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Avalanche correlations and stress-strain curves in discrete dislocation plasticity
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The sequence of deformation bursts during plastic deformation exhibits scale-free features. In addition to the
burst or avalanche sizes and the rate of avalanches the process is characterized by correlations in the series
which become manifest in the resulting shape of the stress-strain curve. We analyze such features of plastic
deformation with two-dimensional and three-dimensional simulations of discrete dislocation dynamics models
and we show that only with severe plastic deformation the ensuing memory effects become negligible. The role
of past deformation history and dislocation pinning by disorder are studied. In general, the correlations have the
effect of reducing the scatter of the individual stress-strain curves around the mean one.
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I. INTRODUCTION

The fact that plastic deformation takes place by avalanches
or bursts makes for an interesting connection between the
theory of avalanches in dislocation systems and materials
science [1–3]. In the case of crystalline solids, plasticity is
mediated by the stress-driven collective dynamics of disloca-
tions, i.e., line-line topological defects of the crystal lattice.
The paradigm of avalanches implies scale-free features that
the statistical properties of the bursts—such as their sizes
and durations and often the intra-avalanche waiting times—
follow. For ensembles of dislocations in plastically deforming
crystals, these signatures of critical-like dynamics are often
linked either to the system being driven to the proximity of
a depinninglike phase transition [4,5], or exhibiting glassy
dislocation dynamics [6,7].

For a single micron-scale sample undergoing deformation
the consequence of a series of bursts is an irregular stress-
strain curve [8–11]. Single crystals containing assemblies of
discrete dislocations have the property that, both in models
[6,7,12] and in mechanical tests such as nano/micropillar
compression [13,14], the plastic deformation bursts have a
broad distribution of sizes. The stress-strain curve then con-
sists of a sequence of such bursts, separated by quiescent
periods during which the applied stress is increased. The
resulting stress-strain curve has a random appearance, and
indeed these processes are most often characterized simply
by probability density functions of burst sizes and stress in-
crements, a description ignoring possible correlations in the
burst sequence [3].

Here we go beyond such a simple characterization of
fluctuating crystal plasticity, by studying to what extent
stresses, stress increments, and bursts sizes along the stress-
strain curves are correlated. This is inherently coupled to the
question how one may exploit the statistics to reconstruct
stress-strain curves [15,16]. Related questions include how

the stress-strain curves compare with the mean one [17], in
particular it is interesting to ask if single systems have a
tendency to converge to the mean behavior and how this
depends on the degree of plastic deformation. This is in turn
dependent on how random is random-looking plasticity, high-
lighting the need to measure correlations in the avalanche
activity. To this end we investigate how the correlations in
avalanche activity influence the plastic deformation by means
of two-dimensional (2D) and three-dimensional (3D) discrete
dislocation dynamics (DDD) simulations. Our work extends
previous studies of avalanche correlations in plasticity [15,18]
and in the related problem of interface depinning in disor-
dered media [19]. The main issues we address are four. First,
as a function of plastic strain, we quantify the variation of
individual samples around the average (stress-strain curve)
behavior. We then measure the correlations in the series of
bursts, focusing on subsequent avalanches. These correlations
are important but diminish along the stress-strain curve. This
results in a tendency to approach the average response. In
the initial stages of plastic deformation these correlations
leave an imprint on both the yield stress and on its varia-
tion from sample to sample. An important question is how
these memory effects work in general. To investigate this, we
also study the influence of past deformation by “prestrained”
systems and that of the presence of a competing disloca-
tion pinning mechanism by a field of precipitates. This is
related to the general question of how to classify memory
effects in physical systems [20], in particular in systems un-
dergoing deformation [21–23]. Our results tackle the subtle
effects that arise from the exact configuration of dislocations
at the beginning of a deformation experiment or trial: what
are the consequences, and how does that depend on the past
history.

The structure of this paper follows the usual paths: first the
methods (Sec. II), then the results (Sec. III), and finally the
conclusions (Sec. IV).
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FIG. 1. Examples of initial 2D (left) and 3D (right) dislocation
structures.

