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ABSTRACT
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Since the description of accessible solitons by Snyder and Mitchel, the exploration of nonlo-
cality in nonlinear media as a way to stabilize multidimensional solitons has received increasing
attention. However, while the regimes of weak and strong nonlocality have been explored sub-
stantially, the case of general nonlocality remains scarcely investigated. This work seeks to ex-
plore this area, by testing the stability of (2+1)D beam profiles obtained through a perturbative
approach, focusing on the generally nonlocal case of response functions of the Gaussian and
exponential-decay types. The resulting semi-analytical expressions are perturbed LG modes, and
their stability is tested under propagation using a split-step Fourier method. The simulations show
that the beam profiles are very close to the exact soliton solutions within the generally nonlocal
regime, which is an indication of the adequacy of the perturbative method to find soliton states.
Both non OAM-carrying and OAM-carrying beams are explored. This work seeks to set a prece-
dent for more detailed exploration of general nonlocality, which could provide advantages over
simulation of other regimes, such as less computational costs.

Keywords: soliton, general nonlocality, orbital angular momentum, exponential-decay nonlocality,
LG modes
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1. INTRODUCTION

As interest in nonlinear phenomena increased in the second half of the past century, so

has the number of studies conducted around solitons. Since their first description by

James Scott Russell in 1834 [1], notable effort has been put into understanding their

inherent properties and interactions under all types of conditions.

Solitons are waves that conserve their shape along propagation. They have been ob-

served in different branches of science, such as optics, biology, communication, fluid

dynamics and Bose-Einstein condensates [1, 2]. The name "soliton" is meant to indicate

that they interact like particles during collisions.

In the fields of optics and photonics, optical solitons refer to light beams confined during

propagation. They are tightly related to solitary waves, and the terms are sometimes

used without distinction in the context of photonics [1, 2, 3, 4]. The effects that allow the

existence of optical solitons are a consequence of light propagating in nonlinear media.

While linear media operates in a regime where the refractive index of the material does

not change with intensity, nonlinear media introduces a intensity dependent variation in

the refractive index [1].

Optical solitons can be classified as spatial or temporal. Spatial solitons are self-guided

beams that remain confined in a direction transverse to propagation. This confinement is

a result of a balancing between the natural tendency of a beam to diffract or spread and

a self-focusing effect present in nonlinear media [1, 5]. Conversely, temporal solitons are

pulses that keep their shape due to a balancing between self-phase modulation (SPM)

and dispersion broadening. [1]. Extensive effort has been put into achieving these optical

solitons experimentally [1, 2, 4, 6, 7, 8, 9, 10], as well as into finding adequate numerical

and analytical models to describe them [5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27].

Spatial optical solitons in (1+1)D (where the first "1" indicates the number of diffraction

directions and the second "1" tells the direction of propagation) have been shown to be

stable along propagation. However, multidimensional solitons in (2+1)D and (3+1)D are

inherently unstable [18]. (2+1)D optical solitons usually suffer collapse over very short

distances, which is a consequence of the self-focusing nature of a type of nonlinear media

known as Kerr media. One of the first important achievements in understanding these
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multidimensional solitons originated in what are now known as Townes solitons. These

are analytical, theoretical solutions in the (2+1)D case, but they are unstable and collapse

after a short, finite distance, which is why they have never been observed experimentally

[13, 18, 28].

It has been suggested and proved that in order to stabilize (2+1)D solitons, either a poten-

tial or a medium with nonlocality can be used. For example, adding a harmonic oscillator

potential allows to obtain stable numerical solutions within threshold values. These results

have been summarized in a review by Malomed in [18].

Equally interesting is the history of exploiting the nonlocality of materials in order to sta-

bilize multidimensional solitons. The work of Snyder and Mitchel [3] proved that collapse

in (2+1)D solitons could be overcome in a medium with strong nonlocality. Since then,

strong nonlocality has been used to describe an abundance of soliton families, for exam-

ple [14, 22]. On the other hand, the case of weak nonlocality has also been explored

thoroughly in BECs and plasmas, where solitons are also present [12].

Studies of solitons within the range of general nonlocality have been relatively scarce,

compared to the cases of strong and weak nonlocality. Bang et al. [12] first proved

rigorously that solitons could be stable in the generally nonlocal regime. Notably, Guo et

al. [20] developed a method to examine the propagation of optical beams in sub-strong

nonlocal media using a variational approach, and were able to obtain results very close

to those predicted by the Snyder-Mitchel model. However, the approach by Guo requires

the nonlocal response to be twice differentiable at the origin, which is seldom the case.

Ouyang et al. [21] presented a model that is free from this limitation, as they approximate

the refractive index of the material itself as a Taylor series. They are able to describe the

propagation of solitons and periodic optical beams in generally nonlocal media for both

Gaussian and exponential-decay nonlocal responses. This novel model is, however, only

developed for the (1+1)D case and the results are relatively simple profiles.

The work of this thesis aims to further explore soliton behavior in the generally nonlocal

case by extending the model by Ouyang to the (2+1)D case and characterize its solu-

tions. Deng et al [22] have shown that, in the strongly nonlocal case, (2+1)D solitons in a

symmetric nonlocal response correspond to a family of Laguerre Gaussian (LG) beams.

Since the Ouyang model consists of adding a perturbation to the Hamltionian present in

the strongly nonlocal case, the solutions in the generally nonlocal case are perturbed LG

modes.

This thesis is organized as follows: Chapter 2 introduces all the theoretical framework

necessary to understand the model of stabilization proposed in the following sections.

Chapter 3 introduces a way to approximate solitons within a generally nonlocal regime.

Chapter 4 tests the results obtained through methodology in Chapter 3. Finally, Chapter

5 discusses the results and presents some concluding remarks.
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2. THEORETICAL FRAMEWORK

This chapter will introduce the concepts necessary to understand the methodology used

to stabilize optical solitons and the results. More specifically, this chapter will:

• introduce the wave equation used to describe propagating electromagnetic waves,

• present the necessary approximations that lead to the equation known as the gen-

eralized nonlinear Schrödinger equation,

• introduce the shape of the variation of the refractive index as a function of the

nonlocal response function, and

• explain the different degrees of nonlocality.

2.1 Optics in nonlinear media

Optical solitons exist as a consequence of light propagating in nonlinear media. In linear

media, the induced polarization in a material has a linear relationship with the electric

field [29], this is

P (t) = χ(1)E(t), (2.1)

where P(r, t) is the induced polarization, E(rt) is the electric field and χ(1) is known as

the linear susceptibility. In this example, the vectorial nature of P (t) and E(t) has been

ignored for simplicity.

As the name indicates, nonlinear materials do not follow this proportionality relationship.

Instead, a common approach is to approximate the induced polarization as a power series

of the electric field

P (t) = χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ..., (2.2)

where χ(2) and χ(3) are the second order and third order susceptibilities, respectively.

When considering the vector nature of the induced polarization and the electric field, the

linear susceptibility χ(1) becomes a second-rank tensor, the second order susceptibility
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χ(2) becomes a third-rank tensor and so on [29]. The second order susceptibility can be

neglected if the medium is assumed to have inversion symmetry [1]. More specifically, it

can only occur in noncentrosymmetric crystals [29]. On the other hand, effects of the third

order susceptibility χ(3) can be observed in both centrosymmetric and noncentrosymmet-

ric materials, so it is not neglected in this work.

A medium with predominantly a third order nonlinearity is called a Kerr medium [1, 2, 29].

2.2 Propagation of light in a nonlinear medium

From Maxwell’s equations, it is possible to obtain an expression associated with the field

propagating inside a medium [2]. This is

∇2E− 1

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P

∂t2
, (2.3)

where c is the speed of light in vacuum and ϵ0 is the electric permittivity of the medium.

As established in the previous section, the induced polarization will have a linear and a

nonlinear component, such that

P(r, t) = PL(r, t) +PNL(r, t), (2.4)

where PL(r, t) corresponds to the linear part of the polarization and PNL(r, t) corre-

sponds to the nonlinear one. As mentioned before, when considering the vector nature of

the induced polarization and the field, expressions become more complex than Eq. (2.1).

