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ABSTRACT  
Predicting the stress increase of an unbonded tendon in a post-tensioned continuous concrete beam 
at ultimate capacity is more difficult than when bonded tendons are used. The failure mechanisms 
of the continuous beam are also different to that of the simple-span beam. The loading type, 
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ductility of the support area and moment redistribution influence the behaviour of the continuous 
structures. In this research, the simplified nonlinear analysis was used for predicting the unbonded 
tendon stress increase at ultimate capacity in continuous two-span beams. The model is based on 
the moment-curvature relationships of the reinforced concrete cross-sections under different 
compressive forces and deformations of the continuous beam under loading. The results have been 
compared with the experimental results of recent studies found in the literature. In addition, 92 
unbonded post-tensioned two-span beams with different reinforcements have been examined by 
using the model and compared to the results obtained from empirical equations from the literature. 
The results from the nonlinear analysis correspond well to the results from the other models up to 
the reinforcement ratio of 0.35. The calculated values of the maximum moment capacity at the 
centre support were close to the results from the test beams. 
 
Key words: Unbonded tendons, mono-strands, post-tensioned beams, stress increase. 
 
 
1. INTRODUCTION  
 
Internal unbonded tendons in post-tensioned structures are, nowadays, commonly used in cast in-
situ concrete building structures, such as multi-storey car park buildings and yard decks. Recently, 
the use of this technology has also expanded to other types of buildings, for example, commercial 
buildings. In unbonded post-tensioned concrete structures, the unbonded mono-strands are 
greased and covered by plastic sheathing to avoid corrosion and provide minimum friction 
between mono-strands and concrete. Such structures form an efficient and economical load-
carrying system which allows the reduction of cross-section dimensions, for instance, the slab 
thickness. The post-tensioning of the concrete structure also reduces cracks and deflection of the 
structures. Unbonded mono-strands are lightweight, low-cost and easy to install, and no grouting 
is needed. The design of the post-tensioned structure is often based on permitted stresses at service 
loads. The structures must also meet the requirements of the ultimate state. 
 
The methods of reasonably predicting the stress increase in post-tensioned unbonded tendons at 
the ultimate limit state have provided a design challenge for structural engineers and researchers 
over several decades. Many researchers have proposed numerous models and design equations 
for evaluating the strand stress increment Δσp,ULS at the ultimate limit state and the nominal 
flexural capacity of unbonded post-tensioned members [2,4,7-10,12,14,22-23]. Some of these 
empirical equations have been included in the design codes and specifications, which are 
continuously updated to match research results. Most of the proposed methods are empirical and 
based on test data, usually from tests with simple-span beams. Recently, more studies have been 
conducted to investigate the behaviour of the unbonded post-tensioned continuous members. 
Theoretical analysis, finite element modelling and laboratory testing of such beams, conducted in 
Europe, North and South America and Asia, have revealed that the equations which rely on simple 
beam test data may yield nonconservative results when used in continuous members [1]. New 
knowledge on the behaviour of unbonded continuous post-tensioned members has shown that the 
failure mechanisms of the simple-span system and the continuous system are essentially different. 
For example, ductility of the support area, loading type and moment redistribution influence the 
behaviour of the continuous structures.  
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2. RESEARCH OBJECTIVE  
 
The main objective of this research was to determine the maximum moment capacity of the 
continuous concrete beam post-tensioned with unbonded tendons and the stress increment of the 
mono-strands at the ultimate limit state by using simplified nonlinear analysis. Experimental 
results and models found in the literature were introduced as background work studies. The model 
utilises the finite element method, the moment-curvature relationships of the reinforced concrete 
cross-sections and deformations of the continuous structure under loading. The model is compared 
with the experimental test results of various studies found in the literature, as well as the results 
obtained by using the formulas of design standards and the models presented by a few researchers. 
In addition, a parametric study was carried out to investigate the effect of different amounts of 
non-prestressed reinforcement in the tension and compression fibres on the stress increase of the 
unbonded tendon at the ultimate limit state in continuous two-span beams. 
 
This study is part of a larger research project aimed at examining the function of the support area 
of the post-tensioned continuous concrete structures, the formation of the plastic hinges, the 
moment redistribution and the ductility of structures. In this first step, the reliability of the model 
is clarified. Later, test beams will be manufactured and tested at the laboratory of Tampere 
University. 
 
 
3. LITERATURE REVIEW 
 
In 1971, the empirical expression for the stress increment of the unbonded tendon at ultimate 
capacity was proposed by Mattock et al. [2]. The expression is based on experimental tests of 
seven simply supported beams, three continuous two-span T-beams and other previous 
experimental results, and it was adapted to the ACI code. The primary variables in their tests were 
the presence and absence of the bond between the tendon and the adjacent concrete and the amount 
of bonded non-prestressed reinforcement, ordinary rebars or seven wire strands. The behaviour of 
the test beams demonstrated that the provision of the additional bonded non-prestressed 
reinforcement will ensure that an unbonded post-tensioned beam will behave as a flexural member 
and not like a tied-arch model [2].  
 
