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Abstract

A wealth of literature exists on computing and visualizing cuts for the mag-
netic scalar potential of a current carrying conductor via Finite Element Meth-
ods (FEM) and harmonic maps to the circle. By a cut we refer to an orientable
surface bounded by a given current carrying path (such that the flux through
it may be computed) that restricts contour integrals on a curl-zero vector field
to those that do not link the current-carrying path, analogous to branch cuts
of complex analysis. This work is concerned with a study of a peculiar contour
that illustrates topologically unintuitive aspects of cuts obtained from a trivial
loop and raises questions about the notion of an optimal cut. Specifically, an
unknotted curve that bounds only high genus surfaces in its convex hull is ana-
lyzed. The current work considers the geometric realization as a current-carrying
wire in order to construct a magnetic scalar potential. Moreover, we consider the
problem of choosing an energy functional on the space of maps, suggesting an
algorithm for computing cuts via minimizing a conformally invariant functional
utilizing Newton iteration.
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1. Introduction

Benefits of obtaining topological information about a problem domain
prior to solving electromagnetic 3D problems have been demonstrated and
compared with standard methods in finite element modelling in numerous
previous works. Here we consider particular surfaces, “cuts” that offer in-
formation on the underlying domain’s structure with the aim of improving
a priori intuition about a solution’s “correctness”. We consider that using
a “good cut” in some sense, we can improve the model and retain problem
symmetries before transferring the topological information to more complex
problems.

In our previous paper, we aimed to extend cuts for knotted geometries
into undergraduate curricula via open-source software including Gmsh and
Python in order to allow students to compute and 3D print surfaces [23].
The exercises therein were intended to be a gateway to the intuitive study of
near force-free magnetic fields and plasma physics [19]. Here we extend these
methods to broaden the ability of students to utilize free, readily available
tools to communicate technically through visualization. We consider a triv-
ial loop as a motivating example of a “good cut” and offer an open-source
approach to obtain solutions for arbitrary geometries of current-carrying
(non-trivial) loops. We will then extend our example to a geometry home-
omorphic to our initial trivial loop [3], where we will see that even in this
case the underlying problem geometry can lead to quite unintuitive results.
We revisit the idea of a “good cut” and conclude with an extension of our
methods for computing cuts utilizing a conformally invariant functional [10].

1.1. Background and motivation

The value of exposing a user to a cut utilized in obtaining a Finite
Element solution to an electromagnetics problem is in itself a debate worth
conducting; a debate philosophical in nature that the authors have discussed
in earlier works [23] and expanded upon here in sections 2.2 and 2.3. In
short, the authors have appealed in the past for the use of intelligible cuts as
a useful tool in debugging software and assessing the structure of a problem
domain. The authors have also posited that by posing the problem of
obtaining a cut as equivalent to finding a solution of a magnetic scalar
potential problem, one arrives at a relatively simple means to orient students
in Electrical Engineering to the topological questions that underlay solutions
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returned by “black box” software packages. Temporarily foregoing further
exposition on the matter, the authors operate assuming the following:

1. Cuts are useful. Obtaining additional information about how a cal-
culation is performed and having opportunity to specifically indicate
a user’s preference in how the domain is split for calculation by FEM
can only help and not hurt the quality of solutions.

2. Intelligible cuts are more useful than non-intelligible cuts. One can
distinguish between a cut that offers intuitive understanding of a prob-
lem domain and one that merely fits within the limits of a cut defini-
tion.

The focus of this exposition centralizes on the idea posited in assumption 2,
above. The authors seek to point out a simple (magnetic scalar potential)
formulation of the cuts problem in an appeal to a straightforward intuition
that can and should be developed by those producing FEM software for
problems in electromagnetics. The topological concepts undergirding the
cut problem and the extension of these techniques in search of an “optimal
cut”, should one exist, is less pedestrian and is not written for the non-
initiated. The authors aim to frame the cut problem for those interested in
engaging the topological structure discussed in their own research and/or
with their students. In doing so, we attempt to develop a straightforward
understanding of the cuts problem and nod towards the “mass-appeal” ped-
agogical advantages therein, while keeping our overarching focus centered
on the specialist discussion offered by assumption 2 above. In particular,
this exposition assumes familiarity with (co)homology groups and Lefschetz
Duality for which we refer the reader to, e.g. [11], for a practical review of
the same in relation to electromagnetic phenomena. Where further special-
ist terminology arises in the text, the authors have cited useful reference
material.