For instance, the components of the polarization are expressed as

PL(r, t) = ϵ0

∫︂ ∞

−∞
χ(1) (t− t′) · E (r, t′) dt′, (2.5)

PNL(r, t) =ϵ0

∫︂∫︂∫︂ ∞

−∞
χ(3) (t− t1, t− t2, t− t3)

× E (r, t1)E (r, t2)E (r, t3) dt1dt2dt3.

(2.6)

It is possible to simplify these expressions by assuming that the response of the medium

is instantaneous. That way, the expression for the nonlocal component of the induced

polarization is reduced to

PNL(r, t) = ϵ0χ
(3)E(r, t)E(r, t)E(r, t). (2.7)

The field can be assumed to be quasi-monochromatic [1]. Additionally, the nonlinear
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induced polarization can be defined as a perturbation to PL due to its lower magnitude

[1, 29]. These assumptions lead to the following expression for the field

E(r, t) =
1

2
x̂ [E(r, t) exp (−iω0t) + c.c. ] , (2.8)

where ω0 is the frequency of the field and it has assumed to be polarized in x̂.

The nonlinear component of the polarization can be further simplified to

PNL(r, t) ≈ ϵ0ϵNLE(r, t), (2.9)

where ϵNL is equal to:

ϵNL =
3

4
χ(3)
xxxx|E(r, t)|2. (2.10)

Here, χ(3)
xxxx is one of the components of the third order susceptibility tensor χ(3) of an

isotropic material [29]. The material can be aligned so that this component is the only

one that has an effect on the refractive index [1].

In analogy to the linear case, where the relative permittivity can be written in terms of the

susceptibility [30] as ϵr = 1+ χe, the electric constant for the case of nonlinearity can be

written as

ϵ̃(ω) = 1 + χ(1)
xx (ω) + ϵNL, (2.11)

where the tilde denotes a Fourier transform [1]. This leads to the possibility of expressing

the refractive index as

ñ(ω) = n0 + n2|E|2, (2.12)

where n2 is related to the susceptibility tensor

n2 =
3

8n
Re
(︁
χ(3)
xxxx

)︁
. (2.13)

The importance of Eqs. (2.12) and (2.13) cannot be overstated: the description of de-

pendence of the refractive index on the intensity I = |E|2 is the basis for understanding

phenomena such as four-wave mixing and third-harmonic generation [2].
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2.3 Derivation of the nonlinear Schrödinger equation

In the context of solitons, several assumptions are made. The field is assumed to be in

the paraxial approximation and linearly polarized. Also, it is assumed to propagate in the

Z direction, hence it is expressed as E(r) = A(r)e(ik0n0Z), where A(r) is the envelope

of the field amplitude, k0 = 2π/λ is the wavenumber and λ is the wavelength. Finally,

since solitons are characterized by being localized, it is assumed that the field E(r) → 0

as r → ∞. Taking these considerations into account, propagation of a beam in a Kerr

medium is determined by the following equation [1]:

2ik0n0
∂A

∂Z
+

(︃
∂2A

∂X2
+

∂2A

∂Y 2

)︃
+ 2k2

0n0n2|A|2A = 0. (2.14)

Considering a beam with a waist of W0, a change to dimensionless variables is possible:

x = X/W0, (2.15a)

y = Y/W0, (2.15b)

z = Z/Ld, (2.15c)

u = (k0|n2|Ld)
1/2A, (2.15d)

where Ld = k0n0w
2
0 is known as the Rayleigh length or Rayleigh range. Rewriting Eq.

(2.14) in terms of these dimensionless variables:

i
∂u

∂z
+

1

2

∂2u

∂x2
+

1

2

∂2u

∂y2
± |u|2u = 0. (2.16)

Eq. 2.16 is usually referred to as the nonlinear Schrödinger (NLS) equation.

2.4 The nonlocal nonlinear Schrödinger equation

The model described by (2.16) assumes that the response of the medium is local, mean-

ing that the field at a certain point depends exclusively on the intensity at that point. As

it was mentioned in the Introduction, there is a motivation to consider the effect of nonlo-

cality in Kerr media, since it could potentially stabilize solitons that would otherwise suffer

collapse [12].

The properties of a beam propagating in nonlocal media depend on the intensity of an

area surrounding the point of interest [26]. Nonlocality is naturally present in systems

like nematic liquid crystals and photorefractive materials [3]. Solitons have been shown

to interact differently in nonlocal media [3, 31]. It is possible to generalize Eq. (2.16) by



7

considering the effects of nonlocality [16] :

i
∂u

∂z
+

1

2

∂2u

∂x2
+

1

2

∂2u

∂y2
±N(|u|)u = 0, (2.17)

with N(|u|) being equal to [16]

N(|u|) =
∞∫︂

−∞

∞∫︂
−∞

R(r− r′)|u(r′, z)|2d2r′. (2.18)

Eq. (2.17) is known as the nonlocal nonlinear Schrödinger equation (NNLS) and R(r) is

known as the nonlocal response function or nonlocal kernel of the system.

2.5 The nonlocal response function and the degree of nonlocality

As mentioned in the past sections and the Introduction, the nonlocal response function, or

nonlocal kernel R(r), is an indicator of the extension of the nonlocal effects in the system

[16, 26].

One of the most important concepts when talking about the nonlocal response is the

degree of nonlocality. Usually, it is defined as the ratio between the width of nonlocal

response, defined with ω0, and the width of the soliton µ [21]. It is worth mentioning,

however, that there are some authors that defining as the inverse of that [22]. In this

work, the first definition will be the one used.

Depending on the value of the degree of nonlocality, several nonlocal cases are usually

defined. Naturally, when the response function is equal to a Dirac delta function δ(r), the

local case is retrieved and Eq. (2.17) reduces to Eq. (2.16). If the width of the response

function is finite but comparatively smaller than the width of the soliton, this corresponds

to the case of weak nonlocality. IF the width of the nonlocality is comparable to the width of

the soliton, then the case is the generally nonlocal. Finally, if the width of the nonlocality is

much larger than the width of the soliton, it is said that it is the case of strong nonolocality.

Fig. 2.1 exemplifies these cases.
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Figure 2.1. A visual representation of a) local, b) weakly nonlocal, c) generally nonlocal
and d) strongly nonlocal cases. In all figures, ρ(r) represents the soliton profile and R(r)
is the response function. It is important to mention that all functions have been scaled
to have the same amplitude, which in practice is not necessarily the case. The offset of
R(r) in b), c) and d) is a reminder that the nonlocal response is convoluted with the beam
profile in Cartesian coordinates.

Two of the most studied models of nonlocality are the gaussian and exponential-decay

cases [5, 21, 26, 32].

Gaussian nonlocality has not been observed in nature. However, it is often explored due

to its smooth behavior and ease to work with. On the other hand, exponential decay

nonlocality is present in nematic liquid crystals [7, 10, 21].
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3. METHODOLOGY

Now that the model to describe nonlocal solitons has been stated in the form of Eqs.

(2.17) and (2.18), this chapter aims to find analytical or semi-analytical solutions to it.

The method used in this chapter is similar to the one used by Ouyang et al. in [21], but

it is extended to the case of (2+1)D and cylindrical coordinates, and it is explained in its

entirety in Chapter 3.1 As a summary, the methodology consists of:

• shifting to the more natural case of cylindrical coordinates,

• proposing an Ansatz to the model based on it is known from [21] and [22],

• approximating the nonlocal nonlinear element of the model as a linear Taylor series,

and

• solving the linear model using perturbation theory.

Sections 3.2 and 3.3 correspond to applying this methodology to non-OAM and OAM

carrying beams, respectively.

