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Research is like a spiritual dance, when the mind is fueled with inspira-
tions.

Simulation may be theoretical, but the pain and the joy are real.

Life is like positioning, both need anchors.
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ABSTRACT

With the fast technological development in the future generation wireless systems,
known as the fifth generation of cellular networks (5G) and beyond, radio position-
ing steadily serves as one of the key enablers to the industrial Internet of things
(IoT), where the location information of all the user equipment (UE), such as smart
phones, wearables, and the ground/aerial robots can be obtained viamillimeter wave
(mmWave) connectivity and measurements. The obtained knowledge of the loca-
tion via positioning can thereafter be exploited for enhanced communications and
location-based services, further improving, e.g., the situational awareness and spec-
tral efficiency for the industrial IoT use cases. Aiming at developing and exploiting
the radio positioning technologies, the first objective is to achieve the location aware-
ness via positioning in the industrial IoT systems. Particularly, several 3D position-
ing and tracking algorithms are developed, their performance is evaluated with the
potential challenges existed in the context of the industrial environment. The second
objective is to exploit the location awareness for enhanced communications. By uti-
lizing the obtained location awareness, the attainable performance gain in terms of
communications is investigated. In particular, a network-centric positioning-aided
beamforming (PA-BF) strategy and a device-centric location-aware handover (LHO)
scheme are respectively presented and assessed.

In essence, this thesis provides a conceptual and technical journey from position-
ing to location-aware communications. First of all, by targeting the industrial IoT
systems where the anchors’ locations are not perfectly known, several approaches,
such as weighted centroid geometric (WCG) and a joint positioning and tracking
framework based on the extended Kalman filter (EKF) are proposed to achieve accu-
rate and reliable 3D positioning. Second of all, in terms of location-aware communi-
cations, a network-centric positioning-aid communication framework (positioning
+ BF) is proposed and employed to take advantage of the achieved location aware-
ness within the networks. It is demonstrated that the PA-BF strategy in general
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outperforms the standardized BF strategy with respect to the inital access latency
and spectral efficiency, especially for UE with velocity higher than normal human
walking speed (≈ 0.6m/s). Third of all, by utilizing a multi-radio access technology
(RAT) robotic platform, the feasibility of the LHO is explored and investigated in
a multi-radio environment. With WiFi and mmWave RAT (WiGig) connectivities
as well as the available environmental awareness, our experimental results show that
the applied LHO is capable of maintaining an enhanced link robustness while enjoy-
ing an augmented throughput compared with channel state information (CSI)-based
handover.

In conclusion, the proposed algorithms and framework are built based onmathe-
matical formulation, simulation, and experiments, demonstrating the improvement
and/or the trade-off among the performance metrics in terms of both positioning
and communications, such as positioning accuracy in both 2D and vertical direc-
tion, initial access latency, and spectral efficiency. Therefore, it is expected that the
corresponding formulations and framework presented in this thesis could lay the
foundation for the integration of communications and positioning solutions, further
advancing the proposed framework and concepts beyond industrial IoT, towards an
intelligent and universal wireless ecosystemwith versatile functions and capabilities.
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1 INTRODUCTION

In this chapter, a brief introduction of the background and motivation of the chosen
topic and research area are provided, followed by a description of the scope and ob-
jective of the thesis. Thereafter, the main contributions of the conducted research
work are summarized with the overall outline being given in the end.

1.1 Background and motivation

Over the past few decades, information technology and mobile devices have become
an integral part of our daily life. Wireless technology, as an augmented digital di-
mension, has profoundly transformed our way of working, living as well as think-
ing. In particular, wireless communications have been fundamentally integrated into
all the business sectors to serve not only human-to-human (H2H), but also human-
to-machine (H2M) and further machine-to-machine (M2M) communications [102],
forever revolutionizing how the world connects, communicates and computes [90].
With more tangible forms of services/use cases, there comes various types of mo-
bile devices, e.g., tablets, watches, glasses and ground/aerial vehicles. As such, the
mobile device has evolved from a uni-function equipment supporting voice/text ser-
vices, to a multi-function gear providing all sorts of infotainment, such as healthcare,
extended reality (XR), video chatting andmobile gaming. With a rapid growth of the
number of such mobile devices, Internet of things (IoT) has therefore been realized
with the support of the wireless networks.

Furthermore, the arrival of the millimeter wave (mmWave)-enabled wireless sys-
tem, namely the fifth generation of cellular networks (5G) and beyond, brings fresh
ingredients [23], such as high carrier frequencies with flexible bandwidth, large an-
tenna array and beamforming (BF). Such ingredients unveil unprecedented challenges
and opportunities for both communications and positioning. Meanwhile, as a natu-
ral evolution of the IoT, the industrial IoT comes along with various applications for

1



different industry verticals, covering from manufacturing and automation to logis-
tics and transportation [84]. Without a doubt, the industrial IoT use cases not only
pose a higher requirement for seamless communications in terms of initial access la-
tency and throughput, but also introduce certain difficulties for high-accuracy 3D
(radio) positioning [138, Ch. 1], which, if accurate enough, can be exploited to em-
power various industry-oriented applications [57, 72]. Hence, the investigation and
development of accurate 3D positioning algorithms and advanced communication
schemes that exploit the novel ingredients while satisfying the industry IoT appli-
cations serve as primary objective of this thesis as well as one of the most rigorous
and interesting research directions that call for continuous and substantial research
efforts in the coming time.

1.2 Objectives and scope of the thesis

The broad scope of this thesis consists of developing mmWave positioning tech-
niques1 and location-aware communication schemes in 5G-empowered industrial
IoT systems. Hence, the objective of the conducted research is twofold. The first
objective is to develop and evaluate the positioning algorithms in industrial IoT
based on the radio network measurements taking into account the 5G ingredients.
Throughout this thesis, we define the radio network measurements as the location-
relatedmeasurements (LRMs) which can bemeasured either by the access point (AP)
at the network edge or by the user equipment (UE) at the device side. The typical
LRMs consists of received signal strength (RSS), time of arrival (ToA) and angle of
arrival (AoA) [38, 44, 87]. As the complementary positioning scenario to the globe
navigation satellite system (GNSS), the indoor situations, such as an industrial ware-
house/factory are our main focus. However, it is noteworthy that, there are no
limitations in applying the proposed methods in this thesis to the outdoor scenarios
under a similar context.

