural

networks (RNN), where the information can flow to both directions. However, since the

RNN-like structures are not utilized in this thesis, they are not discussed further.

...
...

...

Inputs
Weights

Bias

Non-linear 
activation 
function Output

Figure 3.2. Neuron of a feedforward neural network. Triangle denotes multiplication and
Sigma denotes summation.

Every neuron has the following structure as seen in the Figure 3.2. The inputs x0...xn can

be either the actual input to the network, or a lateral representation of the data, meaning

that the input comes from other neuron and is in different form that in the beginning. All the

neurons connections to other neurons have also weights w0...wn, which tell how strong

the connections are. All the inputs are multiplied by their corresponding weights and

summed together with the bias term b. Together the weights and biases are the trainable

parameters of the network. Finally, the result of the summation is fed to an activation

function, which is some non-linear function, this makes also the output non-linear. One

of the most used activation function is called Rectified Linear Unit (ReLU) introduced in

[17], which is defined as:

f(x) = max(0, x) =

⎧⎨⎩ xi, if xi ≥ 0

0, if xi < 0
, (3.1)
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where x is the input to the function. The reason for its popularity is the fact that it reduces

the vanishing gradients problem, while also having a great performance. There exists

multiple variants of the ReLU, see [18] for a comparison. One of these functions is called

Parametric Rectified Linear Unit (PReLU) first introduced in [19]. According to the authors,

it is superior to ReLU with minimal added computational cost. PReLU is defined as:

f(x) = max(0, x) =

⎧⎨⎩ xi, if xi ≥ 0

aixi, if xi < 0
, (3.2)

where the ai is a learnable parameter for the negative slope. That is in fact the only

difference compared to ReLU as can be seen also from the Figure 3.3

Figure 3.3. Comparison of ReLu and PReLU [19]

Once the input data has gone through all neurons and is at the end of the network, a

forward pass has been executed. After this, a backward pass begins. It starts by feeding

the network outputs ŷi to a cost function, which compares the outputs to a desired ground

truths yi, which are known. When some known data is used to train the network, the

process is called supervised learning. On the other hand, when there is no ground truth,

the learning is called unsupervised, meaning that the system must find the correlations

completely by itself. Neural network-wise this thesis focuses on supervised learning for

now on. One of the most common cost function is Mean Squared Error, which is defined

as:

MSE =
1

n

n∑︂
i=1

(ŷi − yi)
2, (3.3)

where n, ŷi and yi denote the number of outputs, outputs of the network and ground

truths, respectively. After the cost function has given the difference of the predicted data

and the ground truth data, all the weights and biases are updated one by one accordingly,

in order to minimize the cost function. The algorithms, which do this minimization are

called optimizers. Most common optimizers are gradient based, meaning the gradients
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of the loss w.r.t the parameters are used for updating the parameters, i.e. weights and

biases. Mathematically the process can be expressed as:

p← p− α∇pf(p), (3.4)

where p are the parameters to be optimized, α is a learning rate (LR), which determines

the amount of change at one update and∇pf(p) is the gradients of the loss function w.r.t

to the parameters. The learning rate should be chosen such that the jumps towards the

optimum of the gradient are not too big or too small. With too large LR, the gradient might

always jump over the optimum thus never reaching it. On the other hand, with too small

LR the jumps might be so small that the outcome becomes similar or a too local optimum

is reached. Thus, the LR must often be tested empirically to find a one that works with

the used optimizer, data, network, loss-function etc. It might also be beneficial to use

a learning rate scheduler, which changes the LR over time according to some rule, e.g.

reducing the LR after a certain amount of iterations over the entire dataset. For more in

depth explanation of the mathematics behind the gradient based methods and the back

propagation, see chapter 6. from [20], where the whole process is explained also with

matrices. This is useful since most common inputs to any NN are tensors, which are

multidimensional matrices. Probably the most commonly used gradient based optimizer

today is called an Adam optimizer [21], which uses the estimates of the first and second

moments of the gradients seen in Eq. 3.4 to calculate an adaptive learning rate for the

parameters. Fig. 3.4 shows a comparison of different optimizers, representing the training

cost against iterations over entire dataset, also known as epochs . The dataset in that par-

ticular experiment is the Modified National Institute of Standards and Technology (MNIST)

dataset [22], which contains 60, 000 hand written digits as the training images along with

the ground truth annotations. These type of free to use datasets such as MNIST are also

a very common sight in the domain of machine learning. The actual model in the experi-

ment is a regular feedforward NN containing two hidden layers with 1, 000 neurons each,

followed by ReLU activations. Adam seems to be clearly the fastest one minimizing the

training cost in this comparison. While optimizer performance is always specific for the

network and task at hand, it can be safely said that currently Adam is a good choice for a

generally high performing optimizer [21].

In addition to training the DNNs, their performance must be evaluated with a validation

set, which contains unseen data for the model to predict on. This process can be called

as evaluation or validation interchangeably. If no evaluation is done, but the trained model

is used to predict unseen data, that process is called inference. As stated before, the neu-

ral network tries to find some relationship between its input and output data. However,

this trained relationship should be general enough to make the model perform well also

on the validation data. If the training dataset is a too small representation of the problem,

training for too long might cause the model to overfit into the training data, causing the
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Figure 3.4. Comparison of the learning speed of Adam optimizer with other optimizers
[21]

performance to drop when predicting on the validation data. Overfitting is generally known

to be one of the biggest problems in machine learning and in order to resolve this, many

preventative methods have been generated. For example, dropout introduced in [23] sim-

ply drops out randomly some percentage of the units between the layers. Regularization

such as L1 or L2 adds an extra term to the used loss function to penalize the higher pa-

rameter values, essentially making the model more simple and thus more general. Data

augmentation on the other hand focuses on slightly modifying the input data in order to

generate new artificial training data. In the case of an image data, the augmentation can

be for example slightly cropping, flipping or stretching the image [24]. Even with using

these preventative methods, the model might still overfit. Thus, it is important to validate

the model often enough to find the best fit as is represented in Fig. 3.5. On the other

hand, if the training is stopped too early, the model is in the regime of underfitting, which

is also suboptimal.
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Figure 3.5. Underfitting and overfitting

3.1 Convolutional neural networks

For the past years Convolutional Neural Networks popularized by LeCun & al in [25]

have been a state-of-the-art method in all types of machine vision tasks [26]–[30]. The

popularity rises from the fact that the CNNs tend to have better performance than normal

NN, while maintaining a light structure.

