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Abstract – Installations of photovoltaic (PV) systems on residential buildings have increased 
over the last few years, and this trend will continue. PV systems can increase the production of 
sustainable energy. Many homeowners want to do something to decrease their emissions or 
increase their energy self-sufficiency. The most important issue in the decision to invest in a PV 
system is profitability. In the EU, electricity metering practices will be harmonized, and this will 
affect the profitability of PV systems and battery energy storage systems (BESSs). In many 
countries, electricity is metered by hourly intervals, but metering will be changed to 15-minute 
intervals. In this study, the effect of the metering interval on the profitability of PV systems and 
BESSs was studied has been studied in Tampere area in Finland. A shorter metering interval will 
decrease the profitability of photovoltaic systems, while the profitability of BESS will increase. 
However, the change is so minimal that the attractiveness of PV systems will only decrease 
slightly. Investment in BESSs in addition to PV systems will become more attractive and will 
benefit the evolution of smart grids, because batteries enable flexibility in the grid. Copyright © 
2020 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
βP    Temperature coefficient of the solar cell power 
ηc    Battery charging efficiency 
ηdc   DC-converters efficiency 
ηinv   Inverter efficiency 
Bt    Storage energy transmission during an hour t 
Beff   Efficiency of the storage energy transfer 
Cv    Verification coefficient 
D    Electricity consumption of building 
Emax   Maximum capacity of storage 
Et    Amount of stored energy at time t 
G    Demand to power grid 
Gb,i   Beam component of solar irradiance 
Gd,i   Diffuse component of solar irradiance 
Gi    Global irradiance 
Gr,i   Reflected component of solar irradiance 
i    Discount rate 
Ic    Battery charging current 
n    Length of lifetime 
NPV   Net Present Value 
Pdc   Production after DC-converter 
PPV   Production of photovoltaic system 
PSTC   Nominal power in standard test conditions 
Rb    Battery internal serial resistance 
Ry    Cost saving at the year y 
SOCt  State of charge at time t 
Tc    Solar cell temperature 
TSTC   Standard solar cell test temperature 
Vb    Battery nominal voltage 
 

I. Introduction 

Electricity metering practices vary across the EU. The 
market time unit in balancing markets will be 
harmonized. In the Nordic electricity market, the 
balancing and metering period is one hour. Based on EU 
regulations (2017/2195) that establish guidelines for 
electricity balancing, all the Transmission System 
Operators (TSO) shall apply an Imbalance Settlement 
Period (ISP) of 15 minutes [1]. This change will happen 
gradually, and in Nordic countries, it will be 
implemented first in the intraday markets and then in the 
balancing settlement and balancing markets [2]. After 
some time, the 15-minute ISP will be implemented in 
day-ahead markets. ISP changes will set new 
requirements for electricity metering. Advanced metering 
infrastructure requires updating so that 15-minute 
measurements can be registered. The measurements are 
currently registered on an hourly basis (i.e., hourly 
energy). 

When the time unit of electricity billing changes, this 
could affect the profitability of self-production and the 
Demand Response (DR) operations of customers. Self-
production refers to electricity production by a customer 
(i.e., a prosumer), e.g., using solar energy and a 
photovoltaic (PV) system. Self-production can be used 
by an individual, but, in many cases, self-production 
exceeds an individual’s consumption. Prosumers can sell 
surplus electricity to the grid, but the feed-in price of 
electricity is much lower than the purchase price [3]. It 
consists of the energy price, distribution price, and taxes, 
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but the feed-in price consists only of the energy price.  
The profitability of a PV system depends on the 

difference between the feed-in and purchase prices, the 
share of self-consumption and the investment price of the 
PV system [4]. Common sense says that probability for 
the same timing of consumption and production is higher 
when the time unit is an hour, opposed to 15 minutes. 
This hypothesis is under study in this paper. The share of 
self-consumption can be increased with a Battery Energy 
Storage System (BESS), so the change of market time 
unit can affect also the profitability of BESSs. The effect 
of changes to the market time unit on the profitability of 
PV systems and BESSs is the main research question of 
this study. 

The profitability of a BESS can increase when 
different incentives from electricity billing structures are 
combined in the control of BESSs, as in [5] and [6].  

These incentives of market-price-based control and 
peak cutting depend on the pricing structure, so the 
market time unit also affects these cost benefits. At the 
beginning, the time unit in day-ahead electricity markets 
remains an hour, and the 15-minute price for customers is 
the same during an hour. In this study, the market price is 
kept the same during an hour regardless of the metering 
interval. If the electricity distribution tariff from a 
Distribution System Operator (DSO) includes power-
based fees, customers can get cost savings by peak 
cutting. The metering interval can affect the power-based 
charge because peak power can be very different in 15-
minute increments compared to hourly increments.  