Regarding the second objective, this thesis investigates and proposes both frame-
work and solutions to realize the location-aware communications scheme based on
the achieved location awareness (estimated locations) via positioning. Towards this

1Here, positioning refers particularly to the wireless techniques that provide location estimates via
the transmission and reception of mmWave signals. Therefore, positioning and mmWave positioning
are considered as synonyms, and used interchangeably throughout the thesis.
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Figure 1.1 Positioning-aided location-aware communication system — a block diagram illustration.

objective, there are in total two location-aware communications schemes being in-
vestigated. i) With the knowledge of the UE locations, a positioning-aided commu-
nications framework (positioning + BF) is proposed and evaluated to enhance the
communications performance in mmWave networks. Due to a vastly reduced initial
access latency, the proposed framework can be employed for the latency-sensitive in-
dustrial IoT applications. ii) The feasibility of location-aware handover (LHO) in an
indoor multi-radio environment is designed and assessed to jointly achieve both im-
proved throughput and enhanced link reliability. The block diagram that describes
overall abstraction of positioning and location-aware communications is depicted in
Fig. 1.1.

The key research questions which further elaborate our objective and scope of
this thesis are outlined as follows.

1. With the key ingredients of the mmWave-enabled 5G system, what are the
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Table 1.1 RQ (research question) versus P. (publication)

P. I P. II P. III P. IV P. V P. VI

RQ 1 × ×
RQ 2 × × × ×
RQ 3 × ×

opportunities and challenges for communications & positioning?

2. What is the main difficulty of positioning in the industrial environment? how
to resolve it? — Positioning algorithm development for industrial IoT.

3. How can communications benefit from the obtained location awareness? —
Exploring the feasibility and benefits of the location-aware communications.

Furthermore, each research question has been addressed by different articles on
the publication list. In order to present a clear structure, the relationships between
the research questions and included publications are summarized inTable 1.1. Specif-
ically, the research question 1 is addressed by publication I & III, while research
question 2 and 3 are elaborated by publication I, II, V & VI and publication III &
IV, respectively.

1.3 Main outcomes and contributions

The main contributions of this thesis are briefly summarized as follows:

• With the representative ingredients i.e., mmWave, small cell networks (SCNs),
multiple-input multiple-output (MIMO) and BF in the context, a systematic
overview and analysis is provided, discussing the opportunities and challenges
for communications and positioning in 5G system towards the industrial IoT.

From positioning perspective,

• an analytical model for the RSS and ToA is proposed under both line-of-sight
(LoS) and non line-of-sight (NLoS) conditions in an indoor multi-floor envi-
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ronment2. The benefits to positioning under mmWave, SCNs and MIMO are
demonstrated.

• Unlike most of the positioning works, in which the locations of anchors, e.g.,
APs are assumed perfectly known, different positioning approaches are pro-
posed and examined by taking into account the location uncertainty of the
APs, which is a typical problem in the industrial environments. The pro-
posed geometry-based positioning method, i.e., weighted centroid geometric
(WCG) has shown a better accuracy and a lower computational complexity
compared with a generic extended Kalman filter (EKF)-based approach.

• Furthermore, via the device-to-device (D2D) communications, a joint posi-
tioning and tracking framework is presented and formulated to better addresses
the location uncertainty of the anchors. In other words, the locations of both
the anchors (e.g., the AP) and the target (e.g., the UE) are jointly estimated via
the proposed EKF-based approach, forming a simultaneous localization and
mapping (SLAM)-alike positioning framework that we refer to as simultane-
ous localization and tracking (SLAT) EKF. It is shown that the SLAT EKF
outperforms the other two methods (i.e., WCG and normal EKF) in terms
of the achieved accuracy especially when the anchor location uncertainty is
larger than 1 m.

From location-aware communications perspective,

• a cloud-oriented positioning-aided communications framework is presented.
In particular, the network-centric positioning is first carried out, such that
the location awareness is obtained and available at the network side. The
corresponding positioning accuracy is characterized by theoretical position-
ing error bound (PEB). Thereafter, the proposed communications framework
is completed by performing positioning-aided beamforming (PA-BF) in the
downlink (DL). Moreover, the performance in terms of achieved spectral ef-
ficiency and initial access latency is validated via the comparison with the
codebook-based BF strategies. Additionally, the impact of positioning accu-
racy on the PA-BF performance is also studied under various system parame-
ters. The results could assist the design of future location-based systems.

2Due to the structure and main scope of this thesis, this perspective is not reflected in the introduc-
tory part. Further details can be found in publication I.
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• Aiming at empowering and exploiting a location-aware network, an efficient
handover scheme based on the location awareness, i.e., LHO is designed and
carried out in an indoor multi-radio environment. Via an conducted experi-
ment, the feasibility of the proposed LHO is validated using a multi-radio ac-
cess technology (RAT) enabled robotic platform. In addition, our experiment
results3 manifest that LHO outperforms the RSS-based handover in terms of
achieved throughout and link robustness along the whole considered robot
trajectory.

1.4 Thesis structure

The overall doctoral thesis consists of an introductory part with six chapters ap-
pended by six publications. The remainder of the introductory part is organized as
follows.

Chapter 2 starts with the representative ingredients that are adopted in 5G sys-
tems. The corresponding opportunities and challenges for communications and po-
sitioning are then discussed and analyzed from a general context towards the indus-
trial IoT.

Chapter 3 extends the technical details of positioning, illustrated in the upper part
of Fig. 1.1. Specifically, this chapter begins by presenting the considered network-
centric positioning system, which is followed by the discussion on the typical diffi-
culty for positioning in the considered industrial scenario. The approach of estimat-
ing the LRMs is then presented with the support of a ray-tracing engine. Finally, the
studied and proposed positioning algorithms for achieving the location awareness
are formulated with simulation-based evaluations being given in the end.

The following two chapters, Chapter 4 and Chapter 5, provide the conducted
studies and proposed schemes on location-aware communications, which is shown
in the lower part of Fig. 1.1. Specifically, Chapter 4 describes and assesses the pro-
posed positioning-aided communication framework in a cloud-oriented network.
Via the achieved location awareness via uplink (UL) positioning, a positioning-aided
BF strategy is presented. Thereafter, the corresponding performance is evaluated

3In order to control the overall length of this thesis and avoid overlapping similar results, only the
representative outcomes on LHO are shown in this introductory part, whereas the experiment-based
handover performance with multi-RAT can be found in publication IV.
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and compared with other standardized BF methods.
Chapter 5 introduces and presents the proposed device-centric LHO scheme, i.e.,

handover based on the location awareness in an indoor multi-radio environment.
With the available wireless measurements, the location estimates for handover pre-
diction are calculated at the device side using a geometry-based approach. The cor-
responding performance in both positioning accuracy and handover frequency is
tested and demonstrated.