Figure 3.6. Example structure of a CNN

The basic principle of a CNN is the same of a NN, but now the neurons are actually

computational kernels, which are small e.g. 5x5 squares as in Fig. 3.6. These kernels
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convolve over the image producing feature maps, which are again fed to the next convolu-

tional layer. The amount of kernel shift in pixels is determined by a stride, which is usually

a relatively small number such as 1 or 2. After each convolutional layer, there is usually

an activation function such as ReLu, followed by a spatial sub-sampling such as max-

pooling. The spatial sub-sampling aims to improve the learning such that the network

can learn different sized spatial features. Because the kernels share their parameters,

compared to a fully connected network, the resulting structure is much lighter. Although,

fully connected layers are still often used as the last layers of the CNN to produce the

wanted output from the features extracted by the convolutional layers.

3.2 Autoencoder

Autoencoder is yet another subtype of a DNN, which first compresses the input into a

latent representation and then decompresses it back to its original dimensions. Thus,

it can be represented as having an encoder-decoder structure as seen from Fig. 3.7.

The compression is done by the encoder EΦ(x), which is a neural network on its own,

and decompression by decoder Dθ(z), which does the opposite actions of the encoder.

The encoder and decoder try to find their optimal respective parameters ϕ and θ in order

to optimize the relation between input x and output x̂. This relation is often measured

as either similarity or difference, with e.g. using some error function such as the MSE

described on Eq. 3.3. The smaller the dimensions of encoded lateral representation

are on the bottleneck, the more information is lost. Thus, the autoencoder has to learn

such weights that represent the most important parts of the data. Therefore, also being a

powerful tool for dimensionality reduction.

Fig. 3.7 also shows example of lateral and residual connections. Residual connections

also known as skip connections or identity shortcuts introduced in [31] are connections,

which skip one or multiple network layers and give the same representation of the lateral

data to the further layer in order to prevent the gradient from vanishing or exploding. The

prevention of the extreme values of the gradient is especially important in very deep archi-

tectures. Convolutional autoencoder with residual connections is proven to beat the per-

formance of a similar AE without residual connections in [32], underlining the importance

of the residual connections for learning abstract representations by image reconstruction.

Lateral connections are similar to the residual connections, but they are connected from

the lateral layer in the encoder to the corresponding lateral layer in the decoder. By giving

this encoded lateral representation available to the decoder, it aims to help the decoder to

decode a representation more similar to the given lateral representation. Generally, con-

volutional autoencoders with residual and skip connections are a very popular network of

choice for tasks which have something to do with images. E.g. in [33] a deep autoencoder

with residual connections is part of the system used for pavement-defect segmentation.
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More importantly, when looking back at the Figure 2.1 and seeing the similarities of au-

toencoder and basic idea of compression, one can understand why autoencoders are a

very popular concept especially in the domain of image compression [34]–[38].

Bottleneck

Latent
Representation

Input Output

Lateral connection

weight layer

weight layer

ReLU

Residual block 

inside of the Encoder

Residual
connection

Figure 3.7. Structure of an autoencoder including lateral and residual connections
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4. IMAGE COMPRESSION FOR MACHINE

CONSUMPTION

When talking about image compression for machines, the most important thing is to max-

imize the performance of the images on the machine task, while keeping the compressed

size minimal. Since the codecs for human consumption e.g. VVC considers only the vi-

sual quality for humans, it is clear that there must be more effective ways to code the data

for machines.

First, this chapter briefly explains two very common machine tasks; instance segmenta-

tion and object detection. After this, example neural networks designed for both of these

tasks are introduced. The introduced networks are also related to the training and vali-

dation of the post-processing filters implemented later on. Next, some common machine

task metrics are explained. Finally, existing methods are discussed, especially the ones

that are related to the method described in this thesis.

4.1 Object detection and instance segmentation with neural

networks

In object detection, the system is trying to detect the object instance by drawing a bound-

ing box over the detected instance. There can be multiple instances and they can possibly

overlap each other. See the purple rectangle in Fig. 4.1, which represents a bounding

box. These boxes, or rather their corner points are usually presented as some type of

coordinates e.g. pixel coordinates with respect to the image.

In instance segmentation, the predictions are on a pixel-level. The systems tries to define

segmentation masks, telling which pixels are part of the instance. Fig. 4.1 also shows the

purple colored area, which is an example of a segmentation mask. These segmentation

masks can be for example binary encoded, 1 representing the pixel is part of the instance

and 0 that it is not.
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Figure 4.1. Example of a bounding box and a segmentation mask

4.1.1 Region Based Convolutional Neural Networks

Region Based Convolutional Neural Networks (R-CNN) are a family of CNNs used for

both object detection and instance segmentation tasks. In fact, specific versions called

Faster R-CNN [27] and Mask R-CNN [28] are used in this thesis to perform object detec-

tion and instance segmentation, respectively. Thus, they are introduced more thoroughly.

Both of the said networks are based on a Fast R-CNN [26], which is an object detection

network. The Fast R-CNN classifies and detects objects from different regions of interest

(RoI) from an image. The RoIs are selected by a selective algorithm introduced in [39].

Fig 4.2a represents a rough structure of the Fast R-CNN network. The training loss of

this network can be stated as:

Ltask = Lcls + Lreg, (4.1)

where Lcls is the object classification loss and Lreg is the bounding-box regression loss,

calculated against the predictions and ground-truths of the class labels and bounding

boxes, respectively.

The Faster R-CNN, is very similar to the Fast R-CNN, the biggest difference is that now

the Region Proposals are generated by a Region Proposal Network (RPN) instead of the

selective algorithm. The RPN has access to both the original images and the features

as seen in Fig. 4.2b, which increases the proposal generation speed significantly, hence
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(a) Rough structure of Fast R-CNN based on [26]

(b) Rough structure of Faster R-CNN based on [27]

(c) Rough structure of Mask R-CNN based on [28]

Figure 4.2. R-CNN network structures
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the name Faster R-CNN. The RPN outputs two components. First, region proposal re-

gression, which is basically the difference between the proposed region and ground truth

region. Second, the objectness, which tells that are the proposed regions more likely part

of an object or a background. Thus, the training loss can be formulated as:

Ltask = Lcls + Lreg + Lpreg + Lobj, (4.2)

where Lpreg and Lobj are the region proposal regression loss and objectness loss, re-

spectively. With these modifications, the Faster R-CNN is both faster and more accurate

than the Fast R-CNN.

