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ABSTRACT

This thesis aims at advancing the development of forward and inverse modeling tech-
niques to solve the electromagnetic inverse problems arising in electro and magne-
toencephalography (EEG and MEG) of the human brain. A finite element method
(FEM)-based and divergence conforming H(div) forward modeling approach is ap-
plied to obtain the electric and magnetic field of the neural activity in a thin, heavily
folded and multicompartment head model. This accurate H(div) approach enables
inversion techniques to localize the primary current distribution of the brain ro-
bustly. Furthermore, this thesis introduces the Zeffiro Interface (ZI) code package
which provides a platform for integrating forward and inverse solvers for a realistic
head model. ZI uses graphics processing unit (GPU) acceleration and can, therefore,
flexibly utilize finite element (FE) models with a high 1 mm accuracy. Herein, ZI is
applied in method development and experimental studies.

In this thesis, a source localization approach is built upon conditionally Gaussian
hierarchical Bayesian modeling (HBM), the iterative alternating sequential (IAS) re-
construction technique, a variable resolution of the source space, and random sam-
pling. These different aspects are combined in the randomized multiresolution scan-
ning (RAMUS) method, which is introduced as a strategy to marginalize the effect of
discretization and optimization errors and thereby, minimize the depth-bias of the
reconstructed activity. A prior-over-measurement signal-to-noise ratio (PM-SNR) is
introduced as a way to choose hyperprior parameters for a given mesh resolution
and noise level. The proposed methods are investigated using simulated and exper-
imental somatosensory evoked potentials and fields (SEPs and SEFs). RAMUS was
found to be a promising technique to distinguish the subcortical activity of the brain,
which might occur simultaneously with cortical components. The non-invasive de-
tection of subcortical activity is a scientifically important and timely topic which
can have remarkable implications for the treatment of Alzheimer’s or Parkinson’s
disease and, in particular, for localizing refractory epilepsy.
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1 INTRODUCTION

This thesis work serves as a stepping stone towards using complex forward and in-
verse modeling processes to solve electromagnetic inverse problems associated with
fully realistic human head models and experimental measurements, while provid-
ing short computing time and appropriate usability of these techniques. The re-
search works of this dissertation, in particular, shed light on the deeper understand-
ing and contribution of mathematical numerical techniques concerning electro and
magnetoencephalography (EEG and MEG), where advanced forward and inverse
techniques need to be combined to enable the appropriate localization of the pri-
mary current distribution of the neural activity.

On the one hand, forward methods are needed to simulate the electromagnetic
field originating from strongly folded thin cortical layers or subcortical nuclei, tak-
ing into account the complex effects caused by different tissue types within the hu-
man head. On the other hand, careful modeling is needed since a misplaced current
source can lead to large deviations of the simulated field, even if the head model and
its numerical discretization would otherwise be accurate. Following this, inverse
techniques utilizing the simulated field information effectively are necessary, since
the field includes highly suppressed components, e.g., the ones corresponding to the
deep activity of the brain. Preserving these suppressed components in the solution,
while at the same time localizing the well-visible ones accurately at their originating
locations poses a challenge which is not solvable without special techniques. The
findings obtained in this thesis offer useful insights for the neuroscience community
for future studies.

1.1 Aim and scope of this thesis

This thesis aims to: (I) Advance the implementation of forward and inverse tech-
niques for electromagnetic brain imaging applications, e.g., electroencephalography

27



(EEG) and magnetoencephalography (MEG). To this end, a finite element method
(FEM) based forward modeling [35] and approach for multicompartment and com-
plex head model has been developed to simulate precisely the generators of EEG
and MEG signals, i.e., primary current density of apical dendrites of the pyrami-
dal cell within the thin layers of the brain. Correspondingly, the inverse modeling
techniques coupled with forward modeling were investigated to localize the primary
current density of neurons robustly. To approach these topics, (II) we introduced
Zeffiro Interface (ZI) [59] as an openly available platform implemented in MATLAB
(MathWorks Inc., USA). It is equipped with forward and inverse solvers to recon-
struct the neural activity in EEG and MEG from heavily folded brain tissues with
a high resolution (1 mm) realistic head model. Furthermore, the application of ZI
is not solely restricted to EEG and MEG, e.g., the interface can map the conduc-
tivity distribution for electrical impedance tomography (EIT) [123] for region of
interest (ROI), for cases such as hemorrhage in stroke [32] and incorporating an in-
verse solver. Additionally, as a future potential, the transcranial electrical stimulation
(tES) [91] solver and current pattern optimization of deep brain stimulation (DBS)
[131] can be merged to the current version of the interface. The former technique
is a non-invasive brain stimulation to modulate the neural activity and the latter one
is known as an invasive technique by implanting electrodes deep inside the brain.
ZI is utilized with graphics processing unit (GPU) to minimize the computational
and time cost and, thereby, to advance finite element mesh generation, forward and
inverse computations, source interpolation, and 3D visualization of the final recon-
struction.

The research conducted in this thesis investigates the implementation of advanced
forward and inverse modeling techniques to resolve research questions arising from
the need to place and localize the distribution of dipolar sources in a complex brain
structure. Correspondingly, the neural activity can originate from a thin and highly
folded cortical layer or deeper structures which are lying far from the sensor posi-
tions if non-invasive measurement is applied. The research carried out in this disser-
tation introduced, among other things, the divergence conforming dipolar source
modeling [79] to estimate the electric potential field or magnetic field of a neu-
ral source. Furthermore, source localization was examined through hierarchical
Bayesian modeling (HBM) [26, 65], which utilizes a hyperprior, i.e., gamma (G)
and inverse gamma (IG) to localize the active sources at different depths of the brain.
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(III) Herein, we present prior-over-measurement signal-to-noise (PM-SNR) model
to propose the appropriate values for scale parameter, θ0 in the context of the SNR
for close-to-optimal shape parameter β= 3.

To learn about the advantages of combining advanced forward and inverse tech-
niques, we analyze the simultaneous detection of the cortical and subcortical activ-
ity of the brain. In recent years, the interest of the neuroscience community has
given rise to non-invasive attempts to detect the far-field activity of subcortical do-
main for the treatment of the brain disorders such as Alzheimer’s and Parkinson’s
diseases or refractory epilepsy. Distinguishing the far-field activity poses a challenge
due to the far distance from the sensors attached to scalp. Therefore, several stud-
ies have investigated non-invasive source localization for the subcortical domain via
various techniques recently [9, 67, 95, 105, 109]. (IV) In this thesis, randomized mul-
tiresolution scanning (RAMUS) [101] technique which incorporates sparse source
model and coarse to fine resolution level [67] is applied as an inverse approach in
the framework of HBM to detect both cortical and weakly distinguishable far-field
activity corresponds to the subcortical domain simultaneously [67, 101]. Moreover,
this thesis concentrates on the aforementioned numerical forward and inverse ap-
proaches on experimental measurements, in particular, somatosensory evoked po-
tential (SEP) and somatosensory evoked field (SEF) of median nerve stimulation.
The research work sheds light on the connectivity analysis of the cortical and sub-
cortical (far-field) activity at different and consecutive latencies 14–30 ms, which the
source localization results are in agreement with previous studies. Our findings re-
veal that utilizing RAMUS technique as a sparse source model [67] plays a significant
role in detecting the deep-lying sources for the early component, e.g., P14/N14 [82]
and superficial activity for P20/N20 component at Brodmann area 3b [2, 23]. The
methods implemented and employed in this dissertation aim to be applied in a wider
scope as future research work such as multiple subjects and children’s brain studies,
utilizing different evoked response measurements and combined E/MEG imaging
modalities and to be compared with other inversion techniques, e.g., beamformer.

1.2 Thesis structure

This thesis is divided into 5 chapters in total. Chapter 1 concentrates on the research
goal and the outline of this dissertation. Chapter 2 begins by laying out the theoret-
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ical background and knowledge of the research work that carried out in this thesis.
Chapter 3 demonstrates the methodology in this thesis including mathematical con-
cepts, techniques and head models which are utilized in this dissertation to obtain
the results and analysis. Chapter 4 describes the key results and novel scientific
knowledge which obtained during the completion of this thesis and discuss the sig-
nificant findings of our research works that can be advantageous for the community.
Chapter 5 summarizes and concludes the studies investigated in this thesis and high-
lights the work that can be continued as a future research potential. Furthermore,
Appendix is attached to this thesis draft which includes the correlated knowledge to
the chapters described above.
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2 PHYSICAL AND NEUROPHYSIOLOGICAL

MODELING ASPECTS

Our brain is a complex organ which is composed of several regions where each area
is responsible for a particular function. The brain contains about 1010 [50] neurons
which are responsible for brain activity. The neurons can be excited and make the
membrane potential from the resting state to the threshold potential where the ac-
tion potential (AP) occurs. The AP is induced as a result of differences in the concen-
tration gradient of ions between the inside and outside of the cell membrane. When
a neuron is at resting state, the potential inside the cell is approximately 70 mV more
negative than outside. When the AP fires off, positive ions enter the cell causing the
membrane potential to reach the positive peak and to reach the depolarization state.
After that, the cell is again returning to negative membrane potential where repolar-
ization state occurs to make the balance between the ion concentration inside and
outside of the cell membrane [50, 55].

A neuron mainly consists of a soma or nucleus body, dendrites, and axon [14].
When the neuron is excited, it fires off the signal which transfers along the axon until
it reaches the target tissue. This process is called the postsynaptic potential which is
visualized in Figure 2.2 (a), and can be mathematically modelled as a current dipole
[26, 50]. Since the neural activity of a single neuron is small, its electromagnetic field
can be measured only as a net effect of a bundle of neurons. The electrical activity of
neurons can be recorded by electroencephalography (EEG) electrodes on the scalp
and the net magnetic field of the brain can be measured by magnetoencephalography
(MEG). The EEG and MEG modalities record the brain activity non-invasively. The
postsynaptic potential of the apical dendrites of pyramidal cells are orthogonally-
oriented to the surface of the cortex and constitutes the main generators of both
EEG and MEG signals [50]. The brain activity can be measured as a result of dif-
ferent evoked responses for different stimuli, e.g., visual, auditory or somatosensory
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stimulus [55]. EEG and MEG measurements provide the opportunity to process
and analyze the neural signal, and thereby, it broadens our knowledge on the func-
tionality of the brain.

2.1 Electroencephalography (EEG)

EEG as a method to investigate brain activity was born in 1924 when the first mea-
surement of the electric activity of the human brain was conducted by German psy-
chiatrist Hans Berger. Today, EEG is a neuroimaging technique which is extensively
used to measure the spontaneous activity on the scalp non-invasively. The term spon-
taneous activity describes the ongoing activity in living individuals [73]. The largest
EEG amplitude are about 100 μV on the scalp and about 1-2 mV on the surface of
the brain with the bandwidth of 1 Hz to 50 Hz. Practically, EEG can be utilized
up to 256 electrodes. The electrodes can be either attached to the skin directly or
located on an elastic cap and cover the whole scalp [12]. Currently, EEG is widely
used in not only clinical applications such as epilepsy, sleep disorders, Alzheimer’s
disease, head injury, etc, but also cognitive and psychology applications, e.g., depres-
sion [84].

2.2 Magnetoencephalography (MEG)

MEG is a non-invasive imaging technique to measure the magnetic fields generated
by neural currents in the brain. A classical MEG sensor includes superconduct-
ing quantum interference device (SQUID), which is a sensitive detector of the mag-
netic flux. The first SQUID was introduced in the late 1960s by James Zimmerman
and the first SQUID based measurement of human brain activity was conducted
by David Cohen [12]. The weak neuromagnetic signals are about 10fT–1pT [52]
and need to be measured by sensitive enough SQUIDs. To this end, pick-up coil or
flux transformer, which associates with SQUID, is employed to collect the magnetic
fields and induce the current into the coil [52, 55]. Magnetometer and gradiometer
(axial or planar) constitute two different pick-up coil types. Magnetometer is more
sensitive to noise and consists of a single loop which picks up the magnetic flux,
while the gradiometer includes more than one loop sensing the differential changes
of the magnetic field either in the axial or planar direction. Gradiometers are more
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sensitive to detect near-field than far-field signals and that is, they neglect the distant
signals.

MEG achieves a better spatial accuracy compared to EEG with respect to the
source localization since the magnetic field is mainly generated by the currents in
the intracranial space, whereas EEG can be affected by inhomogenities with different
conductivity values in the head [52]. MEG is more sensitive to detect the tangential
and superficial sources, while EEG performs better for radial activity but in principle
can detect all primary current components including the deeper ones [57].

2.3 Cortical and subcortical structures

From the anatomical perspective, human brain can be divided into superficial area
and deep structures. The superficial layer is called cerebral cortex which is depicted
in Figure 2.1(a) and consists of new cortex and old cortex. The new cortex or neocor-
tex contains six layers of gray matter over a layer of white matter. The neocortex is
specifically in mammals and plays a crucial role in functions such as language, mem-
ory, attention and other functions [15]. On the other hand, old cortex or limbic
cortex includes three or four layers of gray matter on top of a layer of white matter.
Limbic cortex is known to be more primitive than neocortex. Moreover, the limbic
cortex is involved in emotional change states and neocortex functions. Other struc-
tures beneath the cerebral cortex are considered as subcortical compartments which
are shown in Figure 2.1 (b) and (c). The subcortical structures, e.g., caudate, puta-
men, pallidum, thalamus, lateral ventricles, hippocampus, amygdala, brainstem, etc,
can be segmented based on the atlas which includes information about the location of
each label from MRI image [39]. Figure 2.1 shows the subcortical structures which
are segmented by FreeSurfer software suite1 and visualized in Zeffiro Interface2.

2.4 Evoked related responses (ERR)

Sensory stimuli, e.g., auditory, visual, or somatosensory, can produce both evoked
and induced activities, of which evoked responses are time and phase-locked to the
stimulus, while the induced activity is not [57]. The evoked signals can be detected

1https://surfer.nmr.mgh.harvard.edu/
2https://github.com/sampsapursiainen/zeffiro_interface
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(a) (b) (c)

Figure 2.1 Visualization of human brain obtained via Zeffiro Interface (ZI). (a) illustrates the superficial

area of brain known as cortex. (b) and (c) show the deep structures of brain from coronal

and sagittal view, respectively. Each subcortical structure is illustrated by a specific color.

by repetitive measurements and averaging responses over the measured sample. Sig-
nal averaging leads to the improvement of the signal-to-noise ratio (SNR) [73] for
the weak evoked responses, which are otherwise not distinguishable. Furthermore,
finding the optimal interstimulus interval (ISI) for suitable SNR of given measure-
ment can be beneficial for clinical applications due to the fact that evoked signals
are getting weaker within shorter ISI [57]. Additionally, pre-stimulus baseline of
100 to 250 ms is considered as an efficient interval for distinguishing the evoked re-
sponses [55]. Evoked responses can be scalp-positive (P) and scalp-negative (N) po-
tentials, e.g., P20 and N20, where the polarities represent the active electrode [55].
The evoked responses can be recorded by both EEG and MEG modalities where the
output measurement depends on the stimulus parameters such as repetition rates,
subject’s vigilance, height, age and some other factors [57].

2.4.1 Somatosensory evoked responses

Primary somatosensory cortex (SI) is located at the posterior wall of the central sul-
cus, particularly at cytoarchitectonic area 3b [2, 24, 55] and can be activated by tactile
stimuli from the skin. The peripheral nerves, e.g., the median nerve at wrist can be
stimulated by electrical pulses which induce action potential volley along the bundle
of fibers to the somatosensory cortex and make the thumb twitching as a result of
evoked responses [2, 24, 43, 53, 54, 55, 62, 63, 66, 118]. The evoked responses can
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be detected as a generator of P20/N20 component at the posterior wall of the cen-
tral sulcus, Brodmann area 3b at 20 ms. Somatosensory evoked potential (SEP) and
somatosensory evoked field (SEF) can be obtained by EEG and MEG recording of
somatosensory evoked responses, respectively. Figure 2.2 (b) shows the tangential
and radial orientation of sources on the surface of the cortex.

(a) (b)

Figure 2.2 Illustration of the postsynaptic potential of apical dendrites of the pyramidal cell which can be

modelled by current dipole (red) in (a) and orientation of radial and tangential sources to the

convexial and fissural cortex in (b).

2.5 Deep brain stimulation (DBS)

Deep brain stimulation (DBS) is offered as a treatment for patients with neurological
disorders such as Parkinson’s disease, tremor, or epilepsy [92]. The implementation
follows by implanting the electrodes in the subthalamic region where the electrodes
are located at the anterior nucleus of the thalamus (ANT) to apply high frequency
pulses to reduce the seizures frequency, namely, in case of epilepsy patients. How-
ever, neurophysiological effects can vary from subject to subject. Clinically, thera-
peutic stimulation is utilized with high-frequency pulses to desynchronize the same
thalamocortical networks which are responsible for synchronization in epilepsy to
reduce the severity of the seizure. After that, the generated cortical responses can be
recorded by EEG [131].
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2.6 Transcranial electrical stimulation (tES)

Transcranial electrical stimulation (tES) is a non-invasive stimulation technique which
modifies the membrane potential of neurons and modulates the excitability of neu-
rons via short pulses [91]. tES plays a crucial role for the treatment of diseases such
as Alzheimer’s disease [19], Parkinson’s disease [40], refractory focal epilepsy [5],
stroke [36] and depression [81]. There are four main domains of the low-intensity
tES including: transcranial direct current stimulation (tDCS), transcranial pulse cur-
rent stimulation (tPCS), transcranial alternating current stimulation (tACS) and tran-
scranial random noise stimulation (tRNS) [91]. All the four methods associate with
spontaneous and non-spontaneous (including cognitive tasks) neuronal activity which
make the changes in neural networks [64].

Principally, tES is utilized with two electrodes which are saline-soaked sponges
where low-intensity constant current (0.5–2 mA) is applied to the head. Conse-
quently, the current enters the brain via anode (+) and passes through the cortical
and subcortical structures and leaves through the cathode (-). This non-invasive stim-
ulation approach can change the neuronal excitability and these alterations can last
for about 30–120 minutes after the end of the stimulation [64]. Moreover, further
investigations can be carried out via combined tES and EEG measurement to track
the brain activity with respect to the changes of neuronal excitability. To this end,
comprehensive electrode model, i.e., complete electrode model (CEM) [97] can be
applied for both tES and EEG to provide sufficient information of the skin-electrode
interface. Furthermore, tES can be considered as a potential investigation to incor-
porate with evoked related responses, e.g., SEP [74].

2.7 Network analysis of cortical and subcortical structures

for different components

Recently, several investigations have been carried out to analyze the thalamocortical
network for better understanding of subcortical activity [67, 95, 109]. Subcortical
structures play significant role in brain functioning and neural activity from subcor-
tical structures can be recorded non-invasively [67]. However, the deep activity is
weaker than generated cortical signals, therefore, it is challenging to detect the far-
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field activity by distant electrodes on the scalp. Herein, we utilized somatosensory
evoked potential (SEP) measurements of median nerve stimulation at the wrist to
track the afferent volley pathway through the thalamocortical fibers. Thalamocor-
tical activity is reflected in several peaks at different latencies, e.g., 14–30 ms where
the thalamus and brainstem are involved as main subcortical structures in sensory
processing [67]. Detecting the subcortical activity [3, 9, 67, 105] is vital for the neu-
roscience community for a deeper understanding of brain disorders such as, stroke,
refractory focal epilepsy[10, 11], Alzheimer’s [68] and Parkinson’s [18] disease and
its implications are crucial with respect to many other brain processes including lan-
guage, action, motor or emotion. To this end, EEG recordings can provide suffi-
cient information for the analysis of the subcortical activity. As part of this disser-
tation, a comprehensive analysis of the earlier and late SEP components occurring
as a response to median nerve stimulation is conducted. These components include
P14/N14, P16/N16, P18/N18, P20/N20, P22/N22, and P30/N30 and are described
in detail below.

2.7.1 P14/N14

The positive component at 14 ms, i.e., P14 corresponds to a far-field potential and
it can be recorded between the ipsilateral centroparietal electrode (CPi) and non-
cephalic reference which is typically located at the contralateral Erb’s point (EPc)[41].
The P14 far-field peak originates in the brainstem region, particularly, in the medial
lemniscus pathway which is known as a bundle of fibers [23, 75, 82]. The turning
point between P14 and N14 is located at the medulla-pontine junction. Further-
more, some studies [90, 121] reveal that the P14 peak can originate from above the
cuneate nucleus and travel to the ventral posterolateral (VPL) part of the thalamus
[75].

2.7.2 P16/N16

The far-field activity for the early P16/N16 component is located either at the subtha-
lamic region or it constitutes a thalamocortical radiation [22, 120]. The originator
of P16 component corresponds to ventral thalamus [22]. The negative N16 peak has
been associated with the cuneate nucleus [61]. A study by Tsuji et al. [120] showed
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that N16 reflects the subcortical activity onto the fronto-central areas of the cortex.
Figure 2.3 depicts a quadrupolar visualization of P16/N16 along the pathway of af-
ferent volley where it becomes visible as downward source (red) at cuneate nucleus
and simultaneously as an upward component at ventral part of the thalamus [22].

Figure 2.3 Quadrupolar (in red) visualization of the P16/N16 component in the pathway of afferent volley

from cuneate nucleus to thalamus through medial lemniscus.

2.7.3 P18/N18

The distribution of far-field activity has been found to be relatively widespread and
bilateral at 18 ms poststimulus. Multiple generators for N18 peak were detected at
brainstem in [75, 82] and from upper midbrain to the thalamus in [76, 85, 90]. More-
over, study by Urasaki et al. [121] suggested that N18 peak can be visible between the
upper pons and midbrain while excluding the thalamus as an active area. A study by
Noel et al. [82] demonstrated that the N18 peak is originating from lower medulla
nuclei and the study by Sonoo et al. [113] concluded N18 peak to be derived from
the dorsal column to the cuneate nucleus by the primary afferent depolarization.

2.7.4 P20/N20

The P20/N20 component is known to have the maximum peak at 20 ms as a post-
stimulus response of human somatosensory cortex (SI) at the posterior wall of the
central sulcus at Brodmann area 3b with tangentially oriented generator [2, 6, 23,
24, 43]. From the scalp recordings, it is evident that the cortical activity at 20 ms is
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contralateral to the stimulated median nerve [2] and simultaneous far-field activity
has been found to be visible at thalamus [48, 50]. Figure 2.4 highlights the area of
occurrence of P20/N20 component in the hand-knob of Broadmann area 3b [57].

Figure 2.4 The postcentral area is depicted by the red colour. It includes omega-shaped hand-knob

highlighted by the circle. P20/N20 component occurs in the posterior wall of the central

sulcus in the hand-knob [57] (Broadmann area 3b).

2.7.5 P22/N22

The P22/N22 component occurs a few millisecond after the P20/N20 peak [87].
The maximum peak of P22/N22 is detectable at the crown of either the first precen-
tral (Brodmann area 4) or postcentral (Brodmann area 1) gyrus corresponding to a
radially oriented source [2, 24, 43]. Hence, P22/N22 is principally radial in contrast
to tangential P20/N20. In addition, ventral posterolateral (VPL) thalamus has been
found to be active simultaneously [58].

2.7.6 P30/N30

The post-stimulus peak for P30/N30 component builds a network between cortical
areas, i.e., pre-motor areas, primary motor cortex and subcortical structures such as
the basal ganglia and thalamus. The P30/N30 component has been determined as
a marker for sensorimotor processing [90]. It links the motor, pre-motor and pre-
frontal cortex area [29, 30, 90]. Moreover, a study by Cebolla et al. [29] suggested
that the P30/N30 component also involves somatosensory activity which is located
at Brodmann area 3b [2, 24] of the primary somatosensory cortex. N30 generator, in
particular, corresponds to the pre-central (BA4 and BA6) and the pre-frontal (BA9)
cortex [29]. However, deep structures, namely, basal ganglia and ventrolateral tha-
lamus have been observed to be active when N30 is at its maximum peak [29, 90, 94,
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108].
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3 RESEARCH METHODOLOGY

This section concentrates on the methodology applied on the research work in this
thesis. The mathematical modeling employed in this thesis includes accurate for-
ward and advanced inverse methods which are combined in Zeffiro Interface (ZI),
a platform for reconstructing the primary current distribution in brain imaging ap-
plications using realistic and complex human head model. Moreover, a model based
on signal-to-noise ratio (SNR) is introduced to improve the performance of hierar-
chical Bayesian modeling (HBM) inverse techniques by selecting the optimal hyper-
parameters of gamma or inverse gamma hyperprior. In the framework of HBM, an
approach based on multiresolution and sparse source space is implemented to detect
simultaneous cortical and subcortical activity.

3.1 Mathematical modeling

The apical dendrites of pyramidal cells can be modelled as a dipolar point-like source,
i.e., an equivalent current dipole (ECD) representing a generator of the brain activity
in EEG and MEG. The amplitude of the ECD is estimated to be 10 nAm [52] to 100
nAm [56]. In the cortical area, the ECD orientation is known to be normal to the
surface of the strongly-folded cortex which was shown by Creutsfeldt et al. [33].
Figure 2.2 (b) shows direction of ECD with respect to the surface of the cortex. In
subcortical areas the orientation can be either constrained or unconstrained since
the neuronal tissue structures vary in different subcortical nuclei [8].

The mathematical techniques implemented in this thesis covered the aspects of
the advanced forward [50, 79] and inverse modeling [25, 26, 42, 71, 83, 107, 112, 114,
126] to localize the primary current density as an originator of the EEG and MEG
signal from heavily folded tissues of the brain. In general, forward modeling aims
to estimate the measurement of the signal given the neuronal activity and inverse
modeling seeks to find the accurate location of the primary current distribution [80].
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Figure 3.1 illustrates the concept of the forward and inverse modeling in the case of
EEG.

Figure 3.1 Illustration of forward and inverse modeling in brain application. The forward approach finds

the electric potential (u) for a given EEG sensor set attached to the scalp given the primary

current density (J p ) whereas the inverse approach aims to localize J p given u .

As a forward approach we use the divergence conforming H(div) source model
and its implementation via the finite element method (FEM). The inverse techniques
applied in this thesis include hierarchical Bayesian model (HBM) and randomized
multiresolution scanning (RAMUS) technique. The latter one of these is imple-
mented to fulfil the goal of detecting simultaneous cortical and subcortical activity.
It is known that the deep-lying far-field sources generate weak signals [9, 45] due to
the far distance from the sensors attached to the scalp and thereby, it is challenging
to reconstruct the activity from deeper structures.

3.1.1 Finite element method (FEM)

In order to localize the focal brain activity, accurate forward solution is required. In
addition to the FEM [20, 35], there are multiple different numerical methods such
as boundary element method (BEM) [52] and finite difference method (FDM) [50]
which allow finding a solution with a realistic head geometry. BEM does not include
the volumetric structures of the head geometry, e.g., skull compacta and spongiosa
[124] and merely includes the elements at the boundaries. Again, FDM is a volumet-
ric technique but is not fully adaptive with respect to the strongly folded internal
tissue boundaries. FEM allows both advanced boundary and volume modeling [98,
124], including anisotropic structures such as the white matter, as each element can
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be locally associated with its own conductivity tensor. On the contrary, utilizing
FEM as a forward approach requires high computing power [35] and is, therefore,
generally considered to be computationally costly. Furthermore, to obtain an ac-
curate forward solution, advanced features such as a complex realistic head model,
tissue boundaries and tissue conductivity including anisotropic conductivity of the
white matter [99, 127] should be taken into account to approximate the data for a
given source position and orientation precisely.

3.1.2 H(div) source modeling

In this thesis, forward modeling refers to the simulation of the scalp potential or
magnetic field of the neuronal activity at a finite set of sensor locations [21, 80]. To
achieve this goal we utilize the FEM [20] by first generating finite element (FE) mesh
for complex [55] and multicompartment head model based on MRI image and then
finding a solution of a linear system. Herein, H(div) source modeling [1, 79] is ap-
plied to model a finitely supported dipolar source, since mathematical dipole sources
are not directly applicable with FEM. The H(div) approach deals with hierarchic
basis functions of arbitrary order to give a conforming approximation of FE basis
functions on unstructured mesh. In the H(div) model, linear and quadratic basis
functions are used. The smooth properties of H(div) allow to have continuous finite
element functions in subspace, notably, at the boundaries. Divergence conforming
H(div) source modeling presents the accurate source configuration compared to the
reference techniques such as partial integration (PI) [125, 130] and St. Venant (SV)
[25, 119] method, i.e., monopolar source placement techniques to approximate a
dipole. Detailed information of the mathematical model and the implementation of
H(div) source modeling applied in study I (section 4.1) of this thesis, can be found
in section 2 of the study by [79].

The current preserving H(div) source space modeling [79, 98] is employed to
estimate the primary current density of the brain activity, where dipolar sources
belong to Hilbert space H(div), which includes current distributions with a square
integrable divergence. The model is computationally efficient compared to other
classical source modeling approaches such as, PI and SV and can be well-localized in
thin cortical area, e.g., in children. Divergence conforming H(div) source modeling
can be applied using either linear or quadratic basis functions with face intersecting
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(FI) and edgewise (EW) orientations, respectively, and the interpolation of the dipo-
lar sources can be implemented via two different methods, namely, position based
optimization (PBO) [13] and the mean position/orientation (MPO) method [98].
The investigations of dipolar H(div) approach in recent studies [79, 98] showed that
its accuracy outperforms the classical source modeling, e.g., PI and SV [129] which
can be associated with monopolar source configurations instead of dipoles. In this
work, the eventual forward model is a lead field (LF) matrix that can be generated
given the sensor configuration and a FE mesh, which here is considered to be tetra-
hedral [98].

Herein, the forward model is presented for EEG, whereas MEG forward model
can be obtained similarly. The EEG implementation follows by applying the Kir-
choff’s current preservation law to the total current density �J t = �J p −σ∇u, where
�J p and σ denote the primary current density and conductivity tensor, respectively,
and u denotes the electric potential field on the surface ∂ Ω of head model Ω. For-
ward model is based on the quasi-static approximation of Maxwell’s equations, where
electric potential is obtained from Poisson equation with respect to the Neumann
boundary condition. The head model is electrically isolated [50, 106], i.e., no cur-
rent can flow out of the head, therefore, the current density at the surface of the head
is equal to zero due to the conservation law, i.e.,

∇ · �J t = 0, ∇ · �J P =∇ · (σ∇u) in Ω with (σ∇u) · �n = 0 on ∂ Ω (3.1)

in which, (σ∇u)· �n = 0 refers to the boundary condition on ∂ Ωwhere �n denotes
the normal vector pointing outward. By multiplying both sides of the equation 3.1
with test function v and taking the partial integral over the Ω, the weak form is
obtained as [20, 79],

∫
Ω
∇v · (σ∇u)dV =−

∫
Ω

v(∇ · �J P )dV for all v ∈H 1(Ω) (3.2)

where the left side presents the operator part and the right side is source part. Herein,
−∇ · (σ∇u) is volume current density and H 1(Ω) denotes the Sobolev space which
includes the functions that have square integrable first-order partial derivatives be-
longing to L2(Ω). The divergence of the primary current density needs to be square
integrable, i.e., �J P ∈ H (div) = { �w|∇ · �w ∈ L2(Ω)} so that the right-hand side defines
a source with finite energy [79, 98].
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We assume that the potential u belongs to a subspace S ∈H 1(Ω)which is consid-
ered as spanned by the FE basis functions. The potential distribution of the finite
sum is uh =
∑N

i=1 ziψi where uh represents the discrete form of the electric poten-
tial, in whichψ1,ψ2, . . . ,ψN ∈H 1(Ω) are piecewise linear nodal basis (hat) functions.
Furthermore, the primary current distribution modelled by H(div) technique can
be represented as �J P

h =
∑K

j=1 xj �wj where �w1, �w2, . . . , �wK ∈H (div) are the divergence
conforming basis functions [98]. Assuming that the ground potential level has been
fixed, the relation between uh and �J P

h with coordinate vectors z= (z1, z2, . . . , zN ) and
x= (x1, x2, . . . , xK ) can be determined in a solvable linear system:

Az=Gx (3.3)

where A ∈�(N×N ) and G ∈�(N×K) with

Ai , j =
∫
Ω
∇ψ j · (σ∇ψi )dV and Gi , j =

∫
Ω
ψi (∇ · �wj )dV . (3.4)

The equation 3.4 is obtained by substituting the discretized electric potential and
primary current density, uh and �J P

h , respectively into the equation 3.2.
The measurement vector y can be presented via y=RA−1Gx= Tf, where f=Gx

is a load vector which represents the activity in the brain and T=RA−1 is a so-called
transfer matrix [37, 44].

Additionally, the matrix R presents a restriction operator for picking the skin
potentials at the electrode locations on head surface ∂ Ω [98]. The matrix R defines
the ground potential (zero potential) level which is here obtained as the mean of
the measurements y. The elements of matrix R are defined as follows: if the �–th
electrode on the boundary ∂ Ω is located at the i�-th node, then R�,i� = 1− 1/L,
and if � �= j , then R�,i j

= −1/L. Finally, R�, j = 0, if the j -th node is not associated
with any electrode [98]. Particularly, the primary current density is modelled based
on the linear and quadratic basis functions of H (div) [1]. The dipolar moment �q �w
of the basis function �w is defined as �q �w =

∫
Ω
�w dV . In a tetrahedral FE mesh, the

moment and position of a dipole can be obtained for the given two mesh nodes Pi

and Pj in the following straightforward fashion (detailed information can be found
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in the Appendix of the study [98]):

�q �w =
�rPj
− �rPi

‖�rPj
− �rPi

‖ (3.5)

and
�r �w =

1
2
(�rPi
+ �rPj

) (3.6)

in which �rPi
and �rPj

are the position vectors of mesh nodes Pi and Pj and equation
3.6 states that the position of the source dipole is the midpoint of the positions at
i and j nodes [98].The right-hand side matrix G of equation 3.3 can be formed as
follows:

Gψ, �w =
∫
Ω
ψ(∇ · �w)dV =

s{ψ,Pj }− s{ψ,Pi }
‖�rPj

− �rPi
‖ (3.7)

for a given pair ψ, �w of the basis functions with s{ψ,P} = 1, i.e., the non-zero entry
at ith and jth node, if ψ corresponds to node P and s{ψ,P} = 0, otherwise. Detailed
mathematical information can be found in studies by [13, 98].

With linear H (div) basis functions (extensive mathematical description can be
found in Appendix B of study [98]), the source dipole is defined by nodes Pi and Pj

which are located on the opposite sides of a shared face in a neighbouring tetrahedron
pair, and is called face intersecting (FI) orientation. For the quadratic basis, Pi and
Pj are attached by an edge, i.e., an edgewise (EW) orientation. Hence, various source
configurations can be made by considering different combinations of these dipoles.
Correspondingly, two different interpolation approaches, namely, PBO and MPO
methods were applied in order to interpolate the source dipole with given position �r
and dipole moment �p via a sum of dipolar FI and EW sources, i.e., �p ≈∑L�=1 c� �q �w�
(subsection 3.1.2.2) and �r ≈∑L�=1 c��r �w� (subsection 3.1.2.1), respectively. In over-
all, PBO tends to weight �p more than �r while in MPO both dipole position and
moment are determined to be in the equal order. However, MPO involves a higher
number of degrees of freedom which is why its performance is limited in restricted
configurations which might be necessary in thin cortical geometries, e.g., in children
[79].
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3.1.2.1 Position based optimization (PBO)

Position based optimization (PBO) [13] seeks for the coefficient vector c= (c1, c2, . . . , cL)
for the solution of the linear system,

min
c

L∑
�=1

c�
2ω�

2 for Qc= p (3.8)

in which ω� indicates a weighting coefficient ω� = ‖�r �ω� − �r‖2. Moreover, the
matrix Q defines the source dipole moments as Q = (q̃w̃1

, q̃w̃2
, . . . , q̃w̃L

), where the
constraint Qc= p is to ensure that the orientation of the interpolated dipole matches
the actual one. PBO finds the minimizer of

∑L
�=1 c�

2ω�
2, where L denotes the num-

ber of source dipoles based on the source configuration. The method of Lagrangian
multipliers applied to 3.8 implies the following uniquely solvable linear system,

⎡
⎣D QT

Q 0

⎤
⎦
⎡
⎣c

d

⎤
⎦=
⎡
⎣0

P

⎤
⎦ (3.9)

with a diagonal matrix D = diag (ω2
1, . . . ,ω2

L) and auxiliary multiplier vector d =
(λ1,λ2,λ3) including the Lagrangian multiplies. Total number of the interpolation
conditions (L+ 3) is equivalent to the number of the rows in the matrix 3.9.

3.1.2.2 Mean position/orientation (MPO)

The mean position/orientation (MPO) method aims to look for c = (c1, c2, . . . , cL)
to satisfy the following conditions:

�p ≈
L∑
�=1

c� �q �w�

0=
1
α

L∑
�=1

c� �q �w�[(�r �w� − �r ).�e j ] for j = 1,2,3. (3.10)

The former of these equations refers to the orientation constraint and the latter one
denotes the average position of the dipolar moments of given source dipole with
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respect to each Cartesian direction �e j for j = 1,2,3; α denotes a distance parameter
based on a uniform mesh reference distance which is at least double the length of the
longest edge in the FE mesh. Least square solution, i.e., �2- norm of the equation
3.10 is determined through the equation:

c=M†b with M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q

QP1

QP2

QP3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and b=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11)

Here, to regularize the outcome, the approximate solution is obtained using the
Moore–Penrose pseudoinverse M† of M [46] and

P j =
1
α

diag((�r �w1
− �r ).�e j , (�r �w2

− �r ).�e j , . . . , (�r �wL
− �r ).�e j ) (3.12)

for j = 1,2,3 and equation 3.11 represents the total number of (local) sources within
the interpolation.

3.1.3 Classical source modeling

3.1.3.1 St. Venant (SV)

St. Venant’s (SV) principle is based on estimating a dipolar source with monopolar
sources and lever arms [104, 119]. SV models a dipole by placing monopolar sources
on all neighbouring FE nodes attached to the one whose distance is the closest to
the actual source position [25, 78, 98]. That is, a dipole moment �p at position �r
is estimated via monopolar loads m0, m1, . . . , mL which are located at the FE mesh
nodes �r0, �r1, . . . , �rL, in which, �r1, . . . , �rL share an edge with the node �r0 closest to �r .
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The following moment conditions are set:

0=
L∑

i=0

mi

1
α
�p =

k∑
i=0

mi

α
( �ri − �r )

0=
L∑

i=0

mi

α2
[( �ri − �r ).�e j ]

2 for j = 1,2,3.