Cooke et al. conducted tests of nine unbonded and three bonded simply supported one-way 
prestressed concrete slabs without additional non-prestressed reinforcement in 1981 [3]. The 
experimental test showed that the unbonded prestressed concrete slabs, where the ratio of the 
effective prestressing force to the compressive capacity of the cross section is very low (less than 
0.11), developed one or two cracks and a small concrete compression zone. Bonded non-
prestressed reinforcement in the slab will prevent the formation of a single crack and, thus, 
increases ductility on the member. Based on their findings, Cooke et al. proposed that the stress 
increase in an unbonded tendon should not be more than 100 MPa at ultimate flexural capacity 
[3]. Du and Tao also studied the effects of varying amounts of non-prestressed reinforcement on 
the ultimate stress in unbonded tendons and on the ultimate strength of the beams. They tested a 
total of 26 unbonded and bonded prestressed simple-span concrete beams. The results indicated 
that the stress in unbonded tendons at ultimate capacity can be substantially enhanced by adding 
an adequate amount of non-prestressed reinforcement for distributing cracks [4]. 
 
In 1978, Burns, Charney and Vines conducted tests of two half-scale slabs post-tensioned with 
unbonded tendons and containing different amounts of bonded reinforcement. Both continuous 
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one-way slabs had three equal spans with a span/depth ratio of 44 [5]. The other parameters 
examined were the loading pattern and the degree of prestressing. The observations were that the 
relationship between tendon stress increase and deflection was almost linear and only a minor 
amount of bonded reinforcement (0.12 per cent of gross area) in test slab A produced a satisfactory 
distribution of cracking. In both test slabs, the positive moment hinge formed at or near the end 
of the tension reinforcement bar in the exterior spans. A slightly premature failure was observed 
as the result of insufficient anchoring lengths of bonded non-prestressed reinforcement bars [5]. 
 
Harajli et al. developed an analytical model to explain the mechanism of the member span-depth 
ratio (L/dp) and its effect on stress increase in unbonded prestressing steel at ultimate capacity [6]. 
Recently, Harajli has introduced a design expression for unbonded tendon stress σp,ULS at ultimate 
capacity in continuous post-tensioned flexural members based on the plastic analysis and the 
concept of a collapse mechanism. The expression takes several important parameters into account, 
such as the continuity of the member, the type of load application, the number of plastic hinges 
developed in the process of forming a collapse mechanism, the span-depth ratio and the area of 
bonded non-prestressed reinforcement [7, 8, 9]. 
 
Naaman and Alkhairi (1991) included a bond reduction coefficient Ωu in their design equation for 
computing the stress in unbonded tendons at ultimate capacity [10]. The idea of their method was 
to convert unbonded post-tensioned beams to the equivalent cases with bonded tendons. The 
coefficient was influenced by parameters, such as the loading type and span-to-depth ratio of the 
beam. 
 
Weller presented results from tests of eight single-span and four continuous two-span beams 
prestressed with unbonded tendons in 1988 [11]. Two of those continuous beams had a rectangular 
cross-section and another two were T-shaped. As essential results of these tests, it was stated that 
the decisive variables for the stress increase of the tendon were the strength of the concrete 
compression zone and the related prestressing force. The adequate amount of reinforcing steel 
distributed the formation of cracks and ensured the ductile load-bearing behaviour, even when the 
load is concentrated, as it was in the support area [11].  
 
In 1987, Kordina and Hegger presented a model for the determination of the ultimate strength of 
flexural members post-tensioned with unbonded tendons [12]. It was based on a systematic 
evaluation of tests and enables the stress increase of unbonded tendons in the ultimate limit state 
to be calculated in a simple manner. In the model, the deformations of the member have been 
assumed to concentrate in the hinge zones, while the other parts remain substantially undeformed. 
The model takes several parameters into account, like the tendon length, the percentage of 
prestressing steel, the strength of the concrete, the distribution of the load and the shape of the 
cross-section. [12] The method is presented in more detail in Chapter 5 and has been used in this 
study for comparative analyses. 
 
In 2010 Zhou and Zheng conducted tests of 16 continuous two-span beams prestressed with 
internally post-tensioned unbonded tendons loaded under concentrated static load up to failure 
[13]. Based on the tests, formulas for the equivalent length of the plastic hinge region and the 
degree of moment redistribution in a critical section over the inner support were proposed. The 
test results showed that the rotation capacity of plastic hinges contributed to most of the ultimate 
stress increases in unbonded tendons [14]. The factors, such as reinforcement indexes and span-
depth ratios, affected the rotation capacity of plastic hinges and also influenced the ultimate stress 
of the unbonded tendon. Later, Zhou and Zheng developed a model to predict the stress increase 
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in unbonded tendons of continuous post-tensioned concrete beams at service load and at the 
ultimate state. The method was calibrated with the experimental data of their previous tests [14].  
 
In 2016, Maguire et al. tested four two-span slab specimens post-tensioned with unbonded tendons 
and compared the results with existing design models [15]. The tendon stress increase predicted 
from different design equations, compared to the measured values from tested slabs, was found to 
be conservative. The researcher also discovered that end force increases are greater nearer the 
loaded span. This indicates that friction and the distribution of external loads affect the stress 
increases in an unbonded tendon.  
 