Mask R-CNN is in turn an extension of the Faster R-CNN. Now, the network is extended

to predict also the segmentation mask in addition to the bounding box. The segmentation

mask prediction doesn’t affect to the rest of the pipeline as seen in Fig. 4.2c. Training

loss of the Mask R-CNN is defined as:

Ltask = Lcls + Lreg + Lpreg + Lobj + Lmask, (4.3)

where Lmask denotes the segmentation mask loss, which is calculated against the ground

truth segmentation masks. This training loss is especially important for one of the en-

hancement filter types introduced afterwards.

4.1.2 YOLOv5

This section briefly introduces the You Only Look Once v5 (YOLOv5) [30] neural network

for object detection. This time the introduction is on a bit higher level than with the R-

CNNs and this is because the YOLOv5 is later on used only on validating the post filters

rather than training any of them. Moreover, the essential part here is to emphasize the

completely different structures of the YOLOv5 and the R-CNNs, to which the validation

models used on the implementation part of the thesis are based on. This aspect will be

further clarified on the later sections.

YOLOv5 consists from 3 base parts, which are the Backbone, Neck and Head as repre-

sented in 4.3. The Backbone is a CNN itself, whose job is to extract the features as dif-

ferent types of lateral representations from the input images. The Backbone of YOLOv5

is called CSPDarknet, which combines the Cross Stage Partial network (CSP) [40] with

the Darknet [41]. This Combined structure has both solid performance while it is also

fast on inference stage. This is mainly because of the CSP, which ensures the gradient

information is not repeated when it is changed, but rather incorporated on the feature

maps, decreasing the computational cost by 20 % [40]. Next, there is the Neck, which

is a Path Aggregation Network (PANet) [42] in YOLOv5. PANet boosts the information

flow and combines the features given by the Backbone into a form, which the Head can
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more easily predict on. Finally, the Head of the network, which is called the Yolo Layer on

YOLOv5, simply just consists of three different convolutional layers, which each generate

different sized feature maps to output the detection results of different sized objects.

Figure 4.3. Architecture of YOLOv5 [43]

As was shown, the structures of YOLOv5 and R-CNN are completely different, biggest

difference being that the YOLOv5 does not have an explicit RPN as in Faster R-CNN

and Mask R-CNN. This is a noteworthy fact when evaluating the generalization of imple-

mented enhancement filters later on.

4.2 Common machine task metrics

One of the most important metrics to measure a machine task performance is mean

average precision (mAP), particularly for the tasks such as object detection and instance

segmentation. In order to understand how this evaluation metric works, let us first define

the terms true positive, false positive, true negative and false negative. True positive

means that the system predicts something to be true and it is true also in reality. In false

positive case, system predicts false, but in reality it is true. This logic goes on similarly

to true negative and false negative cases. To determine what is true and what is false

in object detection or instance segmentation, lets define a term Intersection over Union
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(IoU) as:

IoU =
Area of Overlap

Area of Union
, (4.4)

where Area of Overlap is the overlap of the predicted and ground-truth bounding box in

object detection task, and similarly, the overlap of segmentation masks in instance seg-

mentation task. Correspondingly, Area of the Union denotes the union of the prediction

and the ground-truth. Thus, the values of IoU are always between [0, 1]. Now, if the IoU

limit is set to e.g. 0.4, all those predictions, which would have the IoU over 0.4, would be

classified as true. Similarly, those below 0.4 would be classified as false. This knowledge

about the IoU is crucial, when defining the next terms which are recall and precision.

Recall is defined as follows:

Recall =
tp

tp+ fp
, (4.5)

where tp denotes true positive and fp false positive. Thus, recall tells how well the

positive predictions were found amongst all possibilities.

Then, the precision is defined as:

Precision =
tp

tp+ fn
, (4.6)

where tp denotes true positive and fn false negative. Precision, on the other hand, tells

how accurate the predictions are. [44]

Next, to define mAP, average precision (AP) is first defined. Easiest way to understand

AP is to look at an example. Figure 4.4 shows a precision-recall curve for person class

in detection task, where the points have been plotted on different confidence thresholds

of the model, from high to low. Also, the IoU used is 0.5, usually stated as IoU @0.5.

As expected, the high probability threshold causes the model to be very precise in the

expense of recall and vice versa. The AP can be defined as the area under the precision-

recall curve, so it too gets the values between [0, 1]. Mathematically it can be stated as

AP =

∫︂ 1

0

p(r)dr, (4.7)

where p(r) is the precision-recall curve. [46] When there exist no actual function for the

curve, which is the usual discrete case, the AP can be simply measured by interpolating

the measured points and measuring the area under curve.

Finally, the mAP can be calculated by taking the mean over AP of all classes:

mAP =

∑︁n
0 AP

n
, (4.8)

where n is the number of classes. Usually when measuring mAP, one might be interested
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Figure 4.4. Precision-recall curve for person class [45]

on mAPs measured on different IoU:s, for example in the Common Objects in Context

(COCO) dataset evaluation they are measured between [0.5, 1], with steps of 0.05 [47].

Other important metric apart from mAP is called Bjøntegaard Delta (BD) Rate [48]. It

is a metric often used for comparing different compression methods against each other.

For example, let there be an image, which is VVC encoded with quantization parameters

(QPs) 42, 37, 32 and 27. Now, each of these encoded images have different BPP and

mAP on a certain machine task, yielding 4 data points on mAP/BPP plot. Let there be

also the same image compressed with some arbitrary method to the same BPP levels,

resulting in 4 points on mAP/BPP plot which have the same BPPs as before but different

mAPs. Now, an integral of the curve must be found for both of these data point sets.