3.1 Semi-analytical solution to the NNLSE

The types of nonlocal responses analyzed in this work are all radially symmetric, which

means that R( #–r ) depends only on the radial coordinate r, where r2 = x2 + y2 . This

makes the cylindrical coordinate system a more natural choice to describe the Eqs. (2.17)

and (2.18), which transform in the following way:

i
∂u

∂z
+

1

2

(︃
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)︃
+ u

2π∫︂
0

∞∫︂
0

R(r − ξ)|u(ξ, θ, z)|2ξdξdθ = 0. (3.1)

Eq. (3.1) is now expressed in the cylindrical coordinate system and the integration limits

have been adequately changed. The solution u will propagate in the z direction and

diffract in the x and y directions, or the r direction in the case of cylindrical coordinates.

It is natural to assume that u is in fact a product of three independent functions, each

depending on a single variable. This method is called separation of variables and is used
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extensively in solving partial differential equations [33, 34]. This leads to the Ansatz

u(r, θ, z) = ρ(r)Θ(θ)e−iγz, (3.2)

where the term γ is a propagation constant. Before substituting this Ansatz in Eq. (3.1),

the nonlocal nonlinear part can be defined separately as

V (r) = −
2π∫︂
0

∞∫︂
0

R(r − ξ)|u(ξ, θ, z)|2ξdξdθ, (3.3)

where V (r) depends only on r, due to integration in theta. Substitution of Eqs. (3.2) and

(3.3) into Eq. (3.1) leads to the solution to the angular part

γρ(r)Θ(θ) +
1

2

(︃
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂θ2

)︃
ρ(r)Θ(θ)− ρ(r)Θ(θ)V (r) = 0. (3.4)

Eq. (3.4) can be separated into two independent radial (r dependent) and angular (θ

dependent) parts that need to be equal, which is only possible if both are equivalent to a

constant. Solving the angular part with this method results in the expression

Θ(θ) =
1√
2π

eiθm, (3.5)

which has been normalized so that
∫︁ 2π

0
Θ(θ)dθ = 1. The term m in beams with an

angular dependence such as Eq. (3.5) is called the topological charge [1]. Moreover,

beams with m ̸= 0 are said to carry nonzero orbital angular momentum (OAM) [35, 36].

Deng et al. [22] have also studied the case of a (2+1)D nonlocal response function with

radial symmetry, although they focus on the strongly nonlocal case. Since their result

yields a family of Laguerre-Gaussian (LG) beams, it is safe to assume that the solutions

to this model will be functions similar to LG beams. These functions have the property of

radial symmetry around r = 0, similarly to the nonlocal response functions that are being

considered. Because of this, it is appropriate to make a Taylor expansion of Eq. (3.3)

around this point

V (r) = V (0) +
V (2)(0)

2!
r2 +

V (4)(0)

4!
r4 +

V (6)(0)

6!
r6 + ..., (3.6)

where the odd parts of the expansion are equal to zero due to the symmetry of the re-

sponse function [37]. For convenience, Eq. (3.6) can be redefined in terms of new con-
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stants

V (r) = V0 +
1

2µ4
r2 + αr4 + βr6, (3.7)

with each new term being defined as

V0 = V (0), (3.8a)

1

µ4
= V (2)(0), (3.8b)

α =
1

4!
V (4)(0), (3.8c)

β =
1

6!
V (6)(0). (3.8d)

By substituting Eq. (3.5) and Eq. (3.7) in Eq. (3.4), and setting the propagation constant

γ = ε− V0, the resulting expression (where the dependence on r of ρ has been omitted

for simplicity) is

[︃
−1

2

d2

dr2
− 1

2r

d

dr
+

m2

2r2
+

1

2µ4
r2 + αr4 + βr6

]︃
ρ = ερ, (3.9)

where ε is the energy associated with the solution. Eq. (3.9) has the form of a Schrödinger

equation. The case α = β = 0 corresponds to the harmonic oscillator in cylindrical co-

ordinates [38], which makes Eq. (3.9) the Schrödinger equation for a harmonic oscillator

with perturbation parameters α and β.

The reason r8 and higher orders are not considered is because this work will mainly

deal with solutions in the generally nonlocal and highly nonlocal regimes, therefore when

r < µ, the terms αr4 and βr6 are several orders of magnitude smaller than 1
µ4 r

2, which

is indicative that the r8 and the following terms are even less significant to the full effect

or V (r), and are therefore neglected.

The case of a Schrödinger equation with a perturbed harmonic oscillator hamiltonian has

been widely studied in fields such as quantum mechanics and optics [21, 33, 34]. Solving

it requires to know the unperturbed solution first, followed by use of perturbation theory.

Appendix A shows how to get the answer to the unperturbed case of Eq. (3.9), in which

α = β = 0. This results in

ρ
(0)
km(r) =

√︄
2k!

µ2Γ(m+ k + 1)

(︃
r2

µ2

)︃ |m|
2

e
− r2

2µ2Lkm

(︃
r2

µ2

)︃
, (3.10)
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where Lkm(x) is the generalized Laguerre polynomial, k is the order of the polynomial.

More properties about Laguerre polynomials can be reviewed in most books for math-

ematical methods in physics, for example [39]. The value of k is related to the soliton

energy by k = 1
2
(εµ2 −m− 1), which means that the unperturbed energy is

ε
(0)
km =

2k +m+ 1

µ2
, (3.11)

where the (0) superindex in both (3.10) and (3.11) indicates that these are the unper-

turbed solutions.

3.2 Non OAM-carrying beam

With the unperturbed radial expression given by Eq. (3.10), it is possible to obtain solu-

tions to Eq. (3.9) using non-degenerate perturbation theory [33, 34]. This allows to have

solutions of the form

ukm(r, θ, z) =
1√
2π

ρkm(r)e
iθme−i(ε+V0)z. (3.12)

where ρkm(r) are the radial solutions obtained with perturbation theory, as indicated by

the lack of the (0) superindex compared to Eq. (3.10).

Naturally, Eq. (3.9) will have a family of solutions for different values of k and m. The

simplest solution is the one with values k = 0,m = 0. In this work, this solution will be

referred to as the non OAM-carrying beam ρ00. It is also called the fundamental solution

in the literature [1].

Appendix B shows how to obtain ρ00 from (3.9) using second order nondegenerate per-

turbation theory. This leads to

ρ00 =

√
2

µ
Ae

− r2

2µ2

[︃
1 + α

(︃
3µ4 − 2µ2r2 − r4

2

)︃
+β

(︃
11µ6 − 6µ4r2 − 3µ2

2
r4 − 1

3
r6
)︃

+αβ

(︃
−95µ10

3
− 40µ8r2 − 4µ6r4 − 2µ4r6

9

)︃
(3.13)

+α2

(︃
−3µ8

2
− 6µ6r2 − µ4

2
r4
)︃

+ β2

(︃
−239µ12

2
− 66µ10r2 − 15µ8

2
r4 − 2µ6

3
r6
)︃]︃

,
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where A is a soliton amplitude parameter. Naturally, setting α = β = 0 recovers the solu-

tion to the unperturbed case. The energy associated to this beam can also be calculated

using perturbation theory. It corresponds to

ε00(r) =
1

µ2
+ 4αµ2 − 36

√
2α2µ5 + 6βµ6 − 360

√
2αβµ7 − 996

√
2β2µ9. (3.14)

3.3 OAM carrying beam

Similarly to the previous section, a perturbed solution to Eq. (3.9) with values k = 0,m =

1 is obtained in Appendix C. This solution is referred to as in this work as the OAM-

carrying beam ρ01. This comes from the nonzero value of m in Eq. (3.12).

The solution worked in Appendix C is

ρ01(r) =

√
2

µ
Ae

− r2

2µ2

√︄
r2

µ2

[︃
1 + α

(︃
9µ4 − 3µ2r2 − 1

2
r4
)︃

+β

(︃
44µ6 − 12µ4r2 − 2µ2r4 − 1

3
r6
)︃

+αβ

(︃
124µ10 − 240µ8r2 − 16µ6r4 − 2µ4

3
r6
)︃

(3.15)

+α2

(︃
51µ8

2
− 27µ6r2 − 3µ4

2

)︃
+ β2

(︃
−160µ12 − 528µ10r2 − 40µ8r4 − 8µ6

3
r6
)︃]︃

.

where the radial part is included in the term eiθm.