Allouche et al. developed a nonlinear numerical model to predict the tendon stress increment in 
the continuous, unbonded and partially prestressed concrete members having a rectangular cross-
section [16]. Their parametric study showed that the number of plastic hinges that can be 
developed under a given loading pattern and the type of loading (uniform or concentrated) have 
significant influence on the tendon stress increase at ultimate capacity. The research group also 
investigated the effect of lateral confinement on the tendon stress increment by assuming three 
different degrees of confinement of the concrete compression zone in their model. According to 
the model, the higher the amount of confinement, the greater the increase in the tendon.  
 
The numerical simulation of unbonded structures tends to be more complex than the bonded case. 
Kim and Lee proposed in 2012 a flexural behaviour model for a continuous unbonded post-
tensioned member, including the assumption of an idealised curvature distribution in the 
maximum moment region from their previous studies. Their expression utilises the bending 
moment distribution and flexural stiffness ratio along the continuous member to reflect the effect 
of the loading type and moment redistribution [17]. Vu, Castel and François proposed a nonlinear 
finite element model for calculating the structural behaviour of post-tensioned prestressed beams 
with unbonded tendons [18]. Both serviceability and ultimate state were included in their analysis 
model. The analyses were based on a macro finite element (M.F.E) model, which is characterised 
mainly by its homogeneous average inertia. The analysis takes into account the concrete tension 
stiffening effect, the propagation of flexural cracks and the lengthening of the unbonded 
prestressing tendons due to the load applied [18]. 
 
 
4. DESCRIPTION OF MODEL  
 
The linear elastic analysis may be used to determine the nominal moment resistance, assuming 
that the concrete cross-sections are uncracked. The cracking and nonlinear behaviour of the 
concrete structure has a significant effect on its bending stiffness and, thus, also on the 
deformations of the member being bent. In a bonded post-tensioned concrete beam or slab, 
tendons and reinforcing bars are assumed to have a perfect bond with the concrete after 
prestressing. The flexural strength, stresses and strains can be defined by using the principles of 
strain compatibility. Then the change in strain in the tendon at the section of maximum moment 
is equal to the change in strain in the adjacent concrete. In an unbonded post-tensioned member, 
there is no bond between the tendon and the surrounding concrete and there is a slip between the 
tendon and the adjacent concrete. The principles of strain compatibility are no longer fulfilled, but 
the equal elongation of the prestressing steel and surrounding concrete fibre between two anchor 
points still exists. The deformations of the member have a substantial effect on the elongation and 
stress increase of the unbonded tendons and therefore also a significant effect on the maximum 
flexural capacity. 
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4.1  The moment-curvature relationship 
 
A refined calculation of the load-bearing behaviour of concrete beams post-tensioned with 
unbonded tendons requires consideration of non-linear material behaviour of the reinforced 
concrete and prestressing steel. Using the material properties of concrete and reinforcing steel, 
and the assumption of the Bernoulli hypothesis where plane sections remain plane after bending, 
the moment-curvature relationship for a reinforced concrete cross-section under different axial 
forces can be calculated. In other words, the dependence of the bending stiffness of the cross-
section from the axial force is determined. The axial (tendon) force Np is formed later in the FE-
analysis by bar elements.  
 
A representative moment-curvature line with characteristic points and areas is shown in Figure 1. 
Three different states can be distinguished from the curve, depending on the degree of loading. 
[19] At the first state, the concrete cross-section remains uncracked on the tension fibre. At the 
second state, the concrete member is cracked, and the tensile forces must be taken by the 
reinforcing steel. At the third state, the curvature increases to the maximum value without the 
internal moment being significantly increased. 
 

 
Figure 1 – A representative moment-curvature M-ϕ -line. 
 
In the determination of the moment-curvature relationship of a reinforced concrete cross-section 
for the finite element analysis, the compressive force is assumed to act on the centre of gravity of 
the cross-section. The cross-section is assumed to be totally cracked in the tension fibre because 
the finite element analysis focuses on the third state of the moment-curvature curve and 
determines the maximum flexural strength of the unbonded post-tensioned concrete beam at the 
ultimate limit state. It is well known that tension stiffening has an effect which is different before 
and after the yielding of reinforcement. But, for the sake of simplicity, the effect of concrete 
tension stiffening between cracks has been neglected in this model, which could be easier used in 
practice. The moment-curvature curves with different longitudinal compression force, can be 
determined from the equilibrium conditions of the internal forces of the cross-section when the 
strains at the top and bottom fibres are known. 
 
The moment-curvature relationship takes several factors into account that affect ductility of a 
reinforced concrete structure, e.g. material parameters, position and amount of tension and 
compression reinforcement and dimensions of the concrete cross-section. In the parametric study, 
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the concrete compression strength and the dimensions of the cross-sections have been kept 
constant, and the variables used were the amount of tension and compression reinforcement and 
the magnitude of the axial force. The value for the ultimate compression strain is adopted from 
EN 1992-1-1, and the effect of confinement near the centre support has been ignored in the 
calculations. The moment-curvature relationships for different cross-sections are calculated 
without safety factors, so the results from the finite element analysis can be more easily compared 
with the experimental results from the literature.  
 
The strains, stresses and internal forces of a reinforced T-shaped concrete cross-section used in 
the parametric study are shown in Figure 2. The selected normal force values have been used to 
numerically calculate the moment-curvature relations for the cross-section. Those moment-
curvature relationships were calculated without any amount of unbonded prestressing steel 
because the tendon force is taken into account separately. The effective prestress force and its 
eccentricity have only been added to the FE-model to bar elements. As an example, the moment-
curvature relationships of one such cross-section with eight different longitudinal compressive 
forces have been calculated and are shown in Figure 3. 
 