The BD-rate gain is actually the difference of these found integrals divided by the inte-

gration interval. I.e. the area between the plotted curves. BD-rate is also the metric

used later on to compare the performance of the enhancement filters to the plain VVC

compressed images. In addition to using mAP/BPP plots, BD-rate can also be calculated

from PSNR/BPP plots. The Peak Signal-to-Noise Ratio (PSNR) is a metric often used to

measure the reconstruction quality of some lossy codec. PSNR can be defined as:

PSNR = 10 ∗ log10
(︃

L2

MSE(x1, x2)

)︃
, (4.9)
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where L denotes the dynamic range of the pixel values and MSE denotes the mean

squared error between the original image x1 and reconstructed image x2. [49] While the

PSNR is not necessarily a machine task metric, it is still interesting to see how much the

images reconstructed by ICM codecs differ from the original images visually.

4.3 Existing methods on image compression for machines

Image and video compression for machines has been researched widely in recent years.

At the time of writing this thesis, JPEG-AI, a subgroup of Joint Photographic Experts

Group (JPEG) [4] has started a standardization process for image compression technolo-

gies for machines, while MPEG’s VCM group [5] is investigating possibilities for standard-

izing a video codec for machine consumption.

In general, three different approaches have been studied for machine-oriented image

compression in the literature. First type of methods such as [50] and [51] are based

on adapting traditional codecs parameters in order to achieve better task performance

on target machines, see Fig. 4.5a. However, these types of methods might not be the

most optimal for machine consumption, since the traditional codecs they are based on

are made solely for human consumption.

Target machine
task

Fine-tuned
traditional codec

Uncompressed

image

Predicted 

output

Encoded 

image

(a) Method based on fine-tuning the traditional codec

Target machine
taskEnd-to-end learned method

Uncompressed

image

Predicted 

output

Encoded 

image

(b) E2E method

Learned method Target machine
task

Fine-
tuned/original

traditional codec

Uncompressed

image

Hybrid

Predicted 

output

Encoded 

image

(c) Example of a hybrid method

Figure 4.5. Different methdods for image coding for machines on a high level

Second type of methods, for example [37] and [38] are End-to-End (E2E) learned, mean-

ing that they are fully based on E2E learned neural networks, see Fig. 4.5b. It is possible
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that in the future the E2E learned methods will be the most optimal solution for image

or video codec for machine consumption. This is due to the fact, that on the contrary

of the traditional based methods, they do not have any components designed for human

consumption, if designed properly.

Third and final type of methods are called hybrid methods, which use traditional codecs

in addition to the learned methods. The traditional codec might be either fine-tuned or

unmodified. An example of this is given in Fig. 4.5c. However, the original codec and

the learned methods are not necessarily in the order described in the Figure and the line

between them might not even be that clear. When compared to the E2E, hybrid methods

have pros and cons. Maybe the main drawback of the hybrid method is that it still contains

the traditional codec designed for human consumption (or finetuned version for machine

consumption), which ultimately makes the hybrid system slightly suboptimal compared

to a E2E system. Although, the effect is probably a lot smaller than with the methods

solely based on traditional codecs. On the other hand, the biggest benefit of the hybrid

systems over E2E systems currently is the speed. Since the traditional codecs such as

VVC are so well optimized, and the learned part of the hybrid systems tend to be lighter

than their E2E learned counterpart, this results in a relatively fast system. Also, as the

encoder can even be left completely untouched, this increases the interoperability as well

as allows to exploit the existing hardware implementations. Interesting hybrid systems

are described in [52]–[54], which all use a CNN based post-processing filters to process

the VVC decoded data. However, all of these methods are actually aimed to images

for human consumption. Generally, it seems that this type of post filtering for machine

consumption is not yet such explored topic and this is also the fact that motivated the

implementation of this type of system.
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5. IMPLEMENTATION OF A HYBRID IMAGE

COMPRESSION SYSTEM FOR MACHINES

This section introduces a hybrid system, which utilizes deep learning based post-processing

filters for image coding for machines. Some of these results are also published in a re-

search paper [6].

First, a general overview of the system and its goal is given on a higher level. Second,

the system components are introduced more thoroughly one by one. Third, three differ-

ent training strategies are introduced to train three different types of enhancement filters.

Also, a technique where luma partition maps are included into the filter inputs is intro-

duced. After this, the test setup is described in detail. And finally, the results of the tests

for all the three trained filters are shown and analysed.

5.1 System overview

The goal of the system is to train a post-processing filter, which enhances an image en-

coded and decoded by a traditional codec to further increase its performance on machine

tasks, such as instance segmentation and object detection. Thus, the system can be

seen as a hybrid method for ICM as described earlier on Fig. 4.5c. Since the VVC is

considered as the "anchor", i.e. a baseline to which the filter performance is compared to,

a sufficient goal performance-wise would be to clearly outperform this baseline. Speed-

wise, it would be beneficial to have a codec, which can handle real-time applications. The

system structure can be seen from Fig. 5.1. The pipeline starts by VVC encoding and

decoding the original images xgt, which gives the VVC decoded images x.

After this, the VVC decoded images x are fed to the post-processing filter giving the fil-

tered output x̂. The post-processing filter itself is a CNN based autoencoder with residual

and lateral connections. The post filter will be introduced more thoroughly on section

5.1.2.

After the post-processing filter, the filtered images x̂ are fed to the task network, which

gives the predicted output ŷ. This also concludes the inference stage, which has been

exactly similar to the training stage until this point. In training stage, the original image xgt

and its task ground truth ygt are used to calculate different kind of losses, which are all
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Figure 5.1. The system pipeline. Triangles denote gain, i.e. multiplication by the cor-
responding weight inside of them. Sigma denotes summation. Components on green
are used on training stage only, whereas blue components are used on both training and
inference stages. [6]

weighted and summed together to finally update the weights of the post-processing filter.

Now that there is a general overview about how the system works, the components and

their connections to each other are introduced more thoroughly in the following sections.

5.1.1 VVC encoding/decoding of the images

First of all, before filtering any images, they are encoded and decoded with VVC codec

explained in section 2.2.1. MPEG evaluation framework for VCM [49] specifies the exact

technologies used in generating the VVC encoded data, which the pipeline follows.

Fig. 5.2 represents the anchor creation pipeline, i.e. how the images are processed from

prior to the encoding until after to the decoding in order to generate the baseline results.

