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Abstract

We present a straightforward yet versatile online tool for
rapid heart rate variability (HRV) analysis utilizing state-
of-the-art methods. The unique feature of the tool is the
dynamical examination of accurate RR interval (RRI) cor-
relations as a function of time. This is accomplished by the
recently developed dynamical detrended fluctuation anal-
ysis, which determines local scaling exponents continuous
in both time and scale. Therefore, the tool is particularly
well-suited for studying HRV during highly non-stationary
situations, such as physical exercise. To this end, the tool
integrates with common sport watches.

The tool reveals complex correlations in the RRIs dur-
ing physical exercise. Different sports at various intensi-
ties leave distinct fingerprints in the dynamic correlations.
Another key advantage of the temporal fidelity is the pos-
sibility to study transient alterations in the HRV that could
be indicative of various cardiac diseases.

We have implemented an accessible online tool for HRV
analysis that is attractive to both researchers and enthusi-
asts alike. The tool could accelerate cardiac research by
providing a quick visual overview of dynamic HRV mea-
sures, and permitting further custom analysis by down-
loadable raw data.

1. Introduction

Heart rate variability reflects the state of the autonomic
nervous system and cardiovascular health [1]. Studying
the correlations between beat-to-beat (RR) intervals re-
veals fractal-like behavior that is altered by various fac-
tors, such as disease or physical exercise [2,3]. These RRI
correlations are commonly studied by detrended fluctua-
tion analysis (DFA) [4]. In some situations, such as during
sports, it is desirable to study transient changes in HRV.
To this end, a dynamical approach to DFA has been devel-
oped, which has been successfully employed in studying
RRI correlations during running and different sleep stages
[5,6]. Here we present an online tool for dynamical HRV
analysis that implements the method.
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2. Dynamical HRV Analysis

Conventionally HRV measures are computed for the
complete RR interval time series or in simple non-
overlapping segments. Here, we employ a dynamic seg-
menting scheme to explore the time-dependence of HRV
in detail. It is straightforward to obtain enhanced temporal
granularity by permitting the segments to overlap in time.
Additionally, the locality of a HRV measure is determined
by the time scale over which the measure is computed.
Therefore, the dynamical behavior of HRV is revealed by
a two-dimensional landscape constructed from a segmen-
tation that is allowed to vary in both time and scale.

It is trivial to compute conventional measures, e.g.
SDRR or RMSSD, in such dynamic segments. Hence,
our tool focuses on the dynamical implementation of DFA
(DDFA). The conventional division into arbitrary short-
(a1, 4-16 beats) and long-scale (a2, 16-64 beats) scaling
exponents [4] does not often fully reflect the fractal scal-
ing properties of the RR intervals [7]. Therefore, we com-
pute individual scaling exponents for each scale to obtain
a landscape of scaling exponents «/(t, s) as the function of
both time and scale. The technical details of the DDFA
method are described in Ref. [5].

3. Online Tool

The DDFA Online tool is available at https://
ddfa-online.accugt.com. The tool is freely acces-
sible for everyone. Optional user registration offers ad-
ditional features, such as the possibility to fetch data from
other online services, e.g., from Polar or Suunto web APIs.
Registered users may also opt in for permitting the usage
of their data for research purposes.

3.1. Graphical User Interface

The website of the tool serves as its graphical user inter-
face (GUI). The guiding principle for its design has been
simplicity and the ease of use for users without background
in the topic. The basic workflow of the tool consists of the
following steps:

1. Choose the data to be analyzed.
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2. Choose settings for the analysis. This step is optional,
as the default settings are designed to be suitable for most
purposes.

3. Study the results of the analysis.

The details of these steps are described below.

3.1.1. Data Selection

To familiarize users with the tool, we provide some ex-
ample data that the users may explore before uploading
their own data. The most generic format for providing
data is via “comma-separated values” (CSV) files. The
first row of these files should contain column headers. The
user should then indicate which column contains the RR
intervals and denote their units. The user may also choose
additional columns to be included, such as time, speed, ca-
dence, longitude, latitude or altitude. Practical data is also
automatically computed, e.g., the instantaneous heart rate
from the RR intervals, if it is not already present. Arbi-
trary numerical data associated with the RR intervals may
also be included. These supplementary data enable addi-
tional analysis as the HRV measures are aggregated over
these variables to present the HRV measures as their func-
tion. Furthermore, the inclusion of position data allows the
visualization of the results on an interactive map.

The tool also supports “Flexible and Interoperable Data
Transfer” (FIT) files that are utilized by many wearable
devices. These files do not require additional user input,
but the differences in the practices of device vendors result
in limited support.

3.1.2. Settings

The primary settings that control the results of the anal-
ysis are:

Dynamic length factor (Ippra), which controls the
length of the dynamic segments for each scale s at which
the DDFA is performed. The DDFA scaling exponent
a(t, s) is computed in segments of length Ippra s. Hence,
this parameter controls the balance between locality and
statistical noise in the DDFA results. Generally the choice
Ippra = b is suitable for HRV analysis [5].

Dynamic smoothness priors detrending is an option for
explicit detrending of the RRI data before the analysis.
While the DFA method performs intrinsic detrending dur-
ing the analysis, it is limited to polynomial trends and
higher order detrending has issues of its own [5]. There-
fore, we employ the conventional smoothness priors de-
trending [8] by separately detrending the data for each
scale s before DDFA. The smoothing parameter is cho-
sen in such a manner that features longer than the scale are
considered trends.