 
Figure 2 –Strain, stresses and internal forces of the examined reinforced concrete cross- 

        section at state 3. 
 

 
Figure 3 – Moment-curvature lines of a T-shape reinforced cross-section with different  

        longitudinal compression force. 
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4.2 Material models 
 
Concrete 
Among the concrete material models available, the nonlinear stress-strain relation for the concrete 
under short-term uniaxial loading, according to the European standard EN 1992-1-1 has been 
chosen to be used in the derivation of the moment-curvature relationships [20]. A very similar 
relation between σc and εc for short-term uniaxial compression can be found in Model Code 2010 
[21]. The stress-strain relation for the concrete of compression strength fc = 35MPa is shown in 
figure 4. The expression is:  
 

𝜎𝜎c
𝑓𝑓cm

=
𝑘𝑘𝑘𝑘 − 𝑘𝑘2

1 + (𝑘𝑘 − 2)𝑘𝑘
                                                                                                              (1) 

 
where    

𝑘𝑘 = 𝜀𝜀c 𝜀𝜀𝑐𝑐1                                                                                                        ⁄  
 ɛc1 is the strain at peak stress, according to EN 1992-1-1 Table 3.1 
 k = 1,05 Ecm x |ɛc1|/fcm (fcm and Ecm according to Table 3.1) 
 
Expression (1) is valid for 0 < |ɛc| < |ɛcu| where ɛcu is the nominal ultimate strain. The value for 
the ultimate compression strain εcu is -3.5‰ for the concrete of compression strength less than or 
equal to 50 MPa. The strain at peak stress ɛc1 is -2,25 ‰ for concrete of compression strength 
35MPa. 

 
Figure 4 – Stress-strain relationship for the concrete used in the model. 
 
Reinforcing steel 
A bilinear material model without yield strengthening presented in EN 1992-1-1 is adopted for 
the reinforcing steel under either tension or compression [20]. The strength of the reinforcing steel 
fyk used in the derivation of moment-curvature was 500 MPa, and the value εuk for the ultimate 
elongation of the reinforcing steel was 5.0%. 
 
Prestressing steel 
The material properties of the prestressing steel used in the nonlinear finite element analysis are 
according to the European standard EN 1992-1-1 [20]. The characteristic 0.1% proof-stress of the 
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prestressing steel used in the parametric study was fp0,1k = 1640 MPa and the maximum 
characteristic tensile strength was fpk = 1860 MPa. Young’s modulus of the prestressing steel was 
195 000 MPa. The sum of the stress losses of the tendon, including the friction of the tendon, the 
shrinkage and creep of the concrete and the relaxation of the prestressing steel, has been assumed 
to be 15%. 
 
 
4.3 Nonlinear finite element analysis 
 
The nonlinear finite element analysis program LUSAS [25] was used. In the parametric study, a 
continuous two-span reinforced concrete beam was modelled by using 3D beam elements. The 
length of the beam element was the same as the height of the beam, in this case 800 mm. This was 
also selected so that deformations at the support area would have a stable output. The examined 
model formed from three different T-shape cross-sections along the structure can be seen in Figure 
5. The effective width of the flanges of each cross-section was determined according to the 
European standard EN 1992-1-1 [20]. The dimensions of the beam and cross-sections used in the 
parametric study are shown in Figure 5. The moment-curvature relationships with eight levels of 
axial force for these reinforced cross-sections were derived and entered as a user-defined material 
model in the FE-program, seen in Figure 6. The program calculates intermediate values by linear 
interpolation.  
 

 
Figure 5 – Dimensions of the beam and cross-sections [mm].  
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Figure 6 – Finite element model of the beam and tendon. 
 
One tendon geometry is used in the parametric study. This geometry is modelled as a resultant of 
a group of mono-strands, seen in Figures 7. The prestressing force along the beam was defined as 
the corresponding force in a 3D bar element with the same geometry as a part of the tendon. This 
is illustrated in Figure 6. The bar elements were modelled separately from the gravity line of the 
concrete beam conforming to the actual geometry of the tendon resultant. At that point, the tendon 
force and its eccentricity will be included in the model. This activates both primary and secondary 
moments to the structure relative to the moment-curvature relations. In the model the prestressing 
forces are handled as an internal resistance for the beam. The bar element division is such that the 
nodes are located on the same vertical line as the node in the beam. These nodes are connected by 
means of 3D-joint-elements. This joint-element connects two nodes by three springs in the local 
x-, y- and z-directions and does not have rotational stiffness. In the direction of the beam axis (x-
direction), the elastic stiffness of the spring is set high, but in the other two directions the 
movement is permitted. The tendon is only rigidly connected to the beams at both ends.  
 

 
Figure 7 – Tendon geometry. 
 
The additional strain Δεp of the tendon that arises based on the curvature of the beam and 
eccentricity of the tendon from the neutral axis of the beam. However, at the ultimate limit state, 
the position of the neutral axis varies along the beam. In the area of the maximum moment, the 
neutral axis moves closer to the compressed edge of the beam. For this reason, the eccentricity of 
the tendon also changes. In the model the eccentricity of the tendon is constant from the centre of 
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gravity line of the beam and does not change with the load. This causes some inaccuracy in the 
additional strain of the tendon and, thus, consequently in the level of the stress increase. 
 