First, the images are converted into a lossless PNG format, at this point they are still

considered as the original image xgt, which corresponds to the xgt seen in Fig. 5.1. After

this, the images are downscaled if needed. However, in these experiments, the accuracy

of both plain VVC images and post filtered images were measured without downscaling.

If downscaling were to be used, the scales would be 75%, 50% and 25% of the normal

scale. Next, the images are converted to YUV color space using the FFmpeg software

release 4.2.2 [55]. After the images are in YUV format, they are encoded by the refer-

ence software VTM-8.2 [56] with All Intra configuration according to JVET common test

conditions [57]. The QPs chosen for the VVC encoding were {22, 27, 32, 37, 42, 47, 52},
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Figure 5.2. Anchor creation pipeline, dashed lines represent where the post filtering will
happen and are not part of the anchor creation. [49]

which determine the amount of compression and therefore the quality of the decoded

images, higher QP meaning more compression. The BPPs of the decoded images are

measured from the bitstream at this point. Next step is the decompression, which follows

the same setup as the compression. Similarly, the YUV to PNG conversion is the exact

opposite of PNG to YUV conversion. After the last conversion stage, the images would

have been upscaled back to the original size if downscaling was used. The resulting VVC

decoded image x corresponds to the x in the system pipeline in Fig. 5.1. Finally, the VVC

decoded image x can be fed to some task network, which predicts an output ŷ and then

the mAP can be calculated using the task ground truth ygt to produce the VVC anchor

results. Alternatively, before giving the VVC decoded image x to the task network, it can

be post filtered to become x̂, which corresponds to the x̂ in Fig. 5.1. This should improve

the mAP on the machine task, which this hybrid system is all about.

5.1.2 Post-processing filter

As mentioned, the whole goal of the system is to train a post-processing filter, which

enhances the VVC reconstructed images such that they perform better on machine tasks.

The structure of this filter can be seen from Fig. 5.3. As can be seen, it is a CNN based

autoencoder, a concept explained in section 3.2. Other facts to note are that there are

two lateral connections between the encoder and decoder and also that there are residual

connections in the convolutional blocks. Both of these connections boost the performance

significantly, since part of the goal is to try to reproduce the original images xgt from VVC
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compressed images x, which are fed to the post filter. Activation functions used are

PReLU and ReLU, which were explained in chapter 3. This structure was chosen as the

result of multiple experiments with different structures. The chosen structure was kept

unmodified through every test that followed. The structure is also lightweight, having only

782, 663 trainable parameters.

Figure 5.3. Structure of the post-processing filter. x and x̂ denote the VVC encoded
image and output of the post-processing filter, respectively. TCONV denotes a transposed
convolutional layer. C denotes the number of output channels and S the stride for all the
convolutional blocks. Parameters of the children blocks are inherited from their parent
blocks. [6], [38]

5.1.3 Task network

In addition to the MSE-loss, the system has an option to include a task loss component to

further increase the performance on machine tasks. For this, a task network is needed.

Thus, a Mask R-CNN (see section 4.1.1) based network for instance segmentation was

chosen as the task network. However, the setup is not dependent on this particular task

network and would also work with different task networks. Task network weights are kept

frozen throughout the experiments, since the goal is to only train the post-processing filter.

The task loss is calculated between the predicted output ŷ and the task ground truth ygt

as seen in Fig. 5.1. The Task loss is defined as the training loss of the Mask R-CNN

network, see Eq. 4.3 from section 4.1.1.
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5.1.4 Perceptual loss component

The perceptual loss calculation is added to the system in hope for a better generalization

of the enhancement filter. It consists of feature extractor F and the perceptual loss calcu-

lator as seen in Fig. 5.1. The feature extractor is based on VGG-16 [29], which is a CNN

for object detection and classification. The actual VGG-16 model used is pretrained on

ImageNet dataset [58]. The perceptual loss of the system is defined as:

Lper = MSE(F2(x̂),F2(xgt)) +MSE(F4(x̂),F4(xgt)), (5.1)

where MSE denotes mean squared error operator. F2(x̂) and F4(x̂) denote the feature

tensors extracted from the filtered image x̂ after the second and fourth max-pooling layer

of the VGG as visualized in Fig. 5.4. F2(xgt) and F4(xgt) denote the same for the original

image xgt.

Figure 5.4. Feature extraction and perceptual loss calculation [6], [38]. Sigma denotes
summation.
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5.1.5 Enhancement filter types

Now that the needed sub-losses have been defined, the total loss can be stated as:

Ltotal = wmse · Lmse + wtask · Ltask + wper · Lper, (5.2)

where Lmse denotes the mean squared error between the filtered image x̂ and the orig-

inal image xgt. Ltask denotes the task loss defined in Eq. (4.3) and Lper denotes the

perceptual loss defined in (5.1). wmse, wtask and wper are the analogous weights of the

losses, which stabilize the effect of each loss.

By changing each of the weights in Eq. 5.2, three different filter types are constructed.

Therefore, the structures of these filters are similar, but only the training strategy is

changed. First, by setting (wmse, wtask, wper) to (1, 0, 0), respectively, a filter called

Baseline Fidelity Enhancement (BFE) is introduced. Thus, only MSE-loss is used to train

the post-processing filter, which means that in the training stage described with green

squares in Fig. 5.1, only the middle section is used. The word Baseline in BFE comes

from the fact that the BFE filter works as a training starting point for the other filters, which

will be introduced next.

The second filter is called Task-Specific Enhancement (TSE) filter. As mentioned, the

starting point of this filter type is always the pretrained BFE. This is simply due to the fact

that it gives the best performance according to multiple empirical tests. The TSE filter is

constructed by setting the weights (wmse, wtask, wper) in 5.2 to (1, 0.01, 0), respectively.

This includes the Mask R-CNN training loss described in Eq. 4.3 as a task loss into the

equation.

The third filter is introduced to make the system more task agnostic and still perform on

a high level. This filter is called Task-Agnostic Enhancement (TAE), which is composed

by setting the (wmse, wtask, wper) in 5.2 to (1, 0, 0.01), respectively. Now in addition to

the MSE-loss, a perceptual loss is used instead of the task loss. The pretrained BFE is a

starting point for also to this filter. To make the filter training setups more clear, in Fig. 5.5

all the three setups have been visualized similarly as the whole system was visualized in

Fig. 5.1.

