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Abstract—In this paper, we present simple and tight approx-
imations for the integer powers of the Gaussian Q-function, in
the form of exponential sums. They are based on optimizing
the corresponding coefficients in the minimax sense using the
Remez exchange algorithm. In particular, the best exponential
approximation is characterized by the alternation of its absolute
error function, which results in extrema that alternate in sign and
have the same magnitude of error. The extrema are described by
a system of nonlinear equations that are solved using Newton–
Raphson method in every iteration of the Remez algorithm, which
eventually leads to a uniform error function. This approximation
can be employed in the evaluation of average symbol error
probability (ASEP) under additive white Gaussian noise and
various fading models. Especially, we present several application
examples on evaluating ASEP in closed forms with Nakagami-m,
Fisher–Snedecor F , η − µ, and κ − µ channels. The numerical
results show that our approximations outperform the existing
ones with the same form in terms of the global error. In addition,
they achieve high accuracy for the whole range of the argument
with and without fading, and it can even be improved further
by increasing the number of exponential terms.

I. INTRODUCTION

The Gaussian Q-function and the directly related error func-

tion erf(·) are of fundamental importance to communication

theory—and many other statistical sciences—whenever noise

and interference or a channel can be modelled as a Gaussian

random variable. This importance is reflected by the different

applications in statistical performance analysis including the

evaluation of error probabilities for various digital modulation

schemes and different fading models [1]. The Q-function does

not have an exact closed expression and it usually exists as a

built-in numerical function in most of the software programs.

Nevertheless, many of the Q-function applications encounter

complicated integrals of it that cannot be simplified to closed-

form expressions in terms of elementary functions.

Therefore, several approximations and bounds are available

in [2]–[13]. The authors in [2] and [3] have proposed rela-

tively complicated, but highly accurate, approximations and

bounds that are impractical for actual evaluation of systems’

performance and more suitable for improving the calculation

efficiency. More accurate approximations for the Q-function

are provided in [4], [5]. The approximation of the first power

in [4] is later simplified in [6] using Taylor series expansion.

An accurate polynomial approximation for Q(x) is derived in
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[7]. A single-term exponential approximation with polynomial

argument of the second degree is presented in [8]. The simplest

form of exponential approximations and bounds were first

proposed by Chiani et al. in [9], and other ones are also

developed using different approaches in [10]–[13].

The aforementioned approximations and bounds find appli-

cations in various communication problems. For example, the

approximations in [7] are applied to analytically calculate the

average symbol error rate of pulse amplitude modulation in

log-normal channels. In [8], the authors derive the probability

of detection for an energy detector over a Rayleigh fading

channel. Moreover, the exponential approximations in [9] are

implemented to compute error probabilities for space–time

codes and phase-shift keying.

The aim of this work is to develop new accurate approx-

imations for the Gaussian Q-function and its integer powers

by adopting the simple exponential form originally proposed

in [9] with acquiring novel, improved coefficients for it. The

work in [9] is limited to two-term approximation without

methodology for optimally extending it to higher number

of terms and integer powers. In particular, we minimize the

maximum absolute difference between the exponential sum (3)

and Qp(x) to obtain the best global minimax approximation

for any number of terms like we did in [13], but now we avoid

complicated nonlinear equations thereof, numerical solving of

which is very sensitive to the right choice of initial guesses.

We solve the coefficients by the Remez exchange algorithm

and propose a new heuristic method to find the initial guesses

needed for it. The resulting approximations render significantly

higher accuracy in terms of global error and adequate accuracy

for the whole range of the argument when compared to the

existing ones of [9]–[11] with the same form and number

of terms. The accuracy can even be increased further by

increasing the number of exponential terms. Finally, some

application examples on evaluating average error probabilities

over different generalized fading distributions are provided

to validate the high accuracy of the new approximations in

comparison to the reference approximations.