The studied beam is one beam from the continuous cast in a situ concrete structure shown in 
Figure 5. The dead load of the beam consists of the weights of the beam itself and the slabs on 
both sides of the beam. The value of the dead load used in the finite element analysis of the 
parametric study was 58.5 kN/m. The beam is loaded with a uniform live load from both spans. 
The load was increased until failure occurred. The bending moment capacity obtained from the 
model includes the moments from external loads (dead and live loads), as well as the secondary 
moment. The secondary moment develops when loading the structure in relation to the stiffness 
of the cross-section. 
 
 
5. VERIFICATION OF THE MODELS WITH TEST BEAMS FROM 

LITERATURE      
 

5.1  Analysis with simplified model 
 
Several simplified manual calculation procedures for determining the approximation for a stress 
increase in an unbonded tendon at the ultimate limit state can be found in the literature and 
research reports. The following simple method assumes that in the maximum stressed point of a 
beam, e.g. in the middle of the single-span beam, a plastic joint occurs [22, 23]. The maximum 
deflection of the decisive span is estimated to be f ≈ l/50, which is usual for slabs [23]. The method 
also assumes that the single-span beam consists of two rigid halves after the formation of a 
concentrated crack in the centre of the span. The halves rotated around a joint in the compression 
zone. In the continuous structure, plastic hinges occur both in the spans and above the supports. 
The deformation figure for a two-span slab in the failure state has been compiled after references 
21 and 22 and utilizing to the single-span theory mentioned above. This is illustrated in the Figure 
8. From the geometry of these parts follows: 
 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑡𝑡 =
𝑓𝑓

0,5 ∙ 𝑙𝑙
   𝑜𝑜𝑜𝑜  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑡𝑡 =

0,5 ∙ 𝑤𝑤
𝑑𝑑p − 𝑥𝑥

                                                                    (2)(3) 

 
where f is the deformation, x is the height of the compression zone, dp is the effective height of 
the tendon and l is the length of the span. Combining these expression gives: 
 

𝑤𝑤 =  ∆𝑙𝑙p =
4𝑓𝑓 ∙ (𝑑𝑑p − 𝑥𝑥)

𝑙𝑙
                                                                                                                 (4) 

 
By using the estimation f ≈ l/50 and a coefficient kG , which takes the joints into account, the 
following expression is obtained [22, 23]: 
 

∆𝑙𝑙p = 0,02 ∙ 𝑘𝑘G(𝑑𝑑p − 𝑥𝑥)                                                                                                                    (5) 
 
where kG = 4 for a single span, kG = 6 for the edge span of a continuous slab and kG = 8 for the 
middle span of a continuous slab. 
 
For a symmetrical two-span slab, assuming the same limit deflections and compression zone 
heights, the result is threefold. 
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∆𝑙𝑙p = 𝑤𝑤1 + 𝑤𝑤2 + 𝑤𝑤3             𝑤𝑤ℎ𝑒𝑒𝑡𝑡        𝑤𝑤i = 0,08 ∙ (𝑑𝑑p − 𝑥𝑥)                                                    (6) 

 
The stress increase of the unbonded tendon can then be calculated from the equation: 
 

∆𝜎𝜎p,ULS =  
∆𝑙𝑙p ∙ 𝐸𝐸p
𝑙𝑙p

                                                                                                                             (7) 

 

 
Figure 8 – Deformation figure for a two-span slab in the failure state, figure compiled after 
[21,22]. 
 
Another approximation method presented by Kordina and Hegger [12] also takes into account 
the deformations of the structure. The tendon elongation is determined from the sum of concrete 
deformation in the fibre of the tendon, which is expediently determined, using the M-κ 
relationship.  
 

∆𝜀𝜀p,u =  
1
𝑙𝑙p
� 𝜀𝜀cp,u 𝑑𝑑𝑑𝑑 =

1
𝑙𝑙p
� 𝜅𝜅(𝑥𝑥) ∙ (1 −𝜉𝜉)𝑑𝑑p𝑑𝑑𝑑𝑑                                                                       (8) 

 
In Eq. (8) Δεp,u  means the increase in elongation of the prestressing steel in the ultimate limit state 
and Δεcp,u is the expansion of the concrete at the height of the tendon.  κ is the curvature of the 
cross-section and ξ is the relative height of the compression zone ξ=x/h. If the curvatures in the 
ultimate limit state are assumed to be essentially limited to the area lG , called the length of the 
plastic hinge, and the rest of the area remains in an uncracked state, the increase in elongation of 
the tendon can be calculated with the equation: 
 

∆𝜀𝜀p,u =  
1
𝑙𝑙p
�̅�𝜅(1 − 𝜉𝜉)𝑑𝑑p𝑙𝑙G  =  

1
𝑙𝑙p
𝑘𝑘c 𝑘𝑘p𝑘𝑘f𝑙𝑙G                                                                               (9) 

 
In Eq. (9) the factors are as follows:  kc is the coefficient for the concrete strength, kp is the 
coefficient for the prestressing steel, kf is the coefficient for the component geometry, lG is the 
length of the plastic hinge and lp the tendon length. 
 