(3.13)

The conditions in 3.13 are assumed that the resulting total effect of the monopoles
can approximate the dipole. Herein, α denotes the reference distance which is at least
double the length of the longest edge in FE. The conditions above refer to the con-
servation of the charge, the approximation of the dipole moment, and suppression
(balancing out) of the higher order moments, respectively. Furthermore, in order to
compute the load vector, i.e., m= (m1, . . . ,mL), a regularized least-squares approach
is applied in the following fashion: m= (PTP+λD)−1PTb, where

P=

⎡
⎢⎢⎢⎣

P1

P2

P3

⎤
⎥⎥⎥⎦ with Pj =

⎡
⎢⎢⎢⎣

1 . . . 1

α−1( �r1− �r ) · �e j . . .α−1( �rL− �r ) · �e j

α−2[( �r1− �r ) · �e j ]
2 . . .α−2[( �rL− �r ) · �e j ]

2

⎤
⎥⎥⎥⎦ . (3.14)

Here, matrix D= diag(‖ �r1− �r‖2,‖ �r2− �r‖2, . . .‖ �rL− �r‖2) is a regularization matrix
which is multiplied by a regularization parameter λ and

b=

⎡
⎢⎢⎢⎣

b1

b2

b3

⎤
⎥⎥⎥⎦ with bj =

⎡
⎢⎢⎢⎣

0

α−1 �Pj

0

⎤
⎥⎥⎥⎦ . (3.15)

3.1.3.2 Partial integration (PI)

Partial integration (PI) method [125, 130] determines a dipole source in single FE
mesh element by placing monopolar weights on the nodes of that element. Thus,
the local source configuration applied in estimating the dipole is very well-localized
or focal. For a given dipole moment �p located at the point �r , the weights are obtained
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as follows:

fi =−
∫
Ω
(∇ · �J p )ψi dV =

∫
Ω

�J p · ∇ψi dV −
∫
∂ Ω
∂n
�J p ·ψi d S

=
∫
Ω

�J p · ∇ψi dV =

⎧⎨
⎩
�p · ∇ψi |�r , if �r in support of ψi ,

0, otherwise,
(3.16)

where �J p = �p �δ�r denotes the primary current density of the form with δ�r a Dirac’s
delta distribution [130]. Correspondingly, the right-hand side of the vector f can be
derived from equation 3.16. There are 4 different conditions of PI including non-
zero entries of the vector f. The major difference of SV and PI is the interpolation
strategy. Due to lower number of degrees of freedom present in the interpolation,
PI finds more focal source compared to SV [98].

3.1.4 Error measurement implementation

The relative difference (RDM) and magnitude (MAG) measure can be employed to
evaluate the forward modeling errors [98] and accuracy of the source localization
between H(div) source modeling and classical SV [25, 119] and PI methods [125,
130]. To this end, RDM and MAG are defined as follows [98]:

RDM(yana,ynum) = 50
���� yana

‖yana‖2
− ynum

‖ynum‖2

����
2

(3.17)

MAG(yana,ynum) = 100(

��ynum
��

2

‖yana‖2
− 1). (3.18)

Here yana and ynu m denote the analytical and numerical solution, respectively.
The distinction between these two approaches is that RDM presents the topo-

graphical modeling error with respect to the location and orientation while MAG de-
notes the changes in potential amplitude or variations in the source strength. The er-
ror measurement implementation is analyzed as box plots (Figure 4.2), which present
the lower (25%), middle (50%) and upper (75%) quartiles within the target distribu-
tion. The interquartile range (IQR) is shown as a vertical rectangle between 25%
and 75% range and a horizontal line inside the box shows the median, i.e., the 50%
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quartile. The whiskers present the range extending beyond IQR.

3.1.5 Inverse modeling

Inverse modeling aims at finding a solution for the inverse problem. In terms of
Bayesian statistics [65], the solution can be characterized as a posterior probability
distribution for the unknown, taking into account all the measurement data and a
priori information available. Within this interpretation, the accuracy of the solution
is determined by the uncertainty of the posterior model.

3.1.5.1 Prior information and regularization

The inverse problem is rather generally underdetermined, i.e., the number of sensors
is less than the sources in the lead field and, thereby, there are infinite number of
current distributions fitting to the measurements. Hence, a unique solution cannot
be found without using additional prior information or regularization. In many
connections these two concepts can be interpreted to coincide.

Prior information or regularization is often the governing factor characterizing
the structure of the candidate solution. For example, it can motivate different ap-
proaches to parametrize the inverse problem: (1) distributional and (2) dipolar or
multipolar, i.e., the assumption that the primary current density is composed of a
few dipolar or multipolar sources. In the case of (2), the solution is always focal
(well-localized), whereas in (1) the degree of focality can vary.

3.1.5.2 Hierarchical Bayesian model (HBM)

Principally, the observation model for both EEG and MEG can be expressed as a
linear equation of the form:

y= Lx+n, (3.19)

x is the unknown time-dependent source field, where each entry describes a source
set to a given source position and one of the three Cartesian orientations. The vector
y includes the measurements, L denotes the lead field (gain) matrix in which a given
column and row corresponds to the lead field of the corresponding EEG/MEG sen-
sor and source, respectively. The term lead field refers to a field which is generated by
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the sensor itself, when it acts as a unit source [73]. The noise vector n contains the
measurement uncertainties which are here assumed to consist of zero-mean white
Gaussian noise.

The E/MEG inverse problem of reconstructing the primary current density is
ill-posed, i.e., it does not have a unique solution [106]. Therefore, we aim to use
all available a priori information to obtain an accurate and robust solution [65] for
inverse problem. The a priori or prior information can concern [21, 107], e.g., the
anatomical head model, active regions, and the focality of the sources to restrict the
number of source configurations applied in reconstructing the brain activity. Fur-
thermore, regularization technique in a deterministic framework [27] is required to
incorporate prior information and, thereby to suppress the measurement noise and
modeling errors to achieve a unique solution. Herein, we focused on hierarchical
Bayesian model (HBM) [65], which follows from the classical Bayes formula that
corresponds to the posterior distribution aiming to approximate the unknown pri-
mary current density x as follows:

p(x | y) = p(x) p(y | x)
p(y)

∝ p(x) p(y | x). (3.20)

Here p(x) and p(x | y) denote the prior and posterior probability density of x, re-
spectively, and p(y | x) is the likelihood following from the zero-mean Gaussian
noise according to p(y | x)∝ exp(−(2σ2)−1‖LX−Y‖2)withσ denoting the standard
deviation of the noise. In HBM, the prior is assumed to depend on a hyperparame-
ter. Here this dependency is represented via the joint density p(x,θ)∝ p(θ) p(x | θ),
where θ is a hyperparameter, p(θ) the corresponding hyperprior, i.e., the prior of θ,
and p(x | θ) is a conditional prior. Consequently, the posterior is a joint distribution
of the form:

p(x,θ | y) = p(x,θ) p(y | x)
p(y)

∝ p(x,θ) p(y | x) (3.21)

or, alternatively, p(x,θ | y)∝ p(θ) p(x | θ) p(y | x). In this work, the conditional
prior p(x | θ) is assumed to be Gaussian, and the hyperprior is either the gamma (G)
or inverse gamma (IG) distribution. These hyperpriors incorporate within two pa-
rametersβ and θ0, which are known as the shape and scale parameter, respectively. It
is interpreted thatβ and θ0 steer the sensitivity of the prior to find outliers (sources)
in the brain and the general tendency to reconstruct fluctuations due to noise or
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brain activity, respectively. The shape parameter can be associated with the tail part
of the hyperprior while the scale parameter corresponds to its expectation as de-
scribed in Figure 3.2. Detailed mathematical information about the behaviour and
optimization of shape and scale parameter can be found in section 3.1.6 of this thesis.

Figure 3.2 The visualization of the shape and scale parameter’s behaviour with respect to the hyperprior:

inverse gamma (IG) on the left and gamma (G) on the right. The longer tail corresponds

to a smaller shape parameter and enhanced outliers or sensitivity to find a source. The

interdecile range (IDR), i.e., the interval between 10 and 90%, is illustrated with respect to

the expectation E(θ) which can be associated with a typical source magnitude resulting from

noise deviations. The solid black line depicts the hyperprior density for β = 3, the dashed

blue line and red line forβ= 2 andβ= 4, respectively.

3.1.5.3 Iterative alternating sequential maximum a posteriori (IAS MAP) algorithm

The task of reconstructing the unknown (x in equation 3.19) primary current den-
sity given the posterior distribution is challenging, since the dimensionality of the
source space is likely to be large. This work concentrates on finding a maximum
a posteriori estimate (MAP) which maximizes the posterior probability density [1,
65, 126], i.e., p(x | y) of the unknown x ∈ �n , xM AP = argmax p(x | y). Itera-
tive alternating sequential (IAS) algorithm constitutes an advantageous minimiza-
tion approach to estimate the MAP of a posterior density corresponding to HBM.
IAS algorithm is an efficient, simple and fast algorithm [26], and therefore, suitable
with the large source spaces of EEG and MEG. IAS algorithm for MAP estimate
(xM AP ,θM AP ) = argmax{p(x,θ | y)} can be described as below: (Extensive mathe-
matical information can be found in study [26].)

1. Set j = 0 and θ(0) = (θ0,θ0, . . . ,θ0).

2. Update x by choosing x ( j ) = argmax{p(x | y,θ( j−1))};
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3. Update θ by choosing θ( j ) = argmax{p(θ | y, x ( j ))};

• If hyperprior is set to G, then;
θi =

1
2θ0(η+
�
η2+ 2xi

( j )2/θ0)
η=β− 3/2, i = 1,2, ..., n

• Otherwise, if hyperprior is set to IG, then;

θi
( j+1) = (θ0+

xi
( j )2

2 )/k
for k =β+ 3/2, i = 1,2, ..., n.

4. Set j = j + 1 and continue from step 2 until it converges.

And IAS algorithm with respect to the lead field can be interpreted as:

1. Set j = 0 and θ(0) = (θ0,θ0, . . . ,θ0).

2. Set L( j ) = LD1/2

θ( j )
with

D1/2

θ( j )
= diag(
�
|θ( j )1 |,
�
|θ( j )2 |, . . . ,
�
|θ( j )n |). (3.22)

3. Find
x( j+1) =D1/2

θ( j )
L( j )

T
(L( j )L( j )

T
+σ2I)−1y, (3.23)

where σ is the standard deviation of the likelihood.

4. Update x by choosing x ( j ) = argmax{p(x | y,θ( j−1))};
5. Update θ by choosing θ( j ) = argmax{p(θ | y, x ( j ))};

• If hyperprior is set to G, then;
θi =

1
2θ0(η+
�
η2+ 2xi

( j )2/θ0)
η=β− 3/2, i = 1,2, ..., n

• Otherwise, if hyperprior is set to IG, then;

θi
( j+1) = (θ0+

xi
( j )2

2 )/k
for k =β+ 3/2, i = 1,2, ..., n.

6. Set j = j + 1 and continue from step 2 until it converges.
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3.1.5.4 Markov chain Monte Carlo (MCMC) sampling technique

Markov chain Monte Carlo (MCMC) is, principally, a sampling technique for gen-
erating sampling sequences in large dimensional spaces to approximate a given prob-
ability density [17]. MCMC generates a sequence of independent and identically
distributed set of samples, i.e., x (1), x (2), ..., x (t ) for a given probability density, i.e.,
p(x), x ∈ Rn . In Markov chain, the next state is a random variable depending on the
previous one, i.e., it can be defined as:

p(x (i ) | x (i−1), ..., x (1)) =T (x (i ) | x (i−1)), (3.24)

where T denotes a transition probability function describing the conditional prob-
ability of the subsequent states [4, 17], i.e., the probability distribution of the chain.
In this thesis and in the context of HBM, we use MCMC to estimate the conditional

mean (CM) of the posterior, i.e., xC M = E(x,θ | y) =
∫
(x,θ)ppost(x,θ | y)dxdθ.

MCMC algorithm [26, 27] provides a robust way to estimate CM but can be com-
putationally expensive, when the source space is large, unless the active part of the
brain is constrained into a smaller set, e.g., into a region of interest (ROI) which can
be selected, e.g., via the a priori information available on the active brain areas.

3.1.5.5 Minimum norm estimate (MNE) and Minimum current estimate (MCE)

In the Bayesian framework, l p -norm prior can be utilized for source reconstruction
with a variable value of 0 < p < ∞. Minimum norm estimate (MNE) [51] and
Minimum current estimate (MCE) [122] correspond to �2 and �1 norm prior or reg-
ularization, respectively. With the former interpretation, MNE can be considered
as the maximum a posteriori probability estimate obtained with Gaussian a priori
current distribution, whereas MCE associates with an exponential a priori distribu-
tion. Both MNE and MCE can be interpreted as special cases of HBM [26], however,
MCE provides more focal source localization compared to MNE [115].

MNE Minimum norm estimate (MNE) minimizes the least-squares solution
of Lx= y with the minimal �2-norm to obtain a minimally biased regular candidate
solution for the inverse problem. The regularization corresponds to minimizing
the norm of the solution, which prevents any deviations following from possible
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noise effects. MNE also follows as a limit, i.e., limδ→0 x‡ of the classical Tikhonov
(�2-norm) regularization x‡ = argminx ‖Lx− y‖2

2+δ
2‖x‖2

2. Thereby, MNE can be
approximated via a Tikhonov regularization, that is, by finding the balance between
the fitting of measured data (minimizing the residual) and minimizing the noise in
the data [60]. The Tikhonov regularized solution can be presented as:

x‡ = (LT L+δ2I)−1LT y= LT (LLT +δ2I)−1y, (3.25)

corresponds to the first iterate of the IAS method (subsection 3.1.5.3) [26]. Detailed
mathematical description of the minimum norm estimate can be found in section
2.2 of study [52].

MCE Minimum current estimate (MCE), i.e., �1 regularized reconstruction
minimizes the sum of the absolute currents, which leads to a more focal estimate
for the primary current distribution compared to �2 norm regularization or MNE
[115, 122]. Namely, when used in regularization, �1 norm can be shown to favor
sparse distributions with few non-zero entries. The MCE estimate can be shown
to follow from the IAS MAP iteration (subsection 3.1.5.3), when β = 1.5 and the
hyperprior is G [26].

Depth-bias When the depth of the source is unknown, both MNE and MCE
have bias towards the superficial sources [26, 69], therefore, leading to the ambigu-
ity of localizing the far-field sources. To suppress this bias, e.g., depth-weighting ap-
proaches [69] or sparse source distributions [67, 101] can be utilized for more robust
localization of deeper sources.

3.1.5.6 Randomized multiresolution scanning (RAMUS)

Randomized multiresolution scanning (RAMUS) technique constitutes a multires-
olution concept. Multiresolution setting often refers to an energy-preserving and
orthogonal or biorthogonal wavelet decomposition, i.e., a set of complementary
components with different resolutions and a total energy that matches the signal,
which can be obtained in a regular grid, see for example studies by [47, 72]. Since
the source position grid inside the complex brain structure is generally not regular,
instead of wavelets, our approach applies random projections [16, 28, 88] each with a
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Figure 3.3 Coarse-to-fine resolution process. Left: An illustration of the coarse source configuration

which belongs to S+ε , i.e., detectable source space (black) and undetectable sources be-

longing to S−ε (grey). The source subsets constituting the coarse resolution can be divided

into smallest subsets to obtain a finer resolution. RAMUS utilizes a sparsity factor in this

subdivision process, i.e., the ratio of source counts between two subsequent levels is kept

constant.

given resolution and due to the absence of orthogonality, the energy is preserved ap-
proximately via averaging the outcome coming from this averaging. Our approach
aims to reconstruct the activity at different source depths, finding focal and accurate
source localization, while at the same time avoiding bias at different source depths
[101]. At each resolution level, RAMUS finds an IAS MAP (subsection 3.1.5.3) for
multiple randomized source spaces using the IG hyperprior which is known to be
favourable to detect the deep activity [26]. The final reconstruction is found as the
average of these estimates. Detailed mathematical description and algorithms of the
RAMUS technique can be found in Appendix A of this thesis.

RAMUS technique follows the principles of coarse-to-fine optimization (Figure
3.3 and 3.4) [96] and randomized scanning (randomized multiresolution decompo-
sitions and projections) [16, 28, 31, 70, 88, 101]. The former concept is based on
decomposing the source space as S = S+ε ⊕ S−ε into the subsets of detectable S+ε and
undetectable S−ε fluctuations [70, 96, 101]. The subsets S+ε and S−ε can be defined
as S+ε = {0} ∪ {x : ‖Lx‖ ≥ ε} and S−ε = {x : ‖Lx‖ < ε}, where ε follows from the
total error level which can be interpreted as the net effect of both measurement and
modeling errors. The subset S+ε presents detectable source space, whereas S−ε repre-
sents the set of undetectable source distributions [96] and can be interpreted as the
numerical or practical null-space of L.

The set S+ε can be approximated by a sparse source space, since in a sparse set
the effect of each source can be distinguished. This can be also understood from
the viewpoint of linear algebra, since when the number of sources (columns in L) is
smaller than the number of data entries (rows), the null space of L can be a trivial

57



Figure 3.4 An illustration of the progress from a coarse to fine resolution. The source estimate obtained

at the coarse level is utilized as an initial guess for the finer one which leads to focal estima-

tion.

Figure 3.5 A schematic visualization of a randomized set of multiresolution decompositions 1, . . . , D for

levels 1, . . . , L. Each decomposition associates with multiple resolution levels. In RAMUS,

the final estimate is obtained by averaging over multiple resolution levels and decompositions.

The reconstruction obtained for one decomposition is used as an initial guess for the next one.

This strategy can be interpreted as a surrogate to reduce the discretization and optimization

errors in the final reconstruction.

set, i.e., it only contains the origin. Therefore, a coarse source space plays a signif-
icant role in localizing deep-lying brain activity [67]. However, when the number
of sources exceeds the number of entries in the measured data, L has a non-trivial
null-space belonging to S−ε and the inverse problem set by L is underdetermined.

In the coarse-to-fine refinement process, the resolution of each subset of the source
space S is gradually increased to that of the original source space. The ratio of the
source counts between two subsequent source spaces is determined by the constant
sparsity factor s > 1 (Figure 3.3). The finer resolution levels are vital in reconstruct-
ing focal cortical activity: increasing the resolution aims to the gradual refinement
of the details found [72]. This process is enhanced by utilizing the source estimate
obtained at one level as the initial guess at the next one (Figure 3.5). Consequently,
the presence of higher resolution levels is essential for obtaining a more focal re-
construction. Eventually, a final approximation will be obtained by averaging the
estimates obtained over different resolution levels (Figure 3.5). The aim of random-
ized scanning is to reduce the discretization and optimization errors by presenting
and averaging over a large number of randomized source spaces [101].
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3.1.6 Prior-over-measurement signal-to-noise ratio (PM-SNR) model

The prior-over-measurement signal-to-noise ratio (PM-SNR) [100] refers to the rela-
tive weight of the prior with respect to the measurement noise and is a crucial con-
cept in adopting a suitable parametrization for hyperpriors. PM-SNR plays a signif-
icant role in obtaining a focal and accurate source localization. The PM-SNR model
proposed in [100] is significant in selecting the shape β and scale θ0 parameters de-
termining the hyperprior, i.e., G or IG. It associates with the expectation of G and
IG, given by: EG = βθ0 and EI G =

θ0
β−1 , respectively. The behaviour of G and IG

with respect to the opted parameters is illustrated in Figure 3.2, with an expected
noise-induced fluctuation in the reconstruction based on the assumption that a peak
due to brain activity in a given spatio-temporal point is a relatively rare event com-
pared to a peak due to noise. In this context, noise can include errors from different
sources, e.g., measurement, forward modeling, and source localization.

To allow selecting θ0, the concept of the total scale θ(tot) has been formulated in
[100]. The total scale is interpreted to be a a priori set constant describing the relative
strength of the prior, while the source-wise scale θ0 can change. Given the standard
deviation (STD)σ of the measurement noise, the amplitude Aof the measured signal,
the number of the sources N in forward modeling, the relationship between the total
and source-wise scale can be expressed as follows:

θ0 =
θ(tot)

0 σ2A2

N
or θ(tot)

0 =
θ0N
σ2A2

. (3.26)

It is further interpreted that the square-root
�
θ(tot)

0 describes the ratio between the
integrated STD of a Gaussian (or a conditionally Gaussian) prior and the STD of the
measurement noise. PM-SNR is defined as a measure of this ratio:

PM-SNR=dB(
�
θ(tot)

0 )=dB(
�

N )+dB(δ)+dB(A)−dB(δ (ref)) (3.27)

with δ=

�
θ0

σA
, δ (ref)=

|�J p |
A

, (3.28)

and dB(x) = 20 log10 x. Here δ (ref) is a reference level which is obtained as a ratio
between a priori estimated norm of the primary current density |�J p | and the signal
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amplitude A. At the reference level, when PM-SNR is 0 dB,
�
θ0 matches the a priori

noise-induced fluctuation of the candidate solution normalized by A
�

N , that is,

�
θ0 =

σ |�J p |
A
�

N
. (3.29)

Assuming that a 10 nAm source is to be reconstructed based on measurement data
with 10 microvolt amplitude and 3 % relative noise standard deviation using a source
space with 1.5E+04 sources, i.e., A = 10E-06 V, σ = 0.03, |�J p | = 1E-08, and N =
15000 [45, 52, 128], i.e., implies roughly θ0 = 6E-14 with PM-SNR 0 dB. In 3.27,
δ denotes the source-wise relative weight of a Gaussian prior and correlates to the
Tikhonov regularization parameter of MNE [12, 26, 65]. In the Brainstorm soft-
ware tutorial 1, the default value for this ratio is set to be dB(δ)= 9 dB in the case
of the MNE reconstruction. Referring to the current example parameter choices,
Brainstorm’s default prior strength for MNE would coincide with a PM-SNR of 9
dB. In [100], a 20 dB PM-SNR has been found advantageous with the IAS method.

PM-SNR can be interpreted to be method-specific since, in addition to the given
noise with respect to the measurement, also latent noise can be taken into account.
The relative (total) noise standard deviation is assumed to be of the form σ = sσ ,
where σ yields the standard deviation of the nominal noise, not including the latent
effects, and s ≥ 1 interprets those, e.g., the forward modeling errors of the quasi-
static approximation, head compartment’s conductivity differences and segmenta-
tion errors, etc. [6]. It follows that the PM-SNR is of the form :

PM-SNR= PM-SNR+ dB(s ), (3.30)

where dB(s ) refers to the total contribution of the latent noise effects. Therefore, the
actual PM-SNR will be greater than the nominal value PM-SNR for models including
latent noise, i.e., when s > 1. Hence, the greater the latent noise, the greater weight
of the prior will be necessary. When PM-SNR is set to 0 dB, PM-SNR is given by
dB(s ) and the explicit formula for the scaling parameter is

�
θ0 = sσ |�J p |/(A�N ),

where σ corresponds to the known noise level and s to the a priori assumption of
the latent noise strength.

The probability for the occurrence of the actual activity is considered to be pre-

1https://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimation
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dicted by the tail (decay rate) of the hyperprior. The central factor enabling the ap-
propriate function of the hyperprior is that its relative decay rate with respect to the
amplitude of the reconstructed peak is slower than that of the likelihood with respect
to the observed data amplitude. Due to this difference, the peaks of the actual activ-
ity will be distinguishable. The distance between the expectation and a given level of
the tail follows fromβ; the smallerβ, the greater the variability in the amplitude of
the reconstruction. Hence,β can be associated with the uncertainty allowed by the
reconstructed peak, which could follow, e.g., from different source depths altering
the amplitude of the measurement. This work considers an experimental reference
value β = 3 which can be interpreted as a balance point in which this distance is
approximately the same for both IG and G prior and, therefore, both hyperpriors
can be expected to provide a roughly similar outcome [100]. The deeper analysis
of the dynamical effects related to selecting β are omitted in this work, while the
concentration is on selecting θ0. Further information of the PM-SNR model with
respect to the hyperprior and their behaviour is described in section 2 and Appendix
of [100] which is part of this thesis.

3.2 Zeffiro Interface (ZI)

The advanced forward and inverse techniques introduced and employed in this the-
sis are combined as a code package Zeffiro Interface (ZI) [59] which is a platform to
integrate advanced finite element (FE)-based forward and inverse modeling for elec-
tromagnetic brain applications in MATLAB (The Mathworks Inc.) environment
and is openly available in Github2. FEM-based forward approach, namely, H(div)
source model and inverse modeling such as hierarchical Bayesian model (HBM) can
be utilized in ZI for brain source localization. A high-resolution (1 mm) head model
is employed in ZI in order to obtain a high accuracy with respect to the complex
brain structure and its heavily folded tissues and thin layers, including, in particular,
the grey matter and the skull. The methods of ZI can be accelerated with a graph-
ics processing unit (GPU) in the mesh generation, lead field computation (forward
simulation), interpolation, and inversion stages, Figure 3.6. The basic functions of
ZI, Figures 3.7 and 3.8, can be operated via its segmentation tool, mesh tool, inverse
tool, parcellation tool and plugins, which can be developed by the users and added

2https://github.com/sampsapursiainen/zeffiro_interface
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into ZI by placing them into its plugin folder, providing a flexible approach for soft-
ware development via the Matlab platform. Using a workstation, desktop or laptop
equipped with a high-end GPU, the full process of forward and inverse modeling,
beginning from a surface segmentation of the volumetric domain, can be run within
approximately one hour at 1 mm FE mesh resolution. The time needed for 1 mm
FE mesh generation, EEG lead field matrix evaluation and source space interpola-
tion took roughly 21, 39 and 3.5 minutes, respectively, in a Lenovo P910 workstation
equipped with NVIDIA Quadro P6000 GPU3. In the segmentation tool, ASCII files
exported from FreeSurfer Software Suite can be imported to ZI separately or as in-
dividual ASCII files, to establish the surface segmentation.

The FE mesh is a uniform tetrahedral mesh based on the surface segmentation.
It can be created for multicompartment head model via ZI after importing the sur-
face segmentation and setting the mesh parameters in the mesh tool. The mesh is
generated from its inner compartment to the outer layer. Each source distribution
is obtained by picking a randomly (uniformly) permuted set of tetrahedron centers
in the brain compartment. Since the mesh structure is uniform, this process leads to
an evenly distributed set of source points. After generating the FE mesh, a lead field
is calculated and its source space is interpolated to integrate it with the FE mesh.
Next, a reconstruction of the brain activity can be obtained using one of the inverse
tools of the HBM-based tools, which were implemented over the completion of this
thesis. The HBM inverse tools allow selecting the hyperprior parameters, i.e., shape
and scale parameters of the G and IG hypermodel, via the PM-SNR model (section
3.1.6). The orientation of sources can be constrained or unconstrained. In the for-
mer case, the sources are assumed to be oriented along with the local surface normal
to the compartment and, in the latter case, it can be freely oriented as a vector field
consisting of three Cartesian components.

3.2.1 FreeSurfer to Zeffiro Interface pipeline

This section describes the process of extracting segmented files from FreeSurfer and
importing them to Zeffiro Interface. The FreeSurfer to Zeffiro Interface pipeline is
written as a part of this work and is illustrated in Figure 3.9. It includes the following
steps:

3https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
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Figure 3.6 A diagram of Zeffiro Interface (ZI) presenting the main tools for mesh generation and source

localization.

1. Perform recon-all command in FreeSurfer on T1-weighted MRI data in the
format of the single DICOM (file.dcm) file or NIFTI (file.nii) file including
the subcortical structures. To do this, the subject identification string, input
directory of MRI data and output directory for saving the reconstructed files
are required.

2. Strip the skull and other outer non-brain tissues.

3. Convert the extracted files for surface and subcortical structures to ASCII
(file.asc) files.

4. Processing the .annot file to obtain parcellation labels based on the Aseg atlas
of MRI data. Parcellation can be Desikan-Killiany or Destrieux atlases with
36 and 76 labels, respectively.

5. Merge the label files as a single file for left and right hemisphere.

6. Eventually, all the extracted segmentation and ASCII files are imported to ZI
to implement the inversion, analyzing and 3D visualization.

Example files for exporting a segmentation from FreeSurfer and importing it to ZI
can be found in ZI’s repository and have been included as Appendix B and C, respec-
tively. The import file allows for configuring a complete exported segmentation and
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Figure 3.9 A diagram of FreeSurfer to Zeffiro Interface for importing the ascii files.

defining the activity mode and conductivity of each compartment.

3.3 Head models and measurement data

This section sheds light on the data acquisition, preprocessing, and the head models,
e.g., spherical and real human head models, which have been used in this thesis to
obtain the results for studies I-V.

3.3.1 Spherical and real head model

3.3.1.1 Study I

In this study (section 4.1), a four-layered Stok model [116] including brain (0.33
S/m), CSF (1.79 S/m), skull (0.0042 S/m), and scalp (0.33 S/m) was used to show
the performance of the implemented source H(div) model and its adapted version
with 2 mm thickness of the gray matter. The particular concentration was on the
effects that follow, when the source is approaching the surface of the gray matter,
which is inevident, since the grey matter layer is in the lower end of the normal 2–4
mm thickness interval in adults.

A real and multilayered human head model was utilized to investigate the lo-
calization of the brain activity in the context of H(div) source model. This head
model consists of skin (0.43 S/m), skull compacta (0.0064 S/m), skull spongiosa
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(0.028 S/M), cerebrospinal fluid (CSF) (1.79 S/m), gray matter (0.33 S/m), white
matter (0.14 S/m), and eyes (0.505 S/m). The conductivity value for each compart-
ment follows the studies [34, 97], in which, the latter one of these studies used the
same model. In the source localization tests, the goal was to show the performance of
H(div) forward model in the cortex, in particular, with �1 and �2 -norm regularized
estimates.

3.3.1.2 Study II

In this study (section 4.2), we used a realistic head model and dataset of Brainstorm’s
EEG and Epilepsy tutorial4 with the consent of Prof. Andreas Schulze-Bonhage, Epilepsy
Center, University Hospital Freiburg, Germany. The head model with EEG mea-
surement from an epilepsy patient was applied to detect the epilepsy spikes in the left
fronto-central region of the head. Additionally, the applicability of ZI to localize a
simulated hemorrhage via electrical impedance tomography (EIT), was shown using
a five-layered population head model (PHM) 5 including white matter (0.14 S/m),
gray matter (0.33 S/m), CSF (1.79 S/M), skull (0.0064 S/m), and scalp (0.43 S/m).
In this experiment, the IAS inversion technique was utilized to solve a linear inverse
problem of the form 3.19 with respect to linearized EIT equations as shown in study
II (section 4.2).

3.3.1.3 Study III

In study III (section 4.3), a three-layered and spherical Ary model including grey
matter (0.33 S/m), skull (0.0042 S/m) and scalp (0.33 S/m) [7] was employed for
numerical analysis to investigate the performance of the RAMUS method in recon-
structing brain activity for different depths, e.g., for superficial and deep layers. Ad-
ditionally, a population head model (PHM) was used to demonstrate that RAMUS
has the potential to reconstruct the simultaneous superficial and deep activity for
the P20/N20 component of SEP and thalamic region.

4https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
5https://itis.swiss/virtual-population/regional-human-models/phm-repository/
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3.3.1.4 Study IV and V

Three realistic and human head models based on MRI measurements were obtained
and used for the experimental analysis of studies IV and V (section 4.4 and 4.5). Each
head model includes six layers of brain, white matter, gray matter, CSF, skull and
scalp and subcortical structures which are segmented from Aseg atlas of FreeSurfer
software suite6. The extracted subcortical structures included the amygdala, puta-
men, thalamus, brainstem, caudate, accumbens, hippocampus, pallidum, cerebel-
lum, ventricles, and ventral DC. Of these subcortical structures, thalamus and brain-
stem were included in the set of active compartments for the SEP/SEF analysis due
to their contribution in sensory processing [67]. The conductivity value of the
outer layers followed by the study of [34], whereas that of the subcortical structures
matches with the cereberal cortex, i.e., 0.33 S/m, based on [111]. Of the three head
models, one is openly available at Zenodo repository 7. The head models in study
IV were applied to investigate the reconstructed evoked responses for SEP/SEF mea-
surement with respect to the hyperprior parameters chosen by PM-SNR model. The
motivation in study V was to analyze the implementation of RAMUS technique on a
realistic head model to reconstruct the simultaneous cortical and subcortical activity
for SEP dataset at different latencies.

3.3.2 Subjects and ethical clearance

In study II, Brainstorm’s EEG and epilepsy tutorial dataset8 was utilized under the
the consent of Prof. A. Schulze-Bonhage from Epilepsy Centre, University Hospital
Freiburg, Germany. The data was obtained from a patient who suffered from focal
epilepsy with focal sensory, dyscognitive, and secondarily generalized seizures since
the age of eight years. The data was measured by non-invasive telemetry recording
during night at the Epilepsy Center Freiburg, Germany. The EEG data was em-
ployed to reconstruct the left fronto-central polyspikes by HBM inversion tests in
ZI9.

The SEP/SEF measurements in studies IV and V were obtained for three right-

6https://surfer.nmr.mgh.harvard.edu/
7https://doi.org/10.5281/zenodo.3888381
8https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
9https://github.com/sampsapursiainen/zeffiro_interface
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handed healthy adult male subjects (I), (II) and (III), 49, 32 and 27 years old, respec-
tively. The subjects had no history of psychiatric or neurological disorders and had
given written informed consent before the experiment. The institution’s ethical re-
view board (Ethik Kommission der Ärztekammer Westfalen-Lippe und der WWU)
approved all experimental procedures on 02.02.2018 (Ref. No. 2014-156-f-S). The
Neurophysiological data and head model (for one subject) are available at the Zen-
odo portal. The SEP/SEF measurements were utilized to detect the generator of
P20/N20 component of evoked responses at Brodmann area 3b and simultaneous
far-field activity at subcortical region, respectively.

3.4 MRI acquisition for experimental analysis in study IV

and V

For each subject, MRI dataset was obtained by a 3T MAGNETOM prisma -scanner
(release D13, Siemens Medical Solutions, Erlangen, Germany). For the measure-
ment, a 3D T1-weighted (T1w) fast gradient echo pulse sequence with water selective
excitation was utilized to prevent fat shift (TR/TE/ FW = 2300/3.51 ms/8◦, inver-
sion pre-pulse with TI= 1.1 s, cubic voxels of 1 mm edge length) was measured and a
3D T2-weighted (T2w) was acquired as a turbo spin echo pulse sequence (TR/TE/FA
= 3200/408 ms/90◦, cubic voxels, 1 mm edge length). Gadolinium markers were
used at the same nasion, left and right distal outer ear canal positions for landmark-
based registration of combined EEG and MEG were obtained during the T1w-MRI
measurement. All the measurements were carried out in a supine position to mini-
mize head movements and avoid cerebrospinal fluid (CSF) effects because of a brain
shift when EEG/MEG and MRI are combined [102].

3.5 EEG and MEG measurements for experimental analysis

in study IV and V

The SEP and SEF measurements were obtained from three right-handed adult sub-
jects to detect the simultaneous originators of the P20/N20 component at Brod-
mann area 3b and simultaneous far-field activity with different source localization
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approaches were implemented in studies IV and V. The SEP and SEF data were mea-
sured at the same time in a magnetically shielded room. The measurement utilized
80 AgCL sintered EEG ring electrodes (EASYCAP GmbH, Herrsching, Germany,
74 channel EEG with additional 6 channels EOG to detect eye movements). For
MEG measurement, a system with 275 axial gradiometers and 29 reference sensors
(OMEGA2005, VSM MedTech Ltd., Canada) was utilized. Moreover, cardiac activ-
ity was measured by electrocardiography (ECG) electrode.

The MEG reference coils were employed to compute the first-order synthetic
gradiometers to minimize the interference of magnetic fields derived from far lo-
cations. A Polhemus device (FASTRAK, Polhemus Incorporated, Colchester, Ver-
mont, U.S.A.) was utilized to digitize the electrode positions of the EEG cap prior
to the measurements. Furthermore, the head position inside the MEG was checked
via three head localization coils which are on the nasion, left and right distal outer
ear canal, i.e., preauricular points.

In order to record the evoked responses of the primary somatosensory cortex
(SI), the peripheral nerve of the right wrist for each subject was stimulated. To this
end, monophasic square-wave electrical pulses with a duration of 0.5 ms were applied
to the median nerve. The measurements were obtained with a sampling frequency
rate of 1200 Hz and low-pass filtered with 300 Hz as the cut-off frequency. The
duration of each experiment was 9 minutes during which 1200 trials were obtained.
The stimulus onset asynchrony (SOA) varied randomly between 350 and 450 ms
in order to prevent habituation and obtain clear pre-stimulus intervals for signal-to-
noise ratio (SNR) determination.

Data preprocessing In the preprocessing stage, the raw combined EEG and
MEG measurement was band-pass filtered between 20–250 Hz as suggested in [24].
A notch filter was applied to remove the interference caused by 50 Hz power line
frequency and its harmonics and by 60 Hz of the used monitor. After that, the pre-
processed recordings were divided into evenly large segments of 300 ms (100 ms pre
and 200 ms post stimulus onset). After removing the bad channels visually by Field-
Trip toolbox 10, non-cerebral activity was reduced according to a threshold-based
procedure in FieldTrip, followed by the visual inspection of the bad trials candidate
in each modality. Eventually, the SEP and SEF evoked responses were averaged over

10https://www.fieldtriptoolbox.org/
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the remaining trials per single subject.

3.5.1 Finite element (FE) mesh and lead field matrices

In study I, a FE mesh for Stok model was generated via Gmsh software 11, whereas
ZI was used in generating the other meshes, mainly utilizing less than 1 mm mesh
resolution to take the complex three-dimensional structure of the human head ap-
propriately into account as proposed in [103]. The FE mesh of the realistic head
model (section 3.3.1) was generated using 0.85 mm resolution, resulting into 37.9
M and 6.45 M elements and nodes, respectively. In study II, the EIT inversion tests
were performed using 1 mm mesh resolution, and in III, the mesh resolutions 0.85
and 1 mm were utilized with PHM and Ary model, respectively. In IV, the results
obtained with 1 and 2 mm FE mesh resolution were compared. These meshes con-
tained 3.8 M vs. 0.47 M nodes and 22 M vs. 2.7 M tetrahedra, respectively. In V, each
FE mesh was generated with 1 mm mesh resolution. In each of I–V studies, the LF
matrices utilized in source localization were obtained for a set of sources in Cartesian
orientation, i.e., along x-, y- and z-directions.

11https://gmsh.info/
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4 RESULTS AND DISCUSSIONS

This dissertation focused on the following four major domains and goals:

1. Advancing a volumetric modeling and FEM-based forward techniques for source
modeling within complex and multicompartment human head model.

2. Combining accurate forward and inverse solvers as a brain interface package
for source localization of neural activity in brain imaging applications.

3. Introducing a model based on noise level for selecting appropriate range of hy-
perparameters and better performance of the inverse techniques in the frame-
work of the hierarchical Bayesian modeling (HBM).

4. Investigating the advanced inverse technique based on the multiresolution con-
cept and sparse source space to detect weakly distinguishable deep activity uti-
lizing somatosensory evoked potential (SEP) measurement and realistic hu-
man head model.

In the following sections, the results and findings for individual studies are described.

4.1 Outline of Study I

Motivation & Goal
This study sheds light on accurate forward modeling for non-invasive EEG brain

imaging, particularly for thin cortices where the source configurations need to be
focal. FEM and tetrahedral finite element mesh are utilized in forward source mod-
eling in brain to model the complex head geometry. However, FEM incorporates
outliers, particularly at the boundary of domain where the electrical conductivity
value jumps to other compartments, e.g., from gray matter to CSF and causes for-
ward modeling errors. Therefore, the proposed source modeling approach in the
current study aims to avoid forward modeling errors in the restricted domain where
few sources are interpolated.
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Approach
This study investigated advanced FEM-based forward modeling for EEG source

localization, and showed that the divergence conforming H(div) approach performs
well when being utilized with complex and realistic geometries with a thin grey mat-
ter layer, e.g., 2.3 mm thick human cortex [38, 49, 77] and potentially also with thin-
ner cortices, e.g., in children brain and pathological applications. Herein, numerical
experiments within the spherical model are conducted to evaluate the performance
of H(div) approach with classical PI and SV source modeling techniques.