As can be seen, these weighting setups simplify the training stage described with green

components quite a lot. One another type of a filter could naturally be a one, where all of

the loss components are included. However, initial tests showed that the Ltask and Lper

seem to work better when used separately, thus this aspect is not further considered in

this thesis.
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(c) Task-Agnostic Enhancement (TAE)

Figure 5.5. Training pipelines of the three enhancement filters

5.2 Luma partition maps on filter inputs

Luma partition maps can be said to contain information about the more detailed areas

of the image. They are in fact the luma components of the partition maps described in
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section 2.2.1. As can be seen in Fig. 5.6 the more detailed areas or blocks are encoded

with values closer to 0 (darker in the image) and less detailed blocks as values closer to

1 (whiter in the image). A method is suggested, where these luma partition maps are

concatenated to the filter input as an extra channel such that the RGB images shape of

(3 x Height x Width) become (4 x Height x Width). This extra data could possibly help the

filters to learn the most important details better, resulting in a boost on a task performance.

Note that this method can be used with any filter type and can be considered as an extra

complementary tool.

(a) VVC encoded image at QP 42 (b) VVC luma partition map at QP 42

Figure 5.6. Example of a luma partiton map from VVC encoded image (QP 42)

5.3 Test setup

All the enhancement filters were trained with the same dataset, which is a subset of

the Open Images dataset [59]. This subset was constructed such that 30, 000 images

were randomly chosen from the training set of the Open Images dataset, which all had to

contain a minimum of 1 instance of the following 5 classes: bird, cat, dog, person and car.

This 5-class training dataset is denoted as Xt. Each filter was trained with these images

from Xt, which were first VVC encoded with 7 different QPs, {22, 27, 32, 37, 42, 47, 52}

as mentioned in 5.1.1, resulting in a total of 7 different models for each of the three

filters. All the models of the BFE filter were trained for 150 epochs until they converged,

meaning that the performance wasn’t getting noticeably any better. TSE and TAE filter

models used the best performing BFE filter of each QP as their starting point and were

both trained for 70 epochs. All the models were trained on Nvidia DGX1 system on a

Tesla V100-SXM2 16GB GPU. The trainings for BFE, TSE and TAE took roughly 45min,

3h5min and 1h20min per epoch, respectively. Thus, there is a quite big difference on

training times of these filters favoring the TAE and BFE over TSE.

For the evaluation, two different datasets were chosen. The first dataset was evaluated on

both instance segmentation and object detection tasks and is denoted as X1. It consists

of 2, 352 randomly selected images from validation set of the Open Images and has the
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same classes as in Xt.

The second evaluation dataset is a validation set of the COCO dataset which contains

5, 000 images from 80 different classes [60] and is denoted as X2. The evaluation is

considered in two ways; 80 classes involved and just the 5 classes that correspond to the

Xt. This is to see how the filters trained with 5 classes generalize to the 80 class case.

All the evaluation datasets are encoded and decoded similarly as the training set by VVC

according to what was mentioned in section 5.1.1.

The evaluation procedure for different datasets also differs from each other. This is to

further emphasize the validation diversity and to better asses the generalization. The

X1 validation dataset is evaluated on both object detection and instance segmentation

tasks. The validation models are similar to the task network used in training the TSE,

more precisely Mask_rcnn_X_101_32x8d_FPN_3x for the instance segmentation task

and Faster_rcnn_X_101_32x8d_FPN_3x for the object detection task. Both of the models

are provided by Detectron2 [61], which is a Python framework for computer vision from

Facebook AI. Evaluation metrics used were the mean Average Precision (mAP@0.5)

according to [62] for task performance and Bits Per Pixels (BPP) as the metric for "bitrate".

Those different bitrates are obtained by encoding the datasets with different QPs using the

VTM-8.2 as stated in 5.1.1. The COCO evaluation dataset X2 on the other hand, is only

evaluated on the object detection task. This is mostly because the used evaluation task

network supports only detection. The task network used for the evaluation is YOLOv5s,

which is the smallest version of the 4 available YOLOv5 models. Structure of YOLOv5

was explained in section 4.1.2. Again, it is a good network of choice for evaluating the

generalization of the trained filters, as it has a completely different structure and is a lot

smaller than the R-CNN networks used on validating the performance on X1. For the task

performance on X2, the evaluation metric used was mAP@[0.5 : 0.05 : 0.95].

The performance of all the enhancement filters described in 5.1.5 were compared to

the results which were only encoded and decoded with VVC. The metric chosen for this

comparison was Bjøntegaard Delta Rate (BD-Rate) metric [48], explained in section 4.2.

BD-rates with PSNRs were also extracted from the filtered results to see if the filters

improve the visual quality of the images.

When constructing the setup, empirical tests showed that for every filter type, losses don’t

necessarily follow exactly the validation task accuracies, although they are a very good

indicator what the accuracies are going to be. This caused learning rate schedulers to

have only a little effect on the performance. Thus, considering the computational cost of

the training and available computing resources, the learning rate of the system was fixed

to 1e−4, which seemed to produce the best results. The optimizer used with this learning

rate for every filter was Adam, explained in chapter 3.

The whole system, besides the VVC encoding/decoding, was implemented with Python3
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[63] programming language with the help of PyTorch [64] framework. Generally in the field

of machine learning, Python combined with the PyTorch framework is a very common

combination, especially when conducting some research prototyping.

5.4 Test results

5.4.1 Performance against VVC

For clarification, luma partition map method described in 5.2 was not utilized in any of the

results described on this subsection. Table 5.1 shows the BD-rate gains in context of mAP

and BPP for the trained filters on different evaluation datasets and networks over plain

VVC. The table shows that every filter improve the performance significantly. However,

lets consider the BFE filter first.