Approximate values for the unknown parameters were determined by the experiment. 
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𝑘𝑘c𝑘𝑘p = (2,0 +
0,03 ∙ 𝑓𝑓ck

𝜌𝜌p
) ∙ 10−3  ≤ 9,0 ∙ 10−3                                                                         (10) 

𝑘𝑘f = 0,90 + 0,10
𝑏𝑏f
𝑏𝑏w

 ≤ 1,20                                                                                                         (11) 

 
where ρp= 100·Ap/Ac and fck is the strength of the concrete. The length of the plastic hinge is 
defined as follows.  
 

𝑙𝑙G = (0,20 + 0,25
𝑙𝑙b
𝑙𝑙0

) ∙ 𝑙𝑙0                                                                                                                (12) 

 
In Eq. (12), l0 is the distance between the moment zero points and lB the effective range of the 
load according to Figure 9. 

 
Figure 9 – The length lB from Kordina and Hegger [12]. 
 
The 5% quantile value of the stress increase in an unbonded tendon in continuous members can 
be determined from Eq. (13) [12, 23] where n stands for the number of joints.   
 

∆𝜎𝜎p,ULS = 0,65∆𝜎𝜎p,u = 0,65
𝐸𝐸p
𝑙𝑙p

 �𝑘𝑘c,i

𝑛𝑛

𝑖𝑖=1

∙ 𝑘𝑘p,i ∙ 𝑘𝑘f,i ∙ 𝑙𝑙G,i                                                         (13) 

 
The model which takes into account several parameters that are known to influence the stress 
increase of unbonded tendon at ultimate capacity was presented by Harajli [7, 8, 9]. The equation 
is based on the plastic analysis and the concept of a collapse mechanism. The first part of the 
expression takes into account continuity, slenderness and load pattern of a structure as well as a 
relative amount of prestressing steel. The latter factor includes an effect of a neutral axis depth.    
 

∆𝜎𝜎p,ULS =

⎣
⎢
⎢
⎢
⎡ 𝑡𝑡ps
𝐿𝐿a 𝑑𝑑p⁄
𝑁𝑁p𝐸𝐸p𝜀𝜀cu

+
𝜌𝜌p

0,85𝛽𝛽1𝑓𝑓cd⎦
⎥
⎥
⎥
⎤

 ∙ �1 −
𝐴𝐴p𝑓𝑓pe + 𝐴𝐴s𝑓𝑓y
0,85𝛽𝛽1𝑓𝑓cd𝑏𝑏𝑑𝑑p

�   ≤ 0,95𝑓𝑓pk                                (14) 

 
In the equation φps is a stress reduction factor and the value of the factor used in the analysis was 
0.75. Np is a parameter that combines the effect of member continuity and type of applied load. It 
can be calculated from the Eq. (15): 
 

𝑁𝑁𝑝𝑝 =  �
20,7
𝑓𝑓

+ 10,5�𝑡𝑡p+ + 10,5𝑡𝑡p−                                                                                               (15) 

 
In Eq. (15), np

+ and np
- are the minimum numbers of positive and negative plastic hinges. The 

factor f = ∞ for a single concentrated load and f = 6 for uniform load. 
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According to the Eurocode EN 1992-1-1 [20] it is generally necessary to take the deformations of 
the whole member into account when calculating the stress increase of the prestressing steel in 
the unbonded tendon. If a detailed analysis is not made, it can be assumed that the increase of the 
stress from the effective prestress to the stress in the ultimate limit state is limited to the value of 
Δσp,ULS =  100 MPa. More conservative values may be found in the National Annex.  
 
The equation for calculating the stress increase in an unbonded tendon at ultimate capacity is 
presented in the current ACI 318-11 code considering the span-to-depth ratio of the member (L/dp) 
as follows [24]:  
 

∆𝜎𝜎p,ULS = 70 +  
𝑓𝑓cd

100𝜌𝜌p
(𝑀𝑀𝑀𝑀𝑡𝑡)                         𝑤𝑤ℎ𝑒𝑒𝑡𝑡 𝐿𝐿 𝑑𝑑p⁄ ≤ 35                                           (16) 

 

∆𝜎𝜎p,ULS = 70 +  
𝑓𝑓cd

300𝜌𝜌p
(𝑀𝑀𝑀𝑀𝑡𝑡)                         𝑤𝑤ℎ𝑒𝑒𝑡𝑡 𝐿𝐿 𝑑𝑑p⁄ > 35                                           (17) 

 
 
5.2  Comparison of different models with the test results 
 
Zhou and Zheng, Maguire et al. and Weller have completed experimental tests of continuous two-
span beams [11, 13, 14, 15]. The measured values of the stress increase in unbonded tendons at 
ultimate capacity Δσp,ULS from these tests have been compared with the results from the nonlinear 
finite element analysis. Comparative analyses have also been performed by using the simplified 
design equations from Harajli, as well as Kordina and Hegger and design equations from standards 
such as Eurocode EN 1992-1-1 and ACI 318-11. The results are shown in Figure 10. These have 
been presented as a function of the relative height of the compression zone x/de, where de is the 
combined effective height of the reinforcement and tendons. The design standards Eurocode EN 
1992-1-1 and ACI 318-11, as well as the equation by Kordina and Hegger, mostly gave values 
which are on the conservative side, compared to the test results. These are useful equations for 
design purposes. The results from the nonlinear analysis were close to the results from Harajli’s 
method. Both models gave somewhat non-conservative values for the stress increase of the 
tendon. In the last part of the four diagrams, all the test results [11, 13, 14, 15] are compared to 
the values from the nonlinear analysis. About half of all points are on the unsatisfactory side and 
another half on the satisfactory side of the regression line from the design point of view. Probable 
reasons for the large scatter are the neglection of variation of the neutral axis and the lack of more 
detailed analyses of plastic rotations at the support area. 
 