1.2. The structure of the paper

In section 2, we discuss the notion of an optimal cut and review dif-
ferent aspects of optimality. In section 3, we review the structure of the
problem for finding cuts in terms of computational electromagnetics. We
introduce our method for finding cuts and discuss its implementation. Sec-
tion 4 demonstrates the method in action through computing a family of
cuts for a trivial loop. In section 5, we give another example and discuss
the unintuitive surfaces arising from the Thurston-Almgren unknot. We
propose to optimize in the space of maps against a conformally invariant
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functional and propose an algorithm for finding cuts utilizing such a func-
tional and Newton iteration in Section 6. Finally, conclusions are drawn in
Section 7.

2. The quest for an optimal cut

What is a “good cut”? Clearly, there is no simple answer to this rhetor-
ical question. In this section, we briefly review some notions of optimality
for cuts. Reflecting on the literature, the convoluted nature of the question
is obvious.

2.1. Optimal cuts: A world of trade-offs

Here, we focus on four notions of optimality for cuts:

1. Minimal genus.

2. Minimal surface area.

3. Minimal computational complexity.

4. Minimal energy.

Optimizing the computation of cuts in terms of computational complexity
has its obvious advantages, and minimal area cuts can lead to e.g. small
supports for finite element basis functions utilizing such cuts, enhancing
computational efficiency. The motivation for having genus minimizing cuts
arises on one hand from knot theory and on the other hand it is related to
near force-free magnetic fields where a connection to the Giroux correspon-
dence yields minimal genus cuts, which have a direct interpretation in terms
of magnetic scalar potentials [19]. Moreover, in order to have a “nice” cut,
we might ask for certain further properties from the cuts. Are we fine with
dealing with mere cycles or cocycles? Or would we rather like to be dealing
with smooth manifolds, yielding us the tools of multivariable calculus? One
can ask if there exists a notion of intuitively optimal cuts and if it is related
to any of these four notions of optimality; in some sense, this points to the
direction of minimal energy cuts, as we shall see.

2.1.1. Minimal area vs. minimal genus vs. computational complexity

Computational efficiency of computing cuts for the needs of magneto-
quasistatics (MQS) modelling has been studied for example in the works of
Ruben Specogna (see e.g. [5, 22]). Efforts have been made for implement-
ing general, automatic and efficient algorithms for such needs [6]; indeed,
utilization of cuts combined with their efficient automatic computation can,
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for instance, be a very significant difference-maker in efficiency of solving
non-linear MQS problems; for a recent example, see e.g. [20]. However, the
requirement of computational efficiency can be largely incompatible with
intuitiviness of the resulting cut, let alone other notions of optimality.

In general, there is no polynomial time algorithm to find minimal genus
cuts. Moreover, Thurston and Almgren have showed that there is a trade-off
between minimal area and minimal genus cuts [3]. More recently, Dunfield
and Hirani studied the problem of minimal area cuts, and showed that in the
special case of trivial second homology for a knot embedded in a 3-manifold,
the least area surface bounded the knot can be found in polynomial time
[7]. As for finding minimal genus cuts, Agol, Hass and Thurston showed
that the decision problem whether a polygonal knot in a closed 3-manifold
bounds a surface of genus at most g0 is NP-complete [1]. Later on, they also
showed that a similar decision problem, whether a curve bounds a surface of
area less than some constant c0 is NP-hard [2]. For more studies of related
problems, see works of Hass et al., e.g. [13, 14, 15, 16]. The problem of
having the least number of triangles to span a polygon embedded in Rn is
studied in [15]. It brings us to the context of finite element meshes, where
we can also consider different mesh-dependent optimality criteria for cuts.
For example, can we minimize the number of triangles in a cut? Seminal
work of Wolfgang Haken on 3-manifold topology forms a starting point for
such considerations [12]. Indeed, it can be shown that getting within a
certain percentage of the global minimum can be achieved in polynomial
time.