The energy associated to this function is:

ε01 =
2

µ2
+ 12αµ2 − 156

√
2α2µ5 + 24βµ6 − 2016

√
2αβµ7 − 7008

√
2β2µ9 (3.16)

This solution is also an example of a vortex beam [1, 35, 36], which correspond to beams

having a topological charge m ̸= 0. Vortex beams and solitons are characterized by a

point of zero amplitude at the origin [1].

Up to this point, both Eqs. (3.13) and (3.15) are independent of the type of nonlo-

cal response function R(r). In the following chapter, the Gaussian nonlocality and the
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exponential-decay nonlocality models are analyzed and values for coefficients A,α, and

β are approximately obtained.
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4. RESULTS

The aim of this Chapter is to prove the adequacy of the non-OAM carrying (m = 0) beam

ρ00, shown in Eq (3.13), and the OAM carrying (m = 1) beam ρ01, shown in Eq. (3.15),

as solutions to the NNLS, Eqs. (2.17) and (2.18).

The process to obtain ρ00 and ρ01 in Chapter 3 is independent of the shape of the non-

local response function, as long as it is radially symmetric. This Chapter will then show

these beams propagating in media with Gaussian and exponential-decay nonlocalities.

As mentioned in Chapter 1, these are two of the most widely studied and used models of

nonlocality. Examples of both the generally nonlocal and strongly nonlocal cases will be

presented.

4.1 Propagation in media with Gaussian nonlocality

The model for Gaussian nonlocality is represented by [26, 32]

R(r) =
1

πω2
0

e
− r2

ω2
0 , (4.1)

where ω0 is the width of the nonlocal response function. This expression has been nor-

malized, so that
∫︁ 2π

0

∫︁∞
0

R(r)rdrdθ = 1, which is a necessary condition for a nonlocal

response function [26]. Fig. 4.1 shows the effect of the parameter ω0.

Obtaining values for parameters A, V0, α, β and µ in Eqs. (3.13) and (3.15) for a given

value of ω0 will define the system entirely. Notably, the last three Eqs. from (3.8) form a

system of equations with four unknown values, A, µ, α and β (since the value V0 does not

appear in the definitions of (3.13) or (3.15)). This is significant because fixing one of these

quantities will determine the other three. By selecting µ = 1, the rest of the coefficients

can be obtained for a given width of the nonlocal response function ω0. µ is chosen to be

1 in order to keep the computations simple and the simulation window small.
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Figure 4.1. Representation of a Gaussian nonlocal response function. The figure shows
a) the 3D profile for ω0 = 3 and b) a 2D profile along Y/W0 = 0 for different values of ω0.
The constraint imposed by the normalization condition has an effect on the magnitude of
R(r).

4.1.1 Non OAM-carrying beam

Due to the relative complexity of the Eq. (3.3) after substitution of (4.1) and (3.13), it can

be quite time consuming to obtain A, α and β analytically. Instead, a numerical fixed point

method is used. Basically, this method approaches the correct values from a seed value

until convergence is reached. The process is further detailed in Appendix D.

Table 4.1 shows the beam parameters calculated for different values of ω0. These par-

ticular values were chosen to get a complete picture of how the degree of nonlocality

affects the quality of the soliton solution within the generally nonlocal and strongly nonlo-

cal regimes. Distinctly, a significant growth in the amplitude parameter A is observed as

the degree of nonlocality is increased, which is consistent with studies of nonlocal solitons

[5].

Table 4.1. Beam parameters of ρ00 for µ = 1 and several values of ω0. Both ω0 = 3 and
ω0 = 6 correspond to the generally nonlocal case and ω0 = 10 describes the strongly
nonlocal case.

ω0 = 3 ω0 = 6 ω0 = 10

A 12.7632 46.4467 126.6170

α -0.0245 -0.0067 -0.0025

β 8.0021× 10−4 6.0581× 10−5 8.1601× 10−6

After defining the values of the parameters, each profile is numerically propagated to

observe its stability. To do this, a simulation is done with a split-step Fourier method with a

step size equal to dz = 0.2. Figs. 4.2, 4.3 and 4.4 show the results of these propagations,

each one for a different value of the degree of nonlocality. Going back to the definition of

degree on nonlocality in Chapter 1, the cases ω0/µ = 3 and ω0/µ = 6 correspond to the

generally nonlocal case, while ω0/µ = 10 belongs to the strongly nonlocal case. Each
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Figure 4.2. Propagation of ρ00 with parameters A = 12.7632, α = −0.0245, β =
8.0021× 10−4 (left column) and A = 12.7632, α = 0, β = 0 (right column), correspond-
ing to the 0th and 2nd order approximations, respectively. The degree of nonlocality is
ω0/µ = 3. Figs. a) and b) show the propagation along Z/LD for Y/W0 = 0, c) and d)
show the variation of normalized intensity and width, and e) and f) show the transverse
profile at i) the input, ii) the minimum value of intensity, iii) the maximum value of intensity
and iv) the output. Imax is equal to 52.7316 for the 0th order and 51.1871 for the 2nd

order.

figure consists of two columns: the left one shows the 0th order approximation and the

right one corresponds to the 2nd order approximation.

Fig. 4.2 shows the result of the propagation for a degree of nonlocality of ω0/µ = 3.

While the beam is shown to propagate a distance of Z/Ld = 10 whitout collapse, sev-

eral oscillations along propagation are observed. These have been identified before in

numerical propagation of (2+1)D solitons, for example in [5], and are primarily attributed

to excitations of the modes different than the soliton mode [1]. Fig. 4.2 also shows a
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Figure 4.3. Propagation of ρ00 with parameters A = 46.4467, α = −0.0067, β =
6.0581× 10−5 (left column) and A = 46.4467, α = 0, β = 0 (right column), correspond-
ing to the 0th and 2nd order approximations, respectively. The degree of nonlocality is
ω0/µ = 6. Figs. a) and b) show the propagation along Z/LD for Y/W0 = 0, c) and d)
show the variation of normalized intensity and width, and e) and f) show the transverse
profile at i) the input, ii) the minimum value of intensity, iii) the maximum value of intensity
and iv) the output. Imax is equal to 692.0383 for the 0th order and 691.7355 for the 2nd

order.

variation of 15.8641% of the intensity for the 0th order and a variation of 12.9324% for the

2nd order, while the numerical width varies 8.5603% and 5.8608% respectively.

Similarly, Fig. 4.3 describes ρ00 in the case of ω0/µ = 6, with the degree of nonlocality

being higher but still within the regime of general nonlocality. For this case, the variation of

intensity is only 5.0893% for the 0th order and 4.7795% for the 2nd order, while the width

varies 3.1128% and 2.2814% respectively. It is also worth noting that the gap between

the 0th and 2nd order approximations has been reduced.
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Figure 4.4. Propagation of ρ00 with parameters A = 126.6170, α = −0.0025, β =
8.1601× 10−6 (left column) and A = 126.6170, α = 0, β = 0 (right column), corre-
sponding to the 0th and 2nd order approximations, respectively. The degree of nonlocality
is ω0/µ = 10. Figs. a) and b) show the propagation along Z/LD for Y/W0 = 0, c) and
d) show the variation of normalized intensity and width, and e) and f) show the transverse
profile at i) the input, ii) the minimum value of intensity, iii) the maximum value of intensity
and iv) the output.Imax is equal to 5142.0049 for the 0th order and 5138.8303 for the 2nd

order.