II. PROBLEM FORMULATION

The Gaussian Q-function is defined classically as

Q(x) ,
1√
2π

∫ ∞

x

exp
(

− 1
2 t

2
)

dt. (1)

An alternative representation in the polar domain was devel-

oped by Craig [14] for communication theory applications as



Q(x) =
1

π

∫ π

2

0

exp
(

− 1
2 sin2 θ

x2
)

dθ, (2)

that is valid for x ≥ 0 only. Indeed, throughout this article,

we shall confine our discussions to the domain x ≥ 0 since

the results can be trivially extended to the negative real axis

using the relation Q(x) = 1−Q(−x).
The weighted sum of exponential functions adopted herein

for approximating Qp(x) is written as [9, Eq. (8)]

Q̃p(x) ,

N
∑

n=1

an exp
(

−bnx2
)

, (3)

that is likewise valid for x ≥ 0 only. In [9], Chiani et al. use the

trapezoidal integration rule to find {(an, bn)}Nn=1 for N = 2
by optimizing the center point of (2) to minimize the integral

of relative error in an argument range of interest. Moreover,

other approximations for any N are also derived using the

rectangular rule with non-optimized equispaced points.

Our research problem is to optimize the coefficients of the

approximation in the sense of minimax absolute error as

{(a∗n, b∗n)}Nn=1 , argmin
{(an,bn)}N

n=1

dmax, (4)

in which dmax refers to the global tightness of the approxi-

mation Q̃p(x) over the range [0,∞) and is measured as

dmax , max
x≥0
|d(x)|. (5)

The above absolute error function is defined as

d(x) , Q̃p(x)−Qp(x), (6)

and it converges to zero when x tends to infinity, i.e.,

limx→∞ d(x) = 0. Thus, in plain words, our goal that is

expressed in (4) is to solve the optimized set of coefficients

{(a∗n, b∗n)}Nn=1 to minimize dmax given in (5), substitute them

in (3), and so obtain increasingly accurate approximations not

only for the Q-function but also for its integer powers.

III. SOLUTION BY REMEZ EXCHANGE ALGORITHM

We solve (4) by applying the famous exchange algorithm

established by Evgeny Remez in 1934. The Remez algorithm

is an iterative methodology that can be used to derive the best

approximation in the minimax sense using different nonlinear

approximating functions (that are typically Chebyshev polyno-

mials) and is characterized by the uniform alternation of the

corresponding error function [15] as seen in Fig. 1 after the

third iteration. In this paper, we use the sum of exponentials

defined in (3) as the approximating function to obtain the

best unique approximation for the power of the Q-function,

since it is a completely monotonic function [16], [17]. The

corresponding error function should alternate exactly 2N times

on [0,∞) between maximum and minimum values of equal

magnitude, resulting in a total of 2N +1 extrema points. The

exponential approximation also results in 2N + 1 unknowns,

namely the 2N coefficients of (3) and the global error per (5).
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Fig. 1. Iterations of the Remez exchange algorithm for N = 3.

A. Algorithm Formulation

The steps for applying the Remez exchange algorithm to

approximate the Q-function are summarized in Algorithm 1.

First, we construct a system of 2N + 1 simultaneous

equations that describe the 2N + 1 extrema of the required

uniform error function as

f (r) ,













f0(r)
f1(r)

...

f2N (r)













,























d(x0) + dmax

d(x1)− dmax

...

d(xk) + (−1)k dmax

...

d(x2N ) + (−1)2N dmax























= 0, (7)

where xk is the abscissa value of the kth extremum of the error

function and r = [a1, a2, . . . , aN , b1, b2, . . . , bN , dmax]
T is a

vector of the unknowns. The first extremum occurs always

at x0 = 0, which results in d(0) =
∑N

n=1 an − ( 12 )
p since

Qp(0) = ( 12 )
p and Q̃p(0) =

∑N
n=1 an. The adopted expo-

nential approximation results in a nonlinear type of equations,

opposing to the linear type which usually occur with the best

polynomial approximations and often accompanied with the

Remez algorithm whenever it is presented in the literature.