In any case, it seems that different notions of optimality for cuts are
incompatible. As shown in [3], and as we will demonstrate via the working
example in this paper, the following two are not satisfied simultaneously,
not even in a topologically trivial case:

1. Cuts of minimal genus.

2. Minimal area surface cuts.

As for Case 1, such a cut always exists, but there cannot be a general
polynomial time algorithm to accomplish this. Case 2 seems to be possible
in the simplest of cases, but there is no general algorithm for this. Moveover,
as noted above, these conditions are often incompatible.

2.1.2. Minimal energy

Kotiuga’s algorithm for computing cuts exploits the properties of the
circle as an Eilenberg-MacLane space [17] and the resulting co-dimension
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one cycles are Compact Orientable Embedded Manifolds with Boundary
(COEMBs) [18]. These are easily reconciled with the tools of multivariable
calculus. Kotiuga goes further and advocates for putting an energy on the
space of maps.

This brings us to the notion of minimal energy. Given the Dirichlet
energy on the space of maps, finding the minimum of the Dirichlet energy

arg min
φ

E[φ] = arg min
φ

1

2

∫
Ω

||∇φ(x)||2dV (1)

is equivalent to solving the Laplace problem for a map φ : Ω→ S1 within a
fixed homotopy class.

∇2φ = 0. (2)

In this context, cuts are level sets of scalar potentials solved from (1). This
fits hand-in-glove with the FEM and the physical interpretation in terms
of magnetic scalar potentials. In this way, the computation of cuts reduces
simply to FEM applied to the Dirichlet integral. However, as we will discuss
later on in 6.1, the energy functional we will optimize against need not be
(1). A different choice of the energy functional may be utilized to calculate
a different family of cuts, and we may select this functional according to
properties of the cuts that we wish to emphasize.

2.2. Remarks on intuition and visualization

In optimizing the cuts in terms of area, genus or computational effi-
ciency, we have no guarantee that we will produce a visually intuitive cut.
From the perspective of physical intuition, a family of cuts obtained by min-
imizing Dirichlet energy, guaranteed to be COEMBs, is useful as it is then
e.g. easier to recognize how the “same flux in magnetostatics” traverses. Al-
though the level sets of harmonic maps arise naturally in potential theory
and are optimal in this sense, these cuts are still often difficult to interpret
and considered “unintuitive” – even by specialists in the field of computa-
tional electromagnetics. If we restrict ourselves to current-carrying knots
and links, we can try make our cuts more intuitive by imposing additional
geometric or topological conditions. These constraints are often trivial to
impose in simple problems, but may be helpful in the context of more com-
plicated situations.

A question of interest for us is: “Should cuts be visually tangible?”
There are two answers that both seem obvious: yes and no. One might
argue that a user of FEM software does not need to know about cuts, as
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long as she has the formulation she wishes at hand and arrives at a result.
On the other hand, if the cut algorithm relates to physical or geometric
intuition, a software developer might benefit from a visual representation
e.g. for debugging purposes. Or, as is the case for magnetic fields and
electromagnetics in general, if computing cuts is related to physics, physical
insight can be gained from visualization.

2.3. Optimality of cuts for learning and teaching

We have used the phrase “Intuitively optimal cuts” which is as ambigu-
ous as the phrase “Optimality of cuts for learning and teaching”. Never-
theless, geometrical entities such as cuts are inherent in the description of
electromagnetic phenomena. For example, inductance —the quantity that
relates flux and current— is often introduced in high school curricula. Cuts
are inherent in the definition of this basic parameter, which motivates the
question of how to best support learners progressing in an elementary EM
education.

As is well-known, there are differences in the ways students learn. For
example, Felder [9] lists “three categories of diversity that have been shown
to have important implications for teaching and learning.” Among these
categories, differences in students’ learning styles are predominant. For in-
stance, as some students are ‘visual learners’ instructors should plan their
teaching to “find concrete and visual ways to supplement the presentation
of material that might normally be presented entirely abstractly and ver-
bally”. Moreover, some students are ‘active/concrete learners’ who prefer
“engagement in physical activity”. Working with commonplace tools such
a standard FE software and 3D printing is one way to cater to these needs.
In this case, ‘printability’ of cuts is of importance (i.e. whether cuts are
COEMBs).