Finally, Chapter 6 concludes this thesis with a discussion that consolidates the
major outcomes and insights obtained from the research. Possible future research
directions are pointed out.
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2 OPPORTUNITIES AND CHALLENGES FOR

COMMUNICATIONS AND POSITIONING IN

5G MMWAVE SYSTEM

With the advent of future generation wireless systems and technology, the mmWave
band will undoubtedly be utilized to co-operate with the current sub-6 GHz band in
order to enable various user-driven services that meet both flexible and stringent re-
quirements in various industrial IoT use cases. Although the high carrier frequencies
come with a wider available signal bandwidth, a major challenge of mmWave com-
munications lies in the fact that the corresponding radio signals experience a higher
path-loss as well as a bigger penetration/absorption loss than centimeter wave signals
[89], thus yielding weaker radio links. Therefore, several other key features such as
SCNs, MIMO and BF are being incorporated as the ingredient technologies [23] to
cope with such challenges, gradually forming a robust and versatile wireless mobile
network as a fundamental enabler for industrial IoT.

As the process of network densification continues, SCNs certainly bring numer-
ous benefits to both communications [29] and positioning [64]. Besides SCNs, BF
is also incorporated as another enabling technology to cope with the severe signal
attenuation and to take advantage of the classic spatial reuse [22]. Together with
MIMO [68, 96], the transmission and reception within the mmWave network be-
come inherently directional. On one hand, a high directivity can indeed be em-
ployed to improve the maximum propagation distance. On the other hand, the
directional transmission might result in a high-probability of beam misalignment,
yielding poor wireless coverage. Nevertheless, such problem can be compensated by
SCNs [123] to a certain extent. Therefore, the aforementioned key features grace-
fully complement each other. In this chapter, the opportunities and challenges for
both communications and positioning are examined and analyzed in the presence of
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Figure 2.1 An illustration of two available bands as frequency range (FR) [3] and potential applications.

the key ingredients in 5G system.

2.1 Abundant spectrum — mmWave

As the natural evolution from earlier generations to future generations wireless/cel-
lular systems, the access and usage towards a higher carrier band serve as the root
ingredient. In order to support the upcoming standalone mode as well as the coop-
erationwith other available RATs [3, 9], two ranges of spectrum have been regulated
by the 3rd generation partnership project (3GPP) as the frequency range (FR). As
illustrated in Fig. 2.1, the FR 1 (i.e., sub-6 GHz band) within the centimeter wave
(cmWave) frequency has been and will be greatly favored by nearly all the available
wireless interfaces, including the initial deployment of 5G [47, Ch. 4]. Neverthe-
less, it can be foreseen that the FR 1 spectrum gradually and eventually becomes over-
whelmed, which leads to the exploration of high-frequency bandwithmore available
spectrum, as the key asset. So far, the FR 2 (from 24.25 GHz to 52.60 GHz) frequen-
cies are in general utilized for the short-range and high-rate applications [111, 125].
In the context of industrial IoT, the integration of both FRs [28, Ch. 17] remains
a key solution in support of many versatile communication schemes, especially in
private new radio (NR) networks operating on unlicensed spectrum [34, 91].

The opportunities brought by mmWave to communications mainly stem from
the wider available bandwidth compared with that in cmWave band. From informa-
tion theory perspective, the signal bandwidth refers to the total complex dimensions
that a signal can represent, which means that any continuous signal with bandwidth
Bw conveys information with approximately Bw complex dimensions per second
[118, Ch. 2]. From the Rx point of view, Bw essentially reflects the number of com-
plex symbols which can be reliably distinguished [20, Ch. 1]. Therefore, a wider
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signal bandwidth in general corresponds to a higher throughput. Additionally, NR
supports a scaleable frame structure by adjusting the slot duration through different
sub-carrier spacing of the orthogonal frequency division multiplex (OFDM) signals,
that is, fsc = 2µ × 15 kHz, µ = [0,1, · · · , 5]. The choice of numerology µ depends
on the FR as well as the required bandwidth. As a result, slots (e.g., transmission
intervals) enjoy more flexible configurations than long term evolution (LTE), which
greatly supports the dynamic scheduling in both UL and DL [18, 25, 51]. More
importantly, such a flexible frame structure can better control the transmission la-
tency [28, Ch. 14], which serves as the key enabler for ultra-reliable low-latency
communications (URLLC) in delay-sensitive applications. Last but not least, both
communications and sensing technologies can be unified via mmWave air interface,
i.e., the radio frequency (RF) convergence [88], where the sensing functionality facil-
itates a vigorous mmWave networking [111, 126, 143] via directional beams, which
will be discussed in Section 2.3. Although creating plenty of attractive opportuni-
ties, there are several challenged coming along with mmWave that are needed to be
addressed before mmWave can be fully applied to support, e.g., the enhanced mobile
broadband (eMBB) or other industrial IoT use cases, especially in the UL.

According to the properties of mmWave propagation and channels [6, 77, 110],
the mmWave radio signals travel typically short distance due to a high loss in prop-
agation, reflection and diffraction, which limits the maximum cell size down to 200
m with the LoS probability less than 20% [5, 92, 100]. Network densification (to be
discussed in the next section) is therefore one of the most fundamental transforma-
tions in 5G. In addition, the overall performance of the networks become blockage-
limited rather than bandwidth/capacity-limited [52]. In other words, the continuity
of the wireless connectivity strongly depends on the propagation environment. The
UE quality of services (QoS) in the mmWave networks will be mainly affected and
driven by the blockage due to static and moving blockers (e.g., buildings and vehi-
cles), whereas the available bandwidth acts as the secondary deciding factor.

Furthermore, the mobility support becomes another significant bottleneck for
the mmWave systems [15], the key reason lies in a much shorter channel coherence
time that is inversely proportional to the carrier frequency and the relative veloc-
ity [107]. As such, mmWave communications typically thrive in a low-mobility
scenario with eMBB for local coverage. However, due to the enhanced capacity of
mmWave communications, the short channel coherence time does not necessarily
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Figure 2.2 An illustration of the concept of SCNs in heterogeneous networks (HetNets), employing the
control/user plane seperation (CUPS) under non-standalone architecture [106].

pose severe challenges because of another concept to be introduced in Section 2.4,
the beam coherence bandwidth [119].

Frompositioning perspective, mmWave boosts theToA estimation accuracy [138,
Ch. 6 and Ch. 7] [101, Ch. 3] thanks to a wide bandwidth, which in turn improves
the positioning accuracy for any lateration-based approaches. Essentially, the wide
bandwidth, e.g., in ultra-wide-band (UWB) systems, leads to high temporal solution
in the delay domain. Such feature not only promotes the LoS estimation accuracy,
but also facilitates the exploitation of the multipath components for positioning as
well as mapping, conditional on the availability of the prior information, such as
the 2D/3D floor plan [66, 67, 69, 127, 130]. However, the rich-scattering has been
proved not to be a valid characterization for the channels measured in 60 GHz [133],
therefore, mmWave may not be particularly suitable for multipath-based position-
ing approaches. Rather, mmWave-based positioning is generally carried out in the
LoS condition [81, 122]. However, in situations where the LoS paths with respect
to all the anchors (e.g., APs) are blocked, multipath parameters can be estimated and
integrated to provide location estimates [69, 78]. In this thesis, we mainly focus on
positioning solutions utilizing the LoS measurements.