Table 5.1. Comparison of average BD-Rates (%) of the different filters over VVC-only
decoded images [6]

Task network
BD-Rate (with mAP)

BFE TSE TAE

Instance Segmentation on X1 (Mask R-CNN) –30.72% –45.79% –40.30%

Object Detection on X1 (Faster R-CNN) –13.91% –49.39% –40.57%

Object Detection on X2 with 5 classes (YOLOv5s) –7.43% –13.51% –30.02%

Object Detection on X2 with 80 classes (YOLOv5s) –6.65% –5.14% –24.85%

As expected, the BFE filter improves the performance on every test and has quite similar

performance despite if there are 5 or 80 classes, since it doesn’t use the task network

information on its training stage. Interestingly, the gains on the COCO evaluation dataset

X2 are not as good as the results on X1. One reason for this might be the size differences

of the two datasets; X1 had maximum dimension size of 1024 pixels, which is the same

size as the training images, while in X2 the max dimension size was 640 pixels.

TSE filter on the other hand improved the detection and segmentation task the most for

the X1, 45.79% and 49.39%, respectively. It seems that the detection task is actually

better for the TSE, even though the training was done with instance segmentation task.

The reason for the fact that the detection task performance also increases along with

the segmentation is partly explained by the fact that the object detection is a sub-task

of the instance segmentation when deriving the segmentation task loss, see Eq. (4.3).

However, there is a huge drop on the performance, when the evaluation dataset and

network are changed. This emphasizes the fact, that the TSE has to have an access to

the task network it is going to be used on, otherwise the results are not so impressive.

Similarly, there is a largest difference between considering results with 80 or 5 classes for

this method.
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(a) Instance segmentation task with Mask R-CNN on X1

(b) Object detection task with Faster R-CNN on X1

(c) Object detection task with YOLOv5s on X2 - 80 classes

Figure 5.7. Rate-performance curves of different methods [6]
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The TAE filter seems to the best generalizing filter of the three according to the perfor-

mance. It achieves a very solid, roughly 40% BD-rate gain on both instance segmentation

and object detection tasks over plain VVC on X1. Even better, it achieves a 30.02% BD-

rate gain on X2 with 5 classes and 24.85% with 80 classes. The fact that this filter is able

to achieve such a gain on a task network it has never seen before and is trained using

only images from 5 classes is impressive. In this regard, all the filters would most likely

have even better performance on 80 classes, if those classes would be used to train the

filters. This is true even for the BFE and TAE, since there would be more variety on the

actual image data if images containing different classes would be introduced.

The Fig. 5.7 represents the rate-performance curves i.e. BPP–mAP of all the three filters

in addition to the plain VCC and uncompressed results. From the Figure, it can be seen

that the filters provide much more gain in the lower BPP area, especially for the R-CNN

networks on X1. For the YOLOv5 on X2, this is not so drastic, but still noticeable. It seems

that with higher BPP, the performance of the VVC encoded images are already near the

uncompressed ones, thus the enhancement filters are not able to introduce much gain on

the higher BPP end. Since the task performance on the high QPs is already very high,

the enhancement on this high BPP end is considered as good to have and not necessary

as important as on the low BPP end.

For every filter, the filtering speed on X1 validation set (max dimension of 1024 pixels)

is approx. 13 ms/image, which is roughly 77 frame-per-second. Since the enhancement

filters operate completely on the decoder side, this implies that all the enhancement filters

would also be eligible for real-time applications. Moreover, this shows that the speed of all

the enhancement filters are already on the level that they could be tested on video tasks.

5.4.2 Impact of luma partition maps

Fig. 5.8 illustrates the losses during training and validation on X1 for TAE filter, trained

with and without luma partition maps. As seen, the losses are generally quite similar. The

reason for the fact that only losses are shown for the luma partition map method for one

QP is that the resulting mAP gains were not so impressive. Moreover, it gave small gains

only on QPs 47 and 52. With lower QPs the results would actually get worse. This is

probably due to the fact that with QPs 47 and 52 the images are so bad quality that this

type of extra information can help the filters learn the details better. For the better quality

images, the filter cannot really understand what to do with the extra data. Multiple tests

were made to fine-tune this method by tweaking the hyperparameters such as the loss

weighting in Eq. 5.2. It was also noted that it is important performance-wise to initialize

the network weights for the luma partition map data channel close to 0, especially if a

pretrained model is used as the starting point of the training. But, since the results were

not getting significantly better, and the extra data added more complexity to the filter,
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this method was put on hold. Further investigations would be needed to find a way to

represent the luma partition maps, or some other extra data to the filter in a way that

there would be significant benefits.

(a) TAE losses at QP 47 without luma partition maps

(b) TAE losses at QP 47 with luma partition maps included

Figure 5.8. Example of TAE losses at QP 47 with and without luma partition maps

5.4.3 Visual impact

The table 5.2 shows the BD-rate percentage with PSNR along with the PSNR gain in

dB for all the three enhancement filters. As both metrics suggest, there is quite a big

improvement on the reconstructed image quality for all the filters. Most of the gain in the

table metrics comes probably from the correction of the distortion caused by two color
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conversions stages from RGB to YUV and vice versa, mentioned in section 5.1.1. This

requires further study of the color conversion stages to be sure of the root cause.

Table 5.2. Average BD-Rate (%) and PSNR [dB] gains of the three enhancement filters
over the plain VVC in RGB color space for X1 [6]

Filter BD-Rate (with PSNR) PSNR gain [dB]

BFE –84.48% +5.55

TSE –78.65% +4.26

TAE –81.52% +5.35

Fig. 5.9 illustrates examples from the QP 52 for the plain VVC and all the filters followed

by corresponding difference image of the filtered and unfiltered image. QP 52 is the best

QP to show visual impact, since the visual effect of filtering tends to be higher with higher

QPs. Plain VVC encoded images also have a blocky structure, which is visually present

on high QPs.

(a) VVC (b) VVC + BFE (c) log difference

(d) VVC (e) VVC + TSE (f) log difference

(g) VVC (h) VVC + TAE (i) log difference

Figure 5.9. Example of each filter and their difference images compared to plain VVC at
QP 52 on X1

The BFE has efficiently smoothed the blockiness caused by the VVC, and the highest
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difference area is the face and ears of the dog. TSE filter, on the other hand, has applied

the filtering even more to the area of interest (head of the dog), as seen in the residual

image and it hasn’t reduced the blockiness as much as the BFE. Finally, the TAE filter has

produced image quite similar to the BFE. Also, if looked closely, it can be seen that there

is this dim grid-like pattern over the TAE-filtered image. Visually the filtered images seem

to follow the same relation as the PSNR gains in Table 5.2.