Processes inherent in learning are discussed for example in Borovik’s
book [4] which considers many aspects of pedagogy, math, and cognition.
In the following we have considered only a few of them. Borovik lists two
intertwined aspects of learning and mastering mathematics:

1. The development of reproduction techniques for our own mental ob-
jects.

2. Interiorization of other people’s mental objects (i.e. visualization of
abstract concepts, development of subconscious “parsing rules” for
processing strings of symbols, etc.).
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Consequently, he raises concerns about the use of computer-assisted learning—
whether it dismisses “cognitive content of standard elementary routines”
that he considers as “building blocks for learning mathematics”. Thus, in
the context of this paper, we should carefully decide how and when the com-
monplace tools are used. Furthermore, use of the tools should strengthen
and preferably introduce new “building blocks for learning electromagnet-
ics” instead of dismissing or hiding them.

Borovik discusses also the forming of mental images of real objects:
“When learning or doing mathematics, we quite frequently have to cre-
ate mental images of mathematical objects with eidetic qualities as close
to that of the images of real things as possible.” This suggests an obvi-
ous conclusion i.e. that appropriate mental images should be formed and
that “non-optimal cuts for learning and teaching” may hinder the building
of proper understanding. Likewise, intuition often relies strongly on first
cases analyzed and “wrongly built intuition” may hinder the building of
understanding (see a related discussion in [19] about the works of visually-
impaired topologists).

Equivalence classes are present even in elementary mathematics, but
challenges are often met when working with equivalence classes of more
complicated entities. Borovik states that “We can easily visualize a collec-
tion of objects if we have seen them—one man or a crowd, one flower or
the whole garden in blossom. But it is very difficult for a human to form
a mental image of a multitude of movements of his or her hand and treat
this multitude a single entity.” This remark holds well also in the case of
cuts and inductance. Thus we propose that means to better visualize the
multitude of representatives of a class and the related equivalence relation
likely supports many learners. This possibility can be seen as one benefit
of defining cuts via levelset of scalar potential which allows also the use of
the commonplace tools in education.

3. Review of problem structure

For background information on the cuts problem, we refer the reader
to [11]. We begin by considering a tubular neighborhood of some closed
contour in R3. We take the complement of the conducting path within our
problem region, and mesh over it to give a simplicial complex in R3. Inter-
preting this in terms of magnetostatics, the tubular neighbourhood of the
contour is taken to be a current-carrying wire and we may set up a standard
field problem to solve for the magnetic scalar potential. The procedure is
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standard: In the complement of our conducting region, The current density
J = curl(H) = 0 ⇒ grad(φ) = H, where H is the magnetic field intensity
and φ is the magnetic scalar potential. Observing closed contour integrals
within the domain, the need for a cut is clear; as a non-zero value of curl(H)
results from any contour integral that links a non-zero current, and as such
we can not have an associated single-valued potential function. We must
partition the domain to effectively prevent current linkage by any contour
integral within the mesh.

Put simply, in our non-conducting region Ω ∈ R3, we are asking topolog-
ical information of the domain’s holes (the conductor). Specifically, we are
trying to obtain a chain of 2-simplices whose boundary is the hole and/or
the bounding sphere. In doing so, we are asking for a representative of the
second relative homology group, H2(Ω, ∂Ω). Technically, any representative
generator of H2(Ω, ∂Ω) will do. Similarly, by Poincaré duality we could
perform a cohomology computation to obtain a representative of the first
cohomology group H1(Ω), and use it similarly. In terms of field computa-
tion, the choice of which group we choose to compute amounts only to a
difference in how we propose to solve for our field. The former we identify
as the so-called “thin cut”, and the latter the so called “thick cut”.

Numerically speaking, in utilizing the thin cut, one must perform the
homology computation on the domain indicated above using some – ideally
computationally effective – algorithm. Once this computation is performed,
one can double the nodes on the cut and reconnect the complex such that
either side of the cut is not connected across the cut. One now has dis-
tinguished the two sides S− and S+ of the surface S representing the cut.
Once the domain is split in this manner, one then introduces a potential
jump

φ = φ1 on S−, φ = φ2 on S+ (3)

across the cut to account for a linkage around the conductor. Standard
solvers can then be employed to solve for the scalar potential from (2).

In utilizing thick cuts, one must similarly solve for H1(Ω) using any
standard algorithm. This returns representative cocycles (edge-based coho-
mology basis functions) that, in terms of computational electromagnetics,
are then employed to account for currents flowing within the domain’s holes
(the conducting region). The cut is then utilized to solve for the scalar po-
tential.