II. DDD SIMULATIONS

To study the correlations between dislocation avalanches,
we collect four data sets: We perform standard DDD simula-
tions in both two and three dimensions, prestrained systems
(deformation history) in two dimensions, and systems with
quenched pinning points/precipitates in three dimensions. For
the 2D systems we use an in-house developed code to model a
square-shaped cross section of a crystal with infinitely long,
parallel edge dislocations. The model is similar to the one
studied in several previous works [4,6,24–26]. The disloca-
tion are randomly initialized with either positive or negative
Burgers vectors with magnitude b. Inside the simulation box,
the dislocations are restricted to move in their glide planes in
x direction with an equation of motion

1

χb
vi = sib

[
σext +

∑
i �= j

s jσd (r j − ri )

]
, (1)

where si is the sign of the Burgers vector, χ is the mobility, σext

is the external stress, and the sum is over all other dislocations
in the system. Moreover, the interaction arising from the shear
stress field is given by

σd (r) = μb

2π (1 − ν)

x(x2 − y2)

(x2 + y2)2
, (2)

where ν is the Poisson ratio and μ is the shear modulus.
The system is implemented with periodic boundaries and
parameters are set to correspond to the simulations with the
largest system size found in [26], i.e., we initialize the system
with 400 dislocations in a box with size L = 100b and model
parameters are chosen so that μ

2π (1−ν) = b = χ = 1 and time
step is set to 0.1. Therefore, stress and strain are measured
in dimensionless units. An example of a 2D DDD system is
illustrated in Fig. 1(a).

The 3D DDD simulations are conducted with our version
of the ParaDiS code [27]. In ParaDiS, rectangular systems
with dislocations are simulated and the program discretizes
dislocation lines into a set of nodes and straight segments.
Interaction stresses between the segments are derived from
linear elasticity and the long-range nature of these stresses
is taken into account by considering periodic images of the
system. At the dislocation core, interactions are computed
with output from MD simulations. For the standard 3D DDD
simulations [Fig. 1(b)], we set the simulation parameters to
the values of fcc aluminum (b = 0.286 nm, ν = 0.35, μ =
26 GPa) in a cubic system with size L3D = 1.43 μm and

40 initial straight mixed dislocations [7]. Unlike 2D DDD,
we measure the 3D DDD results in SI units. On the other
hand, the disordered systems (i.e., ones with quenched pin-
ning points included [28]) are performed along similar lines as
in Ref. [5]. The disorder is implemented as spherical coherent
precipitates (with radius rp = 28.6 nm) that form Gaussian
barriers for dislocation motion, i.e., the (radial) precipitate-
dislocation interaction force is given by

F (r) = −∇U (r) = 2Ab3re
− r2

r2
p

r2
p

, (3)

where A is a parameter characterizing precipitate strength.
The materials parameters used are those of aluminum (like
in the standard case), but the system size is Ldepinning =
4 μm and initial number of dislocations is 24. The pre-
cipitate parameters are chosen so A = 1010 Pa and density
ρp = 1020 m−3 that the system dynamics is dominated by
dislocation (de)pinning [5].

All systems are driven with the quasistatic stress-controlled
loading scheme. This means that once we have initialized the
systems with randomly placed dislocations (2D) or generated
structures using paradisgen which is distributed with ParaDiS
(3D), and these dislocations have found a metastable state
after relaxation with σext = 0, we start to increase the external
stress with a rate σ̇ . The only exception is the prestrained
2D case, where the initial states are prepared by first running
a stress ramp until a prestrain of εID = 0.2, after which the
system is let to relax again at zero stress. In 2D simulations
(both basic and prestrained) we set σ̇2D = 2.5 × 10−7, in 3D
σ̇3D = 2.5 × 1013 Pa/s in the [010] direction, and in 3D with
precipitates σ̇Depinning = 1.0 × 1014 Pa/s in the [100] direc-
tion. As σext increases, we measure the velocity of dislocations
inside the system [in 2D simply the sum of the |vi|’s, while
in 3D we measure the absolute value of the extensive velocity
V (t ) = ∑

i liv⊥,i where li is the segment length and v⊥,i veloc-
ity perpendicular to the line direction of the segment]. If the
velocity signal then passes a preset threshold V0, an avalanche
starts and the stress increments are stopped until the disloca-
tions again reach a jammed state and motion ceases. This way
the systems produce stress-strain curves with staircase shape,
as can be seen in Fig. 2 [16]. The avalanches are visible as
the constant σ plateaus and we measure their sizes s by the
strain accumulated, i.e., change in ε [except for the systems
with precipitates, for which the avalanche size is the integral
of the velocity signal, i.e., s′ = ∫ T