2.2 Network densification — SCNs

In addition to mmWave, network densification, i.e., the SCNs acts as the second in-
gredient during the transformation towards 5G and beyond. By "densification" and
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"small cell", the terms indicate the deployment of many mmWave APs on top of
the overlaid macro layer of LTE [28, Ch. 17]. At the beginning of the 5G era, non-
standalone mode [106] shall still play the major role in providing radio services and
co-existence with LTE, thus forming heterogeneous networks (HetNets). A major
advantage of the HetNets is illustrated in Fig. 2.2, i.e., control/user plane separation
(CUPS) [10], where the control plane signal is handled by the evolved node B (eNB)
to maintain the link robustness and reliability while the user plane signal is trans-
mitted by the next generation node B (gNB) to take advantage of the wider available
bandwidth in FR 2 for a higher throughput [28, Ch. 5]. The co-existence and coop-
eration of FR 1 and FR 2 are generally referred to as SpectrumHeterogeneity [104].

In term of communications, SCNs not only offers several favorable opportuni-
ties/benefits, but also provides solutions to the challenges composed by mmWave.
Specifically, the severe path-loss and reflection/diffraction loss can be alleviated since
the end-to-end propagation distance becomes in general short. In addition, the trans-
mit power at both ends, i.e., AP and UE, can be vastly eased especially with direc-
tional antenna, which will be discussed in Section 2.3. Furthermore, SCNs can also
effectively reduce the potential coverage holes within the macro cells [123] and en-
able the flexible frequency reuse strategies [101, Ch. 9]. With proper design and
deployment, both the signal-to-interference-plus-noise ratio (SINR) that reflects the
interference level and the area spectral efficiency (i.e., sum of normalized through-
put) scale linearly with the AP (cell) density.

Nevertheless, there are fundamental limits, such as resource allocation and inter-
ference management [112, 115] needing to be properly addressed. In particular, as
the number of APs outgrow a certain threshold, neither the SINR invariance nor
cell splitting gain continue holding [17], the network therefore changes from noise-
limited to interference-limited. From economy perspective, SCNs indicate a much
higher deployment cost together with an added complexity on cell cooperation [74].
Aiming at reliving the deployment cost and at improving the system flexibility, a
fresh and adaptive concept, namely drone cell [71, 139, 140], has been proposed and
is gaining its momentum in terms of multi-access scheme, interference management
and data harvest, for instance. Despite many advantages, such approach suffers from
various major limitations, such as, limited battery life, weather conditions and serv-
ing environments/scenarios, therefore, needs further investigation and validation.

Meanwhile, SCNs offer numerous opportunities for better positioning. First of
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all, a high AP density yields a high probability of having LoS connections among all
transmitter and receiver (Tx & Rx) pairs. With the locations of AP as a prior, high
accuracy (sub-meter level) positioning is proved to be achievable [63, 64]. Further-
more, a higher LoS probability suggest a larger number of LoS APs, which guaran-
tees that more LRMs become available for positioning, and more available LRMs in
general assure higher positioning accuracy [54]. Not least of all, in the cases when
the only available measurement from the APs is the cell-ID information, positioning
can be realized by calculating the intersection of all the cell (AP) coverage [101, Ch.
2], SCNs can therefore minimize the upper bound of positioning error. However,
there are a few challenges needing attentions. For instance, the selection/filtering of
all the available LRMs may raise the complexity of positioning algorithm and delay
the location estimation outputs. Sometimes such task remains infeasible without the
measurements statistics. Although applying all the LRMs could be a rule-of-thumb,
the existence of one outlier can seriously degrade the positioning performance [99].

2.3 Large antenna array — MIMO

Thanks to the short wavelength of carriers at mmWave frequencies, antenna ele-
ments up to the order of hundreds can be packed and installed at both AP and UE,
forming large antenna arrays [96]. Such configuration comes with several interest-
ing features, such as directional transmission/reception, spatial multiplexing/diver-
sity and BF [60]. As graphically depicted in Fig. 2.3, MIMO and BF inherently
accompany each other [109]. It is seen that, with a centralized antenna array config-
uration, directional beams can be formed sequentially or simultaneously via either
analog/digital/hybrid BF scheme [83, 124] for wireless connections. In addition to
the centralized configuration, the distributed system, namely cell-free MIMO [85,
117] possesses good potential as well, which is out of the scope of this thesis.

To date, two types of MIMO schemes have been widely investigated: single-user
MIMO (also known as point-to-point MIMO) and multi-user MIMO [47, Ch. 3].
The former scheme is capable of supporting multiple parallel steams simultaneously
conditional on a richmultipath environment in the condition of a similar number of
antenna elements and the perfect channel state information (CSI) at both Tx & Rx
to perform the transmit precoding and receive combining [118, Ch. 7 and Ch. 8].
However, requiring an array size at the UE that is approximately equal to that at the
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Figure 2.3 An illustration of MIMO and BF. In particular, this graph portrays a multi-user MIMO scenario
with a centralized array configuration [68], [22, Ch. 2].

AP could be rather challenging, therefore, typically infeasible. Furthermore, as dis-
cussed in Section 2.1, mmWave communications basically rule out a rich multipath
propagation condition. As such, the studies of multi-user MIMO is in general much
more applicable since single or few-antenna UE are considered and rich multipath
propagation is not required [68]. More importantly, multi-user MIMO serves as an
excellent framework to study and exploit the space-divisionmultiple access (SDMA),
scalability to large number of UE, and to derive and analyze the spatial channel cor-
relation property [22, Ch. 2], which ultimately determines the overall performance
of the mmWave MIMO systems.

In terms of the strategies that amplify the power of MIMO for different scenarios
and use cases, various schemes were studied, such as [19, 74, 102, 117]. In particular,
with amassive number of antenna elements at the APs, a random fading channel acts
nearly deterministically, and the communication performance is almost independent
of the small-scale fading. The two aforementioned phenomenons refer to channel
hardening and favorable propagation [132], [22, Ch. 2]. That being said, the random
channel looks deterministic from the Rx point of view, the impact of small-scale
fading then vanishes, the SINR merely relies on the large-scale fading. In summary,
the corresponding benefits contain an improved SINR, a reduced link latency and a
boosted link stability, which are all favored in the industrial IoT scenarios.