4.1.1 Overall results

The findings show that the H(div) model is computationally fast. The adaptable
source stencil introduced in this study allows varying the number of elements ap-
plied in interpolating the mesh-based H(div) elements into a Cartesian orientation.
A stencil consisting of one to five elements was found to be advantageous for differ-
ent cortical thicknesses; the adaptable stencil is centered around a given tetrahedron
and includes only those adjacent tetrahedra that belong to the grey matter, thereby,
allowing the center element being placed right next to the surface of the grey matter
layer.

The results for the multilayered spherical model show that a higher accuracy and
computational performance was obtained for the proposed model compared to other
classical techniques, i.e., St.Venant (SV) and partial integration (PI). On one hand,
we found also that our model accuracy increases as the number of elements applied
in the stencil grows, and, on the other hand, the number of source elements should
be restricted for thin cortices as it might overlap with other compartments at the
boundary of grey matter such as CSF where leads to the discontinuity of the elec-
trical conductivity and reduce the focality of the model. Additionally, the perfor-
mance of the H(div) method in source localization was found to potentially reduce
the spotty artifacts due to interpolation errors as compared to SV and PI by eval-
uating l 2 and l 1 regularized estimates for the primary current distribution using a
realistic head model and a simulated source.
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4.1.2 Results in detail

The implementation of the divergence conforming (current preserving) source model
covers two cases: (i) non-adaptive H(div) and (ii) adaptive H(div). The former refers
to the higher accuracy for thicker cortices with the basic five-element configuration,
i.e., the five-element stencil, and the latter is adaptive from one to five elements in
the stencil and is more favourable in thin cortices.

The results were evaluated via relative difference measure (RDM) and magnitude
difference (MAG) for 200 dipoles with random positions and orientations of 1.5 mm
depth sources and superficial sources of 0.1 mm for 98% and 99% eccentricity, respec-
tively. The accuracy of the H(div) model improved along with the number of mesh
nodes estimating a single source. Figure 4.1 demonstrates the configuration of nodes
centered around a single center tetrahedron.

Figure 4.1 The illustration of the five element H(div) source stencil in the boundary of grey matter. The

dark arrows refer to FI and light green ones show the EW sources, respectively.

The smallest median for RDM at 98 and 99 % eccentricity was obtained for a
five-element patch. The results in Figure 4.2 show that as the number of elements
grow, the spread or IQR of RDM decreases, i.e., the accuracy increases. When the
number of elements included in the stencil was increased from 2 to 5 the median
differences between different methods improved 0.28 and 0.26% for eccentricity of
98 and 99.9%, respectively.

The results demonstrate that the single-element H(div) gave identical results as
those obtained with PI. At 98% eccentricity, the median RDM obtained for SV ap-
proach was close to the value obtained for the five-element H(div) source configura-
tion. Nevertheless, for the 99% eccentricity, the H(div) model gave the superior re-
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Figure 4.2 The boxplots visualization of RDM and MAG errors for H(div) source modeling with n ele-

ments and PI and St.V (SV) approaches. The boxplots are drawn for 200 randomly distributed

dipolar sources for 98 and 99% eccentricity, respectively.

sult. Moreover, the boxplots for MAG with respect to 98% eccentricity showed that
SV performs well compared to five-element H(div) model, while the performance of
SV is weaker for 99% eccentricity compared to H(div) model.

The l 2 and l 1 regularized source localization estimates obtained with a simulated
source demonstrated how the adaptive and non-adaptive approach performs within
a realistic head model. In the case of the l 2 regularized estimate, the reconstruction
with the non-adaptive technique was found to be more focal than the adaptive one.
The reconstruction by l 1 estimate revealed fairly similar results. However, the re-
constructions for H(div) approach were found to be smoother and less distributed
compared to SV and PI. In particular, they were less spotty or corrupted by artifacts.

4.1.3 Summary

The RDM differences were found to be more significant compared to MAG. Thus,
in the case of RDM, the modeling accuracy increased along with the number of ele-
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Figure 4.3 An illustration of the l 2 regularized estimates obtained in study I, showing a comparison

between the outcome obtained with the H(div), SV and PI source models in non-adaptive
and adaptive cases. The synthetic source is visualized in black.

ments included in the stencil. Moreover, the results obtained with the single-element
stencil, emerged to be similar to the PI, suggesting that H(div) and PI approach might
yield identical results in that case. A remarkable difference to SV was observed for
99% eccentricity. Based on the results presented in this study, non-adaptive H(div)
source model is more robust compared to adaptive case and preferable to be applied
for normal cortical thickness [38, 49, 77], albeit the adaptive case can be considered
for thinner cortices, namely, in children or infant studies and pathological applica-
tions.

Limitations and weaknesses
The findings of this study have to be seen in light of some limitations. The first

limitation concerns with the performance of H(div) model with anisotropic head
model since the electrical conductivity of the white matter affects the source posi-
tion and orientation and correspondingly influences the accuracy of H(div) source
modeling. The second limitation is the implementation of H(div), which is currently
available as C++ code package via dunero software 1 library of DUNE. The imple-
mentation can be extended to a pipeline between DUNE and other platforms such
as MATLAB or Python 2.

1http://duneuro.org/
2https://www.python.org/
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Outlook
As a future study, divergence conforming H(div) source modeling can be applied

on a realistic and multicompartment human head model utilizing real EEG measure-
ments. To assess the performance of the present source modeling, other physiolog-
ical criteria such as thin cortices, especially in children and anisotropic head model
can be investigated. Furthermore, the H(div) source modeling implementation can
be integrated with other commonly used toolboxes such as FieldTrip or Brainstorm.

4.2 Outline of study II

Motivation & Goal
This study aims to introduce a platform, where advanced and complex forward

and inverse techniques are combined for source localization of brain imaging appli-
cations. Zeffiro Interface (ZI) is applicable to realistic and multicompartment head
models.

Approach
The ZI is an openly available MATLAB-based code package 3 which utilizes graph-

ics processing unit (GPU) acceleration, i.e., parallelization, to minimize the compu-
tation time needed in the FE mesh and lead field generation as well as in interpola-
tion and source localization processes. As part of the ZI package (Appendix B and
C), FreeSurfer to ZI segmentation pipeline, which is described in section 3.2.1 is
developed to enable importing the brain segmentation to ZI.

4.2.1 Overall results

In order to validate the functionality of ZI, inversion tests were conducted using
Brainstorm’s EEG and epilepsy dataset (with a consent of Prof. Andreas Schulze-
Bonhage, Feiburg, Germany) and simulated EIT datasets concerning the localiza-
tion of a hemorrhage. A high resolution (1 mm) mesh was generated and employed
for reconstructing the activity. Our findings revealed that the reconstructed activ-
ity for the epilepsy dataset is in agreement with the results of Brainstorm software
and ZI is applicable to multilayered and realistic head models. The EIT experiment

3https://www.mathworks.com/matlabcentral/fileexchange/
68285-zeffiro-forward-and-inverse-interface-for-brain-imaging
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successfully localized the hemorrhage.

4.2.2 Results in detail

Figure 4.4 demonstrates the reconstruction of the brain activity with IG hyperprior
for Brainstorm’s EEG and epilepsy tutorial dataset. The surface visualization con-
firms the similarity of the reconstructed activity shown in the tutorial. IG hyper-
prior found more focal and accurate activity compared to G. In addition to the sur-
face visualization, volume cut visualization was obtained to illustrate the depth of
the reconstructed activity, Figure 4.4. Our analysis showed that a realistic and mul-
ticompartment human head model can be utilized in ZI and a similar result with
Brainstorm could be obtained in the case of the tutorial dataset. With GPU acceler-
ation, the computing time required by the different stages of forward modeling and
localizing the brain activity was found to be around one hour.

Figure 4.4 Surface and volume visualization of reconstructed brain activity by IG hypermodels. Left:
the surface reconstruction of brain activity on grey matter. Right: illustration of cutted vol-

umetric reconstruction for IG hyperpriors. The color bars show the amplitude strength with

normalization to one.

In addition to the EEG analysis, EIT inversion test was conducted to localize a
synthetic hemorrhage to show ZI’s potential adaptability to EIT. Averaging recon-
struction for randomized source spaces sharing a single resolution was observed to
improve the result compared to the case of a single source space, which is demon-
strated in Figure 4.5. This result was expected as averaging over multiple resolutions
that can be interpreted to marginalize the discretization error compared to the non-
averaged case. It also suggests that the RAMUS method might be used not only for
EEG/MEG but also for other electromagnetic inverse imaging applications such as
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EIT.

Figure 4.5 Visualization of an EIT reconstruction obtained for a synthetic conductivity distribuion includ-

ing a hemorrhage. A population head model with 72 CEM electrodes were employed in the

inversion test. A 30 mm diameter sphere as ROI is determined for hemorrhage. Left: An

average reconstruction obtained using the IAS MAP multiresolution inverse tool and multi-

ple discretizations of the piecewise constant approximation for the conductivity. Right: A

widespread reconstruction for non-averaged case which has been obtained using a single

decomposition. The color bars shows the amplitude strength with normalization to one.

4.2.3 Summary

The core finding of this study was that advanced multicompartment head models can
be generated and processed using the H(div) forward and HBM source localization
approaches of this study together with GPU acceleration, and that sufficiently short
computing times can be achieved with respect to the potential clinical applications of
the present methodology. The inversion results suggest that the pipeline is valid and
performs appropriately with respect to both accuracy and computational efficiency.
The multicompartment processing is enabled by the FE approach applied in ZI. It
allows a flexible usage and combination of the forward and inverse techniques as well
as the adaptation and adjustment of the conductivity values and activity of different
parts of the brain not only in the case of EEG and MEG but also in other applications
such as in EIT, potentially in a combined fashion, where two or more inverse imaging
modalities are used simultaneously. In particular, for this work, the introduction of
the ZI was a crucial step, which enabled using the forward approach introduced in
study I in the development of source localization methods which constituted the
latter part, i.e., studies III–V.

Limitations and Weaknesses
This study, however, is subjected to some limitations. Firstly, the current version
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of ZI can generate mesh for the isotropic head model, while mesh generation routine
can also be developed for anisotropic model including the white matter electrical
conductivity. Secondly, ZI is limited to FreeSurfer atlases, i.e., Desikan-killiany and
Destrieux, however, further anatomical atlases can be imported to ZI to improve
connectivity analysis.

Outlook
As a future study, further investigations would be required to validate ZI for var-

ious experimental measurements and clinical applications. As a potential topic, the
mesh generation routine in ZI can be extended to create anisotropic model from dif-
fusion tensor imaging (DTI) data. Furthermore, the inversion techniques coupled to
ZI can be improved for more robust source localization, particularly for the subcor-
tical domain. Developing sampling-based posterior exploration techniques, e.g., the
Gibbs sampler for HBM inverse solver can be also taken as a future work for source
localization in ZI.

4.3 Outline of study III

Motivation & Goal
This research work aims to propose an advanced inverse modeling technique, i.e.,

the randomized multiresolution scanning (RAMUS) method. RAMUS is based on
(i) multiresolution concept for localizing active sources within different layers of the
brain and to minimize the depth bias for final reconstruction, and (ii) randomiz-
ing the source space to marginalize the discretization and optimization errors and,
thereby, to enhance the reconstruction quality obtained at each resolution level. RA-
MUS associates with sparse source space which plays a significant role in distinguish-
ing weak subcortical activity.

Approach
RAMUS utilizes the IAS MAP estimation technique to detect the cortical and

weakly distinguishable subcortical activity for a given resolution and source space.
Herein, numerical experiments for the spherical model are conducted to evaluate the
performance of RAMUS for superficial and deep source localization.
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4.3.1 Overall results

We found RAMUS as an efficient and robust source localization technique, as it cor-
rects the inaccuracies of depth bias, otherwise present in the MAP estimates, via the
multiresolution technique, especially, for localizing deep-lying sources far away from
the sensors’ locations. The numerical results obtained with a spherical model show
that a sparse source space and a coarse-to-fine progression over multiple resolution
levels play a significant role in the challenging task of detecting the deep activity.

The findings reveal that, when RAMUS is equipped with the IG hyperprior,
it can distinguish both superficial and deep activity, whereas, with G hyperprior
it tends to be biased towards superficial activity. Furthermore, classical minimum
norm estimate (MNE) technique was compared with RAMUS. The results demon-
strate that MNE has a greater tendency towards superficial sources and, therefore, it
did not distinguish appropriately the deep activity. The sparsity factor, i.e., the ratio
of the source counts between two subsequent levels, was observed to be one of the
key factors affecting the performance of RAMUS. Of the two values of the sparsity
factor, 8 and 5, the former one was found to be favorable in finding the deep activity.
Additionally, we applied RAMUS method to a realistic head model, e.g., population
head model (PHM) using two synthetic sources with respect to superficial and tha-
lamic activity. RAMUS was found to reconstruct both superficial and simultaneous
deep activity for the realistic and multilayered head model.

4.3.2 Results in detail

Figure 4.6 shows the numerical analyses for spherical Ary model, where the recon-
structed sources (purple) are depicted with respect to the actual/synthetic sources
(red) for the superficial and deep layers. As can be observed from the results, RA-
MUS technique with IG hyperprior could detect the activity for both superficial and
deep sources. The findings pointed out that utilizing G hyperprior is not beneficial
for localizing deep-lying sources, while the active superficial sources can be detected
and the position and orientation of the reconstructed sources are in line with the ac-
tual ones, particularly, in the superficial case. Additionally, we implemented MNE
approach to compare the results with the performance of RAMUS technique. MNE
did not detect the deep activity and the reconstructed source was relatively deviated
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from the actual one, Figure 4.6.

IG G MNE

Figure 4.6 Visualization of numerical experiments on spherical model. Each visualization corresponds

to two sources, i.e., the actual one (red) and center of mass of the reconstruction (purple)

within ROI for superficial and deep area. Left: A reconstruction obtained with IG hyperprior.

Center: A reconstruction obtained with G hyperprior. Right: A reconstruction obtained with

MNE as the source localization approach.

The accuracy of RAMUS reconstructions for the cases in Figure 4.6 is shown
in Figure 4.7 via histograms with respect to the position (mm), orientation (deg),
amplitude, and the relative maximum of the current density corresponding to the
global maximum which refers to a measure for the detectability of the source within
the ROI. In the case of IG hyperprior reconstruction, the accuracy for superficial
sources is a median of 8 mm for positioning accuracy, angle difference of 4.5° and
logarithmic (basis log10) relative amplitude error -0.25, i.e., the amplitude of the
reconstructed source is 56% of the actual source. For deep source reconstruction,
the positioning, orientation, and amplitude accuracy found to be 15 mm, 12°, -0.65
(22% amplitude), respectively. Additionally, about 50% of the global reconstruction
in median is obtained for deep source. The histogram results for G hyperprior and
MNE approach are in line with reconstruction’s results, in which both cases were
successful to distinguish only the superficial sources.

4.3.3 Summary

This study formulated and analyzed the RAMUS method and showed its capabil-
ity to localize both superficial and deep activity simultaneously. Our findings sug-
gest that the multiresolution approach is necessary following from the enhanced
detectability of deep sources at lower resolution levels. Namely, the deep activity
component was found only when a sufficiently sparse source space, with dimension
comparable to the number of data entries, i.e., in a case where the lead field matrix
has a trivial or low-dimensional null-space, was present in the reconstruction process.
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(IG) Superficial sources (IG) Deep sources

(MNE) Superficial sources (G) Deep sources

Figure 4.7 Histogram illustrations of numerical analysis depicted in Figure 4.6 for cases of IG and G

hyperpriors and MNE approach. The histograms show the accuracy of RAMUS reconstruc-

tions with respect to the source position (mm), angle (◦), amplitude, and relative maximum of

the source within the ROI with respect to the global maximum for both superficial and deep

sources.

Figure 4.8 The illustration of reconstructed primary current distribution on population head model (PHM).

A realistic and multicompartment head model is employed for numerical modeling of superfi-

cial source, namely, somatosensory P20/N20 and deep source for thalamic activity.

Figure 4.8 shows that RAMUS was found to be applicable to a realistic and multi-
layered head model, i.e., PHM, where superficial activity for P20/N20 component
and simultaneous deep activity were found to be visible.

Limitations & Weaknesses
The results of this study were obtained with a certain range of scale and shape

parameter values to reconstruct focal activity, however, the deep activity was not
distinguished properly for the values outside the suggested range of parameters. Fur-
thermore, the numerical analysis with the realistic head model, PHM, is only con-
cerned with simultaneous superficial and deep activity for simulated P14/N14 and
P20/N20 sources.

Outlook
As a future work, RAMUS can be applied to real datasets, namely, the somatosen-
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sory evoked potential (SEP) of median nerve stimulation to reconstruct the P20/N20
component at Brodmann area 3b and simultaneous deep activity at the thalamus
corresponding P14/N14 component. A comparison of RAMUS with other inverse
modeling techniques would be of paramount importance, particularly for deep brain
source localization. Additionally, deeper investigation of the hyperprior decomposi-
tion parameters and finding further approaches for updating the initial guess for the
IAS MAP estimation technique would be vital to obtain the focal reconstruction.

4.4 Outline of study IV

Motivation & Goal
This study introduced prior-over-measurement signal-to-noise ratio (PM-SNR)

model (section 3.1.6) to improve the performance of the HBM for source localization
via finding the appropriate prior weight with respect to the noise level.

Approach
PM-SNR is determined by the G or IG hyperprior; given the shape parameterβ,

it can be associated with the value of the scale parameter θ0. In this study, we con-
centrated on selecting θ0 with the shape parameter fixed toβ= 3, which was shown
to constitute an approximative balance point, where G and IG hyperprior perform
similarly. PM-SNR was defined as the square-root of the total scale, i.e., θ0 multi-
plied by the number of source positions in the model. PM-SNR was interpreted as
a measure of latent error sources, e.g., modeling errors and algorithm inaccuracy,
the presence of which necessitates increasing the prior strength with respect to the
observed error level.

4.4.1 Overall results

We utilized SEP and SEF measurements to investigate the applicability and accuracy
of HBM when the scale parameter was selected based on the PM-SNR. In the experi-
ments, our goal was to detect the cortical and subcortical originator of the P20/N20
component located in the Brodmann area 3b and ventral posterolateral (VPL) tha-
lamus (Figure 4.10), respectively. Both synthetic and experimental EEG and MEG
measurement data were used. The MAP and CM estimates were evaluated via the
IAS MAP iteration and an MCMC sampler, respectively. Additionally, the classical
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MNE and MCE approaches were used as alternative reconstruction techniques.

4.4.2 Results in detail

The findings revealed that both MAP and CM estimates with selected set of param-
eters can reconstruct the generator of P20/N20 component at the posterior bank of
the central sulcus. Figure 4.9 illustrates the MAP estimation results in the case of
SEP and SEF. The scale parameters applied in the experiments (from θ0 = 1E − 12
to θ0 = 1E − 8) followed roughly our PM-SNR model regarding, both synthetic
and experimental data, the number of source positions N , the default level of Brain-
storm software’s MNE solver, and the estimated latent method-related and modeling
errors.

An important finding was that the scale parameter predicted via PM-SNR was
appropriate for both the dense and sparse model applied in reconstructing the cor-
tical and subcortical originator of the P20/N20 component. The MCMC sampler
allowed for a lower PM-SNR than the IAS MAP iteration, which was interpreted to
be due to reduced latent errors in the reconstruction process, i.e., the sampling tech-
nique is more accurate than the gradient-based IAS technique. Especially, in the case
of synthetic data, the sampling process was successfully performed with 0 dB PM-
SNR, reflecting the comparably small latent errors of the synthetic data generation
process. The results concerning the scale parameter value also generally matched
appropriately with our previous experience and results [59, 101].

MNE and MCE estimates resulted in less intense source localization estimates
compared to those obtained with HBM. In particular, the deep activity in the thala-
mus was weak with MCE. As MNE corresponds to the first step of the iteration and
MCE to the estimate obtained with G prior and β = 1.5, they can be interpreted
as special cases of HBM, and hence the results highlight the importance of perform-
ing complete IAS MAP process and the proposed balancing of the shape parameter.
Namely, with the choiceβ= 1.5, the maximum of the conditional posterior for the
hyperparameter θ( j+1)

i , found in the third step of the IAS algorithm (section 3.1.5.3)

corresponds to zero, if x ( j )i = 0, explaining the vanishing of the deep or weak activity
in the case of MCE. When the proposed balancing between G and IG is applied, i.e.,
β = 3, the maximum is greater than zero, thus preventing the suppression of the
weak components. To further confirm the validity of our PM-SNR model, we ana-
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Figure 4.9 An illustration of MAP estimate for SEP and SEF dataset. Left: The reconstructed activity

for P20/N20 component at posterior wall of the central sulcus with 72 EEG electrodes at-

tached on the scalp. Right: A visualization of the P20/N20 activity for MEG and with 271

magnetometers.

lyzed the measurements for two more subjects to show the inter-subject variability
of the analysis with respect to the proposed parameterization. The source localiza-
tion outcome of this additional analysis was found to be appropriate but somewhat
less well-localized, which was deemed to be rather due to aspects related to the head
model generation and the measurement process than to the mathematical model per
se. That is, the accuracy was not significantly improved by any parameter choice.

Figure 4.10 Visualization of MAP estimation results obtained with G hyperprior, EEG data and 1 mm FE

mesh. The reconstruction was observed to detect the activity corresponding to the P20/N20

component in Brodmann area 3b, i.e., in the posterior wall of the central sulcus. The red

pin refers to the reference point and green one shows the center of the reconstruction. The

deep activity in the VPL thalamus is reconstructed by employing a sparse source space.

4.4.3 Summary

The activity for both superficial and deep areas corresponding to the P20/N20 com-
ponent was reconstructed accordingly via HBM together with the parametrization
approach and PM-SNR model proposed in this study. Based on the results, we could
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motivate a robust and nearly resolution-independent approach for predicting the hy-
perprior of the IAS MAP iteration, and show that, with the parameters predicted by
the PM-SNR model, this iteration can perform well in comparison to the classical
MNE and MCE techniques in source localization. Our findings are significant re-
garding the potential future development of source localization techniques, where a
single solver might be utilized at multiple resolution levels, which is the case, e.g., in
the RAMUS technique.

Limitations & Weaknesses
The results of this study remain as a proof-of-concept, in which, an estimated

range of parameters are potentially applicable for the SEP and SEF applications. Fur-
thermore, the model for hyperprior parametrazation is only focused on CG-HBM
as a reconstruction technique.

Outlook
As a future application, the proposed model for hyperprior parametrezation can

be applied to more and different types of dataset, e.g., auditory evoked responses [86]
or combined E/MEG. From the mathematical perspective, further developments
toward source localization techniques for multiple resolution levels would also be
essential.

4.5 Outline of study V

Motivation & Goal
In this study, we aim at investigating the performance of RAMUS to analyze

the network of SEP components including simultaneous cortical and subcortical
activity at different latencies between 14–30 ms for three adult subjects. Our goal
was to confirm the numerical results of study III experimentally, to perform a more
comprehensive analysis of finding the deep activity, and reconstructing a complete
network of consecutive SEP components.

Approach
Herein, RAMUS (subsection 3.1.5.6) is applied to detect both cortical and sub-

cortical activity [101] utilizing a realistic and multicompartment head model and
experimental applications, i.e., median nerve stimulation.
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4.5.1 Overall results

Akin to study IV, the head models included an accurate segmentation of the subcor-
tical layers, obtained via FreeSurfer’s Aseg atlas, in order to achieve the best possible
forward modeling and source localization accuracy. Our analysis covered altogether
three subjects.

The originators of the early SEP responses P14/N14, P16/N16, P18/N18, P20/
N20, P22/N22, and P30/N30 which are investigated in this study, have been cov-
ered, e.g., in [22, 23, 24, 29, 75, 82, 87, 90, 121]. Of these responses, we especially
concentrated on P14/N14 and P20/N20, i.e., the earliest components of subcortical
and cortical activity, respectively, as similar cases were already analyzed numerically
in study III, and as the literature availability for those is comparably wide.

The results demonstrate that the generator of the P14/N14 component stems
mainly from the medial lemniscus of brainstem, where the afferent volley travels to-
wards the thalamus. The cortical surface included a weak projection, which might
be due to the preceding ongoing trials during the stimulation process. The recon-
structed activity for P20/N20 component was found to be simultaneously concen-
trated at the Brodmann area 3b and VPL thalamus. The other reconstructed com-
ponents were found to reflect the movement of the afferent volley upwards from the
brainstem to the cortex.

The MNE and MNE-RAMUS were used as alternative reconstruction techniques.
The MNE reconstruction is obtained as a single step of IAS and MNE-RAMUS
refers to multiresolution implementation of RAMUS and using MNE instead of IAS
as the optimization technique. MNE did not find the deep activity, whereas MNE-
RAMUS could distinguish it appropriately for P14/N14. However, for P20/N20
component, the deep activity obtained with MNE-RAMUS is more distributed over
the thalamic region compared to RAMUS.

4.5.2 Results in detail

The consecutive SEP components P14/N14, P16/N16, P18/N18, P20/N20, P22/
N22, and P30/N30 were analyzed for three different subjects in this study. The ex-
perimental data for subject (I) is openly available at the Zenodo portal [93]. Herein,
the results for subject (I) are presented and highlight the P14/N14 and P20/N20
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components as early responses for subcortical and cortical activity, respectively.
As can be seen in Figure 4.11, RAMUS found strong activity for deep structures,

i.e., brainstem and thalamus for early P14/N14 component. In particular, deep ac-
tivity mirrors afferent volley travelling along medial lemniscus to the thalamus. In
addition to the deep activity, a weak projection was detected on cortical surface, no-
tably, at parietal lobe for P14/N14. The cortical projection might occur due to the
ongoing processing of the preceding trial even when trying to reduce phase-locking
by means of the randomization of the inter-stimulus interval when the stimulation
is still going on with later trials.

The generator of P20/N20 component was detected at Brodmann area 3b. More-
over, RAMUS distinguished simultaneous subcortical activity at contralateral VPL
thalamus at 20 ms. The findings for MNE and MNE-RAMUS are demonstrated
in Figure 4.11. As can be observed, MNE was not very favourable to reconstruct
the deep activity for both P14/N14 and P20/N20 originators, while MNE-RAMUS
could reconstruct the activity with respect to the P14/N14 and P20/N20 compo-
nents at the subcortical region. The reconstructed subcortical activity by MNE-
RAMUS was found to be distributed widely over thalamus and not very focal com-
pared to RAMUS technique.

Figure 4.12 demonstrates the RAMUS reconstructions for sequential early com-
ponents P16/N16, P18/N18 and late components, i.e., P22/N22 and P30/N30. At
16 ms, the activity is mainly concentrated at subcortical domain. The activity stems
from lower medulla, i.e., cuneate nucleus and also it was detected at anterior and ven-
tral thalamus. At 18 ms, the activity found to be relatively widespread at brainstem
where stronger amplitude was distinguished at lower medulla, i.e., dorsal column
to VPL thalamus. Correspondingly, for P18/N18 component, weak cortical pro-
jection was distinguished at occipital lobe, assumably, due to the measurement or
stimulation uncertainties.

Following that, the cortical activity for P22/N22 is reconstructed at the crown
of postcentral gyrus and simultaneous deep activity found to be at VPL thalamus.
At 30 ms, cortical activity was reconstructed more distributed, particularly towards
frontal lobe (BA4 and BA6). Simultaneously, subcortical activity was found to be
more concentrated at left VPL thalamus. As a potential application for RAMUS
performance, the activity was reconstructed for the simulated source at superiortem-
poral gyrus corresponding auditory evoked responses and following subcortical ac-
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tivity at inferior colliculus, Figure 4.13.

P14/N14

RAMUS MNE MNE-RAMUS

P20/N20

RAMUS MNE MNE-RAMUS

Figure 4.11 Illustration of reconstructed cortical and subcortical activity for P14/N14 and P20/N20 com-

ponents. The results obtained via RAMUS, MNE, and MNE-RAMUS, the last one incorpo-

rates with MNE instead of the IAS as an optimization algorithm.

P16/N16 P18/N18 P22/N22 P30/N30

Figure 4.12 Visualization of reconstructed cortical and subcortical activity via RAMUS for earlier laten-

cies of SEP measurement, i.e., 16 and 18 ms and late latencies which occur after 20 ms,

i.e., 22 and 30 ms. The cortex is visualized from frontal view and subcortical domain is

demonstrated from lateral and posterior view for early and late component, respectively.

The color bar demonstrates the maximum amplitude normalized to 1 with respect to the

reconstructed activity.

Superiortemporal gyrus Inferior colliculus

Figure 4.13 Visualization of simulated reconstructed activity for auditory steady-state responses (ASSR)

via RAMUS at superior temporal gyrus and simultaneous activity at inferior colliculus.
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4.5.3 Summary

The findings demonstrate that RAMUS [101] is a potential approach for reconstruct-
ing both cortical and weakly distinguishable activity in experimental studies utiliz-
ing realistic head models with subcortical structures. The results showed that the
multiresolution and randomized decomposition properties of RAMUS play a sig-
nificant role in detecting the activity at different depths, i.e., cortical and subcortical
domain. In particular, RAMUS could detect the far-field activity at medial lemnis-
cus at 14 ms and reconstruct the originator of evoked responses at 20 ms for both
cortical and simultaneous subcortical activity. Results obtained with three subjects
confirm the findings. Of these, the superior outcome was obtained in subject (I),
while subjects (II) and (III) show some signs of lower reconstruction accuracy, for
example, a significant cortical projection prior to 20 ms, which was deemed to be
due to a somewhat lower pre-processing quality, measurement error, or remaining
phase-locking to the preceding trial.

Limitations & Weaknesses
The results in this study show the performance of RAMUS for SEP application.

Further analysis would be necessary to present the performance of RAMUS in a
wider scope, i.e., utilizing different measurements. The focality and accuracy of the
RAMUS is case-specific due to the complexity of brain and source configuration, and
it also depends on the multiresolution decomposition or the optimization method
used in RAMUS.

Outlook
Together these results also motivate the potential use of RAMUS for more datasets

or in other modalities such as MEG or combined E/MEG or with other evoked mea-
surements, e.g., auditory evoked field (AEF) analysis, ASSRs [86]. Another future
direction would be investigating the role of cerebellum in median nerve stimulation
[3, 117], especially, in analysis of somatosensory networks.
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5 CONCLUSIONS

The studies conducted in this thesis focused on combining advanced forward and
inverse solvers as a platform to reconstruct the primary current density of neural
activity from the strongly folded tissues of the brain. The work sheds light on de-
veloping an accurate FEM-based H(div) forward model [79] for realistic and multi-
compartment human head model to estimate the electric and magnetic field of the
brain activity. It shows how to interface a GPU-accelerated and multicompartment
FEM forward solver with inverse algorithms, and how to effectively utilize such a
combination in the inversion process via multiple resolution levels and the RAMUS
method. The Zeffiro Interface (ZI) [59] was created during this study and enhances
detecting cortical and subcortical activity [67, 105], particularly, via the combina-
tion of the multicompartment architecture of the solver and the multiresolution
[72] approach introduced for source localization. This is scientifically important
and timely, since the deep activity has recently been suggested to be distinguishable
from non-invasive measurements [95, 109]. Furthermore, by establishing a pipeline
between the FreeSurfer software suite and ZI, an advanced head segmentation can
be imported to ZI. The segmentation includes an accurate cortical parcellation and
atlas of the subcortical structures, and, thereby, enabled the experimental analysis of
EEG and MEG data. An important enabling step towards this experimental anal-
ysis was provided by the concept of PM-SNR [100] which was found to provide a
robust and nearly resolution-independent way for selecting the hyperprior for the
conditionally Gaussian HBM.

The following outcomes were obtained in this work:

• The FEM-based approach was found to be advantageous for complex and mul-
ticompartment head models with variable cortical thickness, making it attrac-
tive for subjects belonging to any age group. Namely, the H(div) model allows
using adaptive stencils, which are applicable to thin cortices, e.g., in children.

• The computational cost of the forward solver was tackled using GPU-acceleration,
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which allows generating a FE mesh, running the forward simulation and in-
terpolating it for a high 1 mm resolution [103] within an hour which makes
the forward solver flexibly applicable in experimental analysis.

• ZI was equipped with a pipeline for importing a head segmentation which is
created by the FreeSurfer software suite based on MRI data, including a corti-
cal parcellation and subcortical atlas. The multicompartment architecture of
ZI allows creating an arbitrary number of compartments which together with
the segmentation provides grounds for accurate analysis, where the type of the
activity within the volumetric FEM-based approach of ZI was found to enable
the lead field creation for EIT, in which, the unknown is a scalar conductivity
distribution inside the head. This shows that ZI is a potential platform for a
wider variety of imaging modalities.

• The utilization of ZI with experimental data showed that it can be successfully
used with realistic head models and studies including multiple subjects.

• Built upon ZI’s FEM-based routines, the RAMUS (randomized multiresolu-
tion scanning) [101] source localization approach was found to localize both
cortical and subcortical activity, which was shown both with numerically sim-
ulated and experimental measurement data. The analysis of RAMUS tech-
nique has provided deeper insights into source localization, in particular, to
avoid depth bias via averaging the noise over multiple resolution levels and
randomized decompositions.

• The PM-SNR model was found to be an important concept for selecting the G
or IG hyperprior for the conditionally Gaussian HBM model and, in particu-
lar, the IAS MAP estimation routine and RAMUS. It was found to be nearly
resolution-independent in the experiments and, thereby, multiresolution pro-
cesses can be potentially assisted with the PM-SNR concept.

The results of this work motivate many numerical and experimental future research
directions. The findings were found to be promising to consider RAMUS method
for motivating further research on developing RAMUS as a source localization tech-
nique, for example, investigating the possibilities to improve the structure and im-
plementation of the multiresolution decomposition, to use a similar approach with
a variety of source localization methods as motivated by the improved outcome of
RAMUS vs. IAS and MNE-RAMUS vs. MNE [52], or to compare the performance
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of RAMUS with classical source localization methods such as, beamformer [110]
or sLORETA [89], which are extensively utilized in deep source localization. An
important future work would be to advance the experimental research on differ-
ent evoked measurements, namely, auditory evoked responses, e.g., auditory steady-
state responses (ASSRs)[86], and combined E/MEG modality. The potential of ZI
to create and merge forward models or lead field matrices for different modalities
might be investigated further.
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A RANDOMIZED MULTIRESOLUTION

SCANNING (RAMUS) ALGORITHM

1. Select the optional number of the resolution levels L and sparsity factor (the
ratio of the source count between the resolution levels) s . The number of the
sources at the given resolution level will be K� =K s (�−L), where �= 1,2, . . . , L
denotes the index of the resolution level. The larger value of the � represents
the finer resolution level.

2. For each resolution level �= 1,2, . . . , L, a random uniformly distributed set of
center points �p1, �p2, . . . , �pK�

is created within the active brain compartment.
Then, finding the source point subsets B1, B2, . . ., BK�

and applying the nearest
neighbour for the point interpolation scheme with respect to the center points.
That is, each subset Bj consists of those source positions of the total source
space � , whose nearest neighbor with respect to �p1, �p2, . . . , �pK�

is �pj . The
average number of source positions associated with Bj which is approximately
given by the sparsity factor s . The resolution of this subdivision grows along
with the number of the center points . The unknown parameter is assumed
to be constant in each subset, and the actual source count is assumed to stay
unchanged regardless of the resolution.

3. The first two steps will be repeated to generate a desired number, D , of inde-
pendent multiresolution decompositions S1, S2, . . ., SD each consisting of
sequentially generated resolution levels from 1 to L.

4. Start the reconstruction process with the decomposition S1 and a suitably
chosen initial guess x(0). (4) For decomposition Sk , find a reconstruction x(�)

with the IAS MAP technique with the initial guess x(�−1) for the resolution
levels �= 1,2, . . . , L.

5. After going through all the decompositions, obtain the final estimate for the
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decomposition (basis) k as the normalized mean

x(k) =
L∑
�=1

x(�) /
L∑
�=1

s (L−�), (A.1)

where the denominator is due to the need to balance out the effect of the mul-
tiplied source count following from the interpolation of a coarse level estimate
to a denser resolution level.

6. If k < D , move to the next decomposition, i.e., update k → k + 1, and repeat
the previous step with the initial guess x(k−1) for the resolution level �= 1.

7. Obtain the final reconstruction as the mean:

x
(k)
=

1
D

D∑
k=1

x(k). (A.2)
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B SCRIPT OF SEGMENTING THE BRAIN

COMPARTMENTS FROM FREESURFER

SUBJECT_DIR = "FreeSurfer input directory (freesurfer_subjects)"
SUBJECT = "subjectid"
OUT_DIR = "Output directory"

%Reconstructing the data out of T1-weighted data including subcortical

# -i <one slice in the anatomical dicom series> \
# -s <subject id that you make up> \

recon-all -s filename -i file.nii -all

%Convert any surface to ascii file:

mris_convert $SUBJECT_DIR/$SUBJECT/surf/lh.pial $OUT_DIR/lh.pial.asc
mris_convert $SUBJECT_DIR/$SUBJECT/surf/rh.pial $OUT_DIR/rh.pial.asc
mris_convert $SUBJECT_DIR/$SUBJECT/surf/rh.white $OUT_DIR/rh.wm.asc
mris_convert $SUBJECT_DIR/$SUBJECT/surf/lh.white $OUT_DIR/lh.wm.asc

%Extract subcortical structure

mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 4 $OUT_DIR/lh_Lateral-Ventricle.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 5 $OUT_DIR/lh_Inf-Lat-Vent.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 7 $OUT_DIR/lh_CerebellumWM.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 8 $OUT_DIR/lh_CerebellumCortex.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 10 $OUT_DIR/lh.thalamus.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 11 $OUT_DIR/lh.caudate.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 12 $OUT_DIR/lh.putamen.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 13 $OUT_DIR/lh.pallidum.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 14 $OUT_DIR/3rd-Ventricle.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 15 $OUT_DIR/4th-Ventricle.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 16 $OUT_DIR/Brainstem.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 17 $OUT_DIR/lh.Hippocampus.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 18 $OUT_DIR/lh.Amygdala.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 26 $OUT_DIR/lh.Accumbens.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 28 $OUT_DIR/LVentral_DC.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 30
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$OUT_DIR/LVessel.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 31 $OUT_DIR/LChoroid_plexus.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 43 $OUT_DIR/rh_Lateral-Ventricle.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 44 $OUT_DIR/rh_Inf-Lat-Vent.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 46 $OUT_DIR/rh_CerebellumWM.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 47 $OUT_DIR/rh_CerebellumCortex.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 49 $OUT_DIR/rh.thalamus.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 50 $OUT_DIR/rh.caudate.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 51 $OUT_DIR/rh.putamen.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 52 $OUT_DIR/rh.pallidum.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 53 $OUT_DIR/rh.Hippocampus.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 54 $OUT_DIR/rh.Amygdala.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 58 $OUT_DIR/rh.Accumbens.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 60 $OUT_DIR/RVentral_DC.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 62
$OUT_DIR/RVessel.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 63 $OUT_DIR/RChoroid_plexus.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 251 $OUT_DIR/CC_posterior.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 252 $OUT_DIR/CC_Mid_posterior.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 253 $OUT_DIR/CC_Central.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 254 $OUT_DIR/CC_Mid_Anterior.asc
mri_mc $SUBJECT_DIR/$SUBJECT/mri/aseg.mgz 255 $OUT_DIR/CC_Anterior.asc

%Visualizing the label numbers correspond to each structure:

#freeview -v $SUBJECT_DIR/$SUBJECT/mri/orig.mgz
$SUBJECT_DIR/$SUBJECT/mri/aseg.mgz:colormap=lut:opacity=0.4�→

%Extracting the strip skull and other outer non-brain tissue

mri_watershed -useSRAS -surf $SUBJECT_DIR/$SUBJECT/surf
$SUBJECT_DIR/$SUBJECT/mri/orig_nu.mgz $SUBJECT_DIR/$SUBJECT/trash/trash.mgz�→

mris_convert $SUBJECT_DIR/$SUBJECT/surf_outer_skin_surface $OUT_DIR/outer_skin.asc
mris_convert $SUBJECT_DIR/$SUBJECT/surf_outer_skull_surface $OUT_DIR/outer_skull.asc
mris_convert $SUBJECT_DIR/$SUBJECT/surf_inner_skull_surface $OUT_DIR/inner_skull.asc

%.annot files
#After Freesurfer processes a subject, in the subject's /label directory, there are

.annot files containing the parcellation data for each hemishere.�→

#?h.aparc.annot files contain the desikan_killiany.gcs parcellation scheme
#(36 labels)
#?h.aparc.a2009s.annot files contain the destrieux.simple.2009-07-28.gcs
#scheme (76 labels)
#?h.aparc.DKTatlas.annot correspond to the DKTatas40.gcs scheme

%Cortical Parcellation
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mri_annotation2label --subject $SUBJECT --sd $SUBJECT_DIR --annotation aparc.a2009s
--hemi lh --ctab aparc.annot.a2009s --outdir $OUT_DIR/lh.aparc_76�→

mri_annotation2label --subject $SUBJECT --sd $SUBJECT_DIR --annotation aparc.a2009s
--hemi rh --ctab aparc.annot.a2009s --outdir $OUT_DIR/rh.aparc_76�→

mri_annotation2label --subject $SUBJECT --sd $SUBJECT_DIR --annotation aparc --hemi lh
--ctab aparc.annot --outdir $OUT_DIR/lh.aparc_36�→

mri_annotation2label --subject $SUBJECT --sd $SUBJECT_DIR --annotation aparc --hemi rh
--ctab aparc.annot --outdir $OUT_DIR/rh.aparc_36�→

%The data in the .annot files can be read using the matlab script

matlab -nodisplay -nosplash -nodesktop -r "dir_name =
'$SUBJECT_DIR/$SUBJECT/';[vertices,label,colortable]�→

=read_annotation([dir_name '/label/lh.aparc.a2009s.annot']);save color_table_lh_76.mat
colortable label vertices; [vertices,label,colortable]=read_annotation([dir_name
'/label/rh.aparc.a2009s.annot']); save color_table_rh_76.mat colortable label
vertices; [vertices,label,colortable]=read_annotation([dir_name
'/label/lh.aparc.annot']); save color_table_lh_36.mat colortable label vertices;
[vertices,label,colortable]=read_annotation([dir_name '/label/rh.aparc.annot']);
save color_table_rh_36.mat colortable label vertices;exit;";

�→
�→
�→
�→
�→
�→

#Create matlab version colortables.