0 V (t ) − V0 dt].

III. RESULTS

A. Avalanche analysis

We then proceed to analyze the avalanches that come
in many sizes as seen in Fig. 2 which also shows the
strain-resolved size distributions for the studied systems. In
principle, the systems exhibit three types of avalanches: First,
there are the small avalanches arising from numerical noise
and velocity signal oscillating above and below the avalanche
threshold—these are already cropped out from the figures.
Second, there are the power-law avalanches which, as the
name suggests, follow the distribution closely and are mostly
uncorrelated. Finally, the largest avalanches are the so called
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FIG. 2. Stress-strain curves (left) and strain-resolved avalanche size distributions (right) for (a) 2D, (b) 3D, (c) pre-strained 2D, and (d) 3D
systems with precipitates. The average stress-strain curve (solid black line) is accompanied by single system stress-strain curves (colored lines)
and the standard deviation around the average (shaded region). The size distributions for avalanches in different strain bins (color coding) are
plotted with the fitting results to Eq. (4) (solid lines). The solid black lines are added as a guide for the eye.

cut-off avalanches as there the distributions start waning from
the pure power law.

Because the largest avalanches have also the largest impact
on the stress-strain curves, in what follows we restrict our
analysis to them. However, as we search for correlations be-
tween avalanches and only a few cut-off avalanches occur per
system, we take this into account as we define the threshold
for the large avalanches. To define large avalanches systemat-
ically, we first fit the (strain-dependent) distributions with the
typical form

P(s) = s−τ e−s/s0 , (4)

where both τ (power-law exponent) and s0 (the cut-off
avalanche size) are fitting parameters. Then we set the thresh-
old of large avalanches to cs0 with c some constant smaller
than unity. Finally, as we have obtained values for s0 in
the different strain bins, we can interpolate cs0(ε) to obtain
an estimate if any specific avalanche belongs to the large
avalanches depending on its starting strain.

From the obtained set of large avalanches, we collect sub-
sequent avalanches that occur in the same system to study
correlations between them. We focus on parameters intro-
duced in Fig. 3(a), namely the starting strains of the preceding
and following avalanches ε1 and ε2, the sizes of the preceding
and following avalanches s1 and s2, and the stress increment

between the avalanches 	σ = σ2 − σ1. To measure the cor-
relations we use the Spearman rank correlation coefficient
ρ. Unlike the more commonly used Pearson correlation co-
efficient, which measures the linear relationship between the
values of two variables, Spearman correlation coefficient con-
siders the rank of the variables, thus resulting in +1 (or −1)
if the variables form a perfect monotonously increasing (or
decreasing) curve, and 0 if no correlation between the ranks
exists [29]. For the case of correlations between (power-law
distributed) avalanches, assuming linear dependencies seems
unnecessarily restrictive and, thus, the Spearman correlation
coefficient is preferred here.

B. Avalanche correlations in 2D and 3D DDD

We continue to study the correlations between two sub-
sequent large avalanches. The observations made here come
with avalanches collected from 5000 2D DDD and 1000 3D
DDD (from which 250 have been driven to ε ∼ 1% and the
rest to much smaller strains) systems. In Figs. 3(b) and 3(c)
we have the Spearman correlation coefficient for the 2D and
3D cases, respectively, when ρ are computed between the
starting stress of the previous avalanche σ1 and the stress
increment 	σ , and between the stress increment and the size
of the following avalanche s2. Moreover, ρσ1,	σ and ρ	σ,s2 are

FIG. 3. (a) Illustration of the parameters of the two subsequent avalanches. (b) and (c) Spearman correlation coefficient between (σ1, 	σ )
and (	σ, s2) as a function of the first avalanche starting strain for avalanches from 2D and 3D systems, respectively.
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FIG. 4. A randomly chosen set of stress-strain curves shifted
with the average curve for 2D (a) and 3D (b) systems. The shaded
region corresponds to the standard deviation.

plotted as a function of the starting strain of the preceding
avalanche ε1 to see how the correlations change along the
stress-strain curve.

Starting from ρ	σ,s2 , we see that with small ε1 in both 2D
and 3D there is a strong monotonously increasing dependence
between the variables as ρ > 0.5 in both cases [for reference,
the inset of Fig. 3(b) shows the scatter plot of the variables].
As ε1 increases and the systems approach the plateau of the
stress-strain response, the correlations disappear. Then with
ρσ1,	σ there is an opposite, monotonously decreasing depen-
dence between σ1 and 	σ which similarly weakens with
strain, although at small strains the correlation is much weaker
in 2D (∼ − 0.2 at best) than in 3D (<−0.6). The correlations
measured here are obtained with large avalanche thresholds
c = 0.25 and c = 0.1 for 2D and 3D, respectively, and we
have tested that the results seem robust with respect to the
value of c used or the number of strain bins. Other avalanche
parameter pairs (e.g., s1 and s2) show no similar, notable
correlations.