In what follows, we employed a thin cut for use within our solver, how-
ever the same general framework applies for cohomology based computa-
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tions.

3.1. Computing the thin cut

We employed strictly open-source software to implement all aspects
of what follows and make all code freely available to those interested on
GitHub1. We chose to write the geometry module in Python (www.python.
org) with the aim of making these methods accessible to electrical engi-
neering students with only basic knowledge of programming.

Figure 1: A tubular neighborhood of a closed contour and the bounding sphere as parts
of a finite element mesh.

A closed, one dimensional contour of any geometry in R3 is required
as an input. This contour is then used to generate a tubular neighbor-
hood of radius specified by the user, posing the problem with finite energy.
A bounding sphere is then generated, and the geometry is written to an
output Gmsh .geo file. Surface normals of the conducting path are taken
inward while the bounding surface are taken outward such that the geome-
try characterizes the complement of the conducting region. An example of
a contour and the bounding sphere is depicted in Figure 1.

1https://github.com/AlexStockrahm/ThurstonAlmgren.git
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The open-sourced finite element program Gmsh (http://gmsh.info)
is then used to mesh the domain and perform the initial relative homology
calculation. That is, we find a representative cycle of (H2(Ω, ∂Ω)), using the
on-board homology solver module of Gmsh and associated plugins.2 This
cut is then duplicated using the HomologyPostProcessing plugin of
Gmsh [21]. The resulting surfaces can then be used to split the domain
as discussed above. Reconnection of the cut to either side of the domain is
accomplished using the Crack plugin of Gmsh. The resulting mesh file, now
containing all the necessary homological and domain-related information,
may now be used to compute the scalar potential, by imposing a potential
jump (3) across the cut and solving (2) using FEM.

4. Example: The trivial loop

We take the trivial loop as our first example. First, we generate the
intial thin cut, depicted in Figure 2 using the integrated homology solver of
Gmsh.

In reviewing this initial thin cut, we note that we have indeed obtained a
member of H2(Ω, ∂Ω). However, we note the following shortcomings relative
to what we might ask of a cut:

� The cut is not smooth

� The cut is not minimum genus, not minimum area – this view does
not align with our intuitive notion of what this cut should obviously
look like from an elementary electromagnetics education standpoint.

� This cut does not preserve symmetries of the problem domain.

Simply stated, this cut appears unintuitive at best, and at worst it appears
“sloppy.” We note also that as we are using the cut to establish a problem
domain for a potential jump, and as such it plays an essential role in the
quality of our solution; garbage into a model typically leads to garbage out.

2Physical groups required by Gmsh are set during the geometry generation phase in
Python such that system calls can be automated within Gmsh using a series of batch
scripts, which we generated for computing cuts over many geometries, either in parallel
or sequentially. It is also here that preferences for mesh density and related parameters
can be set. Passing the physical group of the non-conducting volume (Ω) to the homol-
ogy solver and indicating the physical groups of the relative subdomains (∂Ω) i.e. the
bounding sphere and the boundary of the conductor, generates a representative thin cut.
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Figure 2: Gmsh computed thin cut for a trivial loop. The computed 2-dimensional
surface is bounded by an enclosing sphere and the trivial knot, the darker loop obscured
by the sub-optimal cut but visible in the near and far side of the figure. The surface
suitably partitions the domain for use in a magnetic scalar potential formulation, but
fails to obtain agreeable characteristics.

For this trivial case it makes sense to assess whether we can make a cut
that is in some sense better, subject to any of the constraints above.

For demonstrative purposeses we also calculate a thick cut for the case
of the trivial loop, shown in Figure 3. Accounting for the current flowing
in the conducting region tracked by the cohomology representative allows
a standard FEM formulation for finding the magnetic scalar potential with
the possible benefit of not requiring a discontinuity imposition as in the
case of the thin cut. However the authors in general have found that the
thick cut is nearly uninteligible in the vast majority of cases and does little
for the observer in the way of intuition, this case arguably fitting the mold.
Being that the techniques discussed in this paper all apply to improving the
quality of the more intuitive thin cuts, we will set aside the use of the thick
cut beyond acknowledging its utility – and duality to the initial thin cut –
in fixing the homotopy class of the set of maps to the circle, as in noted in
Section 6.
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Figure 3: Gmsh computed thick cut for a trivial loop on a coarse mesh, arrows indicating
the computed representative first cohomology of the conducting region’s complement.The
left side of the computed cut encircles the conducting region, and traverses the loop’s
rim tracking the “hole” in the complement, i.e. the conducting region.