The filtering of erroneous RR intervals attempts to au-
tomatically remove spurious RRIs by determining whether

the values are outliers based on the local median and in-
terquartile range.

3.1.3. Results

The results of the analysis may be studied from various
plots that are described below. The interactive plots may
be zoomed and panned to study the details in long RRI
recordings. The user may also download the raw data of
the results for custom offline analysis.

Time series plot visualizes the RRI data given as input,
along with all the other chosen data columns.

DDFA results are shown as a landscape of color-coded
DDFA exponents «(t, s). Additionally, a column from the
time series and a conventional HRV measure may be cho-
sen as overlay layers for reference. An example is shown
in Fig. 1, along with the description of the plot controls.

Aggregated DDFA results illustrate the relationship be-
tween the DDFA scaling exponent and some variable of in-
terest, such as the RR interval, heart rate or cadence, which
was included as an additional column in the time series.
This is accomplished by averaging the variable within the
dynamic segments, binning the averages, and then aver-
aging the DDFA scaling exponents within each bin. Addi-
tionally, a similarly aggregated conventional HRV measure
may be chosen as an overlay layer for comparison.

Map view shows the traveled route color coded by the
DDFA scaling exponent for a chosen scale on an interac-
tive map.

3.2. Application Programming Interface

In addition to the easy-to-use GUI, the application pro-
gramming interface (API) is publicly exposed to permit
programmatic access for performing computations and
fetching results. The current version of the API is available
at https://ddfa-api.accuqt.com/v1l/ with the
following endpoints for unregistered users:

The data endpoint is utilized for uploading user data
for analysis, and it returns an identifier that is utilized for
interacting with the data.

The compute endpoint is invoked to perform the actual
computations for the given data identifier. It returns either
the computation results or an identifier to fetch the results
later, depending whether it is invoked asynchronously.

The results endpoint is called to fetch the results of
the computations based on the identifier returned by the
compute endpoint.

As the tool undergoes continuous development, the
complete and up-to-date documentation for the API
is available at https://ddfa-online.accuqt.
com/docs/api.
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Figure 1. A zoomed-in example of DDFA results with the heart rate (solid line) and the conventional short-scale DFA o
(dashed line) as overlays. The plot controls, encircled in red, are from left to right: i) save the plot as an image, ii) zoom
tool, iii) pan tool, iv) autoscale, v) show closest data, vi) compare data, vii) download raw data, viii) close the plot. The

dropdown menus (V) are utilized for choosing the data for the overlay layers.

4. Examples

An example of DDFA results is shown in Fig. 1 for a
volunteer performing interval training on an indoor row-
ing machine. The zoomed-in example spans two intervals
with increased intensity and their cooldown periods, as in-
dicated by the overlaid heart rate. There is a strong band
of anticorrelations (o < 0.5) at scales of roughly 10-20
beats, which is less prominent during the cooldown period.
Notably, the conventional DFA «; does not capture the an-
ticorrelated behavior, as it is based on a linear fit within the
4-16 beat range.

The analysis also employs the dynamic smoothness pri-
ors detrending. Its significance becomes apparent when
looking at the onsets of the high-intensity intervals during
the sharp rise in the heart rate. The DDFA « shows anticor-
relations that now span all the way to the shortest scales.
This is logical, as the strong modulation in the heart rate
with periodicity of about 10 beats is suppressed. Instead,
there are pairs of shorter and longer beats superimposed
on the trend that dominates the modulation. In contrast,
DFA a; is highly elevated, which is an artifact due to the
trend in the heart rate that is not sufficiently managed by
the linear detrending of DFA-1. We hypothesize that the
modulation and the resulting short-scale correlations are
caused by effects arising from the periodic rowing motion
with a certain stroke rate.

It is instructive to study whether there is a relationship
between the DDFA « and the heart rate. This is illustrated
in the aggregated DDFA results of Fig. 2(a) where the
DDFA « is plotted as a function of the heart rate. The anti-
correlations clearly become stronger and span wider range
of scales as the heart rate increases. While not as promi-
nent, the correlated band at the shortest scales also has a
dilating tendency as the heart rate increases. For compari-
son, the same person performed a 52 km skiing marathon
in Fig. 2(b). The most glaring difference is the lack of a
correlated band at the shortest scales. The appearance of
short-scale anticorrelations during high intensity exercise
and their broadening with increasing heart rate appears to
be universal, but the details of the correlation landscapes
vary, which is also consistent with the results during run-
ning [5].

As an additional example, the DDFA « as a function
ST deviation for a patient suffering from ST episodes is
shown in Fig. 3, together with pRR20. While there appears
to be deviations towards the extremal values, this isolated
example is not to be understood as a definite result, but
instead as an inspiration for future research.

5. Discussion and Conclusions

By employing DDFA, the tool discovers complex frac-
tal correlations that remain hidden from classical methods.
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Figure 2. Comparison of aggregated DDFA results as a function of the heart rate during indoor rowing (a) and skiing (b).
The conventional short-scale DFA «; is overlaid on the results with the error bars indicating its standard deviation within
the heart rate bins. Dynamic smoothness priors detrending was performed prior to DDFA.

could accelerate cardiac research by providing a quick vi-
sual overview of dynamic HRV measures, and permitting
further custom analysis by downloadable raw data.
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