Therefore, peak cutting with BESSs can also lead to 
very different results with different metering intervals. In 
this study, BESSs are used only to increase the self-
consumption of PV production. 

Although the general profitability of PV systems and 
BESSs has been studied thoroughly, the effect of the 
metering interval on the profitability of PV systems and 
BESSs has not been considered. Studies have used data 
from places such as Nordic countries where the hour 
metering interval is used. PV system and BESS 
profitability in Finland has been studied in [5]. In 
Germany, 15-minute data has been used in [7]. The 
profitability of grid-connected PV storage systems with 
five-minute data has been studied in [8]. Additionally, 
the profitability of battery energy storage alongside PV 
production has been studied in Greece in [9] and in 
Switzerland in [10]. 

Energy storages and effects of different control 
systems have been studied widely in many previous 
papers. The profitability of battery energy storage system 
connected to low voltage distribution network in case of 
Finland has been studied in [11]. Minimizing monthly 
peak powers in domestic real estate by using the control 
of BESS and charging of electric vehicle has been 
studied in [12]. Off-grid PV system in residential home 
with energy storage has been designed in [13]. Energy 
storage peak saving has been used for the optimization of 
a PV and energy storage system in [14]. 

This novel study is the first on where the effects of 

different metering intervals are compared. The results of 
this study are very important for the attractiveness of 
customers to participate smart grid via small scale PV 
production and DR with BESS. Previous studies do not 
compare different metering intervals and their effect on 
the profitability of PV and energy storage systems. In 
this study, three different metering intervals are 
compared: a one-hour interval, which is used in Nordic 
countries; a quarter-hour interval, which will be a 
common metering interval in the near future in the EU; 
and a one minute-interval because in the future the 
metering interval could be even shorter than a quarter-
hour. In this study, the billing of electricity is based on 
metering when the interphase and time unit net metering 
are used. During every metering interval, only one 
measured value is used, and billing based on 
consumption differences between phases is not taken into 
account. 

The paper is organized as follows. A simulation model 
that includes PV production and battery modeling is 
described in Section II. Section III presents the input data 
used in the simulations. The PV system and BESS are 
sized in Section IV. The simulations and their results are 
discussed in Section V. Section VI presents the 
conclusions of the study. 

II. Simulation Model 
II.1. PV Production 

The PV production model is based on the global solar 
irradiance components of beam Gb,i, diffuse Gd,i and 
reflected Gr,i. The model of the global solar irradiance 
based on the location on Earth has been introduced in 
[15]. Used panels are tilted and this is accounted in the 
model. In this study, the PV panels are tilted at a 45º 
angle facing south. Different irradiance components can 
be measured separately and global irradiance is the sum 
of these components Gi = Gb,i + Gd,i + Gr,i. 

The production of a PV system (PPV) can be 
calculated by equation (1), where PSTC is the nominal 
power in Standard Test Conditions (STC), βP is the solar 
cell power temperature coefficient (0.006), Tc is the solar 
cell temperature and TSTC is the standard solar cell test 
temperature (25ºC) [16]. Theoretical PV production in 
real PV production is not same. For this reason, the 
verification coefficient Cv is added to the equation: 
 

௉ܲ௏ = ௩ܥ ௌ்ܲ஼ܩ௜൫1 − )௉ߚ ௖ܶ − ௌ்ܶ஼)൯ (1)
 

The simulation model of PV production has been 
verified with real measurements of PV systems in [5]. 
The result has been that the verification coefficient Cv is 
0.85. In modeling, the actual temperature of panel cannot 
know, so the outdoor temperature is used. In real 
situation, panel temperature rises higher than outdoor 
temperature because the panel absorbs solar radiation.  

Wind speed affects also the panel temperature.  
Additionally, the efficiency of the solar panels is 
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TABLE I 
STUDY GROUP 

House H1 H2 H3 
Construction year 2012 2011 1988 

Area (m2) 152.5 190 220 

Warming (primary) Water boiler Ground heat 
pump 

Underfloor 
heating resistors 

Warming 
(secondary) 

Electric heaters in 
garage + 
fireplace 

Heat recovery + 
fireplace 

Heat recovery + 
fireplaces 

Yearly electricity 
consumption 18.7 MWh 13,2 MWh 24,2 MWh 

Heating power 
13 kW + (4.5kW 

water top up 
heater) 

13.5 kW 
14 kW + (4.5 

kW water 
heater) 

 
These gaps in total consumption have been replaced 

by the sum of the measurements from the other sensors, 
which nearly corresponds to the total consumption. If 
there has been a gap in the other sensors, then it has been 
replaced by the value of the previous minute. However, 
the total number of gaps is so low that there is not a 
notable effect on the results of the study. 