The ultimate moment capacity at the support area obtained from the test beams was presented in 
the research report by Zhou and Zheng [13]. Comparative analyses have been made by using the 
design equations from standards and Harajli, Kordina and Hegger, as well as the nonlinear 
analysis. The results are shown in Figure 11. 
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Figure 10 – Comparison of the stress increase of the tendon between the test results and the 
calculated values. 
 

 
Figure 11 – The ultimate moment capacity at the support area. 
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Figure 11 shows that all of the models have a rather good correlation with the test results. The 
stress increase of the unbonded tendon at the ultimate limit state is small compared to the effective 
prestress. For this reason, the effect of the stress increase in the unbonded tendon on the ultimate 
moment capacity of the support area is not that significant. 
 
 
6. PARAMETRIC STUDY 
 
In the parametric study, the effect of different amounts of non-prestressed reinforcement on the 
stress increment of the unbonded tendon at the ultimate limit state was examined. The model and 
data of the examined two-span concrete beams are presented in Chapter 4. The study included the 
analysis of 92 different imaginary post-tensioned concrete beams (B1-B92). The reinforcement 
arrangements of the beams are collected in Table 1 located in appendix A. The amount of 
reinforcing steel bars in both tension (As) and compression (As´) fibres and the magnitude of the 
tendon force have been the variables in the analysis. The relationship between the amount of 
reinforcement in the support area and the reinforcement in the span has also been studied so that 
in some of the examined beams there was the same amount of reinforcement in the support area 
as there was in the span, and, in some other beams, the support reinforcement was double 
compared to the reinforcement in the span. Different reinforcement arrangements have been taken 
into account in the derivations of the moment-curvature relationships of the cross-sections of the 
examined beams. The results have been compared with the value calculated with the stress 
increase of 100 MPa according to the Eurocode EN 1992-1-1 [20]. Comparative analysis has also 
been performed by using the methods by Hegger and Kordina, as well as Harajli presented in 
Chapter 5. 
 
In Figure 12 the ultimate moment capacity at the support area calculated by the nonlinear analysis 
is compared to the ultimate moment capacity calculated by the other models. The results are 
presented as a function of the reinforcement ratio ω of the combined tension reinforcement, rebars 
and tendons. It can be seen from the figure that the results from the nonlinear analysis correspond 
well to the other models, at least up to the reinforcement ratio of 0.35. 
 
The stress increment of the tendon at the ultimate limit state from a nonlinear analysis compared 
with values from other models is shown in Figure 13. The symbols presented in the one chart of 
the Figure 13 refers to all the four diagrams in the same figure. The value of the stress increase is 
constant according to the Eurocode EN 1992-1-1 [20] as well as the model presented by Kordina 
and Hegger [12]. The nonlinear analysis gives slightly lower values for the stress increase of the 
tendon than the design equation by Harajli with low reinforcement ratios. With higher 
reinforcement ratios, the nonlinear analysis gives higher values than Harajli’s equation. According 
to the nonlinear analysis the stress increase of the unbonded tendon is larger when the compression 
reinforcement is used, especially at high reinforcement ratios. The nonlinear analysis takes into 
account different amounts of tension and compression reinforcement and their effects on the 
deformation of the beam. Harajli’s equation, used in the analysis, was the kind of alternative that 
doesn’t take the compression reinforcement into account in the derivation of the stress increase.  
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Figure 12 – Ultimate moment capacity at support area. 
 
 

 
Figure 13 – The stress increment of the tendon at ultimate limit state. 
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7. CONCLUSIONS  
 
A simplified nonlinear model has been used to determine the stress increase in the unbonded 
tendons at the ultimate and flexural moment capacity of the support area of the studied two-span 
concrete beams post-tensioned with unbonded tendons. The results have been compared to the 
test results of Zhou and Zheng, Maguire et al. and Weller [11, 13, 14, 15]. The comparative 
analyses have also been performed by using design equations from Eurocode standard EN 1992-
1-1 and ACI 318-11, as well as two models from the literature, the Harajli equation and the design 
method by Kordina and Hegger. The effect of different amounts of non-prestressed reinforcement 
on the stress increment of the unbonded tendon at the ultimate limit state was examined in the 
parametric study. The following conclusions may be derived from both analyses: 
 
• There is some variance in the values of the stress increase of the unbonded tendon between 

the test results and results obtained from the different models. The values of the stress increase 
calculated according to the Harajli equation corresponded best to the results from the 
presented nonlinear analysis. 

• The maximum moment capacity in the support area of the two-span beams obtained by the 
nonlinear analysis corresponded well to the test results obtained from the test beams.  

• In the parametric study, when determining the ultimate moment capacity at the support area, 
the results from the simplified nonlinear analysis correspond well to the results from the other 
models up to the reinforcement ratio of 0.35.  