(a) Top View (b) Bottom View

4.1. Improving the thin cut

We are able to efficiently obtain an orientable surface with boundary
that can be used to solve a multitude of problems in e.g. computational
electromagnetics. However, we may ask to improve our cut such that it:

1. Is Compact, Oriented, Embedded Manifold with Boundary (COEMB).

2. Is minimum genus or minimum area – where we also implicitely ask,
can we have both?

3. Is smooth and simply interpreted for feasibility.

4. Is perhaps minimum energy, subject to some variational principle.

In reviewing our wish-list above, we note that item 4) is perhaps inclusive
of the first three items for obvious reasons, and indicates an algorithm for
obtaining such a so-called “nice” cut.

We propose taking the cut as a levelset of some harmonic map to the
circle, representing the cut as the solution of an elliptic PDE. In the case
of the image of the harmonic map being a circle, the “angle” of the map
on the circle is a multivalued harmonic function over the domain (of the
map). As such, it is amenable to standard finite element techniques once
the value is fixed by an integer homology calculation which produces a
cocycle specifying the homotopy class of the map.
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The obvious advantage is that after the homotopy class is fixed, these
problems are straightforward to solve and are understood as part of a stan-
dard FEM education in electrical engineering. We find that we can impose
an energy on selected maps, and then optimize with respect to a norm of
our choice. We also note that 1) and 3) above are going to be satisfied be-
fore beginning our calculation. In performing such a calculation, the entire
family of cuts (levelsets) is computed, and as such we can gain information
about our problem structure and perhaps select by inspection a cut that is
in some way optimal.

As a first step, we take the natural choice here and optimize with respect
to the Dirichlet Energy E. In doing so, we have changed our cut problem
to a familiar problem, namely Laplace problem (2) for solving for scalar
potential.

However, from our prior exposition, we are well aware of the drawback
– in order to find such a cut, we need an initial representative of H2(Ω, ∂Ω).
Thus, to obtain (in this sense) a better cut, we must simply continue on our
path of solving for the scalar potential. We can then use our improved cut,
perhaps to create a better-structured domain on a more complex problem.
That is, we need only solve a straightforward linear problem in statics once
to obtain a quality family of, in some sense optimized, cuts. One benefit
here is that we may then transfer our improved topological information to
more difficult problems, such as nonlinear quasistatics problems where the
problem cannot be reduced to solving an elliptic PDE via frequency-domain
techniques.

In order to obtain the levelsets of the scalar potential, we take our output
mesh generated during the homology processing phase in Gmsh, and solve
the Laplace problem in this domain using an external FEM based solver we
wrote in Python. The results may then be returned to Gmsh or manipulated
directly for post-processing and visualization of the levelsets. As expected,
we generate a set of thin cuts on the trivial loop that hold our properties
of interest. A member of the family is illustrated in Figure 4.

We can see by inspection that we have satisfied the requests of obtaining
a smooth COEMB, retaining problem symmetries and being minimal energy
subject to our chosen energy functional. In short, we have a simple method
for obtaining a cut that we might easily interpret as intuitive.
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Figure 4: Thin cut for a trivial loop, obtained as a levelset of a scalar potential. Ad-
ditional post-processing of levelset solutions was used in order to provide see-through
portions of the cut for improved intelligibility when viewed on computer, crucial for more
complex geometries (see Figure 6). The difficulty in interpreting cuts in two dimensions
is one of the main motivators for 3D printing the surfaces.