III.2. Solar Radiation Data and Weather Data 

The input data of PV production are based on a 
mathematical model of PV panel output, which is 
calculated from real one-minute solar radiation data.  

Measurements of solar radiation were taken from the 
open data of the Finnish Meteorological Institute. The 
data have been measured at the weather station of 
Jokioinen, which is the nearest one to the studied houses.  

The beam, the diffuse, and the reflected solar 
radiations for the entire year of 2018 have been measured 
in Jokioinen [22]. 

Fig. 3 shows an example of one day of household 
consumption and PV production metered by an hour 
interval and a 15-minute interval.  

It can be seen that the variation of consumption is 
much higher for the 15-minute interval than the hour 
interval.  

The variation of PV production is not so high in this 
example because this specific day was mostly sunny. 
During a day when cloudiness changes rapidly, the 
variation of PV production could be much higher. 

III.3. Electricity Price Data 

In Finland, end-use electricity bills consist of the costs 
of electrical energy, distribution fees and taxes. A 
customer can sell surplus energy to the same energy 
retailer who is the seller of electrical energy. The price of 
energy is typically based on the market price of 
electricity in Nordic electricity markets [23]. Customers 
can tender out of retailers, and retailers can compete via 
margins, which are the amounts retailers add to the 
market price. When a retailer buys a customer’s surplus 
energy, this margin is taken off from the market price. 
Energy selling contracts have typically been based on a 
constant price, but the average price is more inexpensive 
in market-price-based contracts than in constant-price 

contracts because the risks of retailers are lower. In this 
study, the margin of energy retailers is 0.25 c/kWh, 
which is typical in Finland. Market price changes for 
each hour, and if the metering interval is shorter than an 
hour, the price is constant during the entire hour. 

Distribution System Operators (DSOs) have local 
monopolies, and they set the distribution prices under the 
control of public authority.  

Customers have to pay electricity taxes based on the 
amount of used energy, which is charged with the 
distribution bill.  

The value of the electricity tax is 2.79 c/kWh for 
household customers. In addition, there is a value tax 
(i.e., 24%), which is paid on all the cost components. In 
this study, the general distribution tariff of the local DSO 
has been used, and the volumetric charge is a constant 
3.93 c/kWh [24].  

The level of the volumetric charge affects the 
profitability of PV self-consumption because this price 
determines the difference between electricity purchase 
and feed-in prices, but it does not affect the differences 
between metering intervals because the costs increases in 
proportion with the price component. 

IV. Sizing of PV Systems and BESSs 

IV.1. Sizing of BESSs 

In [4], it has been states that when PV systems and 
BESSs are sized based on electricity cost optimization, 
the suitable size of a BESS relative to the load profile of 
a customer has to be chosen first. After this, the PV 
system is sized relative to the size of the BESS. In this 
study, the sizing model from [4] is used. The same BESS 
can be used for several control targets. In this study, the 
increase of self-consumption is the only control target, so 
the size of the PV system affects the size of the BESS 
more than when other targets are involved. 

In the sizing of the BESS, few potential sizes are 
selected at first, from 0 to 12 kWh, with an increment of 
2 kWh. Then, we simulated the cost savings for each size 
have been when the size of the PV system varies between 
0 and 6 kWp. After this, linear regression has been used 
to fit the lines for the first and last two result points. The 
intersection of the fitted lines indicates the optimal size 
for a PV system, as discussed in [4]. This has been done 
for all the three customers with all the three metering 
intervals. 