Finally, Fig. 4.4 shows the case ω0/µ = 10, which is already in the strongly nonlocal

regime. The maximum variation in intensity with respect to the input is 2.1549% for the

0th order and 2.2111% for the 2nd order, while the width varies 1.5564% and 0.7722%

respectively.
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4.1.2 OAM-carrying beam

The methodology of the fixed point method described in the previous section and Ap-

pendix D is used in conjuction with expression (3.15), in order coefficients for the OAM-

carrying beam. Natuarrly, the response function is still the one described by the Gaussian

expression in (4.1). The results are reported in Table 4.2.
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Figure 4.5. Propagation of ρ01 with parameters A = 14.6804, α = −0.0207, β =
5.5060× 10−4 (left column) and A = 14.6804, α = 0, β = 0 (right column), correspond-
ing to the 0th and 2nd order approximations, respectively. The degree of nonlocality is
ω0/µ = 3. Figs. a) and b) show the propagation along Z/LD for Y/W0 = 0, c) and d)
show the variation of normalized intensity and width, and e) and f) show the transverse
profile at i) the input, ii) the minimum value of intensity, iii) the maximum value of intensity
and iv) the output.

Figs. 4.5, 4.6 and 4.7 show propagation of these OAM beams in a Kerr medium with
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Figure 4.6. Propagation of ρ01 with parameters A = 47.8874, α = −0.0065, β =
5.6792× 10−5 (left column) and A = 47.8874, α = 0, β = 0 (right column), correspond-
ing to the 0th and 2nd order approximations, respectively. The degree of nonlocality is
ω0/µ = 6. Figs. a) and b) show the propagation along Z/LD for Y/W0 = 0, c) and d)
show the variation of normalized intensity and width, and e) and f) show the transverse
profile at i) the input, ii) the minimum value of intensity, iii) the maximum value of intensity
and iv) the output.

different degrees of nonlocality. Once again, µ = 1 across all figures. The initial width of

each OAM beam is approximately
√
3µ.

Fig. 4.5 shows the propagation of the an OAM beam where the degree of nonlocality

is ω0/(
√
3µ) = 3/

√
3 ≈ 1.732, which places in the case of general nonlocality. The

variation in intensity is equal to 22.3745% for the 0th order and 15.0516 for the 2nd order,

while the variations in width are 11.8162% and 6.7864% respectively.

Similarly, Fig. 4.6 shows the OAM beam in a degree of nonlocality ω0/(
√
3µ) = 6/

√
3 ≈
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Figure 4.7. Propagation of ρ01 with parameters A = 127.9390, α = −0.0024, β =
7.9891× 10−6 (left column) and A = 127.9390, α = 0, β = 0 (right column), corre-
sponding to the 0th and 2nd order approximations, respectively. The degree of nonlocality
is ω0/µ = 10. Figs. a) and b) show the propagation along Z/LD for Y/W0 = 0, c) and
d) show the variation of normalized intensity and width, and e) and f) show the transverse
profile at i) the input, ii) the minimum value of intensity, iii) the maximum value of intensity
and iv) the output.

3.464. The variation of intensity is 7.6508% for the 0th order and 7.8819% for the 2nd

order. The width variations are 3.9387% and 3.8055% respectively.

Finally, Fig. 4.7 shows propagation of the OAM beam with degree of nonlocality ω0/(
√
3µ) =

10/
√
3 ≈ 5.77, which places it within the case of general nonlocality. The variation in in-

tensity is 3.132% for the 0th order and 3.0086% for the 2nd order, while the width varies

1.3129% and 1.5152% respectively.
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Table 4.2. Beam parameters of ρ01 for µ = 1 and several values of ω0. The width of the
OAM carrying beam is

√
3µ. Cases ω0 = 3, ω0 = 6 and ω0 = 10 all correspond to the

generally nonlocal regime.

ω0 = 3 ω0 = 6 ω0 = 10

A 14.6804 47.8874 127.9390

α -0.0207 -0.0065 -0.0024

β 5.5060× 10−4 5.6792× 10−5 7.9891× 10−6

Propagation of a vortex ring soliton such as ρ01 has been reported to decay into two

fundamental solitons by sources such as [1, 5]. However, it is not observed in these

simulations.

4.2 Propagation in media with exponential-decay nonlocality

The normalized nonlocal response function used to model an exponential-decay nonlo-

cality is:

R(r) =
1

2πω2
0

e
− |r|

ω0 . (4.2)

where ω0 is the width of the function and it is normalized such that
∫︁ 2π

0

∫︁∞
0

R(r)rdrdθ =

1. Fig. 4.8 shows the shape of the exponential-decay function. The procedure to obtain

values for coefficients A,α and β is different in this case compared to the Gaussian

nonlocality because the function is not twice differentiable at the origin. Instead, Eq. (3.3)

is approximated analytically.
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Figure 4.8. Representation of an exponential-decay nonlocal response function. The
figure shows a) the 3D profile for ω0 = 3.1416 and b) a 2D profile along Y/W0 = 0
for different values of ω0. The constraint imposed by the normalization condition has an
effect on the magnitude of R(r).

To obtain the coefficients for Eq. (3.13), the approximation ρ00 ≈ ρ
(0)
00 is taken, so that

V (r) ≈−
∫︂ 2π

0

∫︂ ∞

0

1

2πω2
0

e
− |ξ−r|

ω0
|A|2

πµ2
e
− ξ2

µ2 ξdξdθ

=− |A|2

πω2
0

e
− r

ω0 e
µ2

4ω2
0

[︃√
πµ

4ω0

+
1

2

]︃
. (4.3)

With this expression for V (r), the coefficients can be approximated in terms of µ and

ω0 using Eqs. (3.8). The results are shown in the left column of 4.3 for µ = 1 and

ω0 = 3.1416. The degree of nonlocality is ω0/µ = 3.1416, placing this example within

the generally nonlocal case.

Similarly, Eq. (3.3) is approximated for the OAM case using ρ01 ≈ ρ
(0)
01 , which results in:

V (r) ≈−
∫︂ 2π

0

∫︂ ∞

0

1

2πω2
0

e
− |ξ−r|

ω0
|A|2

πµ2
e
− ξ2

µ2

√︄
ξ2

µ2
ξdξdθ

=− |A|2

πω2
0

e
− r

ω0 e
µ2

4ω2
0

[︃√
π

4
+

µ

2ω0

+

√
πµ2

8ω2
0

]︃
. (4.4)

This result is used with Eqs. (3.8) to obtain the value of the coefficients. These are listed

in the right column of 4.3 for µ = 1 and ω0 = 4.1. With the degree of nonlocality being

ω0/
√
3µ = 2.367, this case is also within the generally nonlocal regime.
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Table 4.3. Coefficients for the exponential-decay nonlocality. The values on the left col-
umn are used for the Non OAM-carrying beam, while the values on the right column are
used for the OAM-carrying beam.

ω0 = 3.1416 ω0 = 4.1

A 21.5739 38.8917

α -0.0042 -0.0029

β −1.4258× 10−5 −6.0316× 10−6

4.2.1 Non OAM-carrying beam

Fig. 4.9 shows the propagation of the non OAM-carrying beam ρ00 in a medium with

exponential nonlocality, with both the 0th and 2nd order approximations being shown. The

maximum variation of the intensity is 9.3991% for the 0th order and 9.1024% for the 2nd

order, with the variations in width being respectively 5.4475% and 6.1303%.
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Figure 4.9. Propagation of ρ00 in an exponential-decay type of nonlocality, with pa-
rameters A = 21.5739, α = −0.0042, β = −1.4258× 10−5 (left column) and A =
21.5739, α = 0, β = 0 (right column), corresponding to the 0th and 2nd order approxima-
tions, respectively. The degree of nonlocality is ω0/µ = 3.1416. Figs. a) and b) show the
propagation along Z/LD for Y/W0 = 0, c) and d) show the variation of normalized in-
tensity and width, and e) and f) show the transverse profile at i) the input, ii) the minimum
value of intensity, iii) the maximum value of intensity and iv) the output. Imax is equal to
161.5164 for the 0th order and 157.5105 for the 2nd order.