5. The Thurston-Almgren Unknot and the Case of the Optimal
Cut

We now inspect the case of the Thurston-Almgren Unknot: a topologi-
cally trivial loop that bounds only surfaces of high genus within its convex
hull [3]. The curve is constructed by wrapping a helical contour around an
ellipsoid in R3, and then revolving around the exterior of this contour along
the ellipsoid’s major axis, at first bypassing and then closing at the initial
helix point, with a small separation maintained with the passing along the
major axis. The number of helical twists around the ellipsoid character-
izes the minimum genus of an oriented surface bounded within the convex
hull. Specifically, for seven helical twists, the genus of any orientable sur-
face bounded in the convex hull is at least 3, with increasing genus for
additional twists. For the discussions that follow, we refer to specifically
this 7-twist entity whose convex hull only bounds orientable surfaces with
a genus of at least 3 – whose characteristics are explored and shown in [3] –
which we chose to investigate. See Figure 5 for an example of the modeled
Thurston-Almgren unknotted geometry.
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(a) Seven helical twists are taken about the major axis, and a loop is taken
around the twists, connecting back to the beginning of the contour.

(b) A view of the contour with major
axis vertical

(c) The physics of the problem requires
a wire diameter, w and a minimum
center-to-center distance, d.

Figure 5: The Thurston-Almgren Unknot

As described by Thurston and Almgren, the geometry includes passings
of the contour that are “close” to one another in a mathematical sense and
it is only defined for a contour described as a 1-chain [3]. Hence, in order to
model magnetic fields on this conductor geometry, it is necessary to give the
wire some thickness and to mesh the interposing regions between passings
(which can be made arbitrarily small).

Qualitatively speaking, this current path requires a great deal of approx-
imation in terms of the FEM solution, as the field gradients tend to twist
significantly, such that obtaining a sufficiently fine mesh is untenable. As
a matter of practicality, the curve was parameterized in terms of the inte-
ger number helical twists, ellipsoid geometry, conducting region diameter,
denoted w, and minimum passing distance, denoted d. For simplicity the
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parameter ε′ = w/d was specified, where an ε′ of unity implies touching
conductors at crossing points, see Figure 5c. Bezier smoothing was used
to interpolate between the different key turning points of the geometry.
The characteristic length of the mesh, used within Gmsh to specify mesh
granularity, was adapted based on ε′.

Using the tools developed, a series of 60 Thurston-Almgren geometries
were generated and solved sequentially using a batch script over the course
of 15 hours on a single node of the Boston University Shared Computing
Cluster. We note that our code is in no way optimized as our main goal
centralized only on proof-of-concept, and that our algorithms can be vastly
improved for faster computation.

Figure 6: Family of cuts for the Thurston-Almgren knot using the levelset method for
the scalar potential.

A family of cuts thus obtained is depicted in Figure 6. By the underlying
property of bounding only high genus orientable surfaces in the convex
hull, we are immediately led to our chief consideration of an “optimal”
cut. Namely, a minimum area cut must live within the convex hull of this
contour. If so, we are guaranteed to not have minimum genus (genus of such
a surface for this geometry is at least 3) [3]. We see also that even though
we can optimize our map of interest with respect to the Dirichlet energy
and gain a smooth COEMB, the cut itself is still far from optimal in senses
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we might require. Indeed, understanding what an optimal cut might look
like may require a new choice of energy functional, leading to a different
solver. Further frustrating our efforts, we are only considering a geometry
that is topologically equivalent (isotopic) to the initial trivial loop!

We see immediately from this case that even for “simple” geometries,
finding optimal cuts has no single prescriptive method. Means of calculating
the cut and selecting the best option is left to the decision-making of the
modeler. It is however evident that, speaking generally, finding solutions of
the cut problem as level-sets of elliptic PDEs offers a means of visually inter-
preting the underlying problem domain and understanding the underlying
topology using a straightforward and relatively quick methodology.

6. On the choice of energy functional and norm

Use of the Dirichlet Energy was a natural choice as it conveniently formu-
lates the cut problem in terms of the finite element method and a standard
problem in statics. As we have shown, it is impossible to be sure that this
cut method is the soundest option, even for trivial cases. We note here that
in general, the choice of optimization affects only the implementation of a
solver, and that overall the methodology is unchanged.