The Newton–Raphson method is a root finding technique

that can be regarded as a somewhat ideal solver for this system

of nonlinear equations since it is quadratically convergent

when approaching the root. It is also an iterative method that

requires initial guesses for the unknowns (roots) and we refer

to its iterations as the inner iterations to differentiate them

from the outer ones of the Remez algorithm. Furthermore,

it is based on approximating a continuous and differentiable

function by a straight line tangent to it, which results when

applied on our system of equations (7) in

r(v+1) = r(v) −
[

J(v)
(

r(v)
)

]−1

f
(

r(v)
)

, (8)



where v is the inner-iteration counter, and J(·) is the Jacobian

matrix that is calculated as

J (r) =















∂f0(r)
∂r0

∂f0(r)
∂r1

. . . ∂f0(r)
∂r2N

∂f1(r)
∂r0

∂f1(r)
∂r1

. . . ∂f1(r)
∂r2N

...
...

. . .
...

∂f2N (r)
∂r0

∂f2N (r)
∂r1

. . . ∂f2N (r)
∂r2N















, (9)

with [r0, r1, . . . , r2N ]= [a1, a2, . . . , aN , b1, b2, . . . , bN , dmax],
∂fk(r)
∂an

= exp(−bn x2
k),

∂fk(r)
∂bn

= −an x2
k exp(−bn x2

k), and
∂fk(r)
∂dmax

= (−1)k. This procedure is repeated until the differ-

ences between the values of r of two successive iterations

are smaller than a predefined threshold value. The Newton–

Raphson method is implemented on (7) to find the vector of

unknowns in every iteration of the Remez algorithm.

Assuming that we have a reasonably good initial guess for

{(an, bn)}Nn=1 that formulates the proposed approximation and

enables the construction of the corresponding absolute error

function, we can locate extrema points thereof and the value

of global error and use them for initializing {xk}2Nk=1 (but

fixing x0 = 0) and dmax, respectively. We start the iterative

procedure by solving the nonlinear system of equations using

the aforementioned Newton–Raphson method, together with

the initialized vector of unknowns r(0). The obtained error

function that has the same error value at each of the initial

extrema points with alternating signs does not (yet) necessarily

give the minimax solution since these points may not be at the

extrema of the error function. Therefore, we need to find the

new set of {xk}2Nk=1 by first locating the 2N roots of d(x),
which we denote by {zi}2Ni=1 using any root-finding numerical

technique such as the bisection method or even the Newton–

Raphson method yet again. Then we split the positive x-axis

into 2N + 1 sub-intervals as [0, z1], [z1, z2], . . . , [z2N ,∞).
For each sub-interval, we locate the point at which the error

function attains its maximum magnitude by setting d′(x) = 0,

for which the derivative is defined as

d′(x) = −2
N
∑

n=1

an bn x exp
(

−bnx2
)

(10)

+ p
1√
2π

exp
(

− 1
2x

2
)

Qp−1(x).

In particular, we numerically find xk that meets d′(xk) = 0
after substituting the kth sub-interval in (10). If the root does

not exist, we take the endpoint that gives the larger absolute

value of the two.

Finally, we replace the previous extrema points by the new

ones and continue repeating the above steps for a number of

iterations until the difference between the previous extrema

points and the new ones are below a predefined threshold ǫ.

B. Initial Guesses

Before we can start the Remez method, we must obtain

good initial guesses for {(an, bn)}Nn=1. In this subsection, we

describe one possible, heuristic method that works for the

cases illustrated in this paper. In particular, we focus on finding

Algorithm 1 Remez Exchange Algorithm

Initialize {x0
k}2Nk=1, ǫ

Set t← 0, x0 ← 0
repeat

Solve (7) for unknowns {(an, bn)}Nn=1, dmax using

Newton–Raphson method

Find {zi}2Ni=1

Divide [0,∞) into 2N+1 sub-intervals by using {zi}2Ni=1

as boundaries

for k ← 1 to 2N do

Find the root of d′(x) in the kth sub-interval.

if such root does not exist then

Evaluate d(x) at endpoints and choose the point that

gives the maximum

end if

Denote the obtained root or point by xt+1
k

end for

Set {xt+1
k }2Nk=1 to {xt

k}2Nk=1

t← t+ 1
until

∣

∣

∣
{xt

k}2Nk=1 − {xt−1
k }2Nk=1

∣

∣

∣
< ǫ

Best minimax approximation is obtained

initial guesses for the first power of the Gaussian Q-function,

which we can use as basis for finding initial guesses for higher

values of p as will be explained later in this subsection.