However, there are several challenges coming along with the large antenna array
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configuration. First of all, due to the limited physical size of the UE, especially the
wearables, the benefits of massive MIMO where the number of antenna elements
approach infinity can never be realized practically. In addition, pilot contamination
(i.e., interference from other cells) and channel reciprocity (i.e., time and resources
spent on reciprocity calibration) [96, 121] are the limiting factors. Moreover, chan-
nel aging effect [116] becomes even more severe in mmWave networks due to the
short effective duration of the CSI, i.e., short channel coherence time. Nonetheless,
different BF strategies can be utilized to reliably resolve some of the aforementioned
limits, which will be discussed in Section 2.4 together with the opportunities and
challenges for positioning.

2.4 Spatial multiplexing/reuse — BF

BF technique enabled by MIMO refers to the fourth ingredient to be discussed in
this section. Under certain BF capabilities [104], directional beams with high array
gain can be steered towards a desired spatial direction in both azimuth and elevation
plane, i.e., azimuth BF and elevation BF, as depicted in Fig. 2.3. In particular, the
achievable array gain and capacity by BF largely depends on the overall number of
antenna elements as well as the number of Tx branches [47, Ch. 3]. That is, more
beams can be generated simultaneously with more Tx branches, while higher array
gain can be achieved with larger number of antenna elements. In the meantime, the
array gain is normally characterized by the beamwidth, that is, a narrower beam
comes with a higher array gain, whereas a wider beam suggests a lower array gain.

More importantly, BF empowers the elegant spatial reuse and multiplexing that
are beneficial to communications from several aspects. Specifically, in the condition
of beam alignment, spectral efficiency is improved due to a high SINR, meanwhile,
energy efficiency can also be enhanced due to the fact that most of the energy is
radiated towards a small spatial area through a beamformed signal [68, 120]. In terms
of different use cases in 5G, such as eMBB, massive machine-type communications
(mMTC) and URLLC, BF gain can be effectively utilized to support and enhance
the IoT connectivities [19]. Furthermore, the spatial information of the UE serves
as the enabler of the coordinated multi-point (CoMP) scheme in order to improve
the reliability and minimize the latency, especially for industrial IoT systems [90].
However, taking advantage of the spatial information requires the acquisition and
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estimation of the desired UE direction, e.g., angle of departure (AoD) [37, 59] or
the UE locations [93], known as the location-based BF. As discussed in the previous
section, the performance of MIMO system can be maximized especially when the
CSI is known at the Tx (AP side). Such information is generally acquired via two
classical methods, channel reciprocity and feedback, which can be adopted in either
time-division duplex (TDD) or frequency-division duplex (FDD) systems [109].

Nevertheless, some potential challenges of BF, such as the increased complexity
due to beammanagement and potential deafness because of beammisalignment have
to be carefully addressed before fully exploiting the benefits of BF. In NR system,
beam management has been defined and included in the specifications [11], it con-
sists of at least four steps: beam sweeping, beam measurement, beam reporting and
beam determination [42]. As such, the initial access BF latency that is proportional
to the overall number of antenna elements could occupy most of the channel co-
herence time, leaving no time for actual data transmission. In order to reduce such
latency, various BF strategies have been proposed to replace the CSI-based BF strate-
gies, for instances, the codebook-based BF or the location-based BF1. In particular,
compressive-sensing based approaches have been investigated to reduce the initial
access latency by taking advantage of the sparseness of mmWave channel [26, 82],
however, such algorithms inevitably yield a higher latency and higher complexity
[19].

Despite the fast channel variation, the mmWave transmission can actually be
maintained longer than the channel coherence time without beam realignment, a
concept known as "long-term BF" [73]. In other words, the path information, such
as AoD and AoA that are associated with the aligned beam between any pair of Tx
andRx varies in amuch slowermanner than the channel coherence time. That is, the
coherence time of the beams, i.e., the beam coherence time [119] is in fact longer than
the channel coherence time. Therefore, BF can be more effectively implemented to
profit from a longer time for data transmission, the overhead of beam realignment
is also vastly minimized. However, such concept highly depends on the operating
environments, it can only be fully exploited for a low-mobility UE or static scatters
with strong enough multipath components. Additionally, the deafness described in
[27] refers to another challenge of BF, in which case, UE cannot hear any signal
stronger than the minimum detection threshold because of the beam misalignment,

1Interesting readers may refer to Chapter 4 (PA-BF) and [41] for a more detailed discussion on
different BF strategies.
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resulting link outage event. However, such situation can be ruled out with more
frequent beam sweeping, beam reporting and feedback.

From positioning perspective, BF serves as one of the key technical components
enabling high-accuracy location estimates, mainly for the following reasons. First,
the ability of recognizing directional beams via BF empowers the estimation/track-
ing of both AoD and AoA [55, 93, 141]. Compared with the ToA-only based posi-
tioning system, like GNSS and UWB, this angle-domain information provides addi-
tional degree-of-freedom for accurate location estimates especially when fused with
ToA measurements, which are to be demonstrated in Chapter 3. Furthermore, the
achievable high SINR in the condition of beam alignment improves the accuracy
of both time-domain and angle-domain LRMs. Therefore, positioning can be effi-
ciently and effectively carried out with as few as one AP [61], which is not possible
for most of the current existing positioning systems. Although angle-domain LRMs
brings extra profits for positioning, the major challenges of utilizing them lies in the
uncertainty of the array orientation [79, 103]. The absence of accurate knowledge
of the orientation could result a huge positioning error, turning the angular LRMs
from a friend to a foe. Possible solutions include the joint positioning and orienta-
tion tracking using Bayesian filters, and employment of angle difference of arrival
(ADoA) for the cancellation of such uncertainty [101, Ch. 4]. Last but not least,
there involves a trade-off between communication performance and positioning ac-
curacy, which depends on the utilized array size [31].

2.5 Summary

In this chapter, the opportunities and challenges for both communications and posi-
tioning were discussed based on the key ingredients in 5G system towards industrial
IoT. In addition to what were presented, other ingredients/features, such as network
slicing [1], [28, Ch. 6], edge computing [12], M2M/D2D communications [23], full-
duplex radio [76] and network architecture transformation [49], can also be seen as
vital technical components, which are reserved for the future investigation.