In obtaining the initial thin cut, we ask only for a representative that
is equivalent homologically to any other cut that we can ask for, as homo-
topically equivalent spaces have isomorphic homology groups [8]. Similarly,
in obtaining a thick cut we can construct any number of thin cuts using
the methods presented above, acting on the dual space and using edge-
based methods. From our investigation of the Thurston-Almgren unknot,
we have found that in selecting a particular functional, we can only suggest
favorable properties for the resulting cuts. We find that even in topologi-
cally straightforward situations, we are left without any compelling reason
to believe that a “nice functional” implies a “nice cut.” However, once the
homotopy class of the map is fixed, we are still able to formulate the cut
problem in terms of any convex functional on the space of maps we might
desire to investigate. This is to say, we may suggest a functional’s properties
and can arrive at a means to solve for the cuts it yields via optimization.
We provide a demonstration of this technique in the following subsection
for a map with a perhaps useful property of conformal invariance.
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6.1. The conformally invariant functional and Newton’s method

Let I(u) a convex functional with bounded inverse Hessian. Then, New-
ton iteration for minimizing I(u) is un+1 = un−∆n, where ∆n is the solution
of

Hess(un; ∆n, v) = δI(un; v), ∀v. (4)

In particular, if I(u) is a functional consisting of u and partial derivatives,
then solving δI(u, v) = 0, equivalent to some Euler-Lagrange equations,
with Newton iteration amounts to finding the minimum of the quadratic
functional

1

2
δ2I(un; ∆n,∆n) + δI(un; ∆n) (5)

and setting un+1 = un −∆n.
Now, consider the following family of functionals:

Ĩµ,γ(gradφ) =
1

γ

∫
R

µ|gradφ|γdV, (6)

where γ is our parameter of choice, µ is some positive weighting function,
and φ is the potential function we seek. Here it is evident that setting γ = 2
corresponds to our Dirichlet integral with the inclusion of a weight term,
which has an obvious interpretation in terms of a material parameter. The
first variation of this functional is

δĨµ,γ(gradφ, gradδφ) =

∫
R

µ|gradφ|(γ−2)〈gradφ, gradδφ〉dV. (7)

It is evident that if γ is less than two, the resulting linearized Euler-
Lagrange equation is not elliptic where |gradφ| vanishes.

Computing the second variation of this functional we arrive at,

δ2Ĩµ,γ,0(gradφ, gradψ, gradψ)

=

∫
R

µ|gradφ|(γ−4)[|gradφ|2〈gradψ, gradψ〉

+ (γ − 2)(〈gradφ, gradψ〉)2]dV

(8)

In particular, a special case of (6), γ = 3 yields the conformally invariant
functional [10],

Iµ,3(gradφ) =
1

3

∫
R

µ|gradφ|3dV. (9)
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Now, applying Newton iteration, we solve for

δ2I(un; ∆n, δ(∆n)) = −δI(un; δ(∆n)), (10)

for all δ(∆n), to find ∆n, and then set un+1 = un−∆n. For the conformally
invariant functional (9), equations (5), (7) and (8) yield an explicit expres-
sion for the Newton iteration. This iteration can be used to either derive
an Euler-Lagrange equation or a FEM iteration.

This sets the stage for implementing an algorithm for computing a new
family of cuts, optimizing in the space of maps in terms of the conformally
invariant functional (9). This future work is expected to yield cuts which
are more robust with respect to deformations of the mesh geometry.

7. Conclusions and outlook

Cuts, special surfaces carrying topological information of the domain
in question, are essential in computational electromagnetics and electrical
engineering education. The notion of optimality of a cut is a multi-faceted
issue and there is no simple answer to the rhetorical question “What is
a good cut?”. In this paper, we reviewed different notions of optimality
related to cuts and presented a workflow for obtaining cuts as levelsets of
a scalar potential function. These cuts have many desirable properties,
and are obtainable utilizing strictly open-source software. Furthermore, we
demonstrated this workflow to illustrate unintuitive aspects of cuts for mag-
netic scalar potential arising from a topologically trivial loop considered as
a current-carrying wire. Via this example, the incompatibility of the differ-
ent notions of optimality was clearly exposed. Finally, we suggested finding
cuts utilizing possibly nonlinear energy functionals that differ from the stan-
dard Dirichlet energy to further investigate the notion of an optimal cut.
In particular, we suggested an algorithm for optimizing a conformally in-
variant functional utilizing a Newton iteration. This sets up the stage for
implementing an algorithm for computing cuts, optimizing in the space of
maps in terms of the conformally invariant functional as proposed. More-
over, the developed tools and examples presented provide a fertile soil for a
pedagogical discussion.
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