For p = 1 and lower values of N , we assigned repeatedly

different random values for {(an, bn)}Nn=1 and calculated d(x)
per (6) for each N . Once we were lucky enough to come

across any d(x) that has the correct shape with 2N + 1
extrema (e.g., the initial guess in Fig. 1), {xk}2Nk=1 and dmax

were calculated and used together with the corresponding

{(an, bn)}Nn=1 to solve the considered optimization problem

(4) using Algorithm 1. This yields in a unique set of the

optimized coefficients {(a∗n, b∗n)}Nn=1 which gives exactly the

required uniform shape (e.g., the third iteration in Fig. 1).

After reaching certain N , we were able to use curve fitting

techniques to formulate equations that can give good initial

values for {bn}Nn=1 and {zi}2Ni=1 for N = 1, 2, 3, . . . , 10.

Each bn-coefficient of the proposed approximations with

any N has been assigned an equation of the form bn =
An N

Bn + Cn, and An, Bn and Cn are given in Table I.

Moreover, one equation is formulated to calculate all the

initial guesses of zi, i = 1, 2, 3, . . . , 2N , for any value of N
as zi = (0.4845 i−1.364 − 29.72)N (0.003752 i−1.122+0.4884) +
(105.9 i0.1924 − 94.83). Next, the initial guesses for {an}Nn=1

are found by substituting the above calculated initial values in

(6) to formulate a system of linear equations describing the

absolute error function at its roots as d(zi) =
∑N

n=1 cn an −
qi = 0, where cn = exp(−bn z2i ) and qi = Q(zi) are constant.

After solving the linear system of equations for the unknowns

{an}Nn=1, we can easily locate the initial guesses for dmax and

{xk}2NK=0 from d(x) that is numerically calculated using the

initial guesses of {(an, bn)}Nn=1.

On the other hand, for higher values of p, we rely on



TABLE I
THE PARAMETERS OF THE POWER EQUATION THAT IS USED TO FIND AN

INITIAL GUESS bn = An NBn + Cn FOR n = 1, 2, . . . , N WITH N ≤ 10.

n An Bn Cn

1 6.514e−1 −1.075e+0 5.051e−1
2 2.389e+1 −1.658e+0 6.633e−1
3 6.908e+2 −2.481e+0 1.217e+0
4 6.699e+4 −3.983e+0 5.022e+0
5 3.002e+6 −4.959e+0 1.183e+1
6 2.793e+8 −6.244e+0 3.453e+1
7 1.063e+14 −1.129e+1 4.356e+2
8 7.474e+16 −1.315e+1 1.188e+3
9 3.721e+19 −1.478e+1 2.790e+3
10 1.048e+20 −1.384e+1 1.808e+4

the optimized coefficients {b∗n}Nn=1 and the corresponding

{xk}2Nk=0 of the first power. We have found that they can be

used to construct initial guesses for the higher powers through

the relations xk,p = xk − 2 p, bn,p = (2.25+ 1.65 (p− 2)) bn,

and dmax,p = dmax where we use the subscripts p only herein

in this equation to differentiate the coefficients of p > 1
from those of the first power. The initial guesses for {an}Nn=1

can be easily found using the linear system of equations that

solves d(xk) =
∑N

n=1 cn an − qk = (−1)k+1dmax, where

cn = exp(−bn x2
k) and qk = Q(xk) are constant. It is worth

mentioning that using these relations will directly give all the

required initial guesses for p = 2, 3, 4. However, for p ≥ 5,

one might need to use the resulted values from applying the

above relations as a mean value around which small random

variance is introduced; this iterative process is repeated until

the correct number of extrema is obtained.

C. Proposed Approximations

The convergence of the algorithm is illustrated in Fig. 1,

which shows an example of finding the uniform error function

for N = 3 that results in seven extrema points. The approxima-

tion converges to its minimax behaviour after three iterations

starting from a non-uniform error function with the correct

number of extrema and ending with all the extrema points

having the same value of error.