Finally, this chapter ends with a summary of the potential opportunities and chal-
lenges brought by the 5G ingredients to both communications and positioning in
Table 2.1 and Table 2.2, respectively.
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3 ACHIEVING THE LOCATION AWARENESS

— POSITIONING

Today, positioning has become an indispensable key technology that enables not
only the commercial but also the industrial use cases, such as personal navigation
and autonomous guided robotics [39, 76]. Via the transmission and reception of the
ubiquitous radio signals, the location information of the connected mobile robot-
s/devices can be estimated and obtained via processing the available LRMs, i.e., po-
sitioning. Therefore, the positioning performance (e.g., the accuracy and reliabil-
ity) plays a significant role in enabling the location-based services [8] as well as the
location-aware communications [32]. In general, positioning can be divided into
two stages as depicted in the upper part of Fig. 1.1 as follows:

1. Generation/estimation of the LRMs, such as RSS, ToA and AoA according to
the signal parameters, antennamodels as well as the path information obtained
from the propagation environments;

2. Positioning and tracking via Bayesian and/or non-Bayesian approaches1.

Aiming at resolving the potential challenges for positioning in the industrial en-
vironments, i.e., the location uncertainty of the anchors, as described in research
question 2 in Section 1.2, this chapter introduces and demonstrates the methods of
achieving the location awareness of all the connected entities in a mmWave posi-
tioning system. First, an overall description of the proposed network-centric po-
sitioning framework is provided. Then, the approach of characterizing/estimating
the LRMs are outlined and analyzed. Thereafter, the proposed 3D positioning al-
gorithms (both snapshot and sequential methods) are formulated and presented. Fi-

1In some literature, the Bayesian approach is referred to as a sequential estimation method, whereas
the non-Bayesian approach is also known as snapshot method, both types of approaches will be dis-
cussed further in the later sections.
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target
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anchor M

collection of
measurements

positioning, scheduling,
mobility management, etc.

location
estimates

feedback channel

edge/cloud
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Figure 3.1 In the envisioned network-centric positioning framework, the mobile vehicles or robots (as
targets) are the Tx while the anchors represent the Rx that estimated the LRMs, e.g., ToA
and/or AoA. Positioning is carried out at the edge/cloud server, where the location estimates
of both targets and anchors are steadily available at the network side for further actions, such
as scheduling, mobility management and proactive resource allocation.

nally, this chapter is concluded with the numerical characterization and discussion
on the achieved positioning performance.

3.1 Proposed network-centric positioning framework

With the industrial IoT in the context, a network-centric positioning framework is
envisioned and illustrated in Fig. 3.1, in which one or several industrial robots/ve-
hicles, which we refer to as targets transmit reference signals through different air
interfaces (e.g., the access link or sidelink) towards the anchors (AP) whose locations
are typically known. Throughout this chapter, the locations of neither the targets
nor the anchors are precisely known, therefore remain to be estimated. The posi-
tioning algorithm will be presented in Section 3.3.

Furthermore, the transmitted signals employ the form of an OFDM signal trans-
mitted periodically from the omni-directional targets, while moving along certain
trajectory (e.g., the randomwaypoint trajectory). Such configuration yields a single-
inputmultiple-output (SIMO)model for each pair of Tx&Rx in thewireless system,
thus forming a multi-user MIMO scenario for positioning. Additionally, the uni-
form rectangular array (URA) arrays2 are assumed to be employed at all the anchors
to facilitate 3D BF technique. One of the procedures in beam management [11],

2In addition to URA, other types of antenna can also be employed, such as uniform circular array.
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beam sweeping technique is employed and involved in the estimation of LRMs that
are then fused together and uploaded to a edge/cloud server, where positioning is
carried out. With the support of network slicing and virtualization, the edge/cloud
server can be thought of as a data center in proximity [49], such that the feedback
latency for communicating the location estimates back to the targets is minimized.

Finally, the estimated locations are sent back to the network edge via a feed-
back channel facilitating the positioning-aided communications (discussed in the
next chapter) and other location-based services.

3.2 Location-related measurements

At the first stage of positioning, the LRMs are to be acquired or estimated. Therefore,
the property of typical LRMs that can be utilized for positioning is first discussed in
this section. Thereafter, the method of characterizing their accuracy is formulated
and presented together with applied channel model.

RSS. Owing to its cost-efficiency, RSS-based positioning has maintained constant
interests in the positioning community. Nevertheless, the multipath and spatial-
correlated shadowing remain as the two major error sources that hinder the obtain-
able positioning accuracy [97]. Although fingerprinting based methods can vastly
boost the performance, the corresponding positioning accuracy is not good enough
to meet the requirement of the specified positioning use cases in [2, 7]. Additionally,
the required database as well as the complexity for interpolation and extrapolation of
the fingerprints makes RSS a less attractive option [128]. The RSS-based positioning
is out of the research interests of this thesis.

ToA. Similar to the RSS, the ToA is seen as the range-based LRMs, but obtained
by estimating the arrival time of the LoS component [45]. In general, there are two
major error sources for ToA measurements as well, i.e., multipath/NLoS impair-
ment [14, 81] and synchronization error [35]. The integration of FR2 bands in 5G
NR allows for a high temporal resolution for mmWave positioning, yielding low im-
pact from the multipath components. Furthermore, with the assistance of virtual
anchors, ToA-based positioning is capable of achieving high positioning accuracy us-
ing both LoS andmultipath components [66, 130]. As to the second error source, the
time-varying clock offsets typically exist between any Tx&Rx pairs. Therefore, the
ToA measurements remain useless without proper synchronization scheme. Such
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problem can be resolved by joint tracking the locations and clock offsets as [65] or
utilizing the time difference of arrival (TDoA) measurements.

AoA. As a directional measurements, AoA provides positioning information that
is complementary to the other two range-based LRMs [80, 103]. However, a poten-
tial problem remains before this angular information can be properly employed for
positioning, that is, the uncertainty of array orientations. Such problem can be tack-
led by several means. For a network-centric system, a Bayesian filter can be applied
to jointly track both the locations and the orientations [94]. As of the device-centric
positioning, the ADoA measurements [101, Ch. 4] can be performed the same way
as the TDoA to eliminate the orientation offsets. Moreover, an inertialmeasurement
unit (IMU) can be employed to provide the orientation estimates [126, 143].

3.2.1 Signal and mmWave channel models

This section presents the mathematical formulation of the applied signal under the
LoS-dominant mmWave radio channel. More specifically, the transmitted OFDM
symbol at the pth sub-carrier is denoted as s[p, i] ∈� at any time instant i . For the
sake of notation simplicity, the index of targets is omitted. After passing through
a LoS-dominate mmWave multipath channel, the anchors acquire the radio signals
via a beam sweeping process that is associated with multiple beamformers (beam-
steering vectors). From the perspective of the mth anchor, the received frequency-
domain complex symbol at the i th time instant and the pth sub-carrier through the
qth beamformer is denoted as

r (q)m [p, i] =
�

w (q)
m [i]

�H
(Λm[p]s[p, i]+n[p, i]) , (3.1)

where n[p, i] ∼ 
�

0,σ2
nINR

�

, referring to the complex-Gaussian white noise
with a power density of σ2

n imposed on overall NR antenna elements, and the Her-
mitian transpose is denoted as H. Moreover, the qth analog beamformer w (q)

m [i] ∈
�NR×1 can be constructed, but not limited to, via phase-shifter according to certain
spatial angles. Due to the omni-directional transmission, the channel matrix for each
sub-carrier Λm[p] ∈ �NR×1 (otherwise, Λm[p] ∈ �NR×NT where NT = 1) can be
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written as