The correlations have a significant impact on the systems’
stress-strain response with small strains. This is because both
ρσ1,	σ and ρ	σ,s2 have the same effect of pushing the stress-
strain curve towards the system average: If the preceding
avalanche starts with a larger stress σ1, then there is a smaller
increment in stress before the next avalanche and vice versa,
due to the negative ρσ1,	σ . Similarly, if the stress increment
between the avalanches is large (small), the next avalanche
will be large (small) as ρ	σ,s2 is positive. The push towards
the average curve is visualized in Figs. 4(a) and 4(b) which
show randomly chosen stress-strain curves of single 2D and
3D systems shifted by the average σ (ε). In the figure, inter-
sections of the single curves with the average (σ − 〈σ 〉 = 0)
are most frequent with small strains where the correlations are
stronger, and cease as the correlations vanish.

To elaborate, Fig. 5 shows the average rate N (σ−〈σ 〉=0)
dε

along with avalanche starting strain distributions. Indeed the
rate decreases with large strains and it follows P(εaval ) in
both 2D and 3D. But there are some fundamental differences
between the two sets. In 2D, the rate of intersections and
avalanche activity is confined to a section of strains, while
in 3D the rate and avalanche activity are in an ongoing de-
crease. This difference in the small strain behavior is mostly
explained by considering the simulation protocols: the 2D
system are relaxed before the loading to a state where all the
motion stops in the limit of numerical error. However, the 3D
systems reach no such state as there remain some oscillation
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FIG. 5. The rate of intersections with the average stress-strain
curves N (σ−〈σ 〉=0)

dε
and the distribution of avalanche starting strains

in (a) 2D and (b) 3D systems. For 2D systems, the dashed line
also shows the goodness of a neural network (NN) prediction of the
stress-strain curve as a function of strain as obtained in [26].

and slow decay of dislocation motion, thus resulting in (small)
bursts already in the start of the stress ramp.

The eventual decrease of N (σ−〈σ 〉=0)
dε

at large strains has a
connection to the “yield stress,” i.e., the system-specific stress
required to enter plastic flow. One reason for the dropping
rate is the less and less frequent avalanches but additionally,
the stress increments between the avalanches get smaller and
the standard deviation from the average stress-strain curve
increases compared to 〈	σ 〉 as seen in Fig. 6 which shows
the strain-dependent complementary cumulative distributions
of 	σ . Therefore, the single systems “freeze” their relative
behavior with respect to 〈σ 〉 and decide between being a
“stronger” or a “weaker” sample. This then affects the pre-
dictability of single system stress-strain curves interestingly:
Fig. 5(a) illustrates also the goodness of a neural network
(NN) fit of the 2D initial dislocation structures to the ensuing
stress-strain curves computed in Ref. [26]. The NN fit is best
at small strains and large strains while at intermediate strains,
where N (σ−〈σ 〉=0)

dε
is high and most of the avalanche activity

happens, the score of the fit drops to a clear minimum. Thus,
predicting the stress-strain curve accurately is impossible at
strains, where the systems oscillate below and above the aver-
age behavior.

C. Avalanche correlations in prestrained and
precipitate-dominated systems

What happens then to these correlations that push the sys-
tem response towards the average, if the system has some
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FIG. 6. Strain-dependent complementary cumulative distribu-
tions of 	σ in (a) 2D and (b) 3D systems for avalanches starting with
varying strain level (color coding). In (a), the dashed lines illustrate
the standard deviation of stress-strain curves with the corresponding
strain.
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FIG. 7. (a) Spearman correlation coefficient between subsequent avalanche parameters in prestrained 2D systems along the stress-strain
curve. For reference, the color-coded dashed lines show ρσ1,	σ and ρ	σ,s2 measured in the systems without prestrain. (b) The rate of
intersections with the average stress-strain curve and distribution of avalanche starting strains and NN score for prestrained systems.
(c) Spearman correlation coefficient between subsequent avalanche parameters in 3D systems with precipitates (depinning). The used large
avalanche thresholds are (a) c = 0.15 and (b) c = 0.2

deformation history or includes disorder in the form of
quenched pinning points? To study the effect of deformation
history, we consider 5000 2D DDD systems that have been
first prestrained up to a strain εID = 0.2 and then relaxed to a
new, metastable initial state [26]. Avalanches that then occur
during a quasistatic stress ramp in these prestrained systems
are analyzed with the same scheme as applied above on the
basic systems.