%Merging labels

mri_mergelabels -d $OUT_DIR/lh.aparc_76/ -o $OUT_DIR/lh_labels_76.asc
mri_mergelabels -d $OUT_DIR/rh.aparc_76/ -o $OUT_DIR/rh_labels_76.asc
mri_mergelabels -d $OUT_DIR/lh.aparc_36/ -o $OUT_DIR/lh_labels_36.asc
mri_mergelabels -d $OUT_DIR/rh.aparc_36/ -o $OUT_DIR/rh_labels_36.asc
matlab -nodisplay -nosplash -nodesktop -r "dir_name = '$OUT_DIR/';a = dlmread([dir_name

'lh_labels_76.asc'],' ',2,0);a = a(:,[1,3,5,7]);save -ascii lh_points_76.dat a; a
= dlmread([dir_name 'rh_labels_76.asc'],' ',2,0);a = a(:,[1,3,5,7]); save -ascii
rh_points_76.dat a; a = dlmread([dir_name 'lh_labels_36.asc'],' ',2,0);a =
a(:,[1,3,5,7]); save -ascii lh_points_36.dat a; a = dlmread([dir_name
'rh_labels_36.asc'],' ',2,0);a = a(:,[1,3,5,7]); save -ascii rh_points_36.dat
a;quit";

�→
�→
�→
�→
�→
�→
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C A FILE FOR IMPORTING THE SEGMENTED

BRAIN COMPARTMENTS TO ZI

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEADER START %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Do not change or remove this header. This file allows one to import a
surface segmentation consisting of a set of ASCII files to the Zeffiro
Interface (ZI), Copyright (c) Sampsa Pursiainen, 2018. For importing, this
file should be placed in the folder containing the files and opened via
ZI's import menu item 'Import segmentation from folder (ASCII)'. The files
can be either DAT files containing either points or triangles, or ASC
files exported from the FreeSurfer Software Suite, Copyright (c)
Freesufer, 2013.

In the former case, the folder must contain two files per each triangular
tissue surface mesh (filename_points.dat and filename_triangles.dat),
whereas in the latter case a single file is needed (filename.asc) per a
mesh. Each line in the list below corresponds to a single mesh. Each
compartment in the segmentation is described by one or more meshes which
will be automatically merged in the import process. The compartment
identifiers are the following:

sensor_points, sensor_directions, white_matter, grey_matter, csf, skull,
skin, detail_1, detail_2, ..., detail_22.

Of these, a mesh for each tissue compartment is specified by a single
comma-separated line of the following form:

filename, compartment name, scaling, sigma, priority, activity, name,
invert, extension

Here, the filename appears without any extensions; compartment_name is as
in the list above, scaling, sigma and priority parameters are as in ZI's
segmentation window with 0 corresponding to the default value; activity is
a number describing the activity of the compartment (0 = inactive, 1 =
constrained activity, 2 = unconstrained activity, or 3 = inner cortex [for
white_matter only]); name is the compartment name as it appears in ZI;
invert is for inverting an inward-pointing surface normal (0=not inverted,
1=inverted); and extension is either ASC (asc) or DAT (dat) for FreeSurfer
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and other meshes, respectively.

In the special case of sensor_points and sensor_directions, it is only
possible to use the DAT format. Each one of these is imported via a single
file (filename.dat), and the line for importing is of the form

filename, compartment name, scaling, x-translation, y-translation,
z-translation, xy-rotation, yz-rotation, zx-rotation

The scaling, translating and rotation parameters are as they appear in
ZI's segmentation tool, and selecting 0 for them, means that the default
value will be used.

Any compartment-specific parameter can be imported only once. In case
there are multiple definitions in the list for a single compartment, only
the first one counts.

The segmentation list starts after the header and can be edited freely by
the user.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEADER END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
electrodes, sensor_points, 0, 0, 0, 0, 0, 0, 0 ,0,0,0
lh_CerebellumCortex, detail_1, 1, 0.33, 0, 2, Cerebellum cortex, 0, ASC,0,0,0
rh_CerebellumCortex, detail_1, 1, 0.33, 0, 2, Cerebellum cortex, 0, ASC,0,0,0
lh_CerebellumWM, detail_2, 1, 0.33, 0, 0, Cerebellum WM, 0, ASC,0,0,0
rh_CerebellumWM, detail_2, 1, 0.33, 0, 0, Cerebellum WM, 0, ASC,0,0,0
lh.Amygdala, detail_3, 1, 0.33, 0, 2, Amygdala, 0, ASC,0,0,0
rh.Amygdala, detail_3, 1, 0.33, 0, 2, Amygdala, 0, ASC,0,0,0
lh.thalamus, detail_4, 1, 0.33, 0, 2, Thalamus, 0, ASC,0,0,0
rh.thalamus, detail_4, 1, 0.33, 0, 2, Thalamus, 0, ASC,0,0,0
lh.caudate, detail_5, 1, 0.33, 0, 2, Caudate, 0, ASC,0,0,0
rh.caudate, detail_5, 1, 0.33, 0, 2, Caudate, 0, ASC,0,0,0
lh.Accumbens, detail_6, 1, 0.33, 0, 2, Acumbens, 0, ASC,0,0,0
rh.Accumbens, detail_6, 1, 0.33, 0, 2, Acumbens, 0, ASC,0,0,0
lh.putamen, detail_7, 1, 0.33, 0, 2, Putamen, 0, ASC,0,0,0
rh.putamen, detail_7, 1, 0.33, 0, 2, Putamen, 0, ASC,0,0,0
lh.Hippocampus, detail_8, 1, 0.33, 0, 1, Hippocampus, 0, ASC,0,0,0
rh.Hippocampus, detail_8, 1, 0.33, 0, 1, Hippocampus, 0, ASC,0,0,0
lh.pallidum, detail_9, 1, 0.33, 0, 2, Pallidum, 0, ASC,0,0,0
rh.pallidum, detail_9, 1, 0.33, 0, 2, Pallidum, 0, ASC,0,0,0
lh_Lateral-Ventricle, detail_10, 1, 1.79, 0, 0, Ventricles, 0, ASC,0,0,0
rh_Lateral-Ventricle, detail_10, 1, 1.79, 0, 0, Ventricles, 0, ASC,0,0,0
outer_skin, scalp, 1, 0.33, 0, 0, Scalp, 0, ASC,0,0,0
outer_skull, skull, 1, 0.0064, 0, 0, Skull, 0, ASC,0,0,0
inner_skull, csf, 1, 1.79, 0, 0, Cerebrospinal fluid, 0, ASC,0,0,0
Brainstem, detail_11, 1, 0.33, 0, 2, Brain stem, 0, ASC,0,0,0
CC_posterior, detail_12, 1, 0.14, 0, 0, Cingulate cortex, 0, ASC,0,0,0
CC_Mid_posterior, detail_12, 1, 0.14, 0, 0, Cingulate cortex, 0, ASC,0,0,0
CC_Central, detail_12, 1, 0.14, 0, 0, Cingulate cortex, 0, ASC,0,0,0
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CC_Mid_Anterior, detail_12, 1, 0.14, 0, 0, Cingulate cortex, 0, ASC,0,0,0
CC_Anterior, detail_12, 1, 0.14, 0, 0, Cingulate cortex, 0, ASC,0,0,0
LVentral_DC, detail_13, 1, 0.33, 0, 2, Ventral DC, 0, ASC,0,0,0
RVentral_DC, detail_13, 1, 0.33, 0, 2, Ventral DC, 0, ASC,0,0,0
lh.wm, white_matter, 1, 0.14, 0, 3, White matter, 0, ASC,0,0,0
rh.wm, white_matter, 1, 0.14, 0, 3, White matter, 0, ASC,0,0,0
lh.pial, grey_matter, 1, 0.33, 0, 1, Grey matter, 0, ASC,0,0,0
rh.pial, grey_matter, 1, 0.33, 0, 1, Grey matter, 0, ASC,0,0,0
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A B S T R A C T

The aim of this paper is to advance electroencephalography (EEG) source analysis using finite element method
(FEM) head volume conductor models that go beyond the standard three compartment (skin, skull, brain)
approach and take brain tissue inhomogeneity (gray and white matter and cerebrospinal fluid) into account. The
new approach should enable accurate EEG forward modeling in the thin human cortical structures and, more
specifically, in the especially thin cortices in children brain research or in pathological applications. The source
model should thus be focal enough to be usable in the thin cortices, but should on the other side be more realistic
than the current standard mathematical point dipole. Furthermore, it should be numerically accurate and
computationally fast. We propose to achieve the best balance between these demands with a current preserving
(divergence conforming) dipolar source model. We develop and investigate a varying number of current pre-
serving source basis elements n (n ¼ 1;…;n ¼ 5). For validation, we conducted numerical experiments within a
multi-layered spherical domain, where an analytical solution exists. We show that the accuracy increases along
with the number of basis elements, while focality decreases. The results suggest that the best balance between
accuracy and focality in thin cortices is achieved with n ¼ 4 (or in extreme cases even n ¼ 3) basis functions,
while in thicker cortices n ¼ 5 is recommended to obtain the highest accuracy. We also compare the current
preserving approach to two further FEM source modeling techniques, namely partial integration and St. Venant,
and show that the best current preserving source model outperforms the competing methods with regard to
overall balance. For all tested approaches, FEM transfer matrices enable high computational speed. We imple-
mented the new EEG forward modeling approaches into the open source duneuro library for forward modeling in
bioelectromagnetism to enable its broader use by the brain research community. This library is build upon the
DUNE framework for parallel finite elements simulations and integrates with high-level toolboxes like FieldTrip.
Additionally, an inversion test has been implemented using the realistic head model to demonstrate and compare
the differences between the aforementioned source models.

1. Introduction

In electroencephalography (EEG) source analysis, brain activity is to
be detected via voltage measurements on the scalp surface which leads to
the so-called EEG inverse problem (Brette and Destexhe, 2012). The major
advantages of the EEG include, for example, its high temporal resolution
and noninvasive nature. That is, the measurements can be carried out
fully outside of the head without a need to touch the brain itself or to

apply high-intensity external electromagnetic fields present, for example,
in functional magnetic resonance imaging (fMRI) (Brette and Destexhe,
2012). Because of these reasons, EEG source analysis is now one of the
standard methods also in children, infant and even neonate brain
research (see, e.g. (H€am€al€ainen et al., 2015; Roche-Labarbe et al., 2008)).

The EEG inverse problem is ill-posed, i.e., its solution is non-unique
and sensitive to noise and modeling errors. Consequently, the recon-
struction process necessitates clinical, physical and neurophysiological a
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priori knowledge (Brette and Destexhe, 2012). It is also strongly relying
on the accuracy of the solution to the EEG forward problem, where the
electric potentials, generated by the impressed primary current sources in
the brain, have to be simulated using a realistic head volume conductor
model (Brette and Destexhe, 2012).

This paper aims at developing, implementing and validating a more
accurate and realistic EEG forward approach. We want to strive for head
volume conductor models that go beyond the standard three compart-
ment (skin, skull, brain) approach and take brain tissue inhomogeneity,
e.g., gray and white matter and cerebrospinal fluid (CSF), into account.

In order to solve the EEG forward problem in such realistic geome-
tries, numerical approaches are needed and to guarantee the accuracy of
modeling the neural currents, the source needs to be placed into the thin
cortical layer which is on average only slightly more than 2mm thick
(Griffis et al., 2016; Fischl and Dale, 2000; McGinnis et al., 2011). That is,
the focality of the source model is essential (Brette and Destexhe, 2012;
Pursiainen et al., 2016). The boundary element method (BEM), which is
currently the most extensively used numerical EEG forward modeling
technique, hardly allows modeling of such tissue conductivity in-
homogeneity. Although it is possible to include the distinction of tissue
structures with BEM, this would lead to heavy computational complexity
and significantly high memory demand (Brette and Destexhe, 2012;
Vorwerk et al., 2012). A broader overview of EEG forward modeling
techniques can be found, for example, in (Brette and Destexhe, 2012).

In this article, the forward problem is approached via the finite
element method (FEM) (Braess, 2001). The FEM is known to provide an
accurate modeling framework with advanced computational features for
several applied fields of science and engineering. The FEM has also been
proven to be a feasible method for the EEG forward problem (Marin et al.,
1998; Haueisen et al., 2002; Ramon et al., 2006), where the finite
element (FE) mesh can be generated based on a precise MRI based head
geometry including its internal surfaces and complex 3D conductivity
structures (Papageorgakis, 2017; Pursiainen et al., 2016). It has been
shown that very fine 3D structures need to be modeled, e.g., the CSF and
compact and spongious bone (Papageorgakis, 2017; Montes-Restrepo
et al., 2014). The FEM allows modeling of such complex geometries and,
consequently, it has a great potential regarding future EEG applications.

As the reference model for validation, we use a multi-layer sphere
model and a classical mathematical point dipole determined by its
location, orientation and magnitude, since analytical solutions have been
derived for it (de Munck and Peters, 1993). However, it was also already
shown that the point dipole source results in small, but systematic depth
localization errors due to its over-focal nature when compared to a more
realistic and slightly more extended source model (de Munck et al.,
1988). The point dipole can also be modeledwith its full focality in a FEM
framework using the so-called subtraction approach, but it is known that
this approach is computationally expensive and that numerical errors
might get significant on the boundaries in thin cortices, where sources
are very close to the next conductivity discontinuity (Bertrand et al.,
1991; Awada et al., 1997; Marin et al., 1998; Schimpf et al., 2002;
Drechsler et al., 2009). The computational costs of all direct approaches
presented in this paper including the H(div) technique are very low
compared to the computationally expensive full subtraction approach
(Drechsler et al., 2009) and somewhat similar to each other, since it is
considerably lower than what is needed for generating the transfer
matrix.

In this paper, we will study current preserving H(div) source models,
which are slightly less focal than the standard mathematical point dipole,
but, as will be shown, well-localized enough to be embedded in the thin
cortical structures (Griffis et al., 2016; Fischl and Dale, 2000; McGinnis
et al., 2011) and the even thinner cortices as needed especially in chil-
dren brain research (Li et al., 2014) and/or pathological situations (Seitz
et al., 2014). The issues and sensitivity of the classical St. Venant
(Buchner et al., 1997; Toupin, 1965) and partial integration (Yan et al.,
1991; Weinstein et al., 2000) source models regarding these situations
has recently been observed and studied in (Nüßing, 2018; Medani, 2016;

Medani et al., 2015). The simplest case of the current preserving H(div)
approach is the Whitney (Raviart-Thomas) source model (Bauer et al.,
2015; Pursiainen, 2012) in which the linear Whitney functions constitute
the sources. Recent studies (Pursiainen et al., 2016; Vorwerk et al., 2017;
Tanzer et al., 2005) have shown that the generalized H(div) model results
in a focal and highly exact solution for the EEG forward problem. It is also
a fast technique compared to the full subtraction approach (Drechsler
et al., 2009) as the source modeling process requires effectively the same
computational cost as in the simple classical methods (Bauer et al.,
2015). That is, the source field can be obtained in a fraction of the time
which is required to evaluate the transfer matrix.

In this study, we implemented and validated an adaptable solver into
duneuro1 (Nüßing, 2018; Nüßing et al., 2016; Engwer et al., 2017; Vor-
werk et al., 2017), an open source Cþþ library for solving forward
problems in bioelectromagnetism applications belonging to the open
source toolbox DUNE2 (Blatt and Bastian, 2007; Blatt et al., 2016; Bastian
et al., 2008a; b). DUNE is currently being developed for various different
applications of partial differential equations. For its modular program-
ming interface, it provides a suitable platform for EEG/MEG computa-
tions where the geometrical complexity of the biological tissue structures
has to be taken into account in the modeling process. As a novel design,
we explore how the number of the elements in the source configuration
affects the modeling accuracy. Our interest is, in particular, in the areas
close to the outer gray matter boundary, where the discontinuity in the
electrical conductivity distribution easily causes forward errors. In order
to prevent those, the element patch of the source configuration needs to
be restricted to avoid an overlap with the cerebrospinal fluid (CSF)
compartment.

In the numerical experiments, we find out how the H(div) model
performs with respect to a varying number of current preserving source
basis elements n (n ¼ 1;…;n ¼ 5) in comparison to the St. Venant and
partial integration method. We also give a computed example on how the
adaptivity with respect to n potentially affects source localization inverse
estimates in a realistic multi-compartment head model. The results sug-
gest that the best H(div) source model outperforms the competing
methods with regard to overall balance and that it is especially well-
suited for situations in which the focality of the source model is essen-
tial such as on the boundaries. The best balance between accuracy and
focality in thin cortices is achieved by adaptive H(div) n ¼ 4 (or in
extreme cases even n ¼ 3) basis functions, while in thicker cortices n ¼ 5
is recommended to obtain the highest accuracy by non-adaptive H(div).

This paper is structured as follows: The materials and methods are
described in Section 2 including the H(div) source model, its imple-
mentation into duneuro, and numerical evaluation process. After that,
the results of the numerical experiments are presented in Section 3 and
discussed in Section 4. Finally, the conclusions are summed up in Sec-
tion 5.

2. Materials and methods

2.1. Forward model

The EEG forward problem is to solve the electric potential field u on
the surface ∂Ω of the head model (domain) Ωwith a given source current

density J
!P

and a conductivity tensor distribution σ that is known to be
point-wise symmetric and positive definite (Brette and Destexhe, 2012).
Applying the quasi-static approximation.

The electric potential u can be modeled using the following Poisson
type equation equipped with the zero Neumann boundary condition.
That is, the normal current density on the surface equals zero, as the head
is electrically isolated (Hallez et al., 2007; Brette and Destexhe, 2012):

1 duneuro: http://www.duneuro.org.
2 DUNE: https://www.dune-project.org.
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r � ðσruÞ ¼ r � J!P
in Ω with ðσruÞ � n!¼ 0 on ∂Ω (1)

Multiplying both sides with a test function v, and taking the partial
integral over Ω results in the weak form (Pursiainen et al., 2016)
Z
Ω

rv � ðσruÞdV ¼ �
Z
Ω

v
�
r� J!P�

dV for all v 2 H1ðΩÞ (2)

which consists of two parts: the operator part on the left side and source
part on the right side. Here, H1ðΩÞ denotes the Sobolev space containing
the functions that have square integrable first-order partial derivatives,
i.e., that are in L2ðΩÞ. If the divergence of the primary current density is

square integrable, i.e., if J
!P 2 HðdivÞ ¼ fw!��r � w!2 L2ðΩÞg, the electric

potential u determined by the weak form is unique up to choosing the
ground level (Drechsler et al., 2009). Namely, L2ðΩÞ means the primary
current field is a finite energy.

The domain Ω is subdivided into a set of tetrahedral finite elements
(FEs) (Braess, 2001). It is assumed that the potential u belongs to a
subspace S 2 H1ðΩÞ that is spanned by the FE basis functions. The po-
tential distribution is approximated as the finite sum uh ¼

PN
i¼1ziψ i in

which ψ1;ψ2;…;ψN 2 H1ðΩÞ are piecewise linear nodal basis functions.
Similarly, the primary current distribution is modeled with the H(div)

approach via J
!P

h ¼
PK

j¼1xj w
!

j where w!1; w!2;…; w!K 2 HðdivÞ are the
divergence conforming basis functions (Pursiainen et al., 2016). Associ-

ating uh and J
!P

h with coordinate vectors z ¼ ðz1; z2;…; zNÞ and x ¼ ðx1;
x2;…;xKÞ, the weak form turns to a solvable linear system Az ¼ Gxwhere
A 2 ℝðN�NÞ and G 2 ℝðN�KÞ with

Ai;j ¼
Z
Ω
rψ j �ðσrψ iÞdV and Gi;j ¼

Z
Ω
ψ i

�r � w!j

�
dV : (3)

The measurement vector y for the electrode voltages can be formed as
y ¼ RA�1Gx ¼ Tf , in which f ¼ Gx is a load vector which represents the
activity in the brain and T ¼ RA�1 is a so-called transfer matrix (Gencer
and Acar, 2004; Drechsler et al., 2009). In addition, the matrix R is a
restriction operator for picking the skin potentials at the electrode posi-
tions (Pursiainen et al., 2016). The matrix R denotes the zero potential
level, here the mean of the measurements y. The elements of matrixR are

defined as follows: If the ℓ-th electrode on the boundary ∂Ω is positioned
at the iℓ-th node, Rℓ;iℓ ¼ 1� 1=L. Also, if ℓ 6¼ j, Rℓ;ij ¼ � 1=L. Finally,
Rℓ;j ¼ 0, if the j-th node is not associated with any electrode(Pursiainen
et al., 2016).

2.2. Dipolar sources

In this study, the primary source currents are constructed using syn-
thetic dipolar sources for the linear and quadratic basis functions of
HðdivÞ (Ainsworth and Coyle, 2003). The dipolar moment q! w! of the

basis function w! is defined as q! w! ¼ R
Ωw
! dV . In a tetrahedral FE mesh,

the moment and position of a synthetic dipole can be expressed as
follows:

q! w! ¼ r!Pj � r!Pi�� r!Pj � r!Pi

�� and r! w! ¼ 1
2

�
r!Pi þ r!Pj

�
(4)

in which r!Pi and r!Pj are the position vectors of mesh nodes Pi and Pj
(Pursiainen et al., 2016). The right-hand side matrix G can be formed as

Gψ ; w! ¼
Z
Ω

ψðr � w!ÞdV ¼
sfψ ;Pjg � sfψ ;Pig�� r!Pj � r!Pi

�� (5)

for a given pair ψ , w! of the basis functions with sfψ ;Pg ¼ 1, if ψ corre-
sponds to node P and sfψ ;Pg ¼ 0, otherwise. For more detailed formula-
tion, see e.g., (Pursiainen et al., 2016; Bauer et al., 2015).

For the linear HðdivÞ basis functions, the resulting source dipole is
defined by nodes Pi and Pj that are located on the opposing sides of a
shared face in an adjacent tetrahedron pair. This is referred to as the face
intersecting (FI) orientation. For the quadratic basis, Pi and Pj are
attached by an edge, leading to an edgewise (EW) orientation. As shown
later on, various source configurations can be formed by taking different
combinations of these dipoles.

For constructing the load vector f ¼ Gx for an arbitrary dipole posi-
tion r! and a moment p!, an interpolation technique needs to be applied.
That is, to find coefficients c ¼ ðc1; c2;…; cMÞ such that

Fig. 1. The five-element source configuration near the gray matter boundary. The top row includes a two-dimensional schematic illustration of the dipolar FI (dark
blue) and EW (light green) sources. The images on the left side present the scenario where the sources are not limited in the gray matter area. The restricted version is
presented in the images on the right side, where elements not belonging to the gray matter are excluded to prevent the forward errors.
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p!�
XM
ℓ¼1

cℓ q!w!ℓ
and r!�

XM
ℓ¼1

cℓ r!w!ℓ
: (6)

In this study, we use the position based optimization (PBO) technique
(Bauer et al., 2015) in which the preference is on p! over r!. With PBO,
the coefficients cℓ are found by solving the linear system minc

PM
ℓ¼1c

2
ℓω

2
ℓ

subject to Qc ¼ p. Here ωℓ is a weighting coefficient, defined as ωℓ ¼�� r!ω!ℓ
� r!��

2. Moreover, the matrix Q is determined by the synthetic

source dipole moments as Q ¼ ð~q
~w1
; ~q

~w2
; …; ~q

~wM
Þ. The minimizer ofPM

ℓ¼1c
2
ℓω

2
ℓ is obtained by implementing the method of Langrangian

multipliers, resulting in a uniquely solvable linear system. The number of
source dipolesM depends on the source configuration, which is explained
in more detail below.

We also test adaptability, i.e., how the number n of the elements in the
patch affects the source modeling accuracy for n ¼ 1; 2; …; 5. In the
simplest case n ¼ 1, the sources correspond to the edges of a single tet-
rahedron (six EW dipoles). For n ¼ 2;…;5, this configuration is extended
by including the EW and FI dipoles from the neighboring elements,
leading to a total of 10–22 synthetic dipoles (Fig. 2).

In the PBO interpolation scheme, a given dipole position and moment
can be estimated with different combinations of the synthetic dipoles
(Pursiainen et al., 2016). As a fundamental source configuration we use a
set of 22 synthetic FI and EW dipoles corresponding to a five-element
patch: a center tetrahedron together with its facial neighbors (Fig. 1).
To avoid forward modeling errors due to discontinuities in the electrical
conductivity distribution, those elements which do not belong to the gray
matter are excluded from the configuration (Fig. 1). That is, in the vi-
cinity of the boundary of the brain, fewer elements and sources are used
in the interpolation.

In the partial integration method, the element patch consists of a
single element which is assumed to contain the dipole source. The St.
Venant approach is to place monopolar sources at the nodes of the
element patch, so that their net effect corresponds to that of the given
dipole. The ball-like patch is formed as the set of all the elements sharing
the node that is closest to the dipole location. This strategy usually results
in around 20 elements in an unstructured tetrahedral mesh. Fig. 3 shows

that approximately one half of the elements are taken out of the final
patch on the gray matter boundary.

2.3. Implementation in duneuro

As a platform of forward computations, we utilized the Cþþ based
toolbox DUNE (Blatt and Bastian, 2007; Blatt et al., 2016; Bastian et al.,
2008a; b). In fact, the implementation was created for the duneuro
module (Nüßing et al., 2016; Engwer et al., 2017; Vorwerk et al., 2017),
which is a DUNE based toolbox for bioelectromagnetic (EEG, MEG, tES)
forward modeling. The divergence conforming H(div) source model was
newly implemented whereas the scripts for the partial integration and St.
Venant methods already existed in the toolbox.

As modular platforms, DUNE/duneuro are well-suited for imple-
menting the H(div) source model together with the PBO interpolation
approach. DUNE includes numerous lower level routines for handling the
FE mesh and basis functions which can be effortlessly applied in the
actual script. In the present case, the most central requirement for the
programming environment is the ability to easily find the elements
belonging to different tissue compartments and to identify the facial
neighbors of a given center tetrahedron. In DUNE, these operations can
be handled through the basic modules.

The algorithm for the EEG forward modeling numerical analysis with
duneuro is presented in Fig. 4. The algorithm starts by creating a driver
object which serves as the main interface to the duneuro module. This is
done by defining the grid type, and the nodes, elements, and layer labels
and conductivity values for each element. Next, the electrodes are passed
to the driver object, and the algorithm can compute the transfer matrix.
Then, the dipole set is delivered to the driver, and the source model is
selected. After that, the toolbox can compute the potential values at the
electrode locations. Furthermore, the analytical solution is calculated,
and the statistics are then created for error measures. Finally, the error
statistics are illustrated with MATLAB - boxplot3 function.

Fig. 2. From left to right, respectively: The element patch of the source configurations for n ¼ 1; 2;…;5 elements with FI and EW dipoles. In each configuration, the
center element is marked with green.

Fig. 3. A schematic illustration of the ball-like St. Venant source element patch. On the boundary of the gray matter approximately one half of the elements (darker red
color in the image on the left side) are taken out of the final configuration (right) in its adapted version.

3 MATLAB, version 9.1 (R2016b), The MathWorks Inc., Natick,
Massachusetts.
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The FE mesh was chosen to be an unstructured and conforming
tetrahedral mesh based on the DUNE-ALUGrid module (Alk€amper et al.,
2016). The weak form of the forward problem was discretized with the
DUNE-PDELab module (Bastian et al., 2010).

The linear system was solved using an iterative preconditioned con-
jugate gradient method (PCG) equipped with an algebraic multigrid
preconditioner (AMG) which uses a symmetric successive over relaxation
(SSOR) as a smoother (Blatt, 2010). The stopping criteria for the PCG,
i.e., the relative residual 2-norm, was set to 10�8.

A source model function was implemented for H(div) sources that
form the load vector f (right-hand side) of the forward problem. It pro-
ceeds as follows:

1. The position and moment of a given dipole are send to the source
model.

2. DUNE detects the element in which the dipole is located and com-
putes the EW source dipoles for that element.

3. The method loops through the neighboring elements with the help of
the intersections function in DUNE, and computes the corresponding FI
and EW source dipoles. This is done recursively until the required
number of source elements is reached.

4. The generated source dipoles are delivered to the PBO interpolation
method, and the resulting coefficients are used for computing the load
vector f , which represents the current field approximation in the
global mesh.

5. Finally, the load vector f is passed to a solver that computes the
corresponding potential distribution.

2.4. Numerical experiments

The spherical FE mesh applied in this study is presented in Fig. 5. It
consists of 5.6M elements and 0.9M nodes and altogether six compart-
ments: Brain layers 1–3 (white, dark gray, green), CSF (purple), Skull
(blue), and Scalp (yellow). This mesh was designed based on the isotropic
four-layered Stok model (Stok, 1987) (Brain, CSF, Skull, Scalp) specif-
ically for evaluating how the source models perform in the 2mm thick
Brain 3 (gray matter) layer (green). The radii and conductivity values for
all compartments can be found in Table 1. A similar 1:80 conductivity
ratio between the skull and the brain has been recently used, e.g., in
(Aydin et al., 2014).

The FE mesh was generated using the Gmsh software,4 and it was
refined towards the surface of the brain. The longest and shortest edge
length in the mesh were 3.9 and 0.31mm, respectively.

The accuracy of the FE solution was measured against the analytical

solution, which can be obtained for a multi-layered sphere. Both the
analytical and numerical solution were evaluated at 120 electrodes
evenly distributed over the scalp layer. We generated two sample sets,
each one consisting of 200 dipole sources with random orientations. The
dipoles of the first set were located at 1.5mm distance from the outer
gray matter boundary, i.e., at the relative radius (eccentricity) of 98%
with respect to the surface of the brain. The second set contained dipoles
at 0.078mm distance, that is, at an eccentricity of 99.9%. Due to the
previous study about deeper lying sources by (Pursiainen et al., 2016),
the interest was mostly on superficial areas of cortex in this study. That is
the reason for considering 1.5mm and 0.078mm source dipoles in line
with numerical approaches, i.e., RDM and MAG, which demonstrated
that the less eccentric sources are, the lower is the numerical error, which
leads to more focal sources regarding to the multi-layered sphere model.

2.5. Error measures

The analytical potential values were computed harnessing the
method of De Munck and Peters (de Munck and Peters, 1993). The ac-
curacy of the H(div) model was compared to that of the reference tech-
niques, the St. Venant (Buchner et al., 1997; Toupin, 1965) and the
partial integration method (Yan et al., 1991; Weinstein et al., 2000). The
relative difference (RDM) and magnitude (MAG) measure (Pursiainen
et al., 2016), defined below, were evaluated in percents.

RDMðy ana;y numÞ ¼ 50
���� y ana

ky anak2
� y num

ky numk2

����
2

(7)

MAGðy ana;y numÞ ¼ 100
�ky numk2
ky anak2

� 1
	
: (8)

The RDM reflects the topographical forward modeling error in terms
of location and orientation. The MAG reveals the variations in potential
amplitude or, in other words, alterations in the source strength.

The error measures are presented as box plots (Kirkman, 1996) which
describe the lower (25%), middle (50%), and upper (75%) quartiles with
a box graph. The thicker part shows the inter quartile range (IQR or
spread) between 25% and 75% quartile. The median, i.e., the 50%
quartile, is shown as a horizontal line in the IQR. The vertical lines,
whiskers, show the maximum and minimum values of the dataset. Here
the whiskers are limited with the 1.5IQR rule, i.e., their maximal extent is
1.5 times the length of the IQR, and the rest of the dataset is marked as
outliers. Furthermore, the statistically significant mutual differences for
RDM and MAG values were evaluated with the Mann Whitney U test
(Mann and Whitney, 1947) with the confidence level of 95%.

2.6. Inversion test with a realistic geometry

In order to highlight the differences of the examined source models
and the impact of the presented numerical forward errors, we performed
an inverse investigation in a realistic head model. The motivation was
that the adaptive H(div) FEM source model might help to interpret re-
constructions by preventing deteriorated (e.g. spotty) inverse results
whichmight occur as a result of minimum norm estimation (MNE) within
a thin cortex. A head segmentation of a healthy 24 year old male subject
obtained via T1-and T2-weighted magnetic resonance images (Pursiai-
nen et al., 2012) was utilized to test the potential of the present H(div)
approach in reconstructing the brain activity. The following seven
different isotropic conductivity (S/m) compartments were distinguished:
skin (0.43 S/m), the compact and spongious bone of the skull (0.0064
and 0.028 S/m, respectively), cerebrospinal fluid (1.79 S/m), gray matter
(0.33 S/m), white matter (0.14 S/m), and eyes (0.505 S/m). Justification
of conductivity values can be found, e.g., in (Dannhauer et al., 2011). The

Fig. 4. The general algorithm for duneuro EEG forward problem
implementation.

4 http://gmsh.info.
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segmentation was discretized by generating a regular tetrahedral grid
with the element size 0.85mm via the open source Zeffiro toolbox,56

Matlab (The MathWorks, Inc.). The total number of elements and nodes
in the resulting FE mesh was 37.9M and 6.45M, respectively.

The lead field matrix was computed for 0.5M randomly chosen
source positions with Cartesian orientations. Two different source sets
(A) and (B) were used. In the first one of these, the sources were placed
deep in the gray matter compartment. In the second one, the source
positions extended also to the surface of the gray matter, i.e., part of the
sources were associated with the surface tetrahedra. The following two
current preserving source modeling strategies were tested: (i) non-
adaptive H(div), i.e., the basic five-element configuration n ¼ 5, and
(ii) adaptive H(div) in which the configuration was adapted (n ¼ 1;2;…;

5) according to the local mesh geometry. Of (i) and (ii), the latter allows a
more focal source placement, meaning that the source distribution ex-
tends closer to the surface of the gray matter compartment. For com-
parison, reconstructions for the sets (A) and (B) were also computed with
the partial integration and St. Venant source modeling approach. The
latter one of these was adapted as shown in Fig. 3 to enable source
modeling in the vicinity of the boundary for the set (B).

The measurement data, i.e., the potential values y, were simulated for
a normally oriented source in Brodmann area 1 of the right somatosen-
sory cortex (Fig. 6). Gaussian zero mean noise with 5% relative standard
deviation with respect to the maximal data entry was added to the
simulated measurements. The reconstruction was computed via one and
two steps of the iterative alternating sequential (IAS) iteration (Calvetti
et al., 2009; Lucka et al., 2012; Pursiainen, 2012) by setting the shape
and scaling parameter to 1.5 and 1E-3, respectively. With the present
choice of the shape parameter, the one- and two-step IAS estimate
constitute an ℓ2- and ℓ1-regularized estimate, i.e., a minimum norm and
minimum current estimate (MNE and MCE), respectively (Calvetti et al.,
2009; Uutela et al., 1999).

3. Results

The results of the numerical analysis have been included in Figs. 7, 8
and 9 as well as Tables 2 and 3.

It can be observed that, for the H(div) model, the forward simulation
accuracy increases along with the number of elements in the source
configuration. The smallest median RDM (0.28 and 0.26% for 98 and
99.9% eccentricity, respectively) is obtained with the five-element patch.
Furthermore, the spread (IQR) of the RDM decreases as the source count
grows. The results of the Mann-Whitney test suggest that, compared to
the single-element source configuration, a (statistically) significant
improvement in RDM can be obtained, when n � 2 and n � 3 for the
eccentricity of 98 and 99.9%, respectively. For MAG, the spread de-
creases, when the number of the elements increases, but there is no such
clear tendency for the median. The median differences were, however,
found to be mainly insignificant based on the Mann-Whitney test.

In comparison between the H(div) approach and the St. Venant and
partial integration method, the single-element H(div) was found to yield
generally very similar results with the partial integration. At 98% ec-
centricity, the St. Venant method achieved a median RDM of 0.30%
which is close to the value obtained with the five-element divergence
conforming scheme. At 99.9% eccentricity, the difference was more
obvious in favor of the H(div) model, as the median RDM for the St.
Venant approach in that case was 0.44%.With respect to the MAG, the St.
Venant was the superior method at 98% eccentricity, but not at 99.9%,
where its performance was marginally weaker than that of the five-
element H(div). According to the U test, the MAG differences at 99.9%
eccentricity were statistically insignificant, and, therefore, those have
been omitted in Table 2.

An obvious reason for the deteriorated performance of the St. Venant
approach at the eccentricity of 99.9% can be found in Table 3, showing
that the source element patch was significantly restricted in that case: the
median for the number of elements in the patch was 20 and 10 for 98 and
99.9% eccentricity, respectively. For comparison, maximally one element
was restricted out of the patch in the H(div) approach.