Λm[p] =AR[p]Γ [p]

=
L−1
∑

l=0

bURA (φl )γl e
− j2π fsc pτl ,

(3.2)

whereAR[p] ∈NR×L =
�

bURA(φ0), · · · , bURA(φL−1)
�

represents the array response

and Γ [p] ∈ L×1 =
�

γ0e
− j2π fsc pτ0 , · · · ,γL−1e

− j2π fsc pτL−1
�T

is the channel state vec-
tor. Specifically, bURA (φl ) ∈NR×1 refers to the URA response at the spatial angle
φl ≜ (ϕl ,θl ), γl is the complex channel coefficient including the path-loss of the
l th path with a time delay of τl and fsc is the sub-carrier spacing. Furthermore,
bURA (φl ) can be modeled as a combination of two uniform linear array (ULA) re-
sponses

bURA(φl ) =
�

β0(NR,φl )aULA(ϕl )⊗ aULA(θl |ϕl ), (3.3)

where ⊗ denotes the Kronecker product and the scaling factor β0(NR,φl ) repre-
sents the antenna pattern which decides the array gain that is a function of the total
number of antenna elements NR as well as the spatial angle pair φl . Basically, more
antenna elements allow for a narrower beamwidth, which yields a higher array gain
β0. In addition, the angle pair φ that consists of the azimuth angle θ as well as
the co-elevation angle ϕ slightly varies the corresponding array gain depending on
the radiation pattern of each antenna element. Assuming a half-wavelength antenna
element interval, the individual normalized ULA responses are given as

aULA(ϕl ) =
1

�

Nel

e
− jπsin(ϕl )

�

−Nel−1
2 ,··· ,Nel−1

2

�T

,

aULA(θl |ϕl ) =
1

�

Naz

e− jπcos(ϕl )sin(θl )
�

−Naz−1
2 ,··· ,Naz−1

2

�T

,
(3.4)

where Nel and Naz are the number of antenna elements in the vertical (elevation)
and horizontal (azimuth) directions, respectively, and NR = NelNaz. For example,
Nel =Naz = 16 for a 16× 16 URA.

Last but not least, the qth beamformerw (q)
m without the time index is constructed

in a similar fashion as (3.3) as

w (q)
m = aULA(ϕq )⊗ aULA(θq |ϕq ), (3.5)
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in which
�

ϕq ,θq

�

≜ φq represents the corresponding spatial angle defined in the
applied codebook. In addition, it is presumed that the whole beam sweeping pro-
cess (i.e., the duration of all the beamformers combined) takes less or equal time as
the channel coherence time. That is, the channel matrix in frequency domain (3.2)
remains nearly constant during one beam sweeping process.

3.2.2 Characterization of LRMs’ accuracy

In this section, the achievable accuracy of LRMs via the ubiquitous Cramér-Rao
lower bounds (CRLB) based on the beam-based observations, i.e., beam reference
signal received power (B-RSRP) is examined.

3.2.2.1 ToA measurements

The ToA measurements that reflect the distance observations between the anchors
and the target is expressed as

τ̂[i] = b[i]+ fτ (PT[i])+nτ[i], (3.6)

where b[i] ∈M×1 refers to the bias vector caused by several factors, such as NLoS
transmission, the clock offsets [62], or the location uncertainty of the anchors. While
the effects ofNLoS and clock offsets have been studied and investigated by the earlier
works [35, 45], the solution to the anchor locations’ uncertainty has not beenwidely
analyzed. The proposed solutions are to be provided in Section 3.3. Furthermore,
the ToA observation function fτ (PT[i]) is expressed as

fτ (PT[i]) = [τ1[i], · · · ,τM [i]]
T

=
�

∥PT[i]−PA,1∥, · · · ,∥PT[i]−PA,M∥
�T /c ,

(3.7)

where c is the speed of light, PT = [xT, yT, zT]
T refers to any arbitrary target lo-

cation and PA,m = [xA,m , yA,m , zA,m]
T represents the location of the mth anchor

(e.g., AP). Furthermore, the variable nτ represents the noise vector that reflects
the measurement accuracy. It is worth noting that nτ remains zero-mean under
the LoS and NLoS scenario as the bias is modeled separately in b[i] (3.6). Since
the LoS is a typical situation in 5G SCNs [16], the noise vector nτ[i] is modelled
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as a zero-mean Gaussian variable with a time-dependent noise covariance matrix
Rτ[i] = diag

�

σ2
τ,1[i], · · · ,σ

2
τ,M [i]

�

. The noise variance of the mth ToA measure-
ment, σ2

τ,m[i], is bounded by the following CRLB for OFDM signals [101, Ch.3]

σ2
τ,m[i]≥

3
8π2 f 2scSNRm[i]Mp (Mp + 1)(2Mp + 1)

, (3.8)

where fsc refers to the sub-carrier spacing, and Mp =
Np−1

2 , Np is the overall number
of sub-carriers. It is noteworthy that (3.8) applies only for OFDM with uniformly
distributed energy among all the active sub-carriers. Furthermore, the linear scale
signal-to-noise ratio (SNR) at the i th time instant with respect to the mth anchor is
denoted as

SNRm[i] =max (Bm[i])/Pn = B(q̂)
m [i]/Pn , (3.9)

where Pn is the noise power over the considered signal bandwidth Bw = fscNp ,

and B(q̂)
m [i] refers to the maximum B-RSRP among the beam power vector Bm[i] ∈

�Q×1, where Q is the overall number of the beamformers in the codebook. Each
B-RSRP can be computed by averaging the power over all the active sub-carriers of
the received OFDM signals3, defined in (3.1)

B(q)
m [i] =

1
Np

Np
∑

p=1
|r (q)m [p, i]|2, (3.10)

where the index of beamformer q ∈  = {1, · · · ,Q}. Normally, the ToA and AoA
associated with such beamformer corresponds to the information of the LoS path if
unblocked or the strongest multipath when the LoS path is blocked.