The new sets of the optimized coefficients of the considered

approximation (3) are solved herein for N = 1, 2, 3, . . . , 10
and p = 1, 2, 3, 4 in the minimax sense. In particular, we

have calculated the required initial guesses using the heuristic

method explained in the previous subsection and then applied

the iterative Remez algorithm to obtain the uniform exponen-

tial approximation. In Fig. 2, we illustrate the achieved global

absolute error, dmax, in all the considered cases. We can clearly

see that as the number of terms increases, the global error

decreases resulting in very high accuracy.

IV. APPLICATION EXAMPLES

In general, the ASEP of most of the digital modulation

techniques for coherent detection are linear combinations

of integrals, whose integrand is the product of powers of

the Gaussian Q-function and the fading probability density

function (PDF) of the fading channel as follows:

Ip(α) ,

∫ ∞

0

Qp(α
√
γ) fγ(γ) dγ, (11)
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Fig. 2. The global absolute error when Q̃p(x) is the minimax approximation

of Qp(x) for p = 1, 2, 3, 4, and when Q̃1(x) is the non-optimized rectangular
rule in [9], both for N = 1, 2, 3, ..., 10.

where γ is the instantaneous signal-to-noise ratio (SNR), with

fγ(γ) being its PDF, and α is a constant that depends on

the digital modulation and detection techniques. For example,

the conditional SEP in coherent detection of quadrature ampli-

tude modulation (QAM) and differentially encoded quadrature

phase-shift keying (DE-QPSK) are calculated by [1]

PE = 2Q(
√
γ)− Q2(

√
γ), (12)

PE = 4Q(
√
γ)− 8Q2(

√
γ) + 8Q3(

√
γ)− 4Q4(

√
γ), (13)

respectively, and the corresponding ASEPs in terms of (11)

thus become P̄E = 2 I1(1) − I2(1) for 4-QAM and P̄E =
4 I1(1)− 8 I2(1) + 8 I3(1)− 4 I4(1) for DE-QPSK.

Next we substitute the exponential approximation into (11)

to obtain

Ip(α) ≈
N
∑

n=1

an

∫ ∞

0

exp(−bn α2 γ) fγ(γ)dγ

=
N
∑

n=1

an Mγ(−bnα2), (14)

where Mγ(s) =
∫∞

0
exp(sγ) fγ(γ) dγ is the moment gen-

erating function (MGF) associated with the random variable

γ. In what follows, we derive closed-form expressions for

the general ASEP term defined in (11) over different fading

channels, namely Nakagami-m, Fisher–Snedecor F , η − µ,

and κ− µ fading channels.

A. Nakagami-m Fading

For Nakagami-m fading, we substitute the gamma MGF,

i.e., Mγ(s) =
(

1− s γ̄
m

)−m
, in (14) which yields directly

Ip(α) ≈
N
∑

n=1

an

(

1 +
bn α

2γ̄

m

)−m

, (15)

where m > 0 is the fading parameter and γ̄ is the average

SNR. The ASEP of 4-QAM and DE-QPSK over Nakagami-m
fading are calculated using (15) and the corresponding abso-

lute error is illustrated in Fig. 3.



B. Fisher–Snedecor F Fading

Next we find analytical results for (11) with Fisher–

Snedecor F distribution which is used to model the composite

effects of both small and large scale fading (shadowing). The

former is assumed to follow Nakagami-m distribution, and the

latter follows inverse Nakagami-m distribution. We substitute

the MGF derived in [18, Eq. 10] in (14), which yields

Ip(α) ≈
N
∑

n=1

an 1F1

(

m; 1−ms;
bnα

2γ̄ms

m

)

+
Γ(−ms)

β(m,ms)

×
(

bnα
2γ̄ms

m

)ms

1F1

(

m+ms; 1 +ms;
bnα

2γ̄ms

m

)

,

where m is the fading severity parameter, ms 6= N is the

shadowing parameter, β(·, ·) and 1F1(·; ·; ·) denote beta and

Kummer confluent hypergeometric functions, respectively.