In the inversion test involving H(div) sources (Figs. 8 and 9), both the
(i) non-adaptive (n ¼ 5) and (ii) adaptive (n ¼ 1;2; …; 5) technique
enabled reconstructing the synthetic somatosensory source. The
smoother reconstruction and superior focality was obtained with the
source set (A) which is especially clear in the case of the ℓ2-estimate.
Namely, for (B), the set in which the ℓ2-estimate essentially differs from
zero extends up to 10mm further away from the actual source position.
Nevertheless, the ℓ1-estimate converges towards the actual source posi-
tion for both (A) and (B) resulting in a well-localized reconstruction. The
results suggest that, of the tested source modeling techniques, the H(div)
approach produces, generally, the smoothest distribution, which is more
regular in the active area, than what is obtained with the partial inte-
gration and St. Venant method. In particular, the H(div)-based

Fig. 5. A visualization of the spherical grid used for modeling.

Table 1
The sphere radii and conductivity values for all mesh compartments.

Compartment Radius (mm) Conductivity (S/m)

Scalp 92 0.33
Skull 86 0.0042
CSF 80 1.79
Brain 3 (Gray Matter) 78 0.33
Brain 2 76 0.33
Brain 1 72 0.33

5 https://github.com/sampsapursiainen/zeffiro-interface/wiki.
6 https://se.mathworks.com/matlabcentral/fileexchange/68285.
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reconstruction was the most intense and least spotty near the actual
source position in the case (B), i.e., when the source distribution
extended to the boundary. Overall, the results suggest that the H(div)
approach is more regular and topographically stable compared to St.
Venant and partial integration.

4. Discussion

This article presented, validated and evaluated an adaptable open
source implementation of the current preserving (divergence conform-
ing) H(div) model (Tanzer et al., 2005; Pursiainen et al., 2016; Bauer
et al., 2015) for EEG forward computations (Brette and Destexhe, 2012)
in unstructured tetrahedral grids. The H(div) approach is advantageous
in modeling the primary current field generated by the neural activity,
since it achieves the best balance between realism, focality, numerical
accuracy and computational speed with regard to source placement in
the thin and geometrically complex gray matter compartment, which is
on average only slightly more than 2mm thick (Griffis et al., 2016; Fischl
and Dale, 2000; McGinnis et al., 2011). Especially, this is the case for
exceptionally thin cortical compartments as can be found in children,

infant and neonate brain research (Li et al., 2014; H€am€al€ainen et al.,
2015; Roche-Labarbe et al., 2008) and/or in pathological situations
(Seitz et al., 2014).

A function for the present source model was written for the Cþþ
based duneuro library, which is integrated in DUNE. This function was
evaluated numerically against the competing source models St. Venant
(Buchner et al., 1997; Toupin, 1965; Medani et al., 2015; Medani, 2016)
and partial integration (Yan et al., 1991; Weinstein et al., 2000), which
are also implemented in duneuro. duneuro and DUNE were found to be
suitable platforms for our research purpose, as they are openly accessible
state-of-the-art modeling packages for bioelectromagnetic (EEG, MEG,
tES) forward modeling (Nüßing, 2018; Nüßing et al., 2016; Engwer et al.,
2017; Vorwerk et al., 2017), and, more generally, for solving partial
differential equations (Blatt and Bastian, 2007; Blatt et al., 2016; Bastian
et al., 2008a; b), respectively. Their modular structures allow easy
operation of the lower level code and, thereby, enable the handling of the
FE mesh and basic functions effortlessly such as, e.g., tracking the local
mesh structure in the neighborhood of a given element, which was
essential for this implementation. duneuro also offers mathematically
advanced FE based EEG, MEG and tES forward modeling: In addition to
the present classical continuous Galerkin (CG-FEM) approach, it also
offers discontinuous Galerkin (DG-FEM) (Engwer et al., 2017), unfitted
FEM approaches such as CUTFEM (Nüßing, 2018) and unfitted DG-FEM
(Nüßing et al., 2016), and Mixed-FEM computations (Vorwerk et al.,
2017). Especially, in the latter one of these, the primary source current is
inherently assumed to be divergence conforming. Hence, a further opti-
mization of the H(div) model can be considered.

Our code was evaluated numerically using a six-compartment
spherical domain obtained by subdividing the brain compartment of
the classical isotropic four-layered Stok model (Stok, 1987) into three

Fig. 6. Placement of a normally oriented source in Brodmann area 1 of the right somatosensory cortex in sagittal, coronal and axial projection (left, center and right,
respectively). The actual source position and orientation is shown by the black circle and line segment, respectively.

Table 2
The results of the Mann-Whitney U test for restricted source models with n ele-
ments, for partial integration, and for St. Venant with 200 dipoles. The MAG
results have been omitted for 99.9% eccentricity, since all the differences were
insignificant in that case.

RDM at 98% eccentricity

n¼ 1 n¼ 2 n¼ 3 n¼ 4 n¼ 5 PI St.V.

n¼ 1 * * * * *
n¼ 2 * * * * * *
n¼ 3 * * * * * *
n¼ 4 * * * * *
n¼ 5 * * * * *
PI * * * * *
St.V. * * * *

MAG at 98% eccentricity
n¼ 1 n¼ 2 n¼ 3 n¼ 4 n¼ 5 PI St.V.

n¼ 1 * *
n¼ 2 * * *
n¼ 3
n¼ 4
n¼ 5 * *
PI * *
St.V. * * *

RDM at 99.9% eccentricity
n¼ 1 n¼ 2 n¼ 3 n¼ 4 n¼ 5 PI St.V.

n¼ 1 * * * *
n¼ 2 * * *
n¼ 3 * * *
n¼ 4 * * * *
n¼ 5 * * * *
PI * * * *
St.V. * * * * * *

Table 3
The number of the source elements (source element patch size) for each source
model type in the numerical experiments.

At 98% eccentricity

min max median mean

PI 1 1 1 1
St. V. 14 36 20 21.31
n¼ 1 1 1 1 1
n¼ 2 2 2 2 2
n¼ 3 3 3 3 3
n¼ 4 4 4 4 4
n¼ 5 5 5 5 5

At 99.9% eccentricity
min max median mean

PI 1 1 1 1
St. V. 5 17 10 10.57
n¼ 1 1 1 1 1
n¼ 2 2 2 2 2
n¼ 3 3 3 3 3
n¼ 4 4 4 4 4
n¼ 5 4 5 4 4.12
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parts. The outermost brain compartment modeled an only 2mm thin gray
matter layer. Akin to a realistic setting, all the elements in the patch of the
source configuration belonged to this compartment. If necessary, a
restricted patch was used. Our goal was to find out how the H(div) for-
ward model performs in the vicinity of the gray matter boundary, where
a restriction has to be made and the discontinuity of the electrical con-
ductivity distribution between the brain and the CSF compartment can
diminish the accuracy of the forward simulation. The relative difference
and magnitude measures (RDM and MAG) were evaluated for two sets of
200 dipoles with random positions and orientations. One of these sets
was located at the eccentricity of 98%, i.e., a source depth of 1.5mm,
which is typical in a realistic scenario. The other one concerned the ec-
centricity of 99.9%, i.e., an extraordinary shallow depth of about 0.1mm,
reflecting an exceptional situation in which the element patch of the
source current needs to be placed very close to the surface of the gray
matter. In realistic volume conductor modeling, these capabilities are
vital as the cortex of healthy subjects is on average only slightly more
than 2mm thick (Griffis et al., 2016; Fischl and Dale, 2000; McGinnis
et al., 2011) or even thinner such as in children, infant or neonate studies
(Li et al., 2014; H€am€al€ainen et al., 2015; Roche-Labarbe et al., 2008), in
pathological situations (Seitz et al., 2014) or in just segmentation related
issues.

Of the present evaluated source models, the H(div) approach was

found to be overall superior compared to the St. Venant and partial
integration. With respect to RDM, the performance differences between
themethods were significant based on the results of both boxplot analysis
and the Mann-Whitney's significance test (U test). Nevertheless, the MAG
differences were found to be mainly not crucial, suggesting that all three
models yield essentially the same performance with respect to the
magnitude.

Concentrating on the RDM, the modeling accuracy was observed to
increase along with the number of elements in the source patch. The
results obtained with a single-element (n ¼ 1) patch were largely similar
to those produced by the partial integration routine which is also based
on a single element. It seems that a statistically significant improvement
compared to the simplest n ¼ 1 case can be obtained using a patch of
three or more elements regardless of the eccentricity. The most signifi-
cant difference to the St. Venant method was observed at 99.9% eccen-
tricity which necessitated restricting the St. Venant's element patch into
one half of its normal composition (a ball-like object cut into half) and,
consequently, led to a considerably deteriorated RDM. Nevertheless, for
H(div), only a minor single-element restriction was needed without a
notable decrease in the performance. Thus, it seems that the patch
formed around a given center element is advantageous with regard to
source placement close to a boundary.

Skull conductivity is an important parameter in EEG source analysis.

Fig. 7. The RDM and MAG errors for divergence conforming source models with n elements, for partial integration and for St. Venant tested with 200 dipoles at
eccentricity 98% (top row) and 99.9% (bottom row).
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In the present multi-layered simulation study a conductivity of 0.0042 S/
m for the skull layer and 0.33 S/m for the gray matter layer was chosen,
i.e., a skull/brain conductivity ratio of about 1:80 was considered. This is
the classical ratio (Homma et al., 1995), which is still used as a default in
commercial software packages, see, e.g, (Fuchs et al., 1998). For higher
skull/brain conductivity ratios as proposed by (Dannhauer et al., 2011),
all presented numerical errors and, therefore, also the differences be-
tween the examined dipole modeling approaches decrease in both
normal and tangential orientations. A better way for skull modeling
might, however, be to distinguish the lower conducting skull compacta
and higher conducting skull spongiosa compartments (Dannhauer et al.,
2011; Montes-Restrepo et al., 2014) and to individually estimate their
conductivity parameters. This has recently been done using a skull con-
ductivity calibration procedure based on combined somatosensory
evoked potential (SEP) and field (SEF) measurements, where estimated
conductivity values were 0.0024 S/m and 0.0084 S/m in one (Aydin
et al., 2014) and 0.0033 S/m and 0.0116 S/m in another epilepsy patient
(Aydin et al., 2017) for the skull compacta and spongiosa compartments,
respectively. This shows that individual differences in skull conductivity

parameters have to be expected, which will significantly influence EEG
based source analysis. In addition to the skull, also the white matter is
important regarding the source modeling accuracy, especially, since the
real white matter conductivity includes anisotropy (Wolters et al., 2006;
Güllmar et al., 2010; Vorwerk et al., 2014). The actual effect of the
anisotropy to the accuracy may be expected to depend strongly on source
position and orientation, whereas the current model only reflects the
average effect. Overall, we expect that the mutual performances between
the investigated source models will be maintained for a wide range of
conductivities, since the conductivity distribution is primarily a param-
eter for the system matrix, whereas the source model mainly reflects the
accuracy of the right-hand-side vector of the forward problem.

Our validation results together with the inversion test suggest that our
implementation can be beneficial for complex 3D meshes. It allows an
extremely focal single-element source placement with the accuracy of the
partial integration, which can be necessary at some locations in a realistic
volume conductor. Additionally, if the local geometry allows using the
full source configuration, then the accuracy of the St. Venant can be
surpassed. Thus, a close to optimal accuracy can be achieved in each

Fig. 8. The ℓ2-regularized reconstructions (minimum norm estimates) of the primary current distribution for two source sets (A) and (B) in which the sources are
positioned deep and everywhere in the gray matter compartment, respectively. The top row shows the results obtained with (i) the H(div) (n ¼ 5) and (ii) the adaptive
(n ¼ 1;2;::;5) H(div) source model (left and right, respectively). The center row corresponds to the partial integration method, and the bottom row to the non-adaptive
and adaptive version of the St. Venant method, respectively. Notice that as the partial integration method utilizes only a single element, it cannot be adapted akin to
the H(div) and St. Venant model. The actual source position and orientation is shown by the left tip and the stem of the black line segment, respectively.
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situation without the need to choose between different source models.
Based on the present numerical analysis, the non-adaptive H(div) source
modeling approach (i) is more robust than the adaptive one (ii) and is,
therefore, preferable for a normal cortex thickness, which is on average
2.3 mm (Griffis et al., 2016; McGinnis et al., 2011; Fischl and Dale,
2000). However, (ii) was found to be sufficient for special cases e.g. with
extremely thin cortices.

In de Munck et al. (1988), it was presented that the mathematical
point dipole, due to its over-focal nature, results in modest, but system-
atic errors for depth localization when compared to a more realistic and
slightly more extended source model. Using the subtraction approach,
the point dipole can also be modeled with its full focality in a FEM
framework, but it is known that numerical errors might get significant in
thin cortices where sources are very close to the next conductivity
discontinuity and that it is currently still computationally expensive
(Bertrand et al., 1991; Awada et al., 1997; Marin et al., 1998; Schimpf
et al., 2002; Drechsler et al., 2009). In this paper, we showed that
H(div)-type source models can be constructed in a way that is more
realistic than the mathematical point dipole with regard to extent, but as
accurate in multi-layer sphere model validations. In addition, the H(div)
source models were found to be also focal enough to be induced in even
thin cortices. As already mentioned, this feature is crucial in healthy
subjects, but especially in children, infant and neonate EEG brain

research or in pathological situations. In summary, the best H(div) source
thus has the best balance between numerical accuracy, computational
efficiency and modeling accuracy, i.e., focal enough to be usable in thin
cortices, but less focal and thus more realistic than the mathematical
point dipole.

An important future work will be to evaluate the present current
preserving source model implementation in a group study with real EEG
data and realistic FEM head models. To do so, the duneuro library will be
coupled, for instance, with the FieldTrip7 or BrainStorm8 toolboxes,
similar to the interface that has already been realized for the duneuro-
predecessor SimBio9 (Vorwerk et al., 2018). Likewise, both Python and
Matlab bindings already exist for duneuro. Further analysis of the rela-
tionship between the presented source model and realistic physiological
structures, e.g., thin cortices and anisotropy, will be necessary.

5. Conclusions

The purpose of this study was to improve EEG source analysis using
finite element method (FEM) head volume conductor models that extend

Fig. 9. The ℓ1-regularized reconstructions (minimum current estimates) of the primary current distribution for two source sets (A) and (B).

7 FieldTrip: http://www.fieldtriptoolbox.org.
8 BrainStorm: http://neuroimage.usc.edu/brainstorm.
9 SimBio: https://www.mrt.uni-jena.de/simbio.
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the standard three compartment approach, and are able to take brain
tissue inhomogeneity (gray and white matter and cerebrospinal fluid)
into account. The focus was on determining the performance of the
present current preserving H(div) source model which was implemented
into the open source duneuro library for FEM forward modeling in bio-
electromagnetism, and validated through numerical experiments for
source configurations corresponding to n ¼ 1;…; n ¼ 5 elements in the
FEM mesh. The accuracy of the model was measured against an analyt-
ical solution in a multi-layer sphere model. The performance achieved
was evaluated with two competing methods, partial integration and St.
Venant. The results obtained within a spherical multi-layered domain
suggest that our new approach provides a solid way to model the primary
current distribution in the thin cortical compartment, and even in situ-
ations of exceptionally thin cortices. A superior performance was ach-
ieved in the vicinity of the outer gray matter boundary, in particular, as
compared to the St. Venant reference method. The modeling precision
was found to improve significantly as the size of the source modeling
patch grew from one to three or more elements. No significant perfor-
mance differences were observed between the four- and five-element
patches when the sources were located close to the outer gray matter
boundary. We also performed an inversion test suggesting that our
development can be used to improve EEG forward modeling for realistic
multi-compartment headmodels, and it might be of special importance in
situations of thin cortices, e.g., in children and/or pathological
applications.
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Abstract
This article introduces the Zeffiro interface (ZI) version 2.2 for brain imaging. ZI aims to provide a simple, accessible and
multimodal open source platform for finite element method (FEM) based and graphics processing unit (GPU) accelerated
forward and inverse computations in the Matlab environment. It allows one to (1) generate a given multi-compartment head
model, (2) to evaluate a lead field matrix as well as (3) to invert and analyze a given set of measurements. GPU acceleration
is applied in each of the processing stages (1)–(3). In its current configuration, ZI includes forward solvers for electro-
/magnetoencephalography (EEG) and linearized electrical impedance tomography (EIT) as well as a set of inverse solvers
based on the hierarchical Bayesian model (HBM). We report the results of EEG and EIT inversion tests performed with
real and synthetic data, respectively, and demonstrate numerically how the inversion parameters affect the EEG inversion
outcome in HBM. The GPU acceleration was found to be essential in the generation of the FE mesh and the LF matrix in
order to achieve a reasonable computing time. The code package can be extended in the future based on the directions given
in this article.

Keywords Matlab Interface · Electro-/Magnetoencephalography (EEG/MEG) · Electrical Impedance Tomography (EIT) ·
Finite Element Method (FEM) · Hierarchical Bayesian Model (HBM)

Introduction

This article introduces the Zeffiro1 interface (ZI) version
2.2 for electromagnetic brain imaging and investigations.
ZI aims to provide an accessible and multi-modal open-
source platform for finite element method (FEM) (Braess

1Zeffiro is Italian for a gentle breeze referring to the ease of
use. The source code of ZI can be accessed at: https://github.com/
sampsapursiainen/zeffiro interface.
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1 Information Technology, Faculty of Information Technology
and Communication Sciences, Tampere University, P.O. Box
692, 33014 Tampere, Finland

2 Mathematics and Statistics, Faculty of Information
Technology and Communication Sciences, Tampere
University, P.O. Box 692, 33014 Tampere, Finland

2001) based forward and inverse computations in the Matlab
(TheMathWorks Inc.) environment. The FEM is widely
applied for modeling electromagnetic fields in a bounded
domain, such as the brain and the head (de Munck et al.
2012; Monk 2003). It allows one to discretize realistic three-
dimensional tissue parameter distributions in an accurate
way, including advanced features such as complex internal
boundary layers and anisotropic tissues such as the fibrous
white matter of the brain (Rullmann et al. 2009). The
FEM can be applied to model an electromagnetic source
within the brain (Pursiainen et al. 2016b; Miinalainen et al.
2019) and, thereby, to construct a lead field (LF) matrix to
localize brain activity in electro-/magnetoencephalography
(EEG/MEG) (Hämäläinen et al. 1993; Niedermeyer and da
Silva 2004).

The same quasi-static set of Maxwell’s equations that
predicts the electric potential field of a neural source can
be applied also to model the effect of current injections,
where either direct or alternating currents applied through
electrodes act as the source of the electromagnetic field.
Such an approach is used, for example, in the electrical
impedance tomography (EIT) (Cheney et al. 1999) in which
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the goal is to map the conductivity distribution or its
perturbations within a given domain. EIT constitutes a non-
linear inverse problem which can be linearized with respect
to a given background conductivity distribution to obtain a
LF matrix, i.e., a linearized forward model. The FEM is a
powerful tool in EIT (Vauhkonen 1997), since it does not
set any major restrictions for the conductivity distribution.
In contrast, the boundary element method (BEM) (He et al.
1987), which is the predominating method in EEG/MEG,
sets the conductivity to be a compartment-wise constant
parameter, limiting its practical usage in EIT.

Until recently, the FEM has been considered as compu-
tationally heavy for discretizing the complex geometry of
the brain. To tackle this issue, ZI uses graphics process-
ing unit (GPU) acceleration. It includes forward solvers
for EEG/MEG and linearized EIT as well as a set of
inverse solvers based on the hierarchical Bayesian model
(HBM) which was introduced for EEG/MEG in Calvetti
et al. (2009). The ZI platform and function library has been
designed to be easily expandable and to allow implementing
virtually any FEM based forward model which can be for-
mulated as a product between a LF matrix and a candidate
solution vector.

In this paper, we briefly review the mathematics behind
ZI, describe the principal operations and usage, and
introduce some central points for the developer perspective.
We report the results obtained in EEG and EIT inversion
tests performed with real and syntetic data, respectively,
and demonstrate numerically how the inversion parameters
affect the EEG inversion outcome in HBM.

Methodology

The electric potential field u in the head model Ω is
assumed to satisfy the elliptic partial differential equation
(PDE) of the form ∇ · (σ∇u) = ∇ · J p, where σ is the
conductivity distribution of the head and J p is the primary
current density of the neural activity. This equation follows
from the current preservation condition ∇ · J t = 0 for
the total current density J t = J p − σ∇u, that is, the
sum of J p and the volume current density −σ∇u. The
electromagnetic field within Ω can be evoked either by
J p acting as the source, which is the case in EEG/MEG,
or by an external source, e.g., a current pattern injected
through contact electrodes in EIT. The dependence between
the measurements y and the unknown of the inverse problem
x in question, e.g., a source localization problem, is here
assumed be of the following linear form

Lx = y + n, (1)

where L is the LF matrix and n is the noise vector. The LF
matrices for EEG and linearized EIT inverse problem can
be formed as shown in Appendix A.1.

Primary Current Model

ZI utilizes the H(div) source model (Pursiainen et al.
2016b) in which both linear and quadratic basis functions
constitute the primary current density J p. In Miinalainen
et al. (2019); Pursiainen et al. (2016b), this model was
shown to surpass the accuracy of the classical direct source
modeling approaches based on the partial integration and
St. Venant’s principle and to be especially advantageous for
thin cortices as well as for inverting data.

A Cartesian set of source orientations can be obtained
from a mesh-based set using the Position Based Optimiza-
tion (PBO) method (Bauer et al. 2015) with an adaptive
(Miinalainen and Pursiainen 2017) 10-source stencil in
which 4 face and 6 edge functions are applied for each
element containing a source (Pursiainen et al. 2016b). Alter-
natively, the Whitney model (Bauer et al. 2015), i.e., the
4-source stencil (4 face functions), can be used. Moreover,
a set of Whitney functions can be applied without inter-
polation. That is, the LF matrix can be formed directly
using the mesh-based set of basis functions as suggested
in Miinalainen and Pursiainen (2017). In each active tis-
sue compartment, the sources can either be normally con-
strained or unconstrained with respect to the surface of the
compartment (Creutzfeldt et al. 1962; Hari et al. 2018).
The source positions are randomly (uniformly) distributed
in each case.

Conductivity Distribution

The current FE meshing strategy employed in ZI treats
the conductivity as an isotropic piecewise (element-wise)
constant distribution, i.e., a single scalar value is associated
with each element in the FE mesh. However, when
evaluating an LF matrix, ZI allows the conductivity
distribution σ to be anisotropic, i.e., tensor-valued: the �-th
row of the form (σ11, σ22, σ33, σ12, σ13, σ23) within a multi-
row array is associated with the symmetric conductivity
tensor σij , i = 1, 2, 3, j = 1, 2, 3 (σij = σji) in the �-th
element.

HBM

The inverse tools of ZI are based on the HBM (Calvetti
et al. 2009; O’Hagan and Forster 2004) which enables
finding a reconstrution for the unknown x as either the
posterior maximizer, i.e., maximum a posteriori (MAP) or
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the conditional mean (CM) of the posterior probability
density. In HBM, the posterior probability for x is defined
via choosing the standard deviation of a Gaussian likelihood
density, the hypermodel, i.e., the gamma (G) or inverse
gamma (IG) hyperprior determining the actual prior, and the
shape and scale parameter β and θ0 for the hyperprior. For
a given measurement vector y, the Bayes formula (O’Hagan
and Forster 2004) for the posterior is of the form

p(x | y) = p(x) p(y | x)

p(y)
∝ p(x) p(y | x), (2)

where p(x) is the prior density and p(y | x) the likelihood
function (Schmidt et al. 1999). Here, the noise term n, which
together with the forward model (1) implies the likelihood
p(y | x), is assumed to be a Gaussian zero-mean random
vector with independent entries.

In HBM, the prior can be expressed in the following
hierarchical form p(x, h) ∝ p(θ) p(x | θ), where θ is
the primary hyperparameter of the model. The conditional
part p(x | θ) of the prior is a zero-mean Gaussian
density, whose diagonal covariance matrix is predicted by
the hyperprior p(θ). The hyperprior is assumed to have a
long-tailed density, implying that x is likely to be a sparse
vector corresponding to a well-localized (focal) volumetric
distribution. In ZI, it is either G or IG density (Calvetti
et al. 2009), which are controlled by the shape and scale
parameter β and θ0. The G and IG hyperprior can be coupled
into a single model in a straightforward way, since the
reciprocal θ−1 of a G-distributed random variable θ with
respect to β and θ0 is IG-distributed w.r.t. β and θ−1

0 .
A description of the IAS algorithm applied in ZI can

be found in Appendix B. ZI’s CM estimation technique
is based on the Gibbs sampler algorithm (Spitzer 1971;
Murphy 2012) according to (Calvetti et al. 2009).

Hardware Requirements

ZI is principally designed to be used with a workstation or a
high-end desktop computer with tens of gigabytes of RAM,
a multi-core CPU and one or more GPUs. When generating
the FE mesh and the LF matrix ZI is likely to allocate several
gigabytes of RAM. A one-millimeter FE mesh resolution
might lead to 64 GB of motherboard RAM and 2–4 GB of
GPU RAM allocation during the forward computations. The
resulting FE mesh will consist of 3-4 M nodes and 20-30
M elements, and the eventual project size, when stored on a
hard disk, will be 0.5–1 GB.

GPU Function

ZI utilizes a GPU to accelerate the FE mesh generation
process, forward and inverse computations, source inter-
polation and decompositions, as well as to speed up 3D

visualizations. This is vital in order to achieve a convenient,
around one hour computing time for a one-millimeter FE
mesh resolution which has been shown to be essential in
order to obtain physiologically accurate inverse estimates
(Rullmann et al. 2009). A GPU is a parallel processing unit
which has somewhat limited RAM compared to the mother-
board. It can handle computation intensive operations very
effectively, while memory intensive operations should be
avoided. The operations related to forward and inverse com-
putations can be accelerated due to the fast processing of
matrix-vector products in a GPU. The other GPU operations
are mainly based on the acceleration of find and sort
routines, evaluating those as blocks rather than individual
entries.

Forward Simulation

In the Matlab environment, the most essential speed-up gain
is related to the sparse FE matrix-vector products which
need to be evaluated iteratively in the forward simulation
phase. The GPU-parallelization of the forward simulation
is especially important, because Matlab currently handles
the sparse matrix products in a single processor thread. To
evaluate the lead field matrix as described in Appendix A.4,
ZI uses the preconditioned conjugate gradient (PCG)
(Golub and van Loan 1989) method with a lumped diagonal
preconditioner (LDP) in which each diagonal entry is
obtained as the row sum of the absolute entry values. LDP
is an advantageous preconditioner regarding the limited
GPU memory. While LDP is not optimal with respect to
minimizing the iteration steps needed for convergence, it
enables establishing a fast forward solver due to the high
parallel processing performance provided by a GPU.

IAS Iteration

In the IAS iteration (Appendix B), the most time consuming
step is the third one, Eq. 7, in which the size of the matrix
to be inverted is determined by the length of the data
vector. If a high number of time steps will need to be
processed, the fastest processing is obtained by evaluating
the matrix-vector product of Eq. 7 in a GPU.

Interface Structure and Function

When started, ZI creates a single data structure (struct)
zef in Matlab’s base workspace. All the parameters and
variables, such as the lead field matrix, measurement data
and reconstruction, can be accessed via the zef structure.
The basic workflow consists of three phases illustrated in
Fig. 1. In this section, we briefly review the workflow and
introduce the most important fields of zef for each phase.
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Fig. 1 The basic three-phase workflow in ZI. In phase 1, the head
model is first defined using the segmentation tool, after which, in phase
2, the three-dimensional FE mesh and the LF matrix are generated with
the mesh tool. Finally, in phase 3, the inverse tools can be applied to

reconstruct and analyze parameter distributions, e.g., the primary cur-
rent density of the brain activity. The parcellation tool can be applied
in each of the phases 1–3 to assist decomposing the brain into a finite
set of ROIs

Segmentation Tool

In the first phase, a surface segmentation describing
different tissue structures and properties within Ω is defined
using the segmentation tool (Fig. 2). A triangular surface
mesh for each tissue type is imported in ZI as an ASCII
file. In the current version, a single head model can contain
up to 27 different tissue compartments. Moreover, several
surface meshes (sub-meshes) can be merged together into
a single compartment, e.g., the left and right hemisphere of
the cerebral cortex. A multi-compartment segmentation can
be defined in a single initialization (.INI) file which allows
importing a complete head segmentation at once. The nodes
and points of each surface mesh can be stored either in two
separate .DAT files or in a single .ASC file exported from
the FreeSurfer2 Software Suite (Fischl 2012).

The default set of compartments includes white matter,
grey matter, cerebrospinal fluid (CSF), skull, and scalp,
whose default conductivity values are 0.14, 0.33, 0.0064,
and 0.43 S/m, respectively, according to Dannhauer et al.
(2011); Vorwerk et al. (2014). Each compartment can be
defined as active or inactive. The set of active compartments
contains the DOFs of x. In EEG/MEG, the activity can be
either constrained or unconstrained. In the former case, it is
restricted into the direction of the surface normal, and in the
latter case, it can have any orientation.

Mesh Tool

In the second phase of the workflow, a uniform tetrahedral
mesh is generated based on the surface segmentation.
The meshing parameters can be defined in the mesh tool.
The meshing process proceeds from the innermost (detail)
compartment to the outermost one. It allows the tissue

2https://surfer.nmr.mgh.harvard.ed

boundaries to intersect each other which is necessary with
a real segmentation obtained from magnetic resonance
imaging (MRI) data. Each compartment can be given a
priority which is referred to if a tetrahedron has nodes in
two or more compartments. The priority parameter allows
fine-tuning the width of the thin tissue layers, e.g., the skull:
the lower the value the higher the priority. The FE mesh can
be also smoothed using the Bi-Laplacian smoothing flow
(Ohtake et al. 2001; Pursiainen 2012). After generating the
mesh, the LF matrix can be computed for a selected imaging
modality and a given number of the degrees of freedom
(DOFs). Finally, an interpolation process connecting the
DOFs and the FE mesh nodes needs to be performed, to
enable inversion of measurement data.

Together with the figure tool, the mesh tool allows one to
visualize both the surface segmentation and the volumetric
FE mesh, or any surface or volumetric distribution
(reconstruction) defined on those. The visibility of a
compartment can be selected in the Segmentation tool. The
options tool includes additional options which control, e.g.,
the colormap, scale, vector component, and the index of
the sub-mesh for the visualized distribution, e.g., that of the
left or right hemisphere (see Section “Segmentation Tool”).
An example of a multi-layer surface segmentation and the
resulting volumetric mesh created with ZI are shown in
Fig. 3. For further code development, the most important
fields of zef are the following:

1. zef.nodes and zef.tetra store the nodes and
tetrahedra of the FE mesh, respectively;

2. zef.L is the lead field matrix;
3. zef.source positions stores the source posi-

tions corresponding to the columns of zef.L in the
respective order. This array contains the DOF positions
also if they do not represent neural sources, which is the
case in EIT.
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Fig. 2 A screenshot of ZI with figure, mesh, parcellation, and option tool opened

4. zef.source directions contains the source ori-
entations. If Cartesian orientations are used, this field
is empty, and the source orientation for the columns

of zef.L is given by the following regular pat-
tern: position 1, xyz; position 2, xyz; position 3, xyz,
etc.;

Fig. 3 Top row: Surface and
volume visualizations of the
head model in ZI. Bottom row:
FreeSurfer-based cortical
parcellation with 36
Desikan-Killiany labels
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5. zef.source interpolation ind stores the
indices that connect the finite element mesh with the
DOFs;

6. zef.h axes1 stores the axes handle of the figure
tool.

Inverse Tools

In the third phase, the measurement data are imported and,
after that, a reconstruction for x can be obtained using one
of the inverse tools. A MAP estimate can be obtained via
the IAS method using one of the following tools:

1. IAS MAP estimation which finds a MAP estimate for
the whole domain;

2. IAS MAP estimation ROI which focuses on a ROI;
3. IAS MAP multiresolution which explores multiple

different resolutions.

A CM estimate can be obtained for a ROI using the Hierarchi-
cal Bayesian sampler tool. For external inverse procedure
development, the most important fields are the following:

1. zef.measurements is the set of measurements to
be inverted; this field can be a matrix or a cell array
with the number of rows and columns equal to that of
zef.L and the time steps in the dataset, respectively;

2. zef.reconstruction is the reconstruction of x
corresponding to the set of source positions and
orientations.

Parcellation Tool

The parcellation tool (Fig. 2) allows importing a parcella-
tion created with the FreeSurfer Software Suite. A single
parcellation consists of a file containing a colortable (.MAT)
and another one including the points/labels (.ASC). After
importing, an interpolation process will need to be per-
formed to connect the points with the DOFs. The parcella-
tion can be used as a priori information in the reconstruction
or visualization stage. After obtaining a reconstruction, one
can evaluate a time series of the activity for each region
present in the parcellation. The time series can represent,
e.g., the maximal or median activity within a region. The
purpose of the time series is to enable the analysis of
different statistical properties and connectivity of the activ-
ity over a time interval. In the current version, e.g., the
amplitude, standard deviation, correlation, covariance, and
dynamic time warping (DTW) (Sakoe and Chiba 1978)
measure can be evaluated. The most important fields w.r.t.
the parcellation tool are the following:

1. zef.parcellation colortable and
zef.parcellation points store the colortable
and points of the parcellation;

2. zef.parcellation interp ind contains the
indices connecting the parccellated brain regions and
the DOFs;

3. zef.parcellation time series stores the
time series obtained for the brain regions after
reconstructing the brain activity.

Plugin Utility

ZI can be extended via the plugin utility. The list of plugins
is defined in the zeffiro plugins.ini file which is
located in ZI’s root folder. A menu item will be created
for each listed plugin. The Hierarchical Bayesian sampler
tool (Spitzer 1971; Murphy 2012) is included in the code
package as an example plugin (HBSampler).

Numerical Experiments

In the numerical experiments, we demonstrate the practical
performance of ZI and the IAS MAP estimation technique
via numerical experiments in which EEG and EIT inversion
is tested with real and synthetic data, respectively. We also
analyze the effect of hyperprior and scale parameter on the
source localization in EEG using simulated measurements.

EEG Inversion Test

To enable comparability of the results to an existing solver,
in this case that of the Brainstorm3 software (Tadel et al.
2011), EEG source localization accuracy was examined by
inverting Brainstorm’s EEG and epilepsy tutorial dataset4

which was used with the consent of Prof. A. Schulze-
Bonhage, Epilepsy Centre, University Hospital Freiburg,
Germany. The dataset was obtained for a patient who
had suffered from focal epilepsy with focal sensory,
dyscognitive and secondarily generalized seizures since the
age of eight years. It consists of 58 epileptiform discharges
(spikes) which were recorded at 256 Hz frequency
and detected using Brainstorm by the epileptologists in
Freiburg. An invasive EEG study concentrating on the same
subject can be found in Dümpelmann et al. (2012).

Following the tutorial, the measurement data to be
inverted, depicted in Fig. 4, were obtained for 29 electrodes
applying an epoching time interval between -5 and 5 s
w.r.t. the time point of the inverted data. All the non-
EEG channels have been removed from the measured data.
The brain activity was reconstructed via two steps of the
IAS MAP estimation algorithm with low-cut and high-cut
frequency of 0.5 Hz and 80 Hz, assuming that the likelihood
standard deviation is 3 % of the maximum entry in the data,

3https://neuroimage.usc.edu/brainstorm/Introduction
4https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
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Fig. 4 A butterfly plot of EEG inversion test (Section “EEG Inver-
sion Test”) data which were obtained by averaging 58 epileptiform
discharges between -5 and 5 s. The vertical axis shows the measured

voltage in microvolts, and the horizontal axis the measurement time
in seconds. The reconstruction was found for the zero time point 0 s
which is indicated by the vertical dashed line

and selecting the shape and scale parameters as β = 1.5 and
θ0 = 1E-12. The head model linked to the dataset consists of
the surface meshes of the scalp, skull, CSF, grey matter, and
white matter. ZI’s default conductivity values were used.
The LF matrix was generated for 100000 sources using
1 mm mesh resolution. The reconstructions were obtained
with ZI’s IAS MAP estimation inverse tool.

EIT Inversion Test

EIT inversion was examined numerically using the pop-
ulation head model5 which includes a scalp, skull, CSF,
ventricle, grey matter, and white matter compartment (Lee
et al. 2016). The default conductivity values were applied,
associating the condutivity of the ventricles with that of
the CSF. A total of 72 ring electrodes with an assumed 1
kOhm impedance and an outer and inner diameter of 10 and
7.5 mm, respectively, were modeled through the complete
electrode model (CEM) described in Appendix A.1.

The head model was discretized using 1 mm mesh
resolution. The FE mesh is shown in Fig. 6. A LF
matrix was evaluated for a total number of 5000 DOFs
using the approach presented in Appendix A.1 and the
original piecewise constant conductivity as the background
distribution, i.e., the point of the linearization. The DOFs
were distributed in the CSF, white matter and grey matter
compartment.

The synthetic data were generated by perturbing the
conductivity inside the brain within a spherical 30
mm diameter sub-domain representing an intracerebral
hemorrhage (Broderick et al. 1993). Following, e.g., Li et al.
(2017); Tang et al. (2010), the magnitude of the perturbation
was set to be +0.73 S/m and the signal-to-noise ratio was
assumed to be 60 dB. The measurement errors consisted of
additive Gaussian zero-mean white noise.

5https://itis.swiss/virtual-population/regional-human-models/
phm-repository/

The likelihood standard deviation was set to be 12 %
conciding approximately with the level following from the
noise model. The IG hyperprior was employed selecting
the shape and scale parameters as β = 1.5 and θ0 =
0.001. To reconstruct the deep-lying anomaly, the total set
of DOFs was decomposed into randomized 300 subsets
which were formed w.r.t. an equal number of randomly
(uniformly) distributed center points via the nearest point
interpolation technique. The MAP estimate was found
by performing two steps of IAS iteration for altogether
100 such randomized decompositions. A serial approach
was adopted: the estimate obtained for one decomposition
was set as the initial guess for the next one. The final
reconstruction was produced as the mean of the resulting
100 MAP estimates.

The motivation to use averaging was to reduce the effect
of decomposition-related artifacts which we assumed to be
identically distributed for each separate decomposition and,
thus, converge towards an expectation of an asymptotical
Gaussian distribution based on the law of random numbers
and the central limit theorem (O’Hagan and Forster 2004).
The averaged reconstruction was obtained using the IAS
MAP multiresolution inverse tool which allows averaging
the reconstruction over one or more resolution levels
and multiple randomized decompositions. The resolution
is determined by the number of subsets within a single
decomposition which is here 300 in each.

Hypermodel and Parameter Selection

The HBM approach requires selecting the hypermodel
together with an appropriate value for the shape and scale
parameter β and θ . To investigate the effect of the parameter
selection on the IAS MAP estimation process, we compared
the localization of a simultaneously active pair of synthetic
deep and superficial 10 nAm source in the case of EEG.
The reconstruction was found as the center of mass of
the primary current distribution within two 30 mm ROIs

Neuroinform (2020) 18:237–250 243



Fig. 5 A surface and volume
visualization of reconstructed
brain activity (amplitude)
obtained in the EEG inversion
test (Section “EEG Inversion
Test”). The left and right images
correspond to G and IG
hyperprior, respectively. Top
row: An axial projection of the
reconstructions interpolated on
the surface of the grey matter
compartment. Bottom row: The
volumetric reconstructions cut
by a coronal plane at the
location of the maximal activity.
The reconstructions have been
normalized to one

centered at the actual source locations. The accuracy was
measured by evaluating the position (mm) and orientation
(degree) difference with respect to the exact sources. As
the computation domain we used a six-compartment (white
matter, grey matter, CSF, compact skull, spongious skull,
scalp) head model corresponding to a 49-year old male
subject with ZI’s default conductivity values. For the
spongious part of the skull 0.028 S/m was selected (Vorwerk
et al. 2014). The EEG LF matrix was formed for a cap of
72 electrodes. The effects of choosing the hyperprior h and
scale parameter θ0 were examined for the following four
pars: (i) h = G, θ0 = 1E − 5, (ii) h = IG, θ0 = 1E − 5,
(iii) h = G, θ0 = 1E − 9, and (iv) h = IG, θ0 = 1E − 9,
respectively. The shape parameter β was set to be β = 1.5 in
each case. Gaussian white noise with 2 % relative standard
deviation was added in the data. Each reconstruction was
evaluated for 50 different realizations of the noise vector.
The inverse tool applied in the experiment was ZI’s IAS
MAP estimation ROI.