Fig. 4 shows the average cost savings per 1 kWp of 
PV panels in the intersection of the fitted lines. At the 
beginning, the cost savings increase when the size of the 
BESS increases, but the growth slows down very 
quickly. The highest growth can be noticed for a 2-kWh 
BESS. For systems larger than 6 kWh, there is no 
increase in cost savings. The changes are similar with 
different metering intervals, but the differences are 
higher for small BESSs than for larger BESSs. For these 
three customers, 2 kWh is the best BESS size if the 
system is used only for increasing the self-consumption 
of PV energy.  
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TABLE II 
EFFECT OF METERING PERIOD CHANGE IN MONEY 

AND PERCENTAGE CHANGES 

 
PV: 2 kWp 

BESS: 2 kWh 
PV: 3 kWp 

BESS: 6 kWh 
PV BESS PV BESS 

Hour to 
Quarter-

hour 

H1 -16.25 € 7.57 € -16.71 € 11.64 € 
-5.98 % 58.46 % -4.46 % 29.16 % 

H2 -14.73 € 2.71 € -19.25 € 11.85 € 
-5.57 % 13.20 % -5.22 % 23.05 % 

H3 -5.85 € 1.18 € -8.09 € 4.54 € 
-2.32 % 6.29 % -2.32 % 8.70 % 

Mean -12.28 € 3.82 € -14.68 € 9.34 € 
-4.67 % 21.93 % -4.03 % 19.53 % 

Quarter-
hour to 
Minute 

H1 -13.72 € 7.09 € -19.27 € 15.03 € 
-5.37 % 34.56 % -5.38 % 29.17 % 

H2 -9.70 € 9.34 € -11.33 € 9.91 € 
-3.88 % 40.12 % -3.24 % 15.66 % 

H3 -3.95 € 3.66 € -5.08 € 4.12 € 
-1.61 % 18.37 % -1.49 % 7.26 % 

Mean -9.12 € 6.70 € -11.89 € 9.69 € 
-3.64 % 31.53 % -3.40 % 16.95 % 

 
The change is slightly lower if the metering interval 

changes from a quarter-hour to one minute. The lifetime 
of a PV system can be 30 years [3]. If it is assume that 
the electricity prices, taxes, customer load profiles and 
the production of a PV system are similar over the entire 
lifetime of a PV system, the total effect of metering 
interval changes on the profitability of a PV system can 
be evaluated. Net present value (NPV) is a good tool to 
evaluate the profitability of an investment and it can be 
calculated using equation (6): 
 

ܸܰܲ = 	෍
ܴ௬

(1 + ݅)௬

௡

௬ୀଵ

 (6)

 
where Ry is the cost savings at the year y, n is the length 
of lifetime and i is the discount rate. Fig. 8 shows NPV 
calculations of cost savings over the lifetime of 2-kWp 
and 3-kWp PV systems with possible system lifetimes of 
15 and 30 years and discount rates of 1% and 3%.  

Calculations are made for hour, quarter-hour and one 
minute metering intervals. 

V.1. Effect of Metering Interval on the Profitability 
of PV Systems 

Additionally, three possible investment prices for a PV 
system are shown by dashed lines. If the NPV is higher 
than the investment price, the investment is profitable 
and the part of the block that is over the investment price 
indicates the total profit of the investment, which comes 
over the required return. The results of Fig. 8 show that 
the change from an hour metering interval to a quarter-
hour interval or the change from a quarter-hour interval 
to a minute interval affects the profitability of PV 
systems in approximately the same way as an increase of 
100 €/kWp in the investment price of a PV system.  

The profitability of the PV systems depends mainly on 
the lifetime of the system, the sizing of the system, the 
electricity prices, and the discount rate, but the 
investment costs and the metering interval are also 
significant. Additionally, how soon a prosumer wants the 
money back from the investment is important. 
 

V.2. Effect of Metering Interval on the Profitability 
of BESSs 

In contrast to the profitability of PV systems, the one 
of BESSs increases when the metering interval becomes 
shorter. In Fig. 9, the calculated NPVs for the lifetime 
cost savings with a BESS are shown. The lifetime of an 
LFP Li-ion battery with good battery management is 
approximately 15 years [25]. Thus, a 15-year lifetime and 
a cautious estimate of an 8-year lifetime are used in the 
calculations. The discount rates are the same as those 
used in the PV calculations: 1% and 3%. Additionally, 
two investment costs for a BESS system are shown.  

 
 

 
 

Fig. 8. Net present value of PV lifetime benefits with different metering intervals and three possible investment prices for 2 and 3 kWp PV systems. 
Two possible lifetimes (15 and 30 years) and two possible discount rates (1% and 3%) are used 
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Fig. 9. Net present value of BESS lifetime benefits with different metering intervals and three possible investment prices for 2 and 6 kWh BESS. 
Two possible lifetimes (8 and 15 years) and two possible discount rates (1% and 3%) are used 

 
The current investment price for Li-ion batteries is 

200-400 €, as evaluated in [4] and based on [26] and 
[27]. 