• According to the nonlinear analysis in the parametric study, the stress increase of the 
unbonded tendon is larger when the compression reinforcement is used, especially at high 
reinforcement ratios. 

• The code methods in ACI 318-11 and EN 1992-1-1 mostly gave conservative values for the 
stress increase of the unbonded tendon at the ultimate limit state in studied cases.  
 

There is a need to continue the work and update the model so that the actual position of the neutral 
axis of the beam will be taken into account and parameters that account for plastic rotation at the 
support area will be included. 
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APPENDIX A 
 
Table 1 – The input data of the nonlinear analysis 

 

Name Span A
As (mm2)

Span B
As (mm2)

Support
As (mm2)

A s' 

(mm2)
A s' 

(Support)
(mm2)

Name Span A
As (mm2)

Span B
As (mm2)

Support
As (mm2)

A s' 

(mm2)
A s' 

(Support)
(mm2)

B-1 1470 1470 1470 804 804 B-47 1470 1470 1470 804 804
B-2 1608 1608 1608 804 804 B-48 1608 1608 1608 804 804
B-3 1885 1885 1885 804 804 B-49 1885 1885 1885 804 804
B-4 2513 2513 2513 804 804 B-50 2513 2513 2513 804 804
B-5 2945 2945 2945 804 804 B-51 2945 2945 2945 804 804
B-6 3141 3141 3141 804 804 B-52 3141 3141 3141 804 804
B-7 3927 3927 3927 1256 1256 B-53 3927 3927 3927 1256 1256
B-8 4908 4908 4908 1256 1256 B-54 4908 4908 4908 1256 1256
B-9 6434 6434 6434 1256 1256 B-55 6434 6434 6434 1256 1256
B-10 8042 8042 8042 1256 1256 B-56 8042 8042 8042 1256 1256
B-11 12063 12063 12063 1256 1256 B-57 12063 12063 12063 1256 1256
B-12 16085 16085 16085 1256 1256 B-58 16085 16085 16085 1256 1256
B-13 1470 1470 1470 1470 1470 B-59 1470 1470 1470 1470 1470
B-14 1608 1608 1608 1608 1608 B-60 1608 1608 1608 1608 1608
B-15 1885 1885 1885 1885 1885 B-61 1885 1885 1885 1885 1885
B-16 2513 2513 2513 2513 2513 B-62 2513 2513 2513 2513 2513
B-17 2945 2945 2945 2945 2945 B-63 2945 2945 2945 2945 2945
B-18 3141 3141 3141 3141 3141 B-64 3141 3141 3141 3141 3141
B-19 3927 3927 3927 3927 3927 B-65 3927 3927 3927 3927 3927
B-20 4908 4908 4908 4908 4908 B-66 4908 4908 4908 4908 4908
B-21 6434 6434 6434 6434 6434 B-67 6434 6434 6434 6434 6434
B-22 8042 8042 8042 8042 8042 B-68 8042 8042 8042 8042 8042
B-23 12063 12063 12063 8042 8042 B-69 12063 12063 12063 8042 8042
B-24 16085 16085 16085 8042 8042 B-70 16085 16085 16085 8042 8042
B-25 1470 1470 2945 804 804 B-71 1470 1470 2945 804 804
B-26 1608 1608 3217 804 804 B-72 1608 1608 3217 804 804
B-27 1885 1885 3770 804 804 B-73 1885 1885 3770 804 804
B-28 2513 2513 5026 804 804 B-74 2513 2513 5026 804 804
B-29 2945 2945 5890 804 804 B-75 2945 2945 5890 804 804
B-30 3141 3141 6434 804 804 B-76 3141 3141 6434 804 804
B-31 3927 3927 8042 1256 1256 B-77 3927 3927 8042 1256 1256
B-32 4908 4908 9650 1256 1256 B-78 4908 4908 9650 1256 1256
B-33 6434 6434 12868 1256 1256 B-79 6434 6434 12868 1256 1256
B-34 8042 8042 16085 1256 1256 B-80 8042 8042 16085 1256 1256
B-35 10455 10455 16085 1256 1256 B-81 10455 10455 16085 1256 1256
B-36 1470 1470 2945 1470 1470 B-82 1470 1470 2945 1470 1470
B-37 1608 1608 3217 1608 1608 B-83 1608 1608 3217 1608 1608
B-38 1885 1885 3770 1885 1885 B-84 1885 1885 3770 1885 1885
B-39 2513 2513 5026 2513 2513 B-85 2513 2513 5026 2513 2513
B-40 2945 2945 5890 2945 2945 B-86 2945 2945 5890 2945 2945
B-41 3141 3141 6434 3141 3141 B-87 3141 3141 6434 3141 3141
B-42 3927 3927 8042 3927 3927 B-88 3927 3927 8042 3927 3927
B-43 4908 4908 9650 4908 4908 B-89 4908 4908 9650 4908 4908
B-44 6434 6434 12868 6434 6434 B-90 6434 6434 12868 6434 6434
B-45 8042 8042 16085 8042 8042 B-91 8042 8042 16085 8042 8042
B-46 10455 10455 16085 8042 8042 B-92 10455 10455 16085 8042 8042

Ap = 3300 mm2, σpe = 1076 MPa Ap = 4200 mm2, σpe = 1076 MPa
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