Results

ZI’s forward simulation performance was evaluated w.r.t.
the computing time for the head model described in
Section “Hypermodel and Parameter Selection”. The
mesh generation, LF matrix evaluation and interpolation
processes took 21, 39 and 3.5 minutes, respectively, using

NVIDIA6 Quadro P6000 GPU. GPU acceleration was also
found to be necessary to obtain a reasonable computing time
as it sped up these routines by more than a factor of ten.

EEG Inversion Test

The results of the EEG inversion test can be found in
Fig. 5 which displays the reconstructed brain activity for
the surface of the cortex and a volume cut corresponding
to the location of the maximal activity. The reconstruction
obtained with the IG hyperprior was observed to be
more focal than the one corresponding to G. The surface
visualizations obtained for the G and IG hyperprior confirm
similar active area as illustrated in Brainstorm’s EEG and
epilepsy tutorial, especially, compared to the outcome of
the Brainstorm’s maximum of entropy on the mean (MEM)
framework solution. The volume cuts show the depth of the
reconstructed activity.

EIT Inversion Test

In the EIT inversion test, the averaged reconstruction found
for the synthetic hemorrhage matched well with its exact
location, which is shown in Fig. 6. A visual comparison

6https://en.wikipedia.org/wiki/List of Nvidia graphics processing
units
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Fig. 6 Left: An illustration of the synthetic hemorrhage (grey sphere)
which was applied to generate the data of the EIT inversion tests.
The diameter of the sphere was 30 mm and its conductivity was set
to be 0.73 S/m higher compared to its surroundings. The unperturbed
background conductivity distribution was assumed to be constant in
each tissue compartment including white matter (white), grey matter
(grey), CSF (green and blue), skull (khaki), and scalp (brown). The
CEM electrodes (Appendix A.1) are shown as surface patches (black

rings): Center: An averaged reconstruction of the synthetic hemor-
rhage found using the IAS MAP multiresolution inverse tool. The final
distribution was produced as an average of altogether 100 different
MAP estimates corresponding to different randomized decompositions
of 300 DOFs as explained in Section “EIT Inversion Test”. Right:
A reconstruction (an unaveraged MAP estimate) found for a single
decomposition of 300 DOFs. The reconsructions have been normalized
to one

between the averaged and unaveraged and reconstruction
(Fig. 6) suggests that the averaging process was beneficial
w.r.t. the localization accuracy. The resolution (level of
detail) of the averaged reconstruction seems to be refined
compared to that of the unaveraged one. Moreover, using
a comparatively low number of DOFs (here 300) in each
randomized decomposition was found to be necessary for
detecting the hemorrhage.

Hypermodel and Parameter Selection

Figure 7 illustrates the source localization results obtained
in the hypermodel and parameter selection test. G was
observed to perform comparably well for the superficial ROI
and IG for the deep one. This is reflected by the cases (i)
and (iv) in which the utmost position accuracy was obtained
in these ROIs, respectively. Moreover, for G, the larger

Fig. 7 Top row: Examples of the center of mass (red pin) found for the
deep and superficial source (1 and 2, respectively) in the cases (i)–(iv)
with synthetic EEG data and the noise level of 2 %. The exact posi-
tion of each source is also depicted (cyan pin). Bottom row: Box-plots

showing the distributions (i)–(iv) of the position (millimeter) and angle
error (degree) found for sources 1 and 2 and 50 different realizations
of the noise vector
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scale parameter value seemed preferable to the smaller one,
while, for IG, the situation was the opposite. Regardless of
the hyperprior, selecting a smaller scale parameter seemed
beneficial for localizing the deep source until a certain level,
where noise effects started to affect the reconstruction.

Discussion

This article introduced Zeffiro interface (ZI) version 2.2, a
GPU accelerated Matlab tool for multi-modal FEM-based
modeling of electromagnetic fields in brain imaging and
investigations (Braess 2001; de Munck et al. 1988; Monk
2003). It was shown that, when aided by a state-of-the-art
GPU, ZI allows one to invert a given set of EEG data for a phys-
iologically accurate (Rullmann et al. 2009) one-millimeter
volumetric multi-compartment head model within a reasonable
one hour’s time. GPU acceleration is needed, specifically,
in the forward simulation phase, that is, in the generation
of the FE mesh and the LF matrix as well as in the inter-
polation process connecting the DOFs of the unknown with
the nodes of the FE mesh. Since Matlab does not currently
parallelize the sparse matrix operations in a CPU, the per-
formance difference between CPU and GPU computations,
both applicable in ZI, is particularly pronounced.

As the mutual performance of GPU- and CPU-based
codes is strongly system-specific and depends on various
factors in addition to the processors themselves, ZI was
not directly compared to the alternative tools. These
include, for instance, Duneuro7 (Nüßing et al. 2019) and
SimBio8 (Fingberg et al. 2003) which are open source
FEM libraries for EEG/MEG with similar functions as
Zeffiro but utilizing C++ language. Brainstorm9 (Tadel
et al. 2011) and Fieldtrip10 (Oostenveld et al. 2011) are
alternative packages for the Matlab platform. The core
forward modeling approach of Brainstorm is the BEM
(He et al. 1987). Fieldtrip does not have an advanced
forward and inverse modeling functions. None of these are
currently capable of advanced FEM or GPU computations.
The MNE-Python11 toolbox (Gramfort et al. 2013) is the
leading option for Python. It allows utilizing a GPU, but is,
nevertheless, limited to a BEM-based forward simulation.

The present results suggest that ZI enables robust
inversion of multi-modal data. Firstly, the reconstructions
obtained for Brainstrom’s EEG and epilepsy tutorial dataset
show that ZI’s forward and inversion methods can be
applied to detect brain activity. Secondly, based on the

7http://duneuro.org
8http://simbio.de
9https://neuroimage.usc.edu/brainstorm/Introduction
10http://www.fieldtriptoolbox.org
11https://martinos.org/mne/stable/index.html

numerical results obtained in the EIT inversion test, it seems
that ZI can also be extended for non-linear problems and
inversion of scalar-valued fields. The IAS MAP estimation
technique was found to be applicable for EIT via averaging
MAP estimates obtained for a randomized set of low-
resolution domain decompositions. This technique might be
usable also for other imaging modalities, for example, to
localize deep brain activity. Furthermore, the present EIT
solver might be adapted for other applications involving
current injections, such as transcranial electric stimulation
(Herrmann et al. 2013) in which the brain activity is evoked
through external stimuli.

Based on the hyperprior and scale parameter selection
experiment, IG seems to be an advantageous choice for the sub-
cortical areas, whereas G seems preferable for the cerebral cor-
tex. The scale parameter applied in the former case should
be generally lower than in the latter one. This baseline is
in parallel with the previous findings (Calvetti et al. 2009)
and might be optimized later on. We also emphasize that the
parameter selection is generally a complicated issue which
is not covered completely in this study. For example, the
effect of the shape parameter, which partially overlaps with
that of the scale parameter, is omitted here.

Compared to the BEM, the FEM has at least two major
advantages when applied in EEG/MEG. Firstly, while a
BEM solver slows down if the surface mesh resolution
or the number of surfaces grows, the computational
performance of the FEM is virtually independent of these
factors. ZI’s current design takes this aspect into account,
as altogether 27 tissue compartments, each one composed
of sub-entities if needed, can be included in a single
head model. The uniform mesh generator is well-suited
for multi-compartment meshing, since unlike many widely
used software, e.g., TetGen12 (Si 2015) and Netgen13

(Schöberl 1997), it allows the tissue boundaries to intersect
each other without collapsing. This is essential in practice,
since the segmentation routines utilizing MRI data do not
always render the surfaces smoothly. Moreover, ZI performs
appropriately with a high surface resolution, thereby,
allowing one to directly use the detailed surfaces exported
from the FreeSurfer14 Software Suite (Fischl 2012).

The second major benefit of the FEM is that the
conductivity distribution can be anisotropic (Güllmar et al.
2010; Rullmann et al. 2009). ZI’s forward simulation
routines are currently capable of handling anisotropicity.
The current meshing routine, however, generates an
isotropic conductivity distribution. Generating or importing
an anisotropic distribution, e.g., from diffusion-weighted
MRI data, constitutes a potential topic for the future work.

12http://wias-berlin.de/software/tetgen/
13https://ngsolve.org/
14https://surfer.nmr.mgh.harvard.ed
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Another potential direction is to develop the inversion
methodology: one might apply the HBM for sub-cortical
areas (Seeber et al. 2019), with non-diagonal prior
covariance structures and/or with sampling-based posterior
exploration techniques, e.g., the Gibbs sampler (Spitzer
1971; Murphy 2012). From the practical viewpoint, there is
also an obvious need to develop tools for various purposes
including epochs, the covariance of the measurements,
and connectivity, e.g., phase-locking (Lachaux et al.
1999). Clinical studies would be needed to validate ZI
for different applications and measurement situations.
Providing command line executable scripts for performing
the main operations without the graphical user interface,
e.g., in a computing cluster, is also a potential option.
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Appendix A: Finite Elements in Multimodal
Lead Field Evaluation

To model electromagnetic fields, ZI applies the finite
element method which allows obtaining lead field matrices
for multiple different applications and data modalities. This
appendix shows mathematically, how the lead field matrices
of the EEG and linearized EIT problem are obtained in ZI,
when the complete electrode model (CEM) is applied.

Complete Electrode Model in Lead Field Evaluation

The governing PDE can be equipped with the following
(lumped) CEM boundary conditions (Cheng et al. 1989).

(I): σ∇u·n|∂Ω\∪�e�
= 0, (II):

∫
e�

σ∇u·n dS = I�, and (III):
(u + Z�A�σ∇u · n)|e�

= U� for � = 1, 2, . . . , L, where n
denotes the surface normal. According to the first condition
(I), the normal current σ∇u · n on ∂Ω can flow out of or
into the domain only through electrodes e�, � = 1, 2, . . . , L.
The second one (II) sets the net current flowing through
each electrode is I�, and the third one (III) corresponds to
the potential jump on the skin-electrode contact boundary.
The voltage of the �-th electrode is denoted by U�. Z� is
the average contact impedance or resistance and A� is the
contact area of the �-th electrode. An additional condition
is the the equation

∑L
�=1 I� = 0 which guarantees that the

subject is grounded appropriately, so that there is no current
flowing out of the head through the neck. Integrating the
governing PDE for the potential field, i.e., ∇ · (σ∇u) =
∇ · J p, by parts yields the for weak form (Pursiainen et al.
2016a):

−
∫

Ω

(∇ · J p)v dV =
∫

Ω

σ∇u · ∇v dV +
L∑

�=1

1

Z�A�

∫
e�

u v dS

−
L∑

�=1

1

Z�A2
�

∫
e�

u dS

∫
e�

v dS −
L∑

�=1

Z�I�. (3)

If the divergence of J p is square integrable, i.e., if J p ∈
{w | ∇ · w ∈ L2(Ω)}, the weak form has a unique solution
u ∈ H 1(Ω) = {w ∈ L2(Ω) : ∂w/∂xi ∈ L2(Ω),
i = 1, 2, 3} satisfying (3) for all v ∈ H 1(Ω). The weak
form (3) can be discretized in a straightforward way via
the classical Ritz-Galerkin technique (Braess 2001) which
yields the system

(
A −B

−BT C

)(
z
v

)
=

( −Gx
I

)
. (4)

Matrix A is of the form ai,j = ∫
Ω

σ∇ψi · ∇ψj dV +∑L
�=1

1
Z�A�

∫
e�

ψiψj dS, where ψi , i = 1, 2, . . . , n are
linear (nodal) FE basis functions. To ensure the invertibility
of A, it is additionally defined that the identities ai′,i′ = 1
and ai′,j = 0 (j �= i′) are satisfied for the index i′
corresponding to a basis function ψ ′

i which is maximized
on the boundary ∂Ω \ ∪�e� not covered by the electrodes.
The entries of B, C and G are given by bi,� = 1

Z�

∫
e�

ψi dS,

c�,� = 1
Z�

∫
e�

dS, ci,� = 0 (i �= �), and gi,j = ∫
Ω

ψi(∇ ·
�wj)dV , where �wj , j = 1, 2, . . . , m are basis functions
belonging to the H(div) space. The current vector I =
(I1, I2, . . . , IL) is nonzero, if the electrodes are actively
injecting currents. The zero-mean electrode voltage vector
y = (U1, U2, . . . , UL) predicted by Eq. 4 can be obtained
via y = Rv in which the matrix R defined by rj,j = 1−1/L

for j = 1, 2, . . . , L, and ri,j = −1/L (i �= j ).
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EEG Lead Field

In EEG, the electrode currents included in I are zero, as
the electrodes only measure the voltage on the skin. Thus,
vector v can be explicitly solved from Eq. 4 which leads
to the expression y = R(BT A−1B − C)−1BT A−1Gx, and,
further, to the following EEG LF matrix:

L = R(BT A−1B − C)−1BT A−1G. (5)

The lead field of the MEG problem can be derived in
an analogous way using the Biot-Savart formula for the
magnetic field as shown in Pursiainen (2012).

Linearized EIT Lead Field

In EIT, the primary current density can be assumed to be
zero, as the magnitude of the injected currents is far superior
to the brain activity. The unknown of the EIT inverse
problem is the conductivity distribution σ . The voltage
measurements y = Rv generated by the current injections
I are used as the data. The forward model that follows
is given by y = RM−1I, where M = (C − BT A−1B).
The conductivity distribution is assumed to be piecewise
(element-wise) constant, i.e., of the form σ = ∑M

m=1smχm,
where χm is the indicator function of the element m in
the FE mesh. Denoting by σ (bg) a background conductivity
distribution, i.e., the point of linearization, the unknown of
the inverse problem is the difference vector x = (s1 −
s
(bg)

1 , s2 − s
(bg)

2 , . . . , sM − s
(bg)
M ). The LF for linearized EIT

can be derived by differentiating both sides of the equation
Mv = I as follows: 0 = (−BT ∂

∂sm
A−1B)v + M ∂

∂sm
v.

Moreover, a straightforward differentiation of the equation

AA−1 = I shows that ∂
∂sm

(AA−1) = ∂A
∂sm

A−1 + A ∂A−1

∂sm
=

0, and, further, that ∂A−1

∂sm
= −A−1 ∂A

∂sm
A−1. Taking into

account that ∂y
∂sm

= R ∂v
∂sm

, the linearized lead field can be

written as ∂y
∂sm

= −RM−1BT (A−1 ∂A
∂sm

A−1B)v. Thus, the
differential is of the form

∂y
∂sm

= −RM−1BT (A−1 ∂A
∂sm

A−1B)M−1I. (6)

The linearized forward model of EIT is given by y ≈ Lx +
y(bg), where y(bg) is a simulated data vector corresponding
to the background conductivity distribution σ (bg) and the
entries of the lead field matrix L are of the form lk,m =
∂yk/∂sm|σ (bg) .

Transfer Matrix

Both EEG and EIT lead field matrix can be formed by
first evaluating the so-called transfer matrix T = A−1B.
Obtaining a single column t of T necessitates solving a
linear system of the form At = b, where b is a single

column of the matrix B which has as many columns as there
are electrodes in the measurement system.

Appendix B: IASMAP Inversion

The iterative alternating sequential (IAS) inversion
approach (Calvetti and Somersalo 2007; Calvetti et al.
2009, 2018) to find a maximum a posteriori estimate for the
posterior density is given by:

1. Choose parameters β and θ0. Set k = 1 and θ (0) =
(θ0, θ0, . . . , θ0).

2. Find x(k) = arg maxx p(x | y, θ (k−1)).
3. Find θ (k) = arg maxθ p(θ | y, x(k)).
4. If k is less than the total number of iterations chosen

by the user, then go to 2. and set k = k + 1, else set
xMAP = x(k).

IAS finds a conditional maximum of the posterior
alternatingly with respect to the unknown vector x and the
hyperparameter θ . The algorithm can be, further, written as

1. Set k = 0 and θ (0) = (θ0, θ0, . . . , θ0).
2. Set L(k) = LD1/2

θ (k) with D1/2
θ (k) =

diag

(√
|θ (k)

1 |,
√

|θ (k)
2 |, . . . ,

√
|θ (k)

n |
)

.

3. Evaluate

x(k+1) = D1/2
θ (k)L

(k)T (L(k)L(k)T + ν2I)−1y, (7)

where ν denotes the standard deviation of the likeli-
hood.

4. Update the hyperparameter based on the hypermodel.

– If the hypermodel is G, set θi =
1
2θ0

(
η +

√
η2 + 2x

(k)
i

2
/θ0

)
with η = β − 3/2,

i = 1, 2, . . . , n.
– Else, if the hypermodel is IG, set θ

(k+1)
i = (θ0 +

x
(k)
i

2

2 )/κ with κ = β + 3/2, i = 1, 2, . . . , n.

5. Set k = k+1 and go back to 2., if k is less than the total
number of iterations defined by the user.
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Abstract
We focus on electro-/magnetoencephalography imaging of the neural activity and, in particular, finding a robust estimate 

for the primary current distribution via the hierarchical Bayesian model (HBM). Our aim is to develop a reasonably fast 

maximum a posteriori (MAP) estimation technique which would be applicable for both superficial and deep areas without 

specific a priori knowledge of the number or location of the activity. To enable source distinguishability for any depth, we 

introduce a randomized multiresolution scanning (RAMUS) approach in which the MAP estimate of the brain activity is 

varied during the reconstruction process. RAMUS aims to provide a robust and accurate imaging outcome for the whole 

brain, while maintaining the computational cost on an appropriate level. The inverse gamma (IG) distribution is applied as 

the primary hyperprior in order to achieve an optimal performance for the deep part of the brain. In this proof-of-the-concept 

study, we consider the detection of simultaneous thalamic and somatosensory activity via numerically simulated data mod-

eling the 14-20 ms post-stimulus somatosensory evoked potential and field response to electrical wrist stimulation. Both a 

spherical and realistic model are utilized to analyze the source reconstruction discrepancies. In the numerically examined 

case, RAMUS was observed to enhance the visibility of deep components and also marginalizing the random effects of the 

discretization and optimization without a remarkable computation cost. A robust and accurate MAP estimate for the primary 

current density was obtained in both superficial and deep parts of the brain.

Keywords Brain imaging · Depth reconstruction · EEG and MEG data · Hierarchical Bayesian model · Randomized 

multiresolution scanning

Introduction

This study concentrates on electro-/magnetoencephalogra-

phy (E/MEG) imaging of the brain activity (He et al. 2018). 

The present focus is on the hierarchical Bayesian model 

(HBM) (Calvetti et al. 2009; Lucka et al. 2012) which allows 

one to find a focal and robust reconstruction by exploring 

a posterior probability distribution following from a con-

ditionally Gaussian prior model. Our aim is, in particular, 

to develop a fast maximum a posteriori (MAP) estimation 

technique which would be applicable for both superficial 

and deep areas without additional a priori knowledge of the 

brain activity, such as physiological depth weighting (Cal-

vetti et al. 2015, 2018; Homa et al. 2013). While high-den-

sity measurements (Seeber et al. 2019) and advanced signal 

processing strategies (Pizzo et al. 2019) have recently been 

shown to be essential in distinguishing deep activity, this 

study focuses on the importance to reduce the random effects 

of the numerical discretization and optimization errors on 

the reconstruction process.

We introduce a randomized multiresolution scanning 

(RAMUS) method in which the MAP estimate of the brain 

activity is refined gradually in the reconstruction procedure. 

RAMUS aims at reducing the random effects of the numeri-

cal discretization on the final estimate. It processes the well 

and ill-conditioned parts of the source space separately 

which has been suggested for ill-posed problems, e.g., in 

(Pursiainen 2008; Liu et al. 1995; Piana and Bertero 1997a). 

A multiresolution decomposition provides an approximative 

split between detectable and undetectable parts for different 
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source depths, as the maximal source localization accuracy 

varies strongly with respect to the depth (Tarkiainen et al. 

2003; Cuffin et al. 2001a, b; Grover 2016; Wang et al. 2009) 

with only the low resolution fluctuations being visible in the 

deep part of the brain (Pascual-Marqui et al. 1999; Pascual-

Marqui 1999). At each resolution level, a MAP estimate 

is evaluated via the iterative alternating sequential (IAS) 

algorithm and the inverse gamma (IG) hyperprior which has 

been found to be advantageous for detecting deep activity 

(Calvetti et al. 2009).

The previous results suggest that HBM can find a focal 

solution deep in the head via the Markov chain Monte Carlo 

(MCMC) sampling techniques, especially, if the activity can 

be constrained into a region of interest (ROI) (Calvetti et al. 

2009; Lucka et al. 2012). However, processing large data 

sets involving temporal measurement sequences with an 

advanced MCMC approach without a priori knowledge of 

a ROI might be computationally too expensive for the prac-

tical use. Therefore, finding a robust and fast approach to 

distinguish activity reliably is crucial regarding the practical 

applications. In this proof-of-the-concept study, we consider 

the detection of simultaneous somatosensory and thalamic 

activity with numerically simulated data. This setup mod-

els the detection of the somatosensory evoked potentials 

and fields (SEP/F) in response to the electrical stimulation 

of the median nerve, particularly, thalamic (deep) P14/

N14 and somatosensory (superficial) P20/N20 component 

peaked at 14 and 20 ms post-stimulus, respectively (Buchner 

et al. 1988, 1995, 1994a, b; Haueisen et al. 2007; Attal and 

Schwartz 2013; Fuchs et al. 1998).

In the numerical experiments, both a spherical and real-

istic model has been used to analyze the source reconstruc-

tion discrepancies with RAMUS. The results suggest that a 

randomized set of decompositions (Mallat 1989; Clark et al. 

1995) is essential to marginalize out the possible modeling 

errors due to projecting the source space into different reso-

lution levels which, again, is necessary in order to achieve 

the depth-invariance of the final MAP estimate.

Methodology

Observation Model

For the EEG source modelling, we employ the finite ele-

ment method and the current preserving H(div) approach 

(Pursiainen 2012a; Pursiainen et al. 2016; Miinalainen et al. 

2019) in which the primary current distribution of the neu-

ral activity is assumed to have a square-integrable diver-

gence 𝐉P ∈ H(div) = {𝐰|∇ ⋅ 𝐰 ∈ L2(𝛺)} in the source space 

denoted by S . The observation model is

where 𝐲 ∈ ℝ
m is the measurement vector, 𝐋 ∈ ℝ

m×3K is the 

lead field matrix, 𝐱 ∈ ℝ
3K is the unknown primary current 

distribution with K denoting the total number of the source 

positions, and 𝐧 ∈ ℝ
m is the measurement noise vector 

which is modelled as Gaussian random variable with zero 

mean and covariance matrix of the form 𝜎2𝐈 ∈ ℝ
m×m . In this 

numerical study, the diagonal covariance is used for simplic-

ity as it allows fixing the noise level with a single parameter, 

i.e., the standard deviation 𝜎 . We refer to ℝ3K as the source 

space S for the inverse problem of finding 𝐱 given the data 

𝐲 . The number of sources is three times the number of their 

positions, as each position is assumed to have three sources 

oriented along the Cartesian coordinate axes.

Hierarchical Bayesian Model

In the HBM framework, the prior of 𝐱 is not fixed but ran-

dom. It is determined by the realization of the so-called 

hyperparameter 𝜽 . The hyperparameter follows an a priori 
assumed distribution, i.e., the hyperprior. Consequently, the 

prior is a joint density given by p(𝐱,𝜽) ∝ p(𝜽) p(𝐱 ∣ 𝜽) of 

𝐱 and 𝜽 . The conditional part of the prior p(𝐱 ∣ 𝜽) corre-

sponds to a zero mean Gaussian density with a diagonal 

covariance matrix predicted by the hyperprior p(𝜽) . The 

hyperparameter 𝜽 is of the same dimension as 𝐱 with each 

entry defining the variance of its respective entry in 𝐱 . The 

density of the hyperprior is long-tailed, implying that 𝐱 is 

likely to be a sparse vector with only few nonzeros, which is 

advantageous for finding a focal reconstruction of the brain 

activity. As a hyperprior, one can use, e.g., the gamma (G) 

or inverse gamma IG(𝜽 ∣ 𝛽, 𝜃0) density (Calvetti et al. 2009), 

whose shape and scale are controlled by the parameters 𝛽 

and 𝜃0 , respectively. IG is a conjugate prior for a Gaussian 

distribution with an unknown variance (here the conditional 

prior), meaning that the corresponding posterior (here the 

actual prior) is also Gaussian. Again, G is a conjugate prior 

with respect to the reciprocal of the variance (O’Hagan and 

Forster 2004).

The posterior probability density of 𝐱 , following from 

the classical Bayes formula (O’Hagan and Forster 2004), 

is of the form

i.e., it is proportional to the product between the 

prior density p(𝐱,𝜽) , and the likelihood function 

p(𝐲 ∣ 𝐱) ∝ exp(−(2𝜎2)−1‖𝐋𝐱 − 𝐲‖2) given by the measure-

ment noise model (Schmidt et al. 1999).

We consider finding the inverse estimate via the itera-
tive alternating sequential (IAS) MAP estimation method 

(1)𝐲 = 𝐋𝐱 + 𝐧,

(2)p(𝐱,𝜽 ∣ 𝐲) =
p(𝐱,𝜽) p(𝐲 ∣ 𝐱)

p(𝐲)
∝ p(𝐱,𝜽) p(𝐲 ∣ 𝐱),
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(Appendix 5) using primarily the IG density as the hyper-

prior. IG has been suggested for depth localization in Cal-

vetti et al. (2009), where the IG and G based IAS MAP 

estimate have been shown to correspond to the minimum 

support and minimum current estimate (MSE and MCE) 

(Nagarajan et al. 2006), respectively, while the first step 

of the iteration concides with the classical minimum norm 

estimate (MNE) (Hämäläinen et al. 1993). A recent com-

parison between IAS and other brain activity reconstruc-

tion techniques can be found in (Calvetti et al. 2018).

The numerical exploration of the posterior density 

p(𝐱,𝜽 ∣ 𝐲) is subject to the numerical discretization, i.e., 

the numerical definition of the source space S for 𝐱 and 

the resulting lead field matrix. We aim to reduce the 

effect of the discretization via the following two strate-

gies motivating the introduction of the RAMUS approach: 

(1) The reduction of the source space is essential to 

improve the ability of a solver to recover focal sources 

both in deep and superficial locations. Furthermore, 

since a sparse source space results here in source 

reconstruction of low spatial resolution, a source space 

refinement during the reconstruction process of this 

study is crucial.

(2) A randomized set of decompositions enables averaging 

out (marginalizing) the effect of the discretization error.

The theoretical justification of (1) and (2) are given in 

the following sections “Coarse-to-Fine Optimization” and 

“Randomized Scanning”, respectively.

Coarse-to-Fine Optimization

The EEG source imaging problem is severely ill-posed 

(Grech et al. 2008) and it is well-known that most of the 

solvers suffer from depth bias effects (Pascual-Marqui 1999; 

Koulouri et al. 2017; Awan et al. 2018). A way to reduce 

the ill-conditioning in the computations is by introducing 

coarser (sparse) source space, i.e., regularization by discre-

tization (Hansen 2010; Kirsch 2011), or by approximating 

the source distribution as a linear combination of spatial 

basis functions (redundant dictionaries) as proposed in 

Haufe et al. (2008). With a dimensionality reduction, the 

linear system to be solved is often over-determined and 

stable estimates can be obtained. However, this comes at 

a cost of poor resolution reconstructions due to large dis-

cretization errors. The idea of employing a multiresolution 

approach (Mallat 1989), where a progressive refinement in 

the source space is performed in order to obtain more accu-

rate estimates, has been proposed for the E/MEG problem 

for example in Gavit et al. (2001); Malioutov et al. (2005).

The source space S can be decomposed via the direct sum 

of S+
𝜀
= {𝟎} ∪ {𝐱 ∶ ‖𝐋𝐱‖ ≥ 𝜀} and S−

𝜀
= {𝐱 ∶ ‖𝐋𝐱‖ < 𝜀} , 

i.e. S = S
+
𝜀
⊕ S

−
𝜀
 , where 𝜀 is determined by the noise level. 

S
+
𝜀
 and S−

𝜀
 represent the sets of the detectable and undetecta-

ble source distributions, respectively. If possible, it is advan-

tageous to decompose S into S+
𝜀
 and S−

𝜀
 as, thereby, one can 

avoid source localization errors related to the indetectable 

distributions S−
𝜀
 (Pursiainen 2008; Piana and Bertero 1997b; 

Liu et al. 1995). In E/MEG, a coarse enough source con-

figuration can be distinguished, i.e., it belongs to S+
𝜀
 , while 

a dense one has modes that cancel each other and might be 

indetectable, i.e., in S−
𝜀
 (Fig. 1). The coarsity is specifically 

Fig. 1  1st from the left In E/MEG, a coarse enough source configu-

ration can be distinguished, i.e., it belongs to S+
𝜀
 , while a dense one 

has modes that cancel each other and might be indetectable, i.e., in 

S
−
𝜀
 (Fig.  1). 2nd and 3rd from the left: An example of subdividing 

the grey matter compartment to subdomains in the case of a coarse 

(center) and fine (right) resolution. Here, the sparsity factor s, i.e., the 

ratio between number of subdomains for two consequtive resolution 

levels, would be four. An example of mapping a subdomain from a 

coarse to fine resolution is given by {2} → {2, 28, 29, 30}
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important considering deep activity for which the magnitude 

of the lead field is comparably low and, therefore, any deep 

source configuration is likely to belong to S−
𝜀
 . For a given 

lead field matrix 𝐋 , the maximum possible number of detect-

able sources and, thereby, the maximal dimension of S+
𝜀
 is 

determined by the maximum number of nonzero singular 

values which coincides with the smaller dimension of 𝐋 , 

that is, the number of the data entries m.

In the coarse-to-fine reconstruction strategy, the aim is to 

first limit the source space S to a subspace S+
𝜀
 by restricting 

its resolution, to gradually increase its resolution, and to 

eventually obtain an approximation for the whole space S . 

A nested set of restricted subspaces with different resolu-

tions referred here to as a multiresolution decomposition 

is obtained recursively by selecting a uniformly random set 

of source positions from a given source space and associat-

ing those with the original set of positions through nearest 

interpolation. The coarsest resolution level is associated 

with the index 𝓁 = 1 . When moving from the 𝓁-th resolution 

level to the (𝓁 + 1)-th one, the number of source positions 

is assumed to grow by a constant sparsity factor s > 1 . An 

example for a dual resolution decomposition and a mapping 

of the subdomains between them can be found in Fig. 1.

In the IAS MAP estimation process, once the activity has 

been found at a coarse reconstruction level, the support of 

the candidate solution will shrink along with the increasing 

resolution (Fig. 2). That is, the size of the details found is 

subject to the resolution level. Therefore, the final estimate 

is found as a combination of the estimates obtained for the 

different levels. In order to distinguish the weakly detectable 

activity, especially, the deep components, the number of the 

dimensions in the initial set should be of the same size with 

m, following from the maximal dimensionality of S+
𝜀
.

Randomized Scanning

Since a sparse source space is likely to induce a bias to the 

consequent estimates, we propose to use a random set of 

(initial) sparse source spaces that aims to reduce the propa-

gation of random discretization and optimization errors. The 

relationship between the global posterior optimizer 𝐱∗ and 𝐱k 

for the original source space S and its restriction Sk , respec-

tively, can be modeled via the equation

where 𝐝k and 𝐯k represent a discretization and optimization 

error, respectively. Of these, 𝐯k depends of the quality of the 

MAP optimization method and vanishes in the ideal case, 

while 𝐝k is fixed. If the degrees of freedom in S1, S2,… , SD 

have an independent and identical random distribution, the 

respective discretization errors 𝐝1, 𝐝2,… , 𝐝D can be modeled 

as independently and identically distributed random vari-

ables and, by the law of large numbers and the central limit 

theorem, the discretization error term 
1

D

∑D

k=1
𝐝k of the mean

is an asymptotically Gaussian variable with expectation 

𝐝 and the rate of convergence 
1

D

∑D

k=1
→ 𝐝 is of the order 

O(D−1∕2) with respect to the number of source spaces (Liu 

2001). Consequently, the random effects of the discretiza-

tion errors can be marginalized via estimating 𝐱∗ in multiple 

randomly (independently and identically) generated source 

spaces. The expectation 𝐝 can be regarded as the remaining 

systematic discretization error which is specific to the set 

S1, S2,… , SD , i.e., the resolution level, and is related, for 

example, to the relationship between the maximal achiev-

able level of detail and the structure of the actual unknown 

brain activity.

Since the outcome of the optimization process for each 

given source space is a priori sensitive to the discretization 

errors, the estimate for 𝐱k is found using the one for 𝐱k−1 as 

the initial guess. This approach is motivated by the present 

gradually progressing coarse-to-fine subdivision due to which 

the subsequent optimizers will be nearly similar. We consider 

it necessary in order to maintain each estimate in the vicin-

ity of the global optimum and, thereby, the norm of the opti-

mization error 𝐯k as small as possible. Namely, using a fixed 

initial guess might mean that, instead the global optimizer, a 

local one is found for some of the source spaces as depicted in 

Fig. 3. The global optimum might correspond to a situation in 

which both a superficial and deep source are detected, while 

the deep activity might be undetected at a local one.

Technically, updating the initial guess makes the estimate 

for 𝐱k dependent on the previous one obtained for 𝐱k−1 , i.e., 

the sequence of the estimates is a time-homogeneous Markov 

chain. We regard the present approach as a surrogate transition 

rule (Liu 2001) estimating the outcome of an ideal optimiza-

tion method which would find the global optimum precisely 

with 𝐯k = 0 , thereby, resulting in the identity

(3)𝐱k = 𝐱∗ + 𝐝k + 𝐯k,

(4)
1

D

D∑
k=1

𝐱k = 𝐱∗ +
1

D

D∑
k=1

𝐝k +
1

D

D∑
k=1

𝐯k

(5)
1

D

D∑
k=1

𝐱k = 𝐱∗ +
1

D

D∑
k=1

𝐝k → 𝐱∗ + 𝐝,

Fig. 2  Once an approximation for a non-zero source has been found 

at a coarse resolution level (left) the its support will shrink at the finer 

levels (right)
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which will hold approximately, if the surrogate rule is accu-

rate enough.

RAMUS

We propose the following algorithm for RAMUS to reduce 

the random discretization and optimization effects when 

finding a reconstruction for the unknown parameter 𝐱 with 

the IAS MAP estimation method. 

1. Choose the desired number of the resolution levels L and 

the sparsity factor (the ratio of source counts) s between 

each level. The number of the sources at a given resolu-

tion level will be K
𝓁

= Ks(𝓁−L) , where 𝓁 = 1, 2,… , L is 

the index of the resolution level, the larger the value of 

the index 𝓁 the finer the resolution.

2. For each resolution level 𝓁 = 1, 2,… , L , create a random 

uniformly distributed set of center points 𝐩1, 𝐩2,… , 𝐩K
𝓁
 . 

Find source point subsets B1 , B2 , … , BK
𝓁
 applying the 

nearest interpolation scheme with respect to the center 

points. That is, each subset Bj consists of those source 

positions of the total source space S , whose nearest 

neighbor with respect to 𝐩1, 𝐩2,… , 𝐩K
𝓁
 is 𝐩j . The aver-

age number of source positions associated with Bj is 

approximately given by the sparsity factor s. The resolu-

tion of this subdivision grows along the number of the 

center points. The unknown parameter is assumed to be 

constant in each subset, and the actual source count is 

assumed to stay unchanged regardless of the resolution.

3. Repeat the first two steps to generate a desired number 

D of independent multiresolution decompositions 𝔖1 , 

𝔖2 , … , 𝔖D.

4. Start the reconstruction process with the decomposition 

𝔖1 and a suitably chosen initial guess 𝐱(0).

5. For decomposition 𝔖k , find a reconstruction 𝐱(𝓁) with 

the IAS MAP technique with the initial guess 𝐱(𝓁−1) for 

the resolution levels 𝓁 = 1, 2,… , L.

6. After going through all the decompositions, obtain the 

final estimate for the decomposition (basis) k as the nor-

malized mean 

 where the denominator follows from the need to balance 

out the effect of the multiplied source count following 

from the interpolation of a coarse level estimate to a 

denser resolution level.

7. If k < D , move to the next decomposition, i.e., update 

k → k + 1 , and repeat the previous step with the initial 

guess 𝐱
(k−1)

 for the resolution level 𝓁 = 1.

8. Obtain the final reconstruction as the mean: 

Technically, this process is equivalent to first evaluating the 

mean (7) for each resolution level and then the normalized 

mean (6) over the different resolutions, showing that an 

approximation of the form (3) is, in fact, obtained for each 

set of independent and identically generated source spaces. 

Since the final reconstruction is obtained as a mean over all 

the reconstruction levels, also the potential systematic dis-

cretization errors will be averaged with an equal weighting. 

This approach is used, as different resolution levels localize 

(6)𝐱
(k)

=

L∑
𝓁=1

𝐱(𝓁) ∕

L∑
𝓁=1

s(L−𝓁),

(7)𝐱
(k)

=
1

D

D∑
k=1

𝐱
(k)

.

Fig. 3  An estimate for the global posterior optimizer 𝐱
k
 obtained for 

the source space S
k
 is found using the estimate for 𝐱

k−1 as the initial 

guess (“ Randomized Scanning” section). We consider this approach 

necessary in order to maintain the estimates as close to the global 

optimum as possible. Namely, using a fixed initial guess might 

mean that the global optimizer is not found for some of the source 

spaces. Left: The global posterior optimizer is found for the posterior 

of space 1 (solid contours). Right: For space 2 (dashed contours), it 

is found (solid grey path), if the final estimate obtained in the case 

one 1 is used as the initial guess for 2 (grey circled point), while a 

local optimizer is obtained (dashed grey path) with the original initial 

guess 1 (black circled point) resulting in an optimization error. The 

global optimum might, in practice, correspond to a situation in which 

both a superficial and deep source are detected, while the deep activ-

ity might be undetected at the local one
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different details (“Coarse-to-Fine Optimization” section). 

Consequently, the details found for the most levels are likely 

to gain the highest intensity in the final reconstruction. A 

schematic illustration of the resulting data flow has been 

included in Fig. 4.

Numerical Implementation with Zeffiro Interface

The forward and inverse solvers applied in this study were 

implemented in the Matlab (The MathWorks Inc.) as a part 

of the Zeffiro Interface (ZI) code package which is openly 

available in GitHub1. ZI is a tool enabling finite element 

(FE) based forward and inverse computations in electromag-

netic brain applications. The forward approach of ZI together 

with the basic version of the IAS source reconstruction 

approach have been validated numerically in (Miinalainen 

et al. 2019; Pursiainen 2012b). ZI generates a uniform tet-

rahedral finite element (FE) mesh. Each source distribution 

is obtained by picking the first K entries of the randomly 

(uniformly) permuted set of the tetrahedron centers for the 

brain compartment. Due to the uniform mesh structure, this 

strategy leads to an evenly distributed set of source points. 𝐱.