Figure 7(a) shows the Spearman correlation coefficients
between relevant parameters of two subsequent avalanches in
prestrained systems. Generally, the correlations are similar
compared to the 2D case: ρσ1,	σ is negative for small strains
and ρ	σ,s2 is positive, both steering the single system response
towards the average. But there are two notable differences too:
First, the correlations seem to decline already with smaller
strains than in the 2D case. Although this is not that clear in
the rate of intersections with the average curve in Fig. 7(b)
which resembles that of Fig. 5(a), the predictability in the
form of the score of the NN fit increases more sharply in pre-
strained systems. Second, correlation between first avalanche
size and the following stress increment, which was negligible
in the basic 2D case, is significant in prestrained systems.

The final set of avalanches is collected from 100 3D DDD
simulations where now the dislocations are accompanied by
precipitates. Moreover, the precipitate strength is chosen to
ensure the dislocation dynamics is governed by dislocation
depinning with a distinct critical stress σc = 4.4 × 107 Pa
of dislocation flow [5]. Opposed to pure systems following
glassy dislocation dynamics, pinning force of disorder
becomes the dominating interaction and it changes the
subsequent avalanche correlations entirely as is seen in
Fig. 7(c). With precipitates, the correlations are insignificant
at small strains but start to increase at strains close to the
plateau of the stress-strain curve, although at larger strains the
number of avalanches decreases causing larger error estimates
on the magnitude of the correlation. Thus at small strains,
the avalanches occur randomly as dislocation segments break
away from pinning points. At large strains, the (possible)
correlations follow from the approaching σc: ρσ1,	σ ≈ −0.5
means that, as a larger avalanche occurs with large stress, the
following avalanche starts after a smaller stress increment.
Similarly ρ	σ,s2 ≈ 0.5 after larger stress increments between
the avalanches, the following avalanche will be larger.

Therefore with depinning, the correlations between
avalanches start to push single curves towards the average
curve (i.e., σc) at large strains as opposed to “pure” samples
where the correlations were observed in the small strain
region.

D. Randomly generated stress-strain curves

To further elaborate on the dislocation systems’ tendency
to have mechanical response follow the average, we refine the
idea of randomly drawing stress-strain curves as introduced
in [15]. In our simulations with quasistatic stress ramp, the
resulting system response is a stress-strain curve consisting
of two recurring building blocks with three parameters: there
are the avalanches with sizes s, which are separated by (near)
linear increase of stress 	σ during strain increment of 	ε

[Fig. 3(a)]. Thus, the idea is to resolve the independent distri-
butions of the three variables—p(s), p(	σ ) and p(	ε)—and
draw samples from the distributions to mimic stress-strain
curves of the simulations.

We approximate the distributions by utilizing a Markov
chain Monte Carlo (MCMC) method called Metropolis-
Hastings [30]. Because the distributions evolve as the
simulations progress, we divide the avalanches to eight strain
bins and build separate samplers for each variable in each
strain bin. We neglect all the small noise avalanches as we
fit the samplers. To ensure the convergence of our MCMC
samplers, we measure the potential scale reduction factor and
compare the distributions of the drawn samples to the results
of the simulations [30]. For comparison, we also test a mul-
tivariate distribution p(s,	σ,	ε), which should capture part
of the interavalanche correlations observed in this paper, but
unfortunately this converges only for the 2D and prestrained
cases.

The resulting random stress-strain curves are illustrated
in Fig. 8. The different rows of the figure correspond to
example stress-strain curves (top row), average stress-strain
curve, standard deviation from the average curve, and the
rate of intersecting the average curve (bottom row) for the
different systems (2D, 3D, prestrained, depinning) separated
in distinct columns. Starting from the top row, the randomly
drawn curves have the same staircaselike shape as the simu-
lated curves as expected. The average shape of the randomly
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FIG. 8. MCMC sampled random stress-strain curves. Different columns from left to right correspond to different data sets of basic 2D, basic
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drawn curves also follows the simulation results nicely at
least with small and intermediate strains. However, there is
a clear stress overshoot which emerges for every case, thus
hinting at a possible systematic error. But instead of MCMC
sampling, the error arises already from the simulations: the
avalanche data that we use to build the samplers does not
include those avalanches that are unfinished as the simulation
finishes. Therefore, large avalanches are under-represented in
the fitting data and the randomly drawn curves have larger
slope at large strains than required.