4.2.2 OAM-carrying beam

Fig. 4.10 displays the propagation of the OAM-carrying beam ρ01 is a medium with

exponential-decay nonlocality. Both the 0th and 2nd orders are shown. The maximum

variation in intensity is equal to 10.9488% for the 0th order and 4.649% for the 2nd order,

while the maximum variations in width are 5.2516% and 2.1598% respectively.
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Figure 4.10. Propagation of ρ01 in an exponential-decay type of nonlocality, with pa-
rameters A = 38.8917, α = −0.0029, β = −6.0316× 10−6 (left column) and A =
38.8917, α = 0, β = 0 (right column), corresponding to the 0th and 2nd order approxima-
tions, respectively. The degree of nonlocality is ω0/(

√
3µ) = 2.367. Figs. a) and b) show

the propagation along Z/LD for Y/W0 = 0, c) and d) show the variation of normalized in-
tensity and width, and e) and f) show the transverse profile at i) the input, ii) the minimum
value of intensity, iii) the maximum value of intensity and iv) the output. Imax is equal to
178.1519 for the 0th order and 173.7281 for the 2nd order.

Fig. 4.10 also shows one of the most significant improvements in the 2nd order approxima-

tion when compared to the 0th one. The following section discusses the most significant

results in details, as well as making some remarking conclusions.
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5. DISCUSSION AND CONCLUSIONS

This work has mainly focused on testing the stability of possible (2+1)D solitons in gen-

erally nonlocal media. The results have shown that the perturbation method produces

profiles that are very close to a soliton state.

One of the most important outcomes of this work is providing evidence that the 2nd order

perturbative approximation improves significantly the description of the soliton state when

compared to the 0th order approximation, as can be observed in all Figures that show

beam propagation (Figs. 4.2 to 4.4, 4.5 to 4.7 and 4.9 to 4.10).

The simulation shown in Fig. 4.3 indicates that the non OAM-carrying beam ρ00 describes

the soliton in the generally nonlocal case to a very good degree. Similarly, Fig. 4.6 shows

the OAM-carrying beam propagating close to the soliton state, which is significant proof

that the perturbation method supports vortex solitons as well.

Particularly, beam ρ01 in the generally nonlocal regime of an exponential-decay type of

nonlocaliy, as shown in Fig. 4.10, is scarcely explored in the literature. Skupin et al. [5]

show a similar vortex soliton but the profile is described only in the strongly nonlocal case.

The author believes that working in the generally nonlocal case could provide several ad-

vantages over the strongly nonlocal regime due to its characteristic of generally requiring

lower beam intensity. On a computational level, the generally nonlocal regime requires a

smaller window size than the strongly nonlocal case, provided the soliton width µ remains

the same. Tuning of the degree of nonlocality in nematic liquid crystals, which posses

exponential-decay nonlocality, has been addressed in [40].

Future work regarding this topic would deal primarily with developing a complete family of

perturbed LG modes. Even though the modes that are present on this thesis are the most

significant, exploration of higher order LG modes is expected to be equally favorable. In

fact, it is possible that more other radially symmetric beams could be described in terms

of a family of these modes. Another significant work for the future is analyzing the optical

phase of the OAM carrying beams, focusing on the effects of the nonlocality on this phase.
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APPENDIX A: HARMONIC OSCILLATOR IN

CYLINDRICAL COORDINATES

This appendix shows how to solve of Eq. (3.9) with α = β = 0, which corresponds to the

unperturbed case

[︃
−1

2

d2

dr2
− 1

2r

d

dr
+

m2

2r2
+

1

2µ4
r2
]︃
ρ = ερ, (A.1)

where ρ = ρ(r) is the radial part of Eq. (3.2). A change of variable of the form

x =
r2

µ2
(A.2)

allows to rewrite Eq. A.1 in the following way:

d2ρ

dx2
+

1

x

dρ

dx
+

(︃
εµ2

2x
− m2

4x2
− 1

4

)︃
ρ = 0. (A.3)

This equation has an Ansatz that will provide Laguerre-Gaussian solutions

ρ = x
|m|
2 e−

x
2χ(x) (A.4)

Substitution of Ansatz A.4 in Eq. A.3 leads to a differential equation for χ(x). This is the

equation for the generalized Laguerre polynomials.

x
d2χ

dx2
+ (m+ 1− x)

dχ

dx
+

(︃
εµ2

2
− m

2
− 1

2

)︃
χ = 0. (A.5)

Solutions to (A.5) have the form:

ρ
(0)
km(r) = Aρ

(︃
r2

µ2

)︃ |m|
2

e
− r2

2µ2Lkm

(︃
r2

µ2

)︃
(A.6)
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Where Aρ is a normalization constant. Normalization requires that

1 = A2
ρ

∫︂ ∞

0

∫︂ 2π

0

|u(r, θ, z)|2rdr, (A.7)

where Aρ is the radial normalization constant. Substituting (3.2) and (3.5) in the last

equation leads to

A2
ρ

∫︂ ∞

0

|ρ(r)|2rdr = 1. (A.8)

After a change of variable as in Eq. (A.2):

A2
ρ

µ2

2

∫︂ ∞

0

x|m|e−x [Lm
k (x)]

2 dx = 1, (A.9)

the integral in Eq. (A.9) can be solved using the orthogonality properties of generalized

Laguerre polynomials, as indicated in Eq. 3 of section 7.414 of [41]. The result is

Aρ =

√︄
2k!

µ2Γ(m+ k + 1)
. (A.10)

This yields the normalized solution to the unperturbed problem:

u
(0)
km(r, θ, z) =

1√
2π

√︄
2k!

µ2Γ(m+ k + 1)

(︃
r2

µ2

)︃ |m|
2

e
− r2

2µ2Lkm

(︃
r2

µ2

)︃
eiθme−i(ε+V0)z.

(A.11)
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APPENDIX B: PERTURBED FUNDAMENTAL SOLUTION

Eq. (3.9) resembles a Schrödinger equation, with a perturbation

H ′ = αr4 + βr6. (B.1)

Using perturbation theory up to the second order correction will yiled a solution of the

following shape (from this point on, the r dependency is omitted for simplicity):

ρkm = ρ
(0)
km + λρ

(1)
km + λ2ρ

(2)
km. (B.2)

0th approximation to the fundamental case

The first term of the RHS of (B.2) corresponds to the unperturbed case in Eq. (A.6) and

was calculated in Appendix A, with values of k = m = 0

ρ
(0)
00 =

√
2

µ
e
− r2

2µ2 . (B.3)

1st order approximation to the fundamental case

Generally, the first order approximation for a given state ρpn in the nondegenerate case,

requires us to solve

|ρ(1)pn ⟩ =
∑︂
k ̸=p

∑︂
m ̸=n

⟨ρ(0)km|H ′|ρ(0)pn ⟩
ε
(0)
pn − ε

(0)
km

|ρ(0)km⟩ , (B.4)

where, for the sake of simplicity, Dirac’s bra-ket notation [42] has been employed. Using

the unperturbed state and energy expressions in (3.10) and (3.11) respectively, as well

as the change of variable defined in (A.2), it can be written
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|ρ(1)pn ⟩ =
∞∑︂

m̸=n

∞∑︂
k ̸=p

(︃
µ2

2(p− k) + n−m

)︃(︃
2k!

µ2Γ(m+ k + 1)

)︃√︄
2p!

µ2Γ(n+ p+ 1)

×
∫︂

x
m+n

2 e−xLm
k (x)L

n
p (x)

[︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩ (B.5)

Now, for the case of p = n = 0

|ρ(1)00 ⟩ =
∞∑︂

m ̸=0

∞∑︂
k ̸=0

(︄
− 2

√
2k!