ZI allows performing the source reconstruction routines 

using either a CPU or a GPU (graphics processing unit) type 

processor. Today, effective GPUs are available in power PCs 

an workstations but most laptops are still limited to CPU 

processing. Therefore, to compare the performance differ-

ence between GPU and CPU platforms, the computing time 

for forming a random set of multiresolution decompositions 

and inverting a given measurement data vector were evalu-

ated for NVIDIA Quadro P6000 workstation GPU and Intel 

i7 5650U laptop CPU.

Numerical Experiments

In the numerical experiments, we used the realistic popula-

tion head model2 (PHM) (Lee et al. 2016), consisting of 

five layers (white matter, grey matter, cerebrospinal fluid 

(CSF), skull, and skin) and the three-layer Ary model in 

which concentric 87, 92 and 100 mm spheres present grey 

matter, skull and scalp layer. The cerebellum and vetricle 

layers included in the PHM were modeled as part of the 

grey matter and CSF, respectively. The conductivity of each 

layer can be found in Table 1. The PHM and Ary model were 

discretized with a uniform point lattice with the resolution 

0.85 and 1 mm, leading to 24M and 30M tetrahedral ele-

ments and 4M and 5M nodes, respectively. In both cases, a 

single lead field matrix was generated for 10000 randomly 

distributed synthetic source positions. The lead field matrix 

entries were evaluated in SI units, i.e., Ohm/m and 1/m2 

for EEG and MEG, respectively. Each point contained three 

sources oriented along x-, y- and z-directions. Since the grey 

matter compartment of PHM does not include the thalamus, 

the source space was extended to cover both the white and 

grey matter compartment. Note that the lead field matrix and 

the corresponding source space have to be generated only 

once after which the space can be decomposed in multiple 

ways, e.g., different resolutions, as is the case in the pro-

posed RAMUS process.

Simulated Measurements

For the Ary model, a total of 102 sensor points were dis-

tributed over the upper hemisphere. Using those, both elec-

trode and radial magnetometer measurements of the elec-

tromagnetic field were simulated as shown in Fig. 5. The 

magnetometer locations were obtained by scaling the radial 

component of the source locations by a factor of 1.2. The 

electrodes were modeled using the complete electrode model 

(Pursiainen et al. 2012). The inner and outer radius of the 

ring were 5 and 10 mm, respectively. The average contact 

resistance of each electrode was assumed to be 1 kOhm. In 

Fig. 4  A schematic visualization of the data flow during the recon-

struction process for the multiresolution decompositions 1, 2,… , D 

each one with resolution levels 1, 2,… , L . The final estimate (6) 

obtained for the decomposition k is used as the level-one initial guess 

for the decomposition k + 1 . This sequential strategy for selecting the 

initial guess aims to minimize the effect of the optimization errors 

as suggested in Fig.  3. Note that with a good enough initial guess 

the global optimum is always found, meaning that the differences 

between the optimization results can be associated with the discre-

tization errors which are modeled here as independently and identi-

cally distributed random variables

Table 1  The conductivities (S/m) of the different compartments for 

PHM and Ary model (Ary et al. 1981)

Justification of the values used for the realistic model can be found in 

Dannhauer et al. (2011)

Model WM GM CSF Skull Skin

Ary 0.33 0.0042 0.33

Deep 0.14 0.33 1.79 0.0064 0.43

1 https ://githu b.com/samps apurs iaine n/zeffi ro_inter face

2 https ://itis.swiss /virtu al-popul ation /regio nal-human -model s/phm-

repos itory /
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the case of PHM, an EEG cap with 72 ring electrodes (10 

mm outer and 5 mm inner diameter, 1 kOhm resistance) was 

attached on the head model.

Two current dipoles were placed in shallow and deep 

parts of the grey matter. The source locations can be found 

in Table 2. Physiologically these could be interpreted as the 

somatosensory (superficial) P20/N20 and thalamic (deep) 

P14/N14 component, i.e., the 20 and 14 ms post-stimulus 

peaks. Activity for both locations occurs at the same time in 

the SEP/F response to the median nerve stimulus (Buchner 

et al. 1988, 1994a, 1995). When active simultaneously, the 

deep source was assumed to be slightly stronger in magni-

tude compared to the superficial one to enable the visibility 

of the deep part. This situation occurs momentarily in the 

median nerve stimulation, since the thalamic source obtains 

its maximum before the somatosensory activity increases in 

magnitude.

As the measurement error term, we used zero mean 

Gaussian white noise with standard deviation of 3% respect 

to maximal signal amplitude. To investigate the noise-

robustness of the source reconstruction, 5% noise was used 

in a single test. For the generality of the results, the maxi-

mum data entry of each dataset was normalized to one. The 

accuracy of the source recovery was analyzed in two 60 

mm diameter spherical ROIs centered at the source loca-

tions (Fig. 5).

IAS MAP Iteration

The previous experience shows that, in order to distinguish 

deep activity (Calvetti et al. 2009), the hyperparameter val-

ues for the hyperprior have to be set as small as possible 

without risking the numerical stability of the reconstruction 

process. In the present study, the scale parameter 𝜃0 was 

chosen to be 1E-10 and the shape parameter 𝛽 was given 

the smallest possible value 1.5. These values were found 

to work generally well and they are supported also by the 

earlier studies (Calvetti et al. 2009). Ten iteration steps were 

performed to obtain a MAP estimate for a single resolution 

level. A single step was utilized in a single test.

Validation Tests

We analyzed the performance of the RAMUS reconstruction 

approach both visually and numerically in the tests (A)–(I) 

using the Ary model. The spherical domain was used in 

order to optimize the clarity of the results. In addition to 

these reconstructions, one test (J) was performed using 

PHM, i.e., the realistic model. The specifications for (A)–(J) 

can be found in Table 3.

The accuracy obtained in the cases (A)–(I) was analyzed 

by comparing the average position (center of mass), orienta-

tion and magnitude of the reconstructed distribution within 

the ROI to that of the actual dipole source. These average 

estimates were obtained with respect to the final recon-

structed distribution of 10000 sources in each case (A)–(I) 

and for both single and multiple resolution reconstructions. 

In addition, the relative magnitude (between 0 and 1) of the 

distribution was calculated for each ROI. The source was 

classified as detected, if the relative maximum exceeded the 

value 0.1, and otherwise undetected. This threshold criterion 

was chosen as it represents roughly the limit of a visually 

detectable source. In (A)–(I), we varied the number of mul-

tiresolution decompositions, sparsity factor, hyperprior, the 

source magnitudes, and the measurement modality (EEG 

or E/MEG). When combining the lead field matrices for E/

MEG, the MEG lead field matrix and data was scaled so that 

the Frobenius norm, i.e., the 2-norm of all the entries, was 

equal to that of the EEG lead field matrix.

The case (I), was studied using three alternative 

approaches in addition to the basic multiresolution scheme. 

In the first one of these, the noise level was increased to 5%. 

Fig. 5  The volumetric FE mesh for the realistic five-layer PHM and 

three-layer Ary model. Top row: The left image shows the domain 

with 102 EEG ring electrodes on it and the right one visualizes the 

positioning of the 102 radial magnetometers which has been obtained 

by scaling the electrode locations by the factor of 1.2. Bottom row: 

The source locations with the ROIs for the Ary model (left) and a 

cut-view of the PHM (right) with 1cm diameter ring electrodes which 

were modeled using the complete electrode model (Pursiainen et al. 

2012)

Table 2  The source locations and orientations utilized in the numeri-

cal experiments

Type Corresp. x (mm) y (mm) z (mm) Angle (°)

Superf. P20/N20 − 5 0 77 11

Deep P14/N14 7 0 5 68
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The second one involved only the coarse resolution level 

with otherwise unchanged parameters. In the last one, only 

single IAS MAP iteration was performed on each recon-

struction level, meaning that the estimate obtained coincided 

with MNE (Calvetti et al. 2009).

A total of 100–400 source positions at the coarse level, 

i.e., a number roughly comparable to that of the data entries 

(“Coarse-to-Fine Optimization” section), was found to work 

appropriately in the detection of the deep activity. When 

the sparsity factor between s = 8 and s = 5 , the source posi-

tion count was within this interval at the coarsest level of a 

three-level multiresolution decomposition for the initial set 

of 10000 source positions. At the coarsest level, each source 

position was associated to about s2 ( sL−1 with L = 3 ), i.e., 

between 64 and 25 finest-level source positions, respectively. 

The number D of multiresolution decompositions was cho-

sen to be comparable to this number, slightly below or above 

that, in order to guarantee sufficient averaging over all the 

possible random basis choices.

Results

The results obtained in the numerical experiments have been 

included in Tables 4, 5 and Figs. 6, 7, 8, 9, 10 and 11. In 

each case, the deep and superficial component have been 

analyzed separately. Histograms for the cases (A)–(I) illus-

trate the accuracy of the reconstructed source with respect to 

the source position (mm), orientation (deg), amplitude, and 

the relative maximum of the current density within the ROI 

(Figs. 6, 7, 8 and 9) with respect to the global maximum. 

Table 3  The specifications of 

the reconstructions computed in 

the numerical experiments

a Scaling factor

b Number of decompositions

ID Geom. Data sa Dec.b Hyperprior Amplitude

Deep Superf.

(A) Ball EEG 8 100 IG 10 5

(B) Ball EEG 8 100 IG 10 0

(C) Ball EEG 8 100 IG 0 5

(D) Ball EEG 8 100 IG 10 7

(E) Ball EEG 5 100 IG 10 7

(F) Ball EEG 8 20 IG 10 7

(G) Ball EEG 8 100 G 10 5

(H) Ball E/MEG 8 100 IG 10 5

(I) Ball E/MEG 8 100 IG 10 7

(J) PHM EEG 8 100 IG 10 7

Table 4  The computing time (in seconds) for 100 random three-level 

multiresolution decompositions and of a corresponding RAMUS 

(randomized multiresolution scan) estimate obtained with a NVIDIA 

Quadro P6000 workstation GPU and Intel i7 5650U laptop CPU

Processor Dec. EEG E/MEG

Quadro P6000 36 14 28

i7 5650U 176 55 116

Table 5  The percentage of the reconstructions fulfilling the source 

detection criterion (the local maximum in the ROI >0.1 of the global 

maximum). This threshold criterion was chosen as it represents 

roughly the limit of a visually detectable source. In case (B), where 

only the deep source is present there are 4% false positive detections 

for the superficial one. This is due to the relatively large deviation of 

the deep source due to which it is moved partially in the superficial 

ROI in the corresponding estimates

a Noise level (%)

b The resolution levels ( 𝓁 ) in the reconstruction process

Type na
𝓁

b ROI (A) (B) (C) (D) (E) (F) (G) (H) (I)

MAP 3 1–3 Deep 100 100 0 98 100 86 0 100 92

Sup. 100 4 100 100 100 100 100 100 100

5 Deep 100 90

Sup. 100 100

MNE 3 1–3 Deep 0

Sup. 100

MAP 3 1 Deep 96

Sup. 100
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The last one of these is utilized as a measure for the distin-

guishability of the source within the ROI. Examples of the 

reconstructions in the cases (A)–(I) are illustrated in Fig. 10, 

and the distributions obtained for (J), i.e., the realistic PHM, 

Fig. 6  The results of the deep source localization for the numerical exper-

iments (A–I) conducted in the spherical domain (Table  3). The distri-

butions of the position (mm), angle (°) and relative logarithmic (log10) 

amplitude difference to the exact dipole source, computed in the ROI, 

have been analyzed as histograms. The sample size is 50. Each recon-

struction in the sample has been obtained by reconstructing the activity in 

the whole brain for an independent random realization of the noise vector 

and associating the total integrated activity in each ROI to the correspond-

ing (deep or superficial) dipole source. Additionally, the histogram of the 

relative maximum in the ROI is given. The solid vertical line shows the 

median for each distribution, and the dashed lines mark the 90% confi-

dence interval. In general, the results show that the IG hyperprior is nec-

essary for detecting the deep source. The accuracy and reliability of the 

results increase along with the number of multiresolution decompositions. 

Furthermore, using E/MEG instead of EEG increased the accuracy of the 

deep source localization, while EEG was advantageous with respect to the 

amplitude of the deep source. The results are not visualized for the cases 

in which the localization criterion (relative maximum > 0.05) was satis-

fied by less than 5% of the reconstructions

Fig. 7  The results of the superficial source localization for the numer-

ical experiments (A–I) conducted in the spherical domain (Table 3). 

In contrast to the case of the deep source, the superficial one is 

detected accurately in each case where its amplitude differs from 

zero. The most accurate results were obtained, when the deep source 

was absent. E/MEG yielded superior result compared to EEG
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are shown in Fig. 11. The additional cases evaluated for (I), 

are presented in Fig. 8 and 9.

The histograms in Figs. 6, 7, 8 and 9 illustrate the numeri-

cal accuracy of the RAMUS reconstruction approach. Case 

(A) suggests that the activity in both superficial and deep 

areas can be reconstructed in EEG, when applying IG as 

hyperprior. In (A), the superficial source is found with the 

median positioning accuracy of 8 mm, angle difference of 

4.5° and logarithmic (log10) relative amplitude error of 

− 0.25, i.e., the amplitude of the reconstructed source is 

56% compared to that of the actual one. For the deep source 

these errors are 15 mm, 12 deg, -0.65 (22% amplitude), 

respectively. Furthermore, as shown by the relative maxi-

mum, the superficial source always maximizes the (global) 

reconstruction, and the relative maximum within the deep 

ROI is around 50% of the global one in median.

Based on (B) and (C), it is obvious that the reconstruc-

tion accuracy is better, if only one of the two sources is 

active. Furthermore, increasing the intensity of the super-

ficial source decreases the reconstruction accuracy for 

deep one which is shown by the case of (D) for which the 

median position, orientation amplitude, and relative maxi-

mum for the deep source are 18 mm, 17°, − 0.85 and 0.25, 

respectively. That is, the accuracy is lower than in (A). In 

(E), a sparsity factor of 5 was used instead of 8, meaning 

that the resolution difference between the subsequent lev-

els was less steep, resulting in a weaker distinguishability 

of the deep source. The same observation was made in the 

case (F) in which 20 randomized decompositions instead 

of 100 were used. The deep activity was absent in (G), 

where we used the G hyperprior instead of IG, confirming 

the necessity of IG as the hyperprior. In (H) and (I), the 

use of the E/MEG lead field was observed to improve the 

deep localization accuracy around 7 mm and orientation 

accuracy about 8° with respect to the corresponding cases 

(A) and (D) of EEG data, while the superficial localization 

accuracy was practically unchanged for (H) and deviated 

less than 2 mm and 1 deg for (I). The results for E/MEG 

were visually more focal than the ones obtained with EEG 

(Fig. 10).

In the three additional tests performed with the param-

eter setting (I), the increased 5% noise level led to 5 mm 

and 3 deg lower positioning and orientation accuracy for 

the deep source, and a smaller 1 mm and 1 deg deviation 

for the superficial one. In the case of the coarse-level MAP 

iteration with 3% noise, 2 mm and 1 deg position and orien-

tation improvement was observed for the deep source. For 

the superficial one, there was a 2 mm deviation in the posi-

tion, while the orientation accuracy remained unchanged. 

The coarse-level estimate was visually less focal compared 

to the ones obtained with multiple resolution levels. MNE 

detected only the superficial source for which 1 mm position 

deflection and 3 deg orientation improvement were obtained 

compared to the basic case (I).

In (J), simultaneous localization of the simulated radial 

thalamic and tangential somatosensory component was 

found to be feasible with the realistic PHM model (Fig. 11). 

Similar to the spherical case, the deep activity had a lower 

amplitude than the superficial one. In the somatosensory 

area, with the physiological normal constraint, i.e., the 

assumption that the primary current is oriented along the 

inward surface normal, the activity was localized in the pos-

terior wall of the central sulcus similar to the synthetic P20/

N20 component used in generating the data.

The results concerning the computing times have been 

included in Table 4. Those show that a superior perfor-

mance was obtained with GPU processing which provided 

Fig. 8  The additional deep source localization results obtained in the 

case (I) for the deep source

Fig. 9  The additional superficial source localization results obtained 

in the case (I) for the superficial source
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the randomized set of decompositions and a reconstruction 

in 1/5 to 1/4 of the time required by the laptop CPU.

Discussion

The present numerical results suggest that via the proposed 

randomized multiresolution scanning (RAMUS) technique 

one can obtain a robust and accurate MAP estimate for the 

primary current density in both superficial and deep parts of 

the brain. RAMUS was observed to enhance the visibility 

of deep components and also marginalizing the effect of 

the discretization without a remarkable computation cost. 

The noise-robustness of RAMUS was shown for 3% and 

5% noise levels. As expected, the effect of the noise was 

observed to be the most obvious with respect to the deep 

source.

Utilizing a multiresolution approach was found to be 

crucial per se for the reconstruction quality, since maximal 

achievable accuracy for the deep components is significantly 

lower than for the superficial one. Detecting the deep source 

necessitated the presence of a coarse resolution level in the 

MAP estimation process, i.e., a sparsity factor s larger than 

one. The superior results were obtained with s = 8 . Decreas-

ing the value of s, i.e., increasing the source count, quickly 

diminished the detectability of the deep component which 

can be observed based on the results obtained for s = 5 . 

The distinguishability of the deep source in the final esti-

mate was determined by the number of the source positions 

at the coarsest level which, in this study, was observed to 

be around 100–400 roughly matching the sparsity factors 

between s = 8 and s = 5 . Investigating this interval was 

motivated by the fact that the maximal number of the detect-

able sources in the numerical system is determined by the 

number of the data entries (“Coarse-to-Fine Optimization” 

section) which is 102 for EEG and 204 for E/MEG, i.e., 

roughly of the same magnitude. In practice, the optimal 

size of the coarse system should also take the physiological 

modeling aspects into account and might be, therefore, also 

considerably larger than the present choice. For example, if 

the neural activity is limited to a priori known ROIs a larger 

number might be well-motivated. A comparison between the 

Fig. 10  Examples of the reconstructions obtained in the numerical 

experiments (A–I) in the spherical domain (Table 3). In each image, 

the actual source and the center of mass of the reconstruction w.r.t. a 

ROI centered at the actual source position, are marked by the red and 

purple arrow, respectively. The case (I), was studied using the follow-

ing three alternative approaches in addition to the basic multiresolu-

tion scheme. MNE: only single IAS MAP iteration was performed 

on each reconstruction level, meaning that the estimate obtained 

coincided with MNE. Noise 5%: the noise level was increased to 5%. 

Coarse-level MAP: only the coarse resolution level was applied in the 

MAP estimation process with otherwise unchanged parameters

▸
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single (coarse-level) and multiple resolution results showed 

that the refinement of the resolution during the reconstruc-

tion process improves the focality of the reconstruction 

and its accuracy in the superficial areas. Nevertheless, the 

coarse-level reconstruction was marginally superior in the 

deep part, emphasizing that here the finer resolution levels 

slightly affected the coarser level outcome, which is here 

presumably optimal for the weakly distinguishable deep 

Fig. 11  The reconstruction (I) 

of the primary current density 

for the numerically modeled 

deep (thalamic P14/N14) and 

superficial (somatosensory P20/

N20) activity obtained using the 

population head model (PHM). 

On each row, the left column 

shows the amplitude and the 

right one the normal component 

in the direction of the surface 

normal. On 3rd and 4th row, the 

normal activity has been con-

strained into the outward direc-

tion. In each image, the actual 

source and the center of mass of 

the reconstruction w.r.t. a ROI 

centered at the actual source 

position, are marked by the red 

and purple arrow, respectively
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activity. Thus, it is important to adjust the decomposition 

parameters appropriately. The marginalization of the dis-

cretization errors via random scanning was perceived to be 

vital in order to optimize the robustness of the reconstruc-

tion which was observed to grow along the number of the 

multiresolution decompositions utilized.

When coupled with the iterative alternating sequential 

(IAS) algorithm, RAMUS constitutes essentially a repetitive 

MAP optimization process for HBM (O’Hagan and Forster 

2004; Calvetti et al. 2009). Marginalizing the result over 

a given number of random multiresolution decompositions 

can be associated with computing an equal number of MAP 

estimates. Since the computational cost of the IAS algo-

rithm is largely determined by the product between the lead 

field matrix and a candidate solution which is parallelized 

effectively in both CPU and GPU processors. Here, the lat-

ter option was found to achieve the fastest performance with 

the total computation time for a single reconstruction being 

14 seconds which would be feasible in processing a larger 

dataset. Overall, the computational effort of evaluating the 

MAP via the RAMUS technique can be regarded as moder-

ate compared to a full MCMC sampling based conditional 

mean (CM) estimate for the posterior density which has been 

evaluated in (Calvetti et al. 2009) within a ROI. Namely, 

achieving a full convergence of MCMC would require thou-

sands of iterations (Liu 2001) and the effort of one iteration 

step is comparable to a single step of IAS. Thus, MCMC 

would be a slower option. Even though an optimization 

method, RAMUS can be also interpreted as a surrogate 

for CM, as it, on one hand, increases the robustness of the 

source reconstruction via sampling, but, on the other hand, 

does not provide as extensive information about the posterior 

density itself as an actual Bayesian sampler does.

The results obtained suggest that the IG hyperprior 

(O’Hagan and Forster 2004) is necessary in conjunction 

with IAS, when it is coupled with RAMUS, as the deep 

activity was not detected with G. Since here the cases of the 

G hyperprior and single-step MAP can be associated with 

the 1-norm regularized MCE and MNE (Uutela et al. 1999; 

Hämäläinen et al. 1993) (“Hierarchical Bayesian Model” 

section), respectively, it also seems that RAMUS would not 

enable correcting a depth bias related to either of these esti-

mates. Previously, in (Calvetti et al. 2009), IG was found 

to perform well for the deep part, when a region of interest 

was used. Based on the present results, RAMUS provides 

the means to utilize the advantage of the IG within the whole 

brain and with a high imaging resolution, while maintaining 

the computational cost on an appropriate level.

We emphasize that the present conditionally Gaussian 

prior, in its current formulation, is depth, resolution and 

decomposition invariant. That is, additional physiological 

or operator based weighting or prior conditioning (Homa 

et al. 2013; Calvetti et al. 2015, 2018) is not necessary in 

order to balance the depth performance of the MAP esti-

mate. Our interpretation for this is that RAMUS can cor-

rect the depth localization inaccuracies that are otherwise 

found with MAP estimates, as it, via the multiresolution 

approach, decomposes the source space into a set of a vis-

ible and invisible fluctuations, explores both sets, and also 

helps to marginalize the random numerical discretization 

and optimization errors out of the final estimate. Central 

here are the visibility of the deep activity at low resolution 

levels (Pascual-Marqui 1999), the concept of the sensitivity 

decomposition (Liu et al. 1995) and forming such through 

projections and multiresolution decompositions which have 

been investigated in the context of other inverse problems, 

e.g., in (Piana and Bertero 1997a; Pursiainen 2008).

In addition to the investigated properties, the choice for 

the scale parameter was also observed to be important in 

order to guarantee proper function of RAMUS. In each MAP 

estimation process, the present value 1E−10 was found to 

work well in detecting activity for both the spherical and 

realistic head model. The workable range for the scale 

parameter was observed to be from 1E−10 to 1E−08 simi-

lar to the previous findings (Calvetti et al. 2009). Outside 

this interval the deep activity was not found appropriately 

or the orientation accuracy of the estimates was lost. In the 

latter case, the estimate was locked into the direction of a 

Cartesian coordinate axis, meaning that, due to overly strong 

focality condition, only single component in the estimate 

differed from zero in the end of the iteration. Locking was 

also observed for MAP optimization sequences consider-

ably longer than 10 iteration steps. With a sufficiently large 

scale parameter there was no locking, but the reconstructions 

obtained were also less focal.

The results of this article concern only the present numer-

ical framework in which a deep and superficial source were 

detected simultaneously. Future work will include testing 

and analyzing the performance of the RAMUS approach 

with real experimental SEP/F data with the goal to distin-

guish cortical and sub-cortical activity, e.g., the P14/N14 

(deep) and P20/N20 (superficial) components occuring in 

the stimulation of the median nerve. A comparison with 

other inverse methods capable of deep localization, such as 

LORETA and Beamforming (Pascual-Marqui et al. 2002, 

1999; Jonmohamadi et al. 2014), will also be important. 

Further method development topics will include a deeper 

investigation on the inverse effects of the hyperprior and 

decomposition parameters as well as finding alternative 

strategies to update the initial guess for the IAS MAP esti-

mation technique. In the latter case, for instance, an averaged 

initial guess obtained with respect to several multiresolution 

decompositions might provide a potential alternative for the 

current approach which relies on a single decomposition. 

To make the random scanning computationally more effi-

cient a solver based on parallel scanning processes might be 
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developed. We also emphasize that RAMUS with its cur-

rent formulation, the proposed algorithm can be applied to 

reduce discretization errors not only with the present IAS 

MAP method but potentially for a variety of source recon-

struction techniques.
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Appendix

A IAS MAP Estimation

The IAS algorithm finds a MAP estimate for the posterior 

p(𝐱,𝜽 ∣ 𝐲) as follows: 

1. Set k = 0 and 𝜽(0) = (𝜃0, 𝜃0,… , 𝜃0).

2. Set 𝐋(k) = 𝐋𝐃
1∕2

𝜽
(k)

 with 

3. Evaluate 

 where 𝜎 denotes the standard deviation of the likelihood.

4. Update the hyperparameter based on the hypermodel.

– If the hypermodel is G, set 

 with 𝜂 = 𝛽 − 3∕2 , i = 1, 2,… , n.

– Else, if the hypermodel is IG, set 

 with 𝜅 = 𝛽 + 3∕2 , i = 1, 2,… , n.

(8)𝐃
1∕2

𝜽
(k)

= diag(

√
|𝜽(k)

1
|,
√

|𝜽(k)

2
|,… ,

√
|𝜽(k)

n
|).

(9)𝐱(k+1) = 𝐃
1∕2

𝜽
(k)
𝐋(k)T (𝐋(k)𝐋(k)T + 𝜎2𝐈)−1𝐲,

(10)𝜃i =
1

2
𝜃0

(
𝜂 +

√
𝜂2 + 2x

(k)

i

2
∕𝜃0

)

(11)𝜃
(k+1)

i
= (𝜃0 +

x
(k)

i

2

2
)∕𝜅

5. Set k = k + 1 and go back to 2., if k is less than the total 

number of iterations defined by the user.
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Abstract: In this article, we focused on developing the conditionally Gaussian hierarchical Bayesian
model (CG-HBM), which forms a superclass of several inversion methods for source localization of
brain activity using somatosensory evoked potential (SEP) and field (SEF) measurements. The goal
of this proof-of-concept study was to improve the applicability of the CG-HBM as a superclass
by proposing a robust approach for the parametrization of focal source scenarios. We aimed at a
parametrization that is invariant with respect to altering the noise level and the source space size.
The posterior difference between the gamma and inverse gamma hyperprior was minimized by
optimizing the shape parameter, while a suitable range for the scale parameter can be obtained via
the prior-over-measurement signal-to-noise ratio, which we introduce as a new concept in this study.
In the source localization experiments, the primary generator of the P20/N20 component was detected
in the Brodmann area 3b using the CG-HBM approach and a parameter range derived from the
existing knowledge of the Tikhonov-regularized minimum norm estimate, i.e., the classical Gaussian
prior model. Moreover, it seems that the detection of deep thalamic activity simultaneously with the
P20/N20 component with the gamma hyperprior can be enhanced while using a close-to-optimal
shape parameter value.

Keywords: electroencephalography (EEG); magnetoencephalography (MEG); somatosensory evoked
potentials; somatosensory evoked fields; P20/N20 component; hierarchical bayesian model;
parametrization; deep activity

1. Introduction

This article concerns computational source localization methods for the activity of the brain in
electro- and magnetoencephalography (EEG and MEG) [1–3]. Reconstructing the primary current
density of the neurons as a three-dimensional (3D) distribution restricted to the grey matter is an
ill-posed inverse problem, in which the prior model and reconstruction technique applied have a
major effect on the final result [3]. Consequently, a priori information, such as an anatomically and

Brain Sci. 2020, 10, 934; doi:10.3390/brainsci10120934 www.mdpi.com/journal/brainsci
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physiologically accurate head model, is needed. When the inverse problem is formulated via Bayesian
statistics, the a priori knowledge can be rigorously modelled as a statistical prior distribution [4–8].

EEG and, particularly, MEG, are famously known to be more sensitive to the superficial parts
than to the deeper lying areas, e.g., the thalamus [9,10]. In this study, we focused on developing
the conditionally Gaussian hierarchical Bayesian model (CG-HBM) [11], which, based on numerical
simulations [4–8], has been suggested as a potential approach to reconstructing networks of focal
sources with variable depth. In CG-HBM, the prior has a hierarchical structure; the variance of a
Gaussian conditional prior is steered by a heavy-tailed hyperprior. This allows the primary current
density to have a considerably greater focal amplitude when compared to the background fluctuations
than what is otherwise possible with a Gaussian prior. CG-HBM forms a superclass for different
inversion methods as well as a potential platform for the development of new source localization
methods [12]. In clinical applications, focal reconstructions are needed, e.g., in epileptic focus
localization and in the analysis of epileptic networks during seizures for adults and paediatrics [13–15].

The aim and novelty of this proof-of-concept study is to improve the applicability of the CG-HBM
for localizing sources with variable depth by proposing a simple and robust parametrization approach
that has been designed to remain invariant with respect to alterations in the noise level [10,16–18]
and the size of the source space [5,19,20], with both these factors being essential with respect to the
localization outcome. An important goal is to obtain an appropriate localization performance with
different hypermodels and reconstruction techniques. Namely, one of the major challenges in using
CG-HBM is that the mutual differences between these models and techniques can be significant,
if the model parameters are not optimally set [6,7]. We referred to both simulated and experimental
somatosensory evoked potential (SEP) and field (SEF) datasets, and then selected the parameter
values with the aim of detecting the activity corresponding to the P20/N20 component, i.e., the 20 ms
post-stimulus response, occurring in the median nerve (wrist) stimulation [21–24]. The Brodmann area
3b activity in the hand-knob of the primary somatosensory cortex was reconstructed with a high-density
forward model. This stable and transient activity generally has an excellent signal-to-noise ratio (SNR),
especially in MEG, but also in EEG [22,25] and it is, therefore, well-suited for finding a high-density
reconstruction. Additionally, a sparse model [19] was applied in order to detect the deep thalamic
activity that is associated with the P20/N20 response.

We compared the gamma (G) and inverse gamma (IG) hyperprior in detecting the activity in
these regions. The previous numerical simulation studies [7,12] suggest that G and IG can lead to
two characteristically different reconstructions, if the shape and scale parameter, i.e., β and the θ0

determining the hyperprior are not ideally set. In particular, the shape parameter value β = 1.5
results in a suppressed deep activity with G hyperprior, as shown in [12]. We minimized the posterior
difference between G and IG by optimizing β, while an initial range for θ0 was obtained based
on the prior-over-measurement signal-to-noise ratio (PM-SNR), i.e., the relative weight of the prior
compared to the measurement noise. Here, we introduce PM-SNR as a new concept to allow for
balancing the θ0-value with respect to the source space size and the estimated level of the measurement
and modeling errors. The initial value for PM-SNR can be related to the existing knowledge of the
Tikhonov-regularized minimum norm estimate (MNE) [26,27] following from the classical Gaussian
prior model [28].

In our experiments, the iterative alternating sequential (IAS) and Markov chain Monte Carlo
(MCMC) sampling techniques presented in [7,29,30] were applied in order to reconstruct the activity.
We used a finite element method (FEM) that is based on the forward modeling approach [31,32],
which allows for creating an accurate volumetric discretization of a multi-compartment head
segmentation regarding its conductivity distribution and strongly folded tissue structures [33–37].
The source localization experiments were performed while using the Zeffiro interface (the source
code is available online at https://github.com/sampsapursiainen/zeffiro_interface) (ZI) software
pipeline [38], which couples the FEM forward model with CG-HBM.
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The results that were obtained for the known synthetic source suggest that, through maximum
a posteriori (MAP) estimation, one can reconstruct a simulated P20/N20 component without a priori
limiting the region of the activity. It was observed that MCMC sampling allowed for the posterior
to be adopted to the structure and resolution of the underlying numerical model and geometry,
thus avoiding numerical bias, e.g., overly focal results. We compared our CG-HBM reconstructions
to Tikhonov-regularized MNE [1] and the minimum current estimate (MCE) [39], which can be
interpreted as special cases of the IAS method in combination with the G hyperprior and with β = 1.5.
Based on our findings for three subjects, we suggest that, by choosing an optimization-based shape
parameter value β = 3 and a PM-SNR of 0–30 dB, with the exact value being determined by the
modeling accuracy assumed, the cortical generator of the P20/N20 component can be localized in the
Brodmann area 3b with both simulated and measured data. Moreover, it seems that the detection of
the correlated sub-cortical thalamic activity, simultaneously with the cortical one, could be enhanced
using the close-to-optimal shape parameter value, when the G hyperprior was used.

2. Methods

This section briefly reviews the mathematical CG-HBM approach and its implementation in
this study. The primary current density is denoted by x, which is the discretized approximation
of the primary current density |�Jp| in the brain, i.e., the unknown of the inverse problem, and the
measurement data vector is represented by y. In both EEG and MEG, the dependence of y on x,
i.e., the forward model can be formulated via the lead field matrix equation of the form y = Lx + n,
where n is a noise vector and L is the so-called lead field matrix [1]. Here, L is obtained via the FEM
discretization of the classical field equations following from the quasi-static approximation of the
Maxwell equations, as described in [31,40,41]. For the generality of the presentation, we assume that
L is obtained using SI-units, while y and n are normalized with respect to the amplitude A (here,
the �2-norm) of the measured or simulated signal.

2.1. Conditionally Gaussian Hierarchical Bayesian Model

For a single given dataset y, the classical Bayes formula for subjective conditional probabilities
can be written as

p(x | y) =
p(x) p(y | x)

p(y)
∝ p(x) p(y | x). (1)

That is, the posterior probability density p(x | y) of the unknown discretized primary current
density x in the brain is proportional to the product between the prior density p(x), i.e., the a priori
knowledge of x, and the likelihood function p(y | x) that follows from the measurement noise
model [42].

The measurement error is assumed here to be a Gaussian zero mean random vector n = y− Lx with
independent entries. Consequently, the likelihood is of the form p(y | x) ∝ exp(−(2σ2)−1‖Lx− y‖2),
where σ is the standard deviation of the noise. In the hierarchical Bayesian approach, one assumes the
prior to be a joint density p(x, θ) ∝ p(θ) p(x | θ) of x and a hyperparameter θ. That is, the posterior is
of the form

p(x, θ | y) ∝ p(θ) p(x | θ) p(y | x). (2)

In CG-HBM [7,11,43], the conditional part p(x | θ) is also a zero mean Gaussian density.
Its diagonal covariance matrix is predicted by a heavy-tailed hyperprior p(θ), which means that
the variance vector, i.e., the set of diagonal entries, is likely to contain outliers. Thus, it is implicitly
assumed that x is a sparse vector with a small subset of entries, which are noticeably large in absolute
value when compared to the other entries [6]. The number and intensity of these outliers are controlled
by the hyperprior [43]. The resulting impulse-like prior model for the unknown is particularly useful
in obtaining a focal reconstruction for the brain activity. The parameters determining the hyperprior



Brain Sci. 2020, 10, 934 4 of 22

allow for the level of the focality to be tuned, i.e., the rough relative portion of the x-entries that are
likely to a priori differ from zero.

2.1.1. Posterior Exploration

Given the posterior, the actual reconstruction can be found via several different approaches.
The most common ones can be divided into optimization and sampling techniques. The former
include the MAP algorithms, which are aimed at finding the maximizer of the posterior density,
i.e., xMAP = argmax ppost(x, θ | y). MAP estimation usually provides a faster, but less robust, way to
obtain a reconstruction than the sampling techniques, e.g., MCMC methods, which approximate the

conditional mean xCM = E(x, θ | y) =
∫
(x, θ)ppost(x, θ | y)dx dθ [28]. MCMC methods generate

samples from the posterior distribution by constructing a Markov chain that has the target posterior
distribution as its equilibrium distribution. A more detailed descriptions for the IAS MAP estimation
method and the MCMC sampler that was employed for conditional mean (CM) estimation can be
found in [7].

2.1.2. Gamma and Inverse Gamma Hyperprior

As the hyperprior, we use both the gamma G(θ | β, θ0) and inverse gamma IG(θ | β, θ0)

distributions, whose densities are supported on the set of non-negative real numbers with a structure
that is determined by the scale and shape parameter θ0 and β, respectively. In the present approach,
the scale parameter θ0 > 0 essentially sets the expected variance of the conditionally Gaussian prior.
It can be interpreted as the capability of the prior to detect brain activity growing along with the value
of θ0. The shape parameter steers the rate of the decay for the tail part. Finding a suitable value for θ0

and β is essential in avoiding an over- or under- sensitive prior, which might involve depth-bias or
emphasized noise-effects. Based on our earlier experience, this is especially important with regard
to G hyperprior, which might suppress deep activity, when β = 1.5 [12]. In order to make both the
G and IG hyperpriors perform similarly given θ0, we select β to be uniformly β = 3, which can be
interpreted as a close-to-optimal choice for minimizing the differences between the outcomes of G and
IG (Appendix A).

2.1.3. Total Scale

The source-wise scale parameter θ0 can be adapted to a given forward model by introducing
a total scale θ(tot)

0 , which gives the scale per distribution, while θ0 represents the scale per source.
This follows from the additivity of the Gaussian prior variance, i.e., that the nearby sources s1 and s2

with variances θ1 and θ2 have the total variance θ1 + θ2, if interpreted as a single source s = s1 + s2.
Thus, the relationship between the total and source-wise scale parameter can be written as

θ0 =
θ(tot)

0 σ2 A2

N
or θ(tot)

0 =
θ0N
σ2 A2 (3)

Namely, to have an invariant weight with respect to the likelihood, the scale θ(tot)
0 of the

conditionally Gaussian prior must be directly proportional to the source position count N of the
forward model and inversely proportional to the relative noise variance σ2 and the squared amplitude
A2. Because we assume θ(tot)

0 to be an application-specific constant, we introduce here, as a new concept,
the following prior-over-measurement signal-to-noise ratio

PM-SNR=dB(
√

θ(tot)
0 )=dB(

√
N)+dB(δ)+dB(A)−dB(δ(ref)) with δ=

√
θ0

σA
, δ(ref)=

|�Jp|
A

, (4)

and dB(x) = 20 log10 x. Here, δ(ref) is a reference level which is obtained as the ratio between the
a priori estimated norm of the primary current density |�Jp| and the signal amplitude A. The term



Brain Sci. 2020, 10, 934 5 of 22

dB(A) is included in (4), as we present θ0 and θ(tot)
0 with respect to normalized amplitude A = 1.