5.4.4 Performance improvement visualization

The performance improvement on the instance segmentation and object detection is fur-

ther illustrated by a visualization in Fig. 5.10, where examples from two different images

drawn from X1 are shown. The top images are from QP 42 and the bottom ones from

QP 47. From left to right, the images along with the predictions visualized on top of them

are from: original image, plain VVC encoded, BFE-filtered, TAE-filtered and TSE-filtered,

respectively.

First, considering the images from QP 42, there are two ground truth annotations on the

example image. The first one is a bird that can be seen in the middle of the image and the

second one is a bird on the top left corner of the image. There is also a zoom-in image

included from the other bird. Now, considering the original uncompressed image, both of

the birds are found from the image, along with a couple of false positive bird predictions

close to the top left bird. For the VVC compressed image, the validation model cannot find

anything from the top left corner, but rather finds false detections from the top right corner.

It finds the bigger bird, but also detects its shadow, which is considered as a false positive

detection. BFE filtering can be seen to fix the top right corner false positives from the

VVC encoded image, but the bird on the top left corner still cannot be found. The bigger

bird is found along with its shadow. Next, from the TAE filtered image, it can be seen

that both of the birds are found without any false positives. In fact, in this example, the

TAE filtered QP 42 VVC encoded image performs better in object detection and instance

segmentation tasks than the original uncompressed one. Finally, the TSE filter can be

seen to produce similar predictions than the original image containing the false positive

predictions next to the other bird.

Next, considering the images on bottom rows from QP 42. These images have a ground

truth annotations on two dogs, which can clearly be seen on the center of the images.

This time all of the methods result in the model finding both of the dogs, but from plain

VVC image the model also finds a person and a bird from the same spot where the other

dog is. All of the enhancement filters remove these false positive predictions and provide

significantly better segmentation masks than the plain VVC.
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Original VVC VVC + BFE VVC + TAE VVC + TSE

Figure 5.10. Examples of machine task performance improvements on object detection
and instance segmentation at QP 42 (top images) and QP 47 (bottom images) [6]
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6. CONCLUSION AND FURTHER WORK

One goal of this thesis was to introduce the basics of image compression for machines

to the reader, along with the complementary topics surrounding the subject, in order to

understand the implemented system better. This was addressed by the theory part, which

include the chapters 2, 3 and 4. Second, and more importantly, it was wanted to know

how well a hybrid system utilizing deep learning based post-processing filters will enhance

the machine task performance of images reconstructed by the state-of-the-art traditional

codec VVC. This was addressed in chapter 5 by proposing a hybrid system, which was

used to train three different types of enhancement filters: Baseline Fidelity Enhancement

(BFE), Task Specific Enhancement (TSE) and Task Agnostic enhancement (TAE). Here

are listed the most important insights gained from the filters:

Task performance and generalization – All of the introduced filters outperformed the

baseline (plain VVC) significantly. On the subset of the Open Images validation dataset

referred asX1, the TSE filter achieved a 45.79% and 49.39% average BD-rate (mAP) gain

over plain VVC on instance segmentation and object detection tasks, respectively. How-

ever, the TSE needs to be trained with a similar network as the validation task network

is, in order to produce high gains over plain VVC. When TSE was evaluated with a com-

pletely different type of task network on a different validation set denoted as X2, it wasn’t

able to generalize anymore and achieved only 5.14% BD-rate (mAP) gain over VVC on

object detection task with 80 classes. The BD-rate gains for the TAE filter were also over

40% for both segmentation and detection tasks on X1. Moreover, the TAE filter was able

to generalize very well on the different validation dataset X2, achieving an average BD-

rate (mAP) gain of 24.85% on object detection task with 80 classes. The reason for this is

that the TAE doesn’t use any task network in the training stage, making it task-agnostic.

While on average the BFE filter on itself achieves the lowest BD-rate gains of the three,

the BFE is crucial for the other filters to achieve the high performance, as it works as their

training starting point. To sum it up, it is important to train a post-processing filter without

using the target task network on the training phase, if the resulting filter is desired be

task agnostic, such as the proposed TAE. On the other hand, if it is known that the target

task network will always be the same, the information of this network can be used on the

training phase. This results in a high performing but task specific filter, such as the TSE.

Filtering speed – Trained filters have only 782, 663 parameters resulting into filtering
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speed of 77 frame-per-second on Nvidia Tesla V100 GPU for images that have maximum

dimension of 1024 pixels. Since the filtering happens completely on the decoder side,

this indicates that all the filters would be eligible for real-time applications.

Visual impact – All the filters achieve a significant PSNR gain [dB] over the plain VVC.

More precisely, +5.55, +4.26 and +5.35 for BFE, TSE and TAE, respectively. However,

most of these PSNR gains probably come from the correction of the distortions caused

by the color conversion stages in the VVC pipeline. Thus, this aspect needs a further in-

vestigation to determine the root cause. Although, there certainly is also some subjective

gain on the visual quality, meaning that the filtered images are suitable also for human

consumption.

Overall, as seen from the experimental results, the proposed post-processing filters seem

like an excellent solution for ICM and will definitely be a worthwhile topic for future studies.

The most obvious aspect to improve, common to all NN based systems, would be to fine-

tune all the hyperparameters and train the filters even further, in order to increase the

performance. However, an important thing to note is that the training of a single QP

took about a week on Nvidia Tesla V100 GPU. Due to this, the hyperparameter tuning

with a similar dataset as used in this thesis will be computationally quite costly. In this

regard, it was also stated that a LR scheduler would most likely result in a slightly better

performance than the fixed LR of 1e−4. Although, according to empirical tests, the reason

to not use LR scheduler was that the extra epochs needed to train the filters yielded only

a small performance improvement.

Finally, the most important aspect is that even though the filters were used for image data,

they could easily be adapted to video data. When considering post filtering, VVC encoded

video data is different than image data in a sense that it consists of frames which have

some base QP and each frame is encoded with a QP that differs from this base value

by some integer ∆. Thus, some modifications would be most likely needed in order to

achieve similar results as with image data, but in the simplest solution the filters could be

exactly the same as with the image case. There are lots of possibilities on how to further

develop the system on this regard and it is definitely the next subject of research for the

author of this thesis.
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