 Prices have decreased rapidly over the last decade, 
and development is expected to continue [28]. Power 
electronics increase the price of BESSs, but when a 
BESS is used together with a PV system, a portion of the 
costs are included in the price of the components of the 
PV system, e.g., a grid inverter. The presented 
investment prices are 200 €/kWh, which is the lowest 
possible price today, and 100 €/kWh, which is the 
expected price in the future as the volume of 
manufacturing grows. These optimistic prices are used 
because they are almost at the same level as the NPVs of 
the cost savings. This strengthens the perception that the 
use of BESSs with PV systems to increase self-
consumption is not currently profitable.  

The results of Fig. 9 show that the change from an 
hour metering interval to a minute metering interval 
results in the highest effect on the profitability of a 2-
kWh BESS with a 15-year lifetime and a 1% discount 
rate. This change corresponds to a change of 
approximately 73 €/kWh in the BESS investment price.  

A metering interval change from an hour to a quarter-
hour corresponds to a change from 11 €/kWh to 26 
€/kWh in the BESS investment price. Another 
observation is that the effect of a metering interval 
change on the profitability of a BESS is higher for an 
optimally sized BESS with 2 kWh as opposed to a 
slightly oversized 6-kWh BESS. 

VI. Discussion 

In this study, data from three different households in 
area around of Tampere in Finland have been used. Even 
though the sample size of the study group is small, these 
houses represent current domestic houses in Finland, and 
the size of the houses is slightly larger than average. In 
all the houses, the primary heating system is different, 
and the systems are commonly used today and in the 
future. Two of the houses are quite new, while the other 

one is older. This leads to the variations in the total 
consumption of the houses. The results show that the 
benefits of PV systems and BESSs do not depend on the 
amount of total consumption. The differences between 
the houses are not large even though the load profiles 
vary substantially, confirming that the results are 
representative. 

The benefits of BESSs are calculated when a BESS is 
used only for increasing the self-consumption of PV 
production. The same BESS can also be used for other 
control targets, but these ones are not studied in this 
paper because the metering interval does not directly 
affect them if the electricity prices remain constant in 
relation to the load profile. For this reason, the results of 
this study do not directly indicate the profitability of 
using BESSs in houses. A change in the metering 
interval will affect other control targets due to the 
changing price components or the changing peak power 
values. If power-based distribution tariffs are used, the 
peak power consumption values are higher with a shorter 
metering interval because when the metered load is 
averaged for a longer period, e.g., an hour, short high 
peaks are smoothed. When DSOs keep their revenue the 
same through a metering period change, the power-based 
price component will decrease. This means that the 
savings from peak-cutting will be almost at the same 
level. The differences between customers will increase, 
but the effects require additional research. 

The savings from market-price-based control will also 
change when the time unit in the electricity market 
changes. The price change between quarter-hours could 
be higher than that between hours [29]. This will increase 
the profitability of market-price-based control. Second, 
when the time unit is shorter, BESSs will be used more 
frequently. This will affect the sizing of BESSs and their 
actual lifetime. 

VII.   Conclusion 

In a case of Tampere area in Finland, a shorter 
electricity metering interval decreases the profitability of 
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grid-connected domestic PV systems but increases the 
profitability of BESSs associated with PV systems.  

Currently, PV investment is profitable in the long term 
in Finland, and transitioning from an hour metering 
interval to a quarter-hour metering interval does not 
radically affect the situation. However, this shift 
increases payback time and notably decreases profits. If 
the metering interval is shortened to one minute from 15 
minutes in the future, the effect of this change will be 
approximately similar to the change from an hour 
interval to a quarter-hour interval. 

Using a BESS to increase the self-consumption of PV 
production is not yet profitable. A shorter metering 
interval will increase the cost savings notably but will not 
make BESSs profitable. Economically profitable use of 
BESSs requires other control targets, such as market-
price-based control or peak cutting, when power-based 
distribution tariffs are used. In the long term, a shorter 
metering interval is a good thing for the future of smart 
grids because it has many positive effects. Increased 
profitability makes investments in BESSs, along with 
investments in PV systems, more attractive. Using 
BESSs can decrease the surplus energy feeding into the 
grid and smooth the demand from the grid to restrain the 
increasing distribution costs when the need to strengthen 
the grid decreases. Additionally, BESSs use larger PV 
systems profitable and can increase the total amount of 
PV production. Without BESSs, the attractiveness of PV 
investment will decrease when the metering interval 
becomes shorter. 
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