PM-SNR measures the relative weight of the prior as compared to the noise level and it is balanced
by the system size. At the reference level, when PM-SNR is 0 dB or δ

√
N = δ(ref),

√
θ0 matches

the a priori noise-induced fluctuation of the candidate solution normalized by A
√

N, which is,√
θ0 = σ|�Jp|/(A

√
N). In order to generalize these expressions for the case of a non-diagonal noise

covariance, one can interpret the relative noise variance σ2 as the largest eigenvalue, i.e., the �2-norm,
of the noise covariance matrix. The PM-SNR of the scale parameter values (Table 1) that were applied
in this study refer to the present EEG amplitude A = 10−6 V that was obtained as the �2-norm of the
measured P20/N20 component, relative noise standard deviation of σ = 0.03, and the typical 10 nAm
dipolar source strength in the brain [1,44,45], i.e., |�Jp| = 10−8 Am.

Because δ also represents the relative weight of a non-conditional Gaussian prior, it can be
associated with the Tikhonov regularization parameter of MNE [7,26,28]. In the Brainstorm software,
the default level of the relative prior weight is set to a constant value dB(δ)= 9 dB, as shown in the
tutorial [27]. Taking into account the source count of this tutorial, which is 15,000, this would result in
a PM-SNR of 10 dB. However, notice that a constant default level is not invariant under changing the
dimension of the source space.

Note that the current definition (4) of PM-SNR has been selected in order to obtain a uniform
representation with respect to G and IG hyperprior. Alternatively, PM-SNR can be defined with respect
to the mean of the hyperprior that is given by the total scale, i.e., θ(tot)

0 β and θ(tot)
0 /(β − 1) for G and IG,

resulting in a correction of +dB(
√

β) = +5 dB and −dB(
√

β − 1) = −3 dB, when β = 3, respectively.

2.1.4. Latent Noise Effects

We assume that the relative (total) noise standard deviation is of the form σ = sσ, where σ is the
standard deviation of the a priori known noise and s ≥ 1 is a correcting term due to latent noise effects,
such as forward modeling inaccuracies due to the quasi-static approximation, inter-individual head
tissue conductivity differences, and/or segmentation errors, see e.g., [46]. Denoting δ =

√
θ0/(σA), it

follows that the PM-SNR is of the form

PM-SNR = PM-SNR + dB(s), (5)

where dB(s) is the total contribution of the latent noise effects. Thus, PM-SNR will be greater than
PM-SNR for models including latent noise, i.e., when s > 1: the greater the latent noise, the greater
weight of the prior. When PM-SNR is 0 dB, PM-SNR is given by dB(s) and the explicit formula for the
scaling parameter is

√
θ0 = sσ|�Jp|/(A

√
N), where σ corresponds to the known noise level and s to the

a priori assumption of the latent noise strength.
The shape parameter choice defines the spread of the hyperprior that can be related to the

uncertainty of δ(ref) following from, e.g., the potentially varying source depth that affects the amplitude
of the measurement: the smaller the shape parameter value, the greater the spread. With the current
value β = 3, the interdecile range (Appendix B) of the hyperprior p(θ) obtains values from 0.4E(θ) to
1.8E(θ) with E(θ) denoting the hyperprior mean. Thus,

√
θ, i.e., the expected source strength given

θ, varies dB(
√

1.8/0.4) = 7 dB over the interdecile range. This matches our approximation for the
variation of δ(ref) that was obtained as the interquartile range of the lead field based simulated �2-norm
signal amplitude over the source space.

2.2. Numerical Model

2.2.1. Head Segmentation

The FE implementation approach that was presented in [47] was applied, including the formula for
the EEG and MEG lead field matrix. A tetrahedral finite element mesh was generated by subdividing
each voxel in a surface-based regular hexahedral segmentation into six tetrahedra. The FE meshes
were generated while using a six-layer surface segmentation based on T1-weighted and T2-weighted
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MRI sequences recorded with a 3T MRI scanner. The surfaces (level-sets) of skin, compact bone (skull),
spongious bone (skull), cerebrospinal fluid (CSF), grey matter, and white matter were included in the
model. An FE mesh was generated for both 1 and 2 mm resolution (voxel size). The first of these
included 3.8 M nodes and 22 M tetrahedra and the second one 0.47 M nodes and 2.7 M tetrahedra.

2.2.2. Source Space

In order to generate the source space of x, we used the FEM-based quadratic H(div) approach
presented in [31], employing the Position Based Optimization (PBO) interpolation with the 10-source
(eight-point) stencil. That is, a given dipolar current source was estimated via the four linear face
and six quadratic edge-based vector basis functions that are associated with the barycenter of the
tetrahedron containing the source position. The sources were placed in the interior part of the
grey matter compartment in the elements with a full set (four) of neighbors belonging to the same
compartment. The rest of the compartment forming the boundary layer of the grey matter contained
no sources, since the modeling accuracy is known to be reduced for the boundary layer [40].

A total of 105 points were distributed randomly in the grey matter for each FE mesh in order to
obtain a uniform (mesh-independent) source density for reconstructing the somatosensory 3b activity.
This initial source count was selected to allow the present source localization accuracy, in principle,
to surpass the a priori known maximum limit of EEG and MEG, which is about 9 mm and 2–4 mm,
respectively [22,48–51]. A uniform point spread was obtained through a straightforward random
permutation due to the uniform mesh structure.

The points that were placed on the boundary layer in the initial stage were filtered out of the
eventual distribution, which consisted of 7.6 × 104 and 6.1 × 104 positions for the 1 and 2 mm FE
meshes, respectively. The slightly lower source count for the 2 mm case was caused by the thicker
boundary layer that arose from the larger element size. Each position comprised three sources that were
oriented along the three Cartesian coordinate axes. Hence, the total number of sources was 2.28 × 105

and 1.83 × 105 for the 1 and 2 mm FE meshes, respectively. The source localization experiments were
primarily conducted with the 1 mm resolution, while the 2 mm accuracy was utilized in order to
examine the forward modeling effects on the source localization. In addition to the dense source space,
a sparse one was created to enhance the detectability [19] of the thalamic component simultaneously
with the Brodmann area 3b activity [21,52,53]. In the sparse distribution, the number of source positions
was 1/100 as compared to that of the dense one and so the 1 mm mesh was used in the forward
simulation. The Cartesian set of sources was used in inverting the data. After the inversion process,
the distribution obtained was projected in the cortical areas while using the normal constraint (Figure 1)
of the cortex. In other words, the vector field component parallel to the surface normal constituted the
final reconstruction. In the sub-cortical areas, the normal projection was not applied, as the sub-cortical
neurons are not generally oriented along the surface normal of the neuronal tissue.

Figure 1. Left: a schematic illustration depicting the sagittal cut of the primary somatosensory cortex.
The P20/N20 component of the somatosensory activity occurs in the Brodmann area 3b, which is
located in the posterior wall of the central sulcus [24]. Right: the orientation of the primary currents
(somatosensory evoked potential (SEP)/somatosensory evoked field (SEF) components) in the cerebral
cortex is normal with respect to the surface due to the normal alignment of the pyramidal cells [10].
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2.3. Measured Data

The source localization experiments were conducted while using a dataset that was obtained for
three healthy and right-handed adult male subjects (I), (II), and (III), who were 49, 32, and 27 years
old, respectively. The right median nerve was stimulated with the subject lying in a supine position
in a magnetically shielded room. Simultaneous SEP/SEF measurements were performed while
using 80 AgCl sintered ring electrodes (EASYCAP GmbH, Herrsching, Germany), including 74 EEG
channels with an additional six channels for detecting eye movements together with an MEG setup
(OMEGA2005, VSM MedTech Ltd). Four out of a total of 275 magnetometers and two out of 74 EEG
sensors were reported as defective channels. Therefore, the measurements from 72 electrodes and
271 magnetometers (Figure 2) were used in the eventual dataset. A total of 1200 stimuli were obtained
during a 10 min. measurement session. The electric pulse duration was 0.5 ms. In order to determine
the magnitude, the stimulus strength was increased until a clear movement of the thumb was visible.
Each measurement had a 300 ms total duration, which was subdivided into a 100 ms pre-stimulus and
200 ms post-stimulus sub-interval. The inter-stimulus interval varied between 350 and 450 ms to avoid
habituation. The measurements were averaged and pre-processed while using a notch filter for the
50 Hz frequency and its harmonics to remove the power-line noise. The responses measured for the
different stimuli were averaged to produce the SEP/SEF dataset (Figure 3) the amplitude of which
was normalized to one.

Figure 2. General overview of the P20/N20 component reconstruction for subject (I). The activity is
found in the posterior bank of the central sulcus, the Brodmann 3b area for electroencephalography
(EEG) (left) and magnetoencephalography (MEG) dataset (right). A MAP estimate of the global source
distribution is visualized on the surface of the white matter. The locations of 72 EEG electrodes and 271
magnetometers are shown in the left and right images, respectively.

The data were filtered while using a bandpass of 20–250 Hz [52]. The data vector y for the inversion
computation corresponded to the P20/N20 activity peak occurring at the 20 ms post-stimulus time
point (Figure 3).

2.4. Synthetic Data

In order to enable a comparison between the measured and synthetic data, a normally-oriented
synthetic dipolar source was placed in the hand-knob of the 3b area in the posterior wall of the central
sulcus (Figure 4). Its position in the MNI (Montreal Neurological Institute) coordinate system was
x = −38 mm, y = −28 mm, z = 56 mm with ±2 mm accuracy. The data for the source were simulated
while using the present FEM-based forward model and additive zero mean Gaussian noise with 3%
standard deviation with respect to the maximal signal amplitude. The same noise model was also
applied in order to obtain the likelihood function for the measured data.
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Figure 3. A butterfly plot of the somatosensory evoked field (SEF) (upper left) and potential (SEP)
(lower left) from 0 to 80 ms post-stimulus with the 20 ms time point being indicated by the vertical line.
The P20/N20 peak topographies for SEF (upper, right) and SEP (lower right) are also visualized.

Figure 4. (Left) the hand knob (green Ω shape) is a part of the Brodmann area 3b in the central sulcus
(between the pre-central (blue) and post-central (red) areas) [10]. (Center) regions of interest (ROIs)
for the CM computations; the spherical region of interest (ROI) for detecting the 3b activity in the
hand-knob together with the ROI for the thalamic activity detection, including the post-central area
(red), thalamus (orange), and brainstem (cyan). (Right) the 24 mm diameter spherical ROI (grey)
approximately covers the hand-knob of the left hemisphere. A global MAP estimate for the synthetic
EEG data is visualized on the cortex.

2.5. Source Localization Estimates

The source localization tests were performed using the dense and sparse source distributions
(Table 1) that are described in Section 2.2.2. The first of these was applied to be as accurate as possible
in detecting the cortical source of the P20/N20 component in the 3b area using both measured and
synthethic data. The reason for using the sparse distribution was to enhance the detectability of the
thalamic activity [19], which occurs simultaneously with the cortical peak [52,53].

The MAP estimate was found via three IAS iteration steps. For CM, a sample of 10,000 points was
created with the MCMC sampler. Of these, 1000 points in the beginning of the sequence were neglected
as a burn-in phase. When examining the 3b area, the MCMC-based CM evaluation was due to the
high dimensionality of the source space, performed by limiting the activity within a relatively small
spherical ROI that was defined based on the MAP estimates (Figure 2). The placement of the ROI
(Figure 4) was selected according to the literature on the hand-knob within the Brodmann area 3b [10].
The difference vector pointing from the synthetic source position to the center point of the ROI was
Δx = 4 mm, Δy = −1 mm, Δz = 2 mm. Rather than being regarded as a complete reconstruction
approach, the spherical ROI is primarily regarded here as a tool for analyzing the peak of the posterior



Brain Sci. 2020, 10, 934 9 of 22

in the vicinity of the area where the activity is maximized. When reconstructing the thalamic source
via MCMC sampling, the ROI covered the somatosensory area together with the sub-cortical thalamus
and brainstem structures (Figure 4). In order to investigate the effects of the measurement noise,
the P20/N20 response was reconstructed with G hyperprior by averaging the EEG data for 300 and
100 epochs. When compared to the principal case of 1200 epochs, this can be estimated to lead to
+6 dB and +10 dB increments of the relative measurement noise level σ, based on the central limit
theorem, i.e., dB(

√
1200/300) ≈ +6 dB and dB(

√
1200/100) ≈ +10 dB. In the case of elevated noise,

the scale parameter was adjusted according to (4), while assuming that PM-SNR is unaffected by any
change in σ. Moreover, MNE and MCE were investigated as alternative reconstruction approaches for
EEG. These were obtained as the first and third step iterates of the IAS algorithm while using the G
hyperprior with β = 1.5, i.e., the value that yields the match between IAS, MNE, and MCE [7].

Table 1. The values of the prior-over-measurement signal-to-noise ratio (PM-SNR) for different
reconstructions specified by the type of data (Measured/Synthetic), measurement modality
(EEG/MEG), estimate (MAP/CM), and the hyperprior (G/IG). The source-wise θ0-value that was used
for the dense and sparse source distribution corresponds to the total scale. PM-SNR can be associated
with the a priori assumption on the latent noise strength, i.e., dB(s) (Section 2.1.4). When PM-SNR is 0
dB, the weight of the prior matches the a priori known noise level of 3%.

Data Modality Estimate Hyp. PM-SNR (dB) Sparse θ0 Dense θ0

Meas. EEG MAP G 20 10−10 10−12

IG 30 10−9 10−11

CM G 20 10−10 10−12

IG 20 10−10 10−12

MEG MAP G 20 10−10 10−12

IG 30 10−9 10−11

CM G 20 10−10 10−12

IG 20 10−10 10−12

Synth. EEG MAP G 20 10−10 10−12

IG 30 10−9 10−11

CM G 0 10−12 10−14

IG 0 10−12 10−14

MEG MAP G 30 10−9 10−11

IG 30 10−9 10−11

CM G 0 10−12 10−14

IG 0 10−12 10−14

Implementation in Zeffiro Interface

The present forward and inverse methods have been implemented in the Zeffiro interface (ZI) [38]
toolbox, which uses the Matlab (The MathWorks Inc., Natrick, MA 01760, USA) platform. ZI aims to
provide a user-friendly tool for advanced forward and inverse computations, e.g., accurate lead field
matrix construction, source localization, and time-lapse data analysis. ZI’s on-line code repository (see
Introduction) includes the methods that were used in the present study. To speed up the processing,
ZI utilizes a Graphics Processing Unit (GPU) in the following processes: (1) segmenting the FE
grid, (2) creating the lead field, (3) source space interpolation for visualizing the reconstructions,
and (4) inverting the data. The following computation times were obtained for a 1 mm resolution
six-compartment test mesh with 36 M elements, 6 M nodes, and 0.5 M sources while using a Lenovo
P910 ThinkStation (Lenovo, Hong Kong, China) that was equipped with 2 × Intel Xeon E5-2697A
v4 CPUs (Intel, Santa Clara, CA 95054, USA)(RAM 256 GB) and 2 ×NVIDIA Quadro P6000 GPUs
(NVIDIA,Santa Clara, CA 95051, USA)(RAM 24 GB): (1) FE mesh generation = 1329 s, (2) EEG lead
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field for 128 electrodes = 2362 s, (3) MEG lead field for 154 magnetometers = 4826 s, and (4) Source
space interpolation = 212 s.

3. Results

This section describes the results that were obtained with the data of subjects (I)–(III). An in-depth
source localization analysis was conducted in the case of (I). Additionally, the parameters that were
suggested by this analysis were tested with (II) and (III) in order to learn about the inter-subject
variability of the results. The results of the source localization analysis have been included in
Figures 5–10 and Table 2 shows the results of the additional tests.

Table 2. Subject (I). The spread of the current distribution reconstructed in the Brodmann area 3b
together with the position and orientation difference between the synthetic and reconstructed source.
The position and orientation of the reconstruction was obtained from its center of mass in the spherical
ROI. The MAP estimates were obtained without restricting the source space. In the case of CM,
the reconstruction process was limited to ROI.

FE MAP Spread Orientation Position
Mesh Data Model Data /CM Space Hyper. (mm2) Δ (deg) Δ (mm)

1 mm Meas. HBM EEG MAP Global G 44.7 9.7 3.4
Global IG 43.9 9.5 3.4

CM ROI G 71.8 13.3 3.8
ROI IG 37.7 14.4 3.8

MEG MAP Global G 32.0 10.8 3.4
Global IG 32.2 10.8 3.4

CM ROI G 48.8 11.7 3.7
ROI IG 42.0 12.5 3.8

Synth. EEG MAP Global G 42.0 5.8 3.5
Global IG 40.3 5.7 3.5

CM ROI G 64.8 11.5 3.7
ROI IG 69.9 12.1 3.7

MEG MAP Global G 22.0 12.8 3.5
Global IG 13.7 14.3 3.5

CM ROI G 52.5 12.8 3.7
ROI IG 52.6 12.6 3.7

+6 dB EEG MAP Global G 43.2 10.3 3.4
CM ROI G 68.9 14.8 3.7

+10 dB MAP Global G 26.8 11.1 3.4
CM ROI G 40.2 17.2 3.7

Regul. EEG MNE Global G 38.1 9.2 3.4
MCE Global G 12 8.8 3.6

2 mm Meas. EEG MAP Global G 34.8 9.7 3.4
Global IG 30.9 9.7 3.4

CM ROI G 43.4 10.8 3.5
ROI IG 67.7 7.0 3.4

MEG MAP Global G 87.9 11.5 3.5
Global IG 87.9 11.5 3.5

CM ROI G 99.4 15.8 3.5
ROI IG 115.9 15.6 3.5

Synth. EEG MAP Global G 64.2 6.7 3.3
Global IG 64.2 6.7 3.3

CM ROI G 39.1 13.7 3.5
ROI IG 8.3 14.2 3.3

MEG MAP Global G 60.2 10.2 3.5
Global IG 51.0 10.0 3.5

CM ROI G 109.0 16.1 3.5
ROI IG 110.2 16.1 3.5
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Figure 5. Subject (I). The MAP estimation results obtained with the iterative alternating sequential (IAS)
iteration corresponding to the measured and synthetic data and the 1 mm FE mesh. The placement and
orientation of the synthetic source is shown by the red pin and the mass center of the reconstruction by
the green one. The MAP estimates shown have been obtained using a global source space.

Figure 6. Subject (I). The CM estimation results that were obtained with the sampler corresponding
to the measured and synthetic data and the 1 mm FE mesh. The marginal density (histograms)
of the (volumetric) posterior mass centre is illustrated for each case and the Cartesian coordinate
component, including the median (red dashed line) and the 90% credibility interval, is conditional on
the subjectively selected parameters (solid blue line). The placement and orientation of the synthetic
source is shown by the red pin and mass center of the reconstruction by the green one. The CM
estimates shown have been obtained by limiting the source space within ROI



Brain Sci. 2020, 10, 934 12 of 22

Figure 7. Subject (I). The thalamic activity found with 1200 epochs and 1 mm FE mesh resolution.
The ventral posterolateral part of the left thalamus (contralateral to the stimulation side) can be observed
as having been activated in most reconstructions. The source space is global for the MAP estimates and
limited to ROI in the case of CM.

Figure 8. Subject (I). The results obtained with an EEG and G hypermodel while using 300 and 100
epochs, i.e., approximately +6 dB and +10 dB noise level, respectively. The source space is global for
the MAP estimates and limited to ROI in the case of CM.

Figure 9. Subject (I). Minimum norm estimation (MNE) and minimum current estimation (MCE) results
for the P20/N20 component network for surface activity (central sulcus) and deep activity (thalamus).
The source space is global for both MNE and MCE.
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Figure 10. Visualization of the cortical and sub-cortical activity reconstructed for subjects (II) on the
left and (III) on the right using the EEG data corresponding to the P20/N20 component. In addition to
the cortical overview, showing the reconstruction that was obtained with G hyperprior, excerpts of
the cortical activity around the central sulcus and the sub-cortical (deep) activity are shown for G and
IG hyperprior.

3.1. Subject (I)

The proposed parametrization approach was found to perform appropriately in detecting the
peak of the P20/N20 component in the area 3b of the left hemisphere. In addition to the activity of the
3b area, the overlaid thalamic component was found to be detectable in the experiments that were
performed with the sparse source density. In each source localization test, the scale parameter value
was selected based on PM-SNR, whose case-specific value was within the range 0–30 dB depending
on the assumption of the latent noise level (Section 2.1.4): the greater the latent noise, the larger the
PM-SNR, i.e., the stronger the prior. PM-SNR was chosen to be 20 dB and 0 dB for the measured and
synthetic data, respectively, when assuming that the latent modeling errors that are related to the
measured data are emphasized by a +20 dB difference in PM-SNR as compared to the simulated case.
The PM-SNR value for the MAP estimation process was set to be larger than for the CM evaluation,
allowing +10 dB for the latent errors due to the a priori lower accuracy of the MAP as compared
to CM [28], if the gradient-based IAS algorithm did not otherwise find the peak of the posterior.
An important criterion in selecting PM-SNR was the shape of the posterior density, whose peak in the
3b area was assumed to be a few millimeters diameter w.r.t. the mass center of x, i.e., comparable to
the mutual distance of the lead field source space density. This was done in order to avoid the failure
of the sampling process due to an excessively peaked posterior structure.

3.1.1. Brodmann Area 3b

Table 2 includes a numeric measure for the spread (focality) of the reconstructed and normally
restricted activity (in the 3b area), defined as the area of the set, in which its intensity exceeds 80%
of the maximum value. The position and orientation differences between the synthetic source and
mass center of the reconstructed activity are also given. In the case of the measured data, the synthetic
source is regarded as a numerical reference point and it should not be confused with the actual activity
(ground truth). Figures 5, 6, 8, and 9 visualize the reconstructed activity on the white matter surface
(i.e. on the inner surface of the grey matter) in the vicinity of the ROI. Each distribution shows the
activity in the direction of the outward-pointing surface normal.
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3.1.2. MAP Estimation

The MAP estimates obtained for the 3b area are shown in Figures 5, 8, and 9. The CG-HBM
estimates obtained using 1200 epochs generally localize the activity in the sulcal wall with the
difference in position and orientation being less than 0.4 mm and 10.4 degrees. In the 1 mm case,
they were a maximum 3.8 mm and 14.4 degrees, respectively. MEG provided slightly more focal
reconstructions than EEG, and the IG hyperprior led to more focal outcomes than G for three out of
the four reconstructions. The 1 mm FE mesh resolution yielded a greater similarity between the MAP
estimates obtained with both the measured and synthetic data than the 2 mm mesh did, as shown
by Table 2. In the 2 mm case, the reconstructions were less intense and more spread out than those
that were obtained with the 1 mm mesh. The estimates obtained with 300 and 100 epochs (Figure 8),
i.e., with +6 dB and +10 dB noise levels, show that the distinguishability of the 3b activity decreases as
the noise increases as; the activity is clearly visible in the +6 dB case, but barely detectable with +10
dB noise. The estimates that were obtained with MNE and MCE (Figure 9) show a clear difference
in the 3b area, suggesting that the stronger tendency of the MCE to find a focal estimate results in a
clearer source distinction than with MNE, while the peak of both estimates is less intense than with
the CG-HBM estimates.

3.1.3. CM Estimation

Figures 6 and 8 illustrate the CM estimates that were obtained for the spherical ROI together
with the corresponding marginal densities (histograms) for the volumetric mass center of the posterior.
Overall, CM had a higher maximum intensity in a mutual comparison to MAP for both real and
synthetic data. This is particularly clear for the estimates with the elevated measurement noise
(Figure 8). However, the location of the maximum was virtually the same. The marginal densities
obtained show that, in the case of 1200 epochs, the maximum length of the 90% credibility interval for
the marginal posterior’s mass center, conditional to the subjectively selected parameters, was in the
range 0.9–1.4 and 1.2–2.3 mm, respectively, for the 1 and 2 mm FE mesh resolutions, thus matching the
targeted range. The mutual differences in the median, for each coordinate direction, were less than
0.2 and 1.1 mm, respectively. As with the MAP, the spread of the CM that was obtained with the 2
mm FE mesh resolution varied more between the different reconstructions than in the case of the 1
mm mesh, while the maximal intensity of the CM was observed to vary less than that of the MAP.
The marginal densities are clearly more spread out in the case of the elevated noise (Figure 8), i.e., with
300 and 100 epochs.

3.1.4. Thalamic Component

The results for reconstructing the thalamic activity in the case of the sparse source space can be
found in Figures 7–9. Overall, when compared to the estimates obtained for the 3b area, the thalamic
activity is less well-localized in its a priori expected location, which we expect to be primarily the
ventral posterolateral nucleus [21] of the left thalamus contralateral to the stimulation side. This can be
observed in the form of a greater variation between the estimates that were obtained for the thalamic
component when compared to the 3b source localization. Some of these estimates were spread over the
brainstem as well as the thalamic area [52,54]. Based on Figure 7, EEG has a greater tendency to find the
deep activity than MEG. The CM estimate that is obtained with IG hyperprior is similar for both EEG
and MEG, which suggests that the posterior exploration technique (here, MAP or CM) had a significant
effect on detecting deep fluctuations. The reconstruction quality seems to be diminished when the
noise level is elevated, as was the case for the 3b area (Figure 8). Nevertheless, the thalamic component
was distinguishable with each noise level. Regarding the MNE and MCE estimates, MNE localized the
deep activity, while MCE led to a strongly suppressed reconstruction (Figure 9).
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3.2. Subject (II) and (III)

The results that were obtained for subjects (II) and (III) are visualized in Figure 10 in the case
of the P20/N20 component and the EEG data. The results obtained show that the parameters used
for subject (I) result in a largely appropriate reconstruction around the cortical (Brodmann 3b) and
thalamic areas. The results are somewhat less focal than in the case of subject (I), which is obviously
due to the measurement or head model creation process, while the activity is found with a uniform
parameter choice for (I)–(III).

4. Discussion

In this proof-of-concept study, we proposed an approach for parametrizing the conditionally
Gaussian hierarchical Bayesian model (CG-HBM) [7,8] and applied it to invert the P20/N20 response
of the median nerve somatosensory evoked potentials and fields (SEP and SEF). We introduced
an approach for parameter selection and analyzed its performance in source localization tests.
The activity that corresponds to the P20/N20 response was detected in the Brodmann area 3b
and the thalamus [21,22,52,53,55] while using both a dense and sparse source space [19], respectively.
The source localization experiments were performed while using the Zeffiro interface (ZI) software
tool [38].

In our approach, the shape and scale parameter determining the hyperprior and, thereby,
also the conditionally Gaussian prior of the CG-HBM, were chosen based on optimization and a priori
knowledge of the prior-over-measurement signal-to-noise ratio (PM-SNR), respectively. The shape
parameter value β = 3 was found to be close-to-optimal in minimizing the posterior differences
between the gamma (G) and inverse gamma (IG) hyperprior (Appendix A). PM-SNR is a model
specific constant which determines the scale parameter θ0 given the dimension and noise level of
the forward model. The noise can consist of both a known and latent component. In this study,
PM-SNR varied between 0 dB and 30 dB, depending on the assumption of the latent errors; the greater
the errors, the higher the PM-SNR, i.e., the stronger the prior. As potential factors causing latent
noise, we recognized (1) the forward modeling inaccuracies that are related to the measured data,
e.g., the potential deviations of the conductivity distribution [46], which are absent for the simulated
data, and also (2) the performance differences between the IAS and CM posterior estimation method.
The value range applied in this study is in agreement with the Brainstorm software’s default MNE
regularization value [27], which we estimated to match a PM-SNR of 10 dB with respect to EEG data.

The range that is proposed here is also supported by our recent studies [38] and [12]. In the first of
these, IAS was shown to reconstruct a cortical epileptic (gyral) activity in EEG with both the G and IG
hyperpriors, when the PM-SNR was set to 20 dB (following from θ0 = 10−12, σ = 0.03, N = 100,000).
In the other study, a scale parameter range from 10−10 to 10−8 was found to be applicable for IAS
MAP estimation of numerically simulated deep activity with the IG hyperprior and a sparse source
space (N from 100 to 400), converting to PM-SNR of 30 dB and 20 dB for θ0 = 10−8, N = 100 and
θ0 = 10−10, N = 400, respectively.

The results obtained suggest that PM-SNR might also be applicable with elevated measurement
noise levels, i.e., fewer averaged epochs, as both the 3b and thalamic activity components were
found to be detectable in the cases of +6 dB and +10 dB noise. This result cannot be generalized,
because the distinguishability of the responses is not obvious with fewer than the recommended
minimum number of averaged epochs, which is 1000–4000 for SEPs [16–18] regarding the investigated
20 ms latency. Nevertheless, a lower number of averaged trials can be relevant in other EEG and
MEG applications. For example, in [38], the reconstructions obtained with CG-HBM correspond to
58 averaged epileptiform discharges.

Comparing the performance of IAS obtained with the proposed settings and with those
corresponding to MNE and MCE suggests that the present parametrization of CG-HBM can be
related to, and also explain the performance of, classical regularization approaches. MNE was shown
to find the thalamic activity with the selected PM-SNR, while it led to a visually less focal estimate in
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the 3b area than CG-HBM. In the case of β = 1.5, MCE was observed to result in a suppressed deep
activity, which suggested that the choice β = 3 is advantageous with respect to MAP estimation with
the G hyperprior. In particular, it seems that, with β = 3, both the G and IG hyperpriors can find the
deep source, supporting our approach of selecting β, so that it minimizes the difference between the
hyperpriors. This difference is obvious, when β = 1.5, which is, when the posterior maximizer of the
prior variance θ will be zero for G and θ0/3 for IG (see Equation (A1)), suggesting that any weakly
distinguishable (close-to-zero) fluctuations, especially the deep ones, will be suppressed by G.

The estimates that were obtained for the deep part varied more than those for the 3b area. This was
expected, since the accuracy of both EEG and MEG is known to be limited with regard to far-field
activity. Indeed, it has only recently been proposed that the localization of the deep sources is feasible
based on non-invasive measurements [56,57]. In order to obtain an appropriate reconstruction for the
thalamus, we applied a sparse source space, as it has recently been suggested that this can improve the
detectability of the deep components [19]. Based on the results, it is obvious that the method applied
in the posterior exploration has a major effect on the deep part of the reconstruction. As indicated by
the numerical results of [7], the CM provided a more focal estimate for the thalamic activity than MAP
in the case of MEG, which, in turn, is generally regarded as having less advantageous modality for
depth-localization than EEG [10].

While the activity of the thalamus is generally known to overlap with that of the 3b area [21,22,53],
there is less exact knowledge about the deep response network compared to that of the cortical one,
and its activity varies subject-wise. For example, in [53], the activity that corrresponds to the P20/N20
peak was exclusively limited to the 3b area in ten subjects, while the thalamus was only found to be
additionally activated in two subjects. In contrast, the somatosensory 3b component, i.e., the first
cortical contribution in the median nerve SEP/SEF, is known to be well-localized in the posterior wall
of the sulcus, while the gyral components will be visible a few milliseconds after 20 ms [21,52,58].
In order to obtain the best possible source localization outcome for both the superficial and deep areas,
CG-HBM can be adapted to utilize multiple source space densities in finding a single reconstruction.
An example of such a method is the recently proposed randomized multiresolution scanning (RAMUS)
algorithm [12], which finds a reconstruction without imposing any restrictions regarding active brain
areas or the source depth. The present restrictions (ROIs) have been introduced, as, here, our focus
is on CG-HBM as a superclass of methods, rather than on the individual reconstruction techniques
originating from it. That is why, here, we have restricted the number of moving parameters, other than
the ones describing the statistical model.

Based on the present results, especially the position difference with respect to the mass center,
it seems that a source localization accuracy of around 4 mm could be achieved in the 3b area.
This coincides with the maximal spatial accuracy found for the MEG, i.e., 2–4 mm for the superficial
areas [48,49], and even surpasses that of EEG, whose accuracy for superior locations was estimated to
be, on average, approximately 9 mm [22,50,51]. A significant factor affecting the accuracy of EEG is the
uncertainty related to the conductivity distribution [46,59]. However, while taking the total estimated
32–116 mm2 areal spread of the estimates obtained for the 3b area into account, the accuracy found
here does not exceed the suggested maximal accuracy limits. The spread of the estimates arises from
the current numerical framework as the maximal achievable focality without a potential numerical
bias. The relationship between the estimates found and the actual physiological spread of the source is
not evaluated here and it would necessitate further work.

CG-HBM might be advantageous as a statistical model for obtaining robust sampling-based
inverse estimates, as suggested by the present results. When the parameters are chosen appropriately,
the sampler-based approach seems to provide a robust technique for estimating the marginal posterior
and the CM, giving information about the posterior distribution, shape and structure. Here, it allowed
us to adapt it according to the underlying numerical model and geometry, whereas the IAS MAP
estimation technique alone did not completely reveal the posterior shape, thereby increasing the
risk of obtaining, e.g., overly focal estimates. It also seems that estimating the CM via a sampling
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approach and defining a ROI for the sampler is beneficial with respect to the distinguishability of the
activity obtained. Because the IAS MAP estimation technique can be associated with many classical
regularization methods, including MNE and MCE [7], sampling-based CG-HBM can also be seen as a
potential way to enhance the outcome that was obtained with these classical methods.

The present forward simulation approach was found to perform adequately with both 1 and
2 mm resolution. Agreeing with the existing knowledge of physiologically accurate volumetric
head modeling and forward simulation [32,60], the FE mesh resolution of 1 mm was observed to be
advantageous for obtaining a satisfactorily consistent reconstruction quality. The present GPU-based
approach to the forward simulation was found to be essential in order to achieve a suitably short
computation time for the 1 mm mesh generation and lead field matrix evaluation processes with our ZI
implementation. The approach of finding the reconstruction while using Cartesian source orientations
was found to be suitable in the present modeling context, since it allows slight orientation changes
during the source localization process, thereby resulting in a smooth posterior distribution. However,
ZI also allows the normal orientations for cortical areas (Section 1) to be applied directly, as the
differences between the directly normal and present normally-projected reconstructions seem minor.

More work will need to be done in order to optimize the outcome of CG-HBM for a given subject
and dataset, as the present results mainly provide a proof-of-concept for a potentially applicable
parametrization together with rough estimates for the parameter ranges. Therefore, an important
objective of any future work will be to apply the present hyperprior parametrization technique
for more datasets, e.g., including temporal correlations and combined E/MEG data, (see [12] for
preliminary numerical simulation results, and subjects), in order to learn more about the practical
localization capability of the CG-HBM. Potential directions for the development of mathematical
method include, e.g., incorporating physiological knowledge to the hyperprior [61,62] and/or the
source space that can be adapted to the properties of the active neural tissue: e.g., many brain structures
have the primary current density of approximately 1 nAm/mm2 when active [63]. The development
of source localization techniques for the multiple resolution levels [12], e.g., a full MCMC sampler
implementation, provides a further potential application for the current parametrization approach.
Finally, while our present focus is on CG-HBM and the corresponding reconstruction methods,
i.e., IAS, MCMC sampling, MCE, and MNE, further research would be necessary in order to relate the
performance of CG-HBM with that of the most promising alternative methods that do not belong to
the CG-HBM superclass, such as the beamformer techniques [64–66].
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Appendix A. Shape Parameter Optimization

In HBM, the i-th entry x, is assumed to have an independent zero mean Gaussian distribution with
variance θi determined by the G or the IG hyperprior. Given a shape and scale parameter β ≥ 3/2 and
θ0 > 0, the G and IG are maximized at the points θ(G)

i,max
= (β− 1)θ0 and θ(IG)

i,max
= θ0/(β + 1) and the mean

is at θ(G)

i,mean
= βθ0 and θ(IG)

i,mean
= θ0/(β − 1), respectively. Assuming that θ � β � 1/θ0, the magnitude

of these follows essentially from that of θ0. That is, the scale parameter sets the initial informativeness
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of the prior or the initial sensitivity of the hypermodel to localized brain activity. Generally, the smaller
the value, the less informative is the prior, whose effect is slighter than the likelihood.

Given the i-th entry xi, the maximizer of the joint prior p(θ, x) and of the conditional posterior
p(θ | x) w.r.t. θ, independent of the measurements y [7], is of the form

θ̃(G)

i,max
=

1
2

θ0(β − 3
2
) +

1
2

θ0

√
(β − 3

2
)2 +

2x2
i

θ0
and θ̃(IG)

i,max
=

1
β + 3

2
(θ0 +

x2
i

2
). (A1)

In order to obtain comparable results with G and IG hyperprior and, thereby, to avoid any
depth-localization bias of the G hyperprior [7,12], we optimize β so that the corresponding conditional
posterior distributions are locally equally sensitive to the increment of x2

i . That is, we optimize
the shape parameter so that θ̃(G)

i,max
≈ c θ̃(IG)

i,max
locally with some constant c corresponding to a given

x2
i . We require that, following from the form θ̃(IG)

i,max
(s, β) = ν + νs, ν = θ0/(β + 3/2), s = x2

i /(2θ0),
there is a match between the zeroth and first-order coefficient of the first-order Taylor polynomial
F(s, β) ≈ F(s0, β) + ∂F(s0,β)

∂s (s − s0) with F(s, β) = θ̃(G)

i,max
(s, β), resulting in the equation

F(s0, β)− ∂F(s0, β)

∂s
(s0 + 1) = 0 (A2)

with respect to β. Furthermore, we set the point of linearization proportional to the mean of the IG
hyperprior, i.e., s0 = α/[2(β − 1)] or x2

i = α θ(IG)

i,mean
. That is, x2

i is assumed to be proportional to the
expected variance of the conditional Gaussian prior. We make this choice, since a zero-mean Gaussian
density is invariant with respect to a scale proportional to its variance.

(Figure A1) illustrates the results obtained by solving the Equation (A2) numerically with respect
to β for each integer α from α = 1 to α = 1000. For α = 100, the solution and the corresponding
scaling constant satisfy β ≈ 3 and c ≈ 1, meaning that θ(IG)

i,mean
≈ θ(G)

i,mean
at the point of linearization.

For this match, we interpret β = 3 as a close-to-optimal shape parameter value to minimize the
differences between the G and IG hyperprior. As can be observed from (Figure A1), an IG hyperprior
generally leads to a heavier-tailed conditional posterior distribution than G at the point of linearization,
meaning that, in principle, it allows a higher probability for outliers such as focal activity spots.

Figure A1. (Left) The i-th component of the conditional posterior p(θi | xi) optimized with respect to
the shape parameter β so that θ̃(G)

i,max
≈ c θ̃(IG)

i,max
close to the point of linearization x2

i = αθ0/(β − 1) with
some constant c (Appendix A). The gray curves correspond to IG and the black ones to G hyperprior.
The solid, dashed and dash-dotted curves have been obtained with α = 100, α = 10 and α = 1000,
respectively. In each case the scale parameter is θ0 = 1. The maximizers match approximately,
i.e., c ≈ 1, when α = 100 (solid) and the optimizer is β ≈ 3. (Center) The relative scale deviation
|c − 1|/c w.r.t. c = 1 as a function of the optimizer β, vanishing when β ≈ 3. (Right) The optimizer β

as the function of α.

Appendix B. Effect of the Shape Parameter

The effect of the shape parameter on the hyperprior is visualized in Figure A2. The weight of the
tail is the greater the smaller the shape parameter which is shown by the interdecile range (the interval
between 10 and 90% quantile).
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Figure A2. The effect of the shape parameter on the IG (left) and G (right) hyperprior. The black
(solid), shows the hyperprior density p(θ) for β = 3 and θ0 = 1 × 10−12 (see Table 1). The blue (dashed)
and red (dotted) curves correspond to the same expectation E(θ) with β = 2 and β = 4, respectively.
The greater the weight of the tail is, the smaller the shape parameter is. This is shown by the colored
interdecile range (IDR), i.e., the interval between 10 and 90% quantile, which is presented here with
respect to E(θ). The colors correspond to those of the curves.
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