µ(2k +m)Γ(m+ k + 1)

)︄

×
[︃
αµ4

∫︂
x

m
2
+2e−xLm

k (x)dx+ βµ6

∫︂
x

m
2
+3e−xLm

k (x)dx

]︃
|ρ(0)km⟩ (B.6)

The integrals in expression (B.6) may be solved analytically using equation 7 from section

7.414 of [41]. This gives:

|ρ(1)00 ⟩ =
∞∑︂

m̸=0

∞∑︂
k ̸=0

(︄
− 2

√
2

µ(2k +m)

)︄[︃
αµ4Γ(

m
2
+ 3)

Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 3;m+ 1; 1

)︂
+ βµ6Γ(

m
2
+ 4)

Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 4;m+ 1; 1

)︂]︃
|ρ(0)km⟩ , (B.7)

where 2F1 is the hypergeometric function.

2nd order approximation to the fundamental case

The second order perturbation of any ρpn comes from the following equation containing

three terms

|ρ(2)pn ⟩ =
∑︂
k ̸=p

∑︂
m ̸=n

∑︂
q ̸=p

∑︂
s ̸=n

⟨ρ(0)km|H ′|ρ(0)qs ⟩ ⟨ρ(0)qs |H ′|ρ(0)pn ⟩
(ε

(0)
pn − ε

(0)
km)(ε

(0)
pn − ε

(0)
qs )

|ρ(0)km⟩

−
∑︂
k ̸=p

∑︂
m ̸=n

⟨ρ(0)km|H ′|ρ(0)pn ⟩ ⟨ρn(0)pn |H ′|ρ(0)pn ⟩
(ε

(0)
pn − ε

(0)
km)

2
|ρ(0)km⟩ (B.8)

−1

2
|ρ(0)pn ⟩

∑︂
k ̸=p

∑︂
m̸=n

| ⟨ρ(0)km|H ′|ρ(0)pn ⟩ |2

(ε
(0)
pn − ε

(0)
km)

2
.
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In this Appendix, each term is calculated separately, such that

|ρ(2)pn ⟩ = |t1⟩ − |t2⟩ − |t3⟩ . (B.9)

First term:

|t1⟩ =
∑︂
k ̸=p

∑︂
m̸=n

∑︂
q ̸=p

∑︂
s̸=n

(︃
µ2

2(p− k) + n−m

)︃(︃
µ2

2(p− q) + n− s

)︃

×
(︃

2k!

µ2Γ(m+ k + 1)

)︃(︃
2q!

µ2Γ(s+ q + 1)

)︃√︄
2p!

µ2Γ(n+ p+ 1)
(B.10)

×
∫︂

x
m+s

2 e−xLm
k (x)L

s
q(x)

[︁
αµ4x2 + βµ6x3

]︁
dx

×
∫︂

x
q+s
2 e−xLs

q(x)L
n
p (x)

[︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩

Substitution of p = n = 0 changes the equation accordingly:

|t1⟩ =
∑︂
k ̸=0

∑︂
m ̸=0

∑︂
q ̸=0

∑︂
s ̸=0

(︃
− µ2

2k +m

)︃(︃
− µ2

2q + s

)︃(︃
2k!

µ2Γ(m+ k + 1)

)︃

×
(︃

2q!

µ2Γ(s+ q + 1)

)︃√︃
2

µ2

∫︂
x

m+s
2 e−xLm

k (x)L
s
q(x)

[︁
αµ4x2 + βµ6x3

]︁
dx (B.11)

×
∫︂

x
s
2 e−xLs

q(x)
[︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩ .

The method to solve the second integral in the previous equation has already been shown

in Eq. (B.6). On the other hand, the first integral is labeled as It1 :

It1 =

∫︂
x

m+s
2 e−xLm

k (x)L
s
q(x)

[︁
αµ4x2 + βµ6x3

]︁
dx (B.12)

It1 = αµ4

∫︂
x

m+s
2

+2e−xLm
k (x)L

s
q(x)dx+ βµ6

∫︂
x

m+s
2

+3e−xLm
k (x)L

s
q(x)dx (B.13)

Eq. (B.13) can be integrated by parts, taking u = x2−m+h
2 and dv = e−xxm+hLm

k (x)L
h
g(x)dx

for the first integral and likewise for the second one. Using Eq. 4(1) from Section 7.414 of

[41], both integrals turn out to be zero, meaning

|t1⟩ = 0. (B.14)
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Proceeding with t2,

|t2⟩ =
∑︂
k ̸=p

∑︂
m ̸=n

⟨ρm(0)
k |H ′|ρn(0)p ⟩ ⟨ρn(0)p |H ′|ρn(0)p ⟩

(ε
n(0)
p − ε

m(0)
k )2

|ρ(0)km⟩ . (B.15)

In the general case for any p and n.

|t2⟩ =
∑︂
k ̸=p

∑︂
m̸=n

(︃
µ2

2(p− k) + n−m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃

×
(︃

2p!

µ2Γ(n+ p+ 1)

)︃ 3
2
∫︂

x
m+n

2 e−xLm
k (x)L

n
p (x)

[︁
αµ4x2 + βµ6x3

]︁
dx (B.16)

×
∫︂

xne−x
[︁
Ln
p (x)

]︁2 [︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩

Now, for the fundamental solution p = n = 0:

|t2⟩ =
∑︂
k ̸=0

∑︂
m̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2Γ(1)

)︃ 3
2

×
∫︂

x
m
2 e−xLm

k (x)
[︁
αµ4x2 + βµ6x3

]︁
dx (B.17)

×
∫︂

e−x
[︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩

|t2⟩ =
∑︂
k ̸=0

∑︂
m̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2Γ(1)

)︃ 3
2

×
[︃
αµ4

∫︂
x

m
2
+2e−xLm

k (x)dx+ βµ6

∫︂
x

m
2
+3e−xLm

k (x)dx

]︃
(B.18)

×
[︃
αµ4

∫︂
e−xx2dx+ βµ6

∫︂
e−xx3dx

]︃
|ρ(0)km⟩
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|t2⟩ =
∑︂
k ̸=0

∑︂
m̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2Γ(1)

)︃ 3
2

×
[︃
αµ4

∫︂
x

m
2
+2e−xLm

k (x)dx+ βµ6

∫︂
x

m
2
+3e−xLm

k (x)dx

]︃
(B.19)

×
[︁
2αµ4 + 6βµ6

]︁
|ρ(0)km⟩

Solving the previous expression is similar to Eqs. (C.3) and (??).

|t2⟩ =
∑︂
k ̸=0

∑︂
m̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2Γ(1)

)︃ 3
2

×
[︃
αµ4Γ(

m
2
+ 3)Γ(m+ k + 1)

k!Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 3;m+ 1; 1

)︂
(B.20)

+ βµ6Γ(
m
2
+ 4)Γ(m+ k + 1)

k!Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 4;m+ 1; 1

)︂]︃
×
[︁
2αµ4 + 6βµ6

]︁
|ρ(0)km⟩

|t2⟩ =
∑︂
k ̸=0

∑︂
m ̸=0

(︃
− µ2

2k +m

)︃2(︃
2

µ2

)︃(︄
2

3
2

µ3

)︄

×
[︃
αµ4Γ(

m
2
+ 3)

Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 3;m+ 1; 1

)︂
(B.21)

+ βµ6Γ(
m
2
+ 4)

Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 4;m+ 1; 1

)︂]︃
×
[︁
2αµ4 + 6βµ6

]︁
|ρ(0)km⟩

Regarding the last term:

|t3⟩ =
1

2
|ρn(0)p ⟩

∑︂
k ̸=p

∑︂
m̸=n

| ⟨ρm(0)
k |H ′|ρn(0)p ⟩ |2

(ε
n(0)
p − ε

m(0)
k )2

(B.22)

|t3⟩ =
1

2

∞∑︂
m ̸=n

∞∑︂
k ̸=p

(︃
µ2

2(p− k) + n−m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2p!