C. Generalized η − µ and κ− µ Fading

Finally, we evaluate the average of arbitrary powers of the

Q-function in (11) over η−µ and κ−µ fading channels. The

former fits well for non-line-of-sight applications and includes

the Nakagami-q (Hoyt) and Nakagami-m fading as special

cases while the latter fits better to line-of-sight applications

and includes the Rice and Nakagami-m fading as special cases.

We calculate their MGFs from their PDFs [19, Eqs. 1, 4] and

we substitute them in (14). Thus, under η−µ fading we obtain

Ip(α) ≈
2
√
π µµ+ 1

2 hµ

Γ(µ)Hµ− 1

2 γ̄µ+ 1

2

∞
∑

u=0

Γ(2µ+ 2u)

u! Γ(µ− 1
2 + u+ 1)

×
(

µH

γ̄

)µ− 1

2
+2u N

∑

n=1

an

(

bn α
2 +

2µh

γ̄

)−(2µ+2u)

,

where η and µ are the fading parameters, h = (2+η−1+η)/4
and H = (η−1 − η)/4 for Format 1 of the distribution and

h = 1
(1−η2) and H = η/(1 − η2) for Format 2. On the other

hand, for the κ− µ fading model, we obtain

Ip(α) ≈
1

exp (µκ)

∞
∑

u=0

µµ+2u κu(1 + κ)µ+u

γ̄µ+u Γ(u+ 1)

N
∑

n=1

an

(

bn α
2 +

µ(1 + κ)

γ̄

)−µ−u

,

(16)

in which κ > 0 is the ratio between the total power of the

dominant components and the total power of the scattered

waves, and µ > 0 is the number of multipath clusters.

V. NUMERICAL RESULTS

Throughout this section, we will be dealing with the ab-

solute error function obtained by subtracting the numerically

calculated exact expression of Ip defined in (11), from the

approximated one in (14). The same applies for ASEP which

is a linear combination of Ip. In Fig. 3, we compare the

absolute error calculated from the proposed approximations

and the existing ones with the same form, for different values

of m. It is observed that our approximation have the least

global error and result in a tighter approximation of the ASEP

over the whole range of the average SNR for m = 0.5 as

seen for 4-QAM plot. For higher values of m, some of the
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Fig. 3. The absolute error of ASEP for 4-QAM and DE-QPSK over
Nakagami-m using the proposed approximation and the reference exponential
approximations.

existing approximations have higher accuracy with exactly the

same number of exponential terms as seen for DE-QPSK plot.

However, when increasing number of terms, the accuracy of

our approximation increases significantly and outperforms the

others for almost the whole range of average SNR. It should

be mentioned that increasing the number of exponential terms

does not affect the analytical complexity. Moreover, when

substituting the reference approximations with two terms in

(12) and (13), we get 5-term and 14-term approximations for

the ASEP in 4-QAM and DE-QPSK, respectively.

Figure 4 compares the difference between the exact Ip in

(11) and its approximations in Nakagami-m, Fisher–Snedecor

F , η − µ, and κ − µ fading channels presented in (15),

before (16), in (16), and in (16), respectively, calculated using

the existing and proposed approximations, for different values

of the fading parameters and different integer powers. It is

seen that the proposed approximations are tight even for lower

SNR values, opposing to the existing ones. In particular, our

approximation outperforms the others for a wide range of the

argument using the same number of exponential terms and

its accuracy can be increased even further by increasing the

number of terms. The reference approximations are derived for

a limited number of terms, namely N = 2, 3 or 4 only, whereas

our approximations are derived till N = 10 to offer higher and

adequate accuracy without affecting analytical complexity.

VI. CONCLUSION

This paper proposed accurate and tractable approximations

for the integer powers of the Q-function as a weighted sum

of exponential functions. The novel sets of coefficients of the

best exponential approximation are optimally solved using the

Remez exchange algorithm to obtain uniform alternating abso-

lute error function. We also considered the general problem of

evaluating the ASEP over different fading channels, in which

we implemented our approximations and showed that they

render high accuracy in terms of global error and for the whole
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Fig. 4. The absolute error of Ip(α) over several fading distributions, all with α = 1 and for different fading parameters.

range of the argument. Even higher accuracy can be achieved

by simply increasing the number of exponential terms.
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