The standard deviation from the average (second row from
the bottom) shows a clear distinction between the simulated
and the random stress-strain curves. Using independent sep-
arate distributions for samplers yields curves that have a
significantly wider spread at all strains than the simulated
curves which, again, highlights the tendency of the dislo-
cation systems to follow the average response. In 2D and
prestrained cases where we are able to draw curves also
from the converged multivariate distribution p(s,	σ,	ε),
standard deviation is slightly closer to the simulated than

the separate distributions. As the multivariate distribution
contains some information of the correlations between 	σ

and s2 and σ1,	σ (through the different samplers along the
stress-strain curve), the wider spread of the curves could imply
some longer-range correlations in the avalanche time series.

Finally, the bottom row shows the rate of intersections with
the average curve compared to the simulations. With 2D and
prestrained data, the multivariate random curves show more
similar magnitude and shape of N (σ−〈σ 〉=0)

dε
then the separate

distribution random curves as expected from the smaller stan-
dard deviation. In 3D and depinning, the rate magnitude is
quite close to the simulation results even though the curves are
drawn from separate distributions. However, there the small
strain behavior is not captured by the sampler because the
initial state is not entirely stable and many small avalanches
occur in simulations with ParaDiS (as mentioned above), and
our samplers are fitted without the noisy avalanche data.

The comparisons of reconstructed and simulated stress-
strain curve sets lead us to the final question of the averaging
of stress with increasing strain. This relates directly to the
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FIG. 9. Standard deviation of stress values divided by the av-
erage stress as a function of strain in (a) 3D and (b) depinning
simulations (solid line) compared to the case of randomly drawn
curves from separate distributions (dashed line).

question of what strain values are physically justified for an
effective definition of a yield stress. Figure 9 shows for the 3D
cases how the standard deviation of sample-dependent stress
values decays with ε. We find without and with precipitates
similar behaviors even though as noted the strain ranges are
different. The standard deviation decays quite fast with strain.
It is notable that reconstruction leads to much larger variation.

IV. CONCLUSIONS

In this work we have studied the coupling of avalanche
dynamics in plastic deformation with the sample response.
We show that the process is fundamentally different from
usual avalanching systems, where the presence of a dynam-
ical phase transition between active (plastic flow) and passive
phases makes only the proximity of the critical point (here,
yield stress) interesting due to the mechanism of a diverging
correlation length. Instead, in the absence of pinning points
(precipitates) interfering with dislocation motion the subse-
quent avalanches exhibit correlations, which decay along the
stress-strain curve, and result in a reduced scatter of the indi-
vidual stress-strain curves around the average response. The
main features of our results are independent of dimension (2D
vs 3D), and are present also both in prestrained samples or
dislocation systems with quenched pinning points. The case
with a true depinning transition has qualitatively quite similar
behavior to all the other cases as Fig. 8 shows in particular

in stress-strain reconstruction, even if the correlations tend to
increase as the critical stress of the depinning is approached.
A signature of the depinning critical point is also flattening of
the stress-strain curve as the critical stress is approached, due
to divergent size of dislocation avalanches at the critical point.

These issues are best explored in the context of studies of
plasticity on the level of small, micron-size samples. The clas-
sical case would be the compression of micropillars, where
as noted already fluctuations and avalanches are omnipresent
[8–11]. The role of big avalanches and the tendency to follow
(or not follow) the average behavior at a given strain may be
investigated by gathering enough statistics and by paying at-
tention to the correlations as we have done here. An additional
feature is that the presence of self-averaging at larger strains
seems to imply that the extra disorder (precipitates here) con-
trols the dislocation dynamics. Precipitation strengthening is
thus coupled to this feature.

One should also point out the fact that in the 3D case,
if one defines the yield stress to correspond, e.g., to 0.1%
plastic strain, our simulations show that the width of the yield
stress distribution is significantly narrower than one might
expect assuming uncorrelated avalanches (Fig. 9). It would be
interesting to explore such correlations and their effect on the
shape of the stress-strain curve in deformation experiments,
and extend our study to the case of polycrystalline samples.
Finally, avalanche correlations could be looked for also in
amorphous plasticity [31].
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