µ2Γ(n+ p+ 1)

)︃ 3
2

×
⃓⃓⃓⃓∫︂

x
m+n

2 e−xLm
k (x)L

n
p (x)

[︁
αµ4x2 + βµ6x3

]︁
dx

⃓⃓⃓⃓2
|ρ(0)pn ⟩ (B.23)
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Fundamental case p = n = 0:

|t3⟩ =
1

2

∞∑︂
m̸=0

∞∑︂
k ̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2Γ(1)

)︃ 3
2

×
⃓⃓⃓⃓∫︂

x
m
2 e−xLm

k (x)
[︁
αµ4x2 + βµ6x3

]︁
dx

⃓⃓⃓⃓2
|ρ(0)pn ⟩ (B.24)

|t3⟩ =
1

2

∞∑︂
m̸=0

∞∑︂
k ̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2Γ(1)

)︃ 3
2

×
⃓⃓⃓⃓
αµ4

∫︂
x

m
2
+2e−xLm

k (x)dx+ βµ6

∫︂
x

m
2
+3e−xLm

k (x)dx

⃓⃓⃓⃓2
|ρ(0)pn ⟩ (B.25)

Solving with [41]:

|t3⟩ =
1

2

∞∑︂
m ̸=0

∞∑︂
k ̸=0

(︃
− µ2

2k +m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︄
2

3
2

µ3

)︄

×
⃓⃓⃓⃓
αµ4Γ(

m
2
+ 3)Γ(m+ k + 1)

k!Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 3;m+ 1; 1

)︂
(B.26)

+ βµ6Γ(
m
2
+ 4)Γ(m+ k + 1)

k!Γ(m+ 1)
2F1

(︂
−k,

m

2
+ 4;m+ 1; 1

)︂⃓⃓⃓⃓2
|ρ(0)pn ⟩

With each term being defined in Eq. (B.2), a sum over k with m = 0 yields the following

result:

ρ00 =

√
2

µ
Ae

− r2

2µ2

×
[︃
1 + α

(︃
3µ4 − 2µ2r2 − r4

2
+ β

(︃
−95µ10

3
− 40µ8r2 − 4µ6r4 − 2µ4r6

9

)︃)︃
+β

(︃
11µ6 − 6µ4r2 − 3µ2

2
r4 − 1

3
r6
)︃
+ α2

(︃
−3µ8

2
− 6µ6r2 − µ4

2
r4
)︃

+ β2

(︃
−239µ12

2
− 66µ10r2 − 15µ8

2
r4 − 2µ6

3
r6
)︃]︃

(B.27)
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APPENDIX C: PERTURBED FIRST EXCITED STATE

Similarly to the fundamental case, the solution to Eq. (3.9) is given by Eq. (B.2), with

perturbation (B.1). This time the focus is the case k = 0 and m = 1.

0th order approximation to the first excited state

Refering to (3.10) with k = 0 and m = 1:

ρ
(0)
01 =

√︃
2

µ2

(︃
r2

µ2

)︃ 1
2

e
− r2

2µ2 . (C.1)

1st order approximation to the first excited state

Starting form Eq. (B.5) with p = 0 and n = 1:

|ρ(0)01 ⟩ =
∞∑︂

m̸=1

∞∑︂
k ̸=0

(︃
− µ2

2k +m− 1

)︃(︃
2k!

µ2Γ(m+ k + 1)

)︃√︃
2

µ2

×
∫︂

x
m+1

2 e−xLm
k (x)

[︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩

(C.2)

Next step:

|ρ(0)01 ⟩ =
∞∑︂

m̸=1

∞∑︂
k ̸=0

(︃
− 1

2k +m− 1

)︃(︃
2k!

Γ(m+ k + 1)

)︃ √
2

µ

×
[︃
αµ4

∫︂
x

m+1
2

+2e−xLm
k (x)dx+ βµ6

∫︂
x

m+1
2

+3e−xLm
k (x)dx

]︃
|ρ(0)km⟩

(C.3)
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|ρ(0)01 ⟩ =
∞∑︂

m ̸=1

∞∑︂
k ̸=0

(︃
− 2

2k +m− 1

)︃ √
2

µ

×
[︃
αµ4Γ(

m+1
2

+ 3)

Γ(m+ 1)
2F1

(︃
−k,

m+ 1

2
+ 3;m+ 1; 1

)︃
+ βµ6Γ(

m+1
2

+ 4)

Γ(m+ 1)
2F1

(︃
−k,

m+ 1

2
+ 4;m+ 1; 1

)︃]︃
|ρ(0)km⟩

(C.4)

2nd order approximation to the first excited state

|t1⟩ =
∑︂
k ̸=0

∑︂
m ̸=0

∑︂
q ̸=0

∑︂
s ̸=0

(︃
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)︃(︃
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2q + s− 1
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µ2Γ(m+ k + 1)

)︃(︃
2q!

µ2Γ(s+ q + 1)

)︃
×
√︃

2

µ2

∫︂
x

m+s
2 e−xLm

k (x)L
s
q(x)

[︁
αµ4x2 + βµ6x3

]︁
dx

×
∫︂

x
q+s
2 e−xLs

q(x)
[︁
αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩

(C.5)

The same integrals from Appendix B are present, so t1 is zero. For t2:

|t2⟩ =
∑︂
k ̸=0

∑︂
m ̸=1

(︃
− µ2

2k +m− 1

)︃2(︃
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2
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x
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2 e−xLm
k (x)
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×
∫︂

xe−x
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αµ4x2 + βµ6x3

]︁
dx |ρ(0)km⟩

(C.6)

|t2⟩ =
∑︂
k ̸=0

∑︂
m̸=1

(︃
− µ2

2k +m− 1

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2

µ2

)︃ 3
2

×
[︃
αµ4

∫︂
x

m+1
2

+2e−xLm
k (x)dx+ βµ6

∫︂
x

m+1
2

+3e−xLm
k (x)dx

]︃
×
[︃
αµ4

∫︂
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∫︂
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]︃
|ρ(0)km⟩

(C.7)
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|t2⟩ =
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2
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2

×
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αµ4
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×
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(C.8)

|t2⟩ =
∑︂
k ̸=0
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(︃
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+ 3)
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+ βµ6Γ(
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2
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Γ(m+ 1)
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2
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)︃]︃
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6αµ4 + 24βµ6

]︁
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(C.9)

For the last term:

|t3⟩ =
1

2

∞∑︂
m ̸=n
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µ2

2(p− k) + n−m

)︃2(︃
2k!

µ2Γ(m+ k + 1)

)︃(︃
2p!

µ2Γ(n+ p+ 1)

)︃ 3
2

×
⃓⃓⃓⃓∫︂

x
m+n

2 e−xLm
k (x)L

n
p (x)

[︁
αµ4x2 + βµ6x3

]︁
dx

⃓⃓⃓⃓2
|ρ(0)pn ⟩

(C.10)

First excited state p = 0, n = 1:

|t3⟩ =
1

2
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×
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x
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k (x)
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αµ4x2 + βµ6x3

]︁
dx

⃓⃓⃓⃓2
|ρ(0)pn ⟩

(C.11)

|t3⟩ =
1

2

∞∑︂
k ̸=0

∞∑︂
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×
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αµ4
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2
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∫︂
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m+1
2

+3e−xLm
k (x)dx

⃓⃓⃓⃓2
|ρ(0)pn ⟩

(C.12)
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|t3⟩ =
∑︂
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2
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(C.13)

A summation with m = 1 and a sum over k yields the following result:

ρ01 =

√
2

µ
Ae

− r2

2µ2

√︄
r2

µ2

[︃
1 + α

(︃
9µ4 − 3µ2r2 − 1

2
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(︃
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3
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APPENDIX D: FIXED POINT METHOD

The definitions given by (3.3) and (3.8) are used with a fixed point method to obtain the

values of the coefficients A, α and β by fixing the value of µ. Defining U as

U(α, β, r) =
V (A,α, β, r)

A2
, (D.1)

allows to seed values α0 and β0 and get a new group (A1, α1, β1).

A1 =

√︄
1

µ4U (2)(α0, β0, 0)
(D.2)

α1 =
1

4!
A2

1U
(4)(α0, β0, 0) (D.3)

β1 =
1

6!
A2

1U
(6)(α0, β0, 0) (D.4)

These new values are seeded to get (A2, α2, β2), (A3, α3, β3) and so on until conver-

gence is reached.
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