3.2.2.2 AoA measurements

In any typical 3D environments, the AoA measurements consist of the elevation
and the azimuth angles. Taking the array orientation into account, the AoA mea-
surement vector with respect to a single target is expressed as

φ̂[i] = fφ (PT[i])+α+nφ[i], (3.11)

3In practical systems, the B-RSRPmeasurements are normally taken from certain reference or pilot
sub-carriers, where the transmitted signal is known.
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where φ̂[i] ∈ �2M×1 contains the elevation AoA ϕ̂[i] ∈ �M×1 as well as the az-
imuth AoA θ̂[i] ∈ �M×1. In addition, the angular offset due to the specific ar-
ray orientations is denoted as α = [αT

ϕ ,α
T
θ
]T ∈ �2M×1, which contains the an-

gular offsets along both elevation domain and azimuth domain, αϕ ∈ �M×1 and
αθ ∈ �M×1, respectively. It is noteworthy that the angular offset α can be con-
sidered as known or unknown, depending on the available information to the sys-
tem. Herein, the angular offset α is assumed to be known. Furthermore, the AoA
noise vector nφ[i] ∼ 

�

02M ,Rφ[i]
�

is a zero-mean Gaussian process, in which,
Rφ[i] ∈�2M×2M is described as

Rφ[i] =





Rϕ[i] 0

0 Rθ[i]



 , (3.12)

where the noise covariance of elevationAoARϕ[i] = diag
�

σ2
ϕ,1[i], · · · ,σ

2
ϕ,M [i]

�

and

the noise covariance of azimuth AoA Rθ[i] = diag
�

σ2
θ,1[i], · · · ,σ

2
θ,M [i]

�

.

The AoA observation function fφ (·) in (3.11) consists of two parts, the observa-
tion function for elevation angles that is denoted as fϕ (·), and the observation func-
tion for azimuth angles that is denoted as fθ (·). Therefore, the AoA observation

function is expressed as fφ (PT[i]) =
�

f Tϕ (PT[i]) , f
T
θ
(PT[i])

�T
, where

fϕ (PT[i]) =











arcsin (∆z1[i]/d1[i])
...

arcsin (∆zM [i]/dM [i])











, fθ (PT[i]) =











atan2 (∆y1[i],∆x1[i])
...

atan2 (∆yM [i],∆xM [i])











,

(3.13)
in which ∆xm[i] = x[i]− xm , ∆ym[i] = y[i]− ym , and ∆zm[i] = z[i]− zm for
all m = 1, . . . ,M . Additionally, arcsin and atan2 denote the inverse sine function and
four-quadrant inverse tangent function, respectively.

Further, themeasurement noise variance of themth azimuthAoAmeasurement,
σ2
θ,m[i], is bounded by the CRLB that is derived based on [101, Ch.3] as

σ2
θ,m[i]≥

6

Naz
�

N 2
az− 1

�

SNRm[i] (πcosθm)
2 , (3.14)

whereNaz and SNRm[i] refer to the same variables defined in (3.4) and (3.8), respec-
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tively. The number of antenna element along the azimuth plane Naz actually rep-
resents the angular resolution, the same applies to the co-elevation plane. As such,
a higher resolution (more antenna elements) yields a higher accuracy. Throughout
this thesis, we consider the URA to be square, i.e., Naz = Nel. Such configuration
yields the same angular resolution in both elevation and azimuth direction. Hence,
the noise statistics of the elevation AoA measurements, σ2

ϕ,m , shares the same ex-
pression as (3.14). Additionally, un-squared URA with Naz  = Nel can certainly be
employed for applications that do not equally value the vertical accuracy and the
horizontal accuracy, such as the ground vehicles-oriented positioning system [70].

Furthermore, it is seen that the angular CRLB also depends on the relative ge-
ometry (reflected by both θm and ϕm) between the target and the anchor, judging
from the mathematical property of cosine function. That being said, any AoA ap-
proaching ±π/2 leads the variance in (3.14) approaching infinity as, in which case,
the effective array aperture vanishes leaving no visible angular resolution. Moreover,
it is noteworthy that, compared to the applied individual characterization as (3.14),
the AoA accuracy in both elevation and azimuth directions should be further re-
duced when jointly utilizing measurements from all the antenna elements of URA.

3.3 Positioning algorithms

As the second stage of positioning, different approaches are introduced in this section
to acquire location estimates based on available LRMs. The corresponding perfor-
mance is evaluated in ray-tracing based simulations. Herein, the focus will be given
to perform positioning with the location uncertainties of the anchors, which have
not been widely investigated in the earlier works of positioning. Specifically, there
are three algorithms proposed and evaluated, one refers to the geometry-based po-
sitioning approach, whereas the other two belong to the Bayesian framework, both
build on the ubiquitous EKF.

3.3.1 Snapshot positioning — WCG

As the first approach, the proposed geometry-based positioning solution, WCG,
is derived based on the fusion of the measurements from both delay and angular
domains (i.e., the ToA and AoA) and the geometric relationship. The specific il-
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Figure 3.2 The geometric relationship between the mth anchor and the target with measurement errors
as well as the location uncertainty of the anchors.

lustrations are given in Fig. 3.2. The time instant is skipped since WCG is a snap-
shot estimation method, i.e., the current estimate depends only on the current avail-
able information/measurements. With a perfect location of the mth anchor where
m ∈ = {1, . . . ,M} and the corresponding true ToA and AoA, the target location
obtained via the mth anchor PT,m can be computed as

PT,m =











xT,m

yT,m

zT,m











=











xA,m + cτmcosϕmcosθm

yA,m + cτmcosϕmsinθm

zA,m + cτmsinϕm











. (3.15)

Note that the calculated location in (3.15) is the ground truth of the target, which is
illustrated by the blue dot marker in Fig. 3.2.

In practice, not only the LRMs are in general erroneous, but there also exists
certain uncertainty in the assumed locations of the anchors, in which case, (3.15)
can be re-written as

P̂T,m =











x̂T,m

ŷT,m

ẑT,m











=











x̃A,m + c τ̂mcosϕ̂mcosθ̂m

ỹA,m + c τ̂mcosϕ̂msinθ̂m

z̃A,m + c τ̂msinϕ̂m











, (3.16)

inwhich, the location of themth anchor known to the network is denoted as P̃A,m =
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�

x̃A,m , ỹA,m , z̃A,m
�T . The green star marker in Fig. 3.2, that is acquired by applying

(3.16), is the location estimate based on erroneous anchor location as well as the
noisy measurements. Therefore, overall M location estimates are obtained from M
pairs of anchors, denoted as P̂T =

�

P̂T,1, · · · , P̂T,M

�

. To fuse the obtained M location
estimates into the final location estimate, a weight vector is formed based on the
channel quality (which reflects the measurement quality) of each anchor as

w = [w1, · · · ,wM ]
T = [SNR1, · · · , SNRM ]

T , (3.17)

where the SNR are defined and calculated in (3.9).

In the end, the location estimate by theWCG is the product of the estimate target
location matrix P̂T and the normalized weight vector w̃ such that

P̂WCG = P̂Tw̃, (3.18)

where w̃ =w/
∑M

m=1wm . The weight vector can certainly be constructed in differ-
ent manners, and the performance largely relies on the applied scenarios. Addition-
ally, it is noteworthy that the most attractive feature of WCG lies in the computa-
tional efficiency especially compared to the EKF-based solutions that are introduced
next.

3.3.2 Sequential positioning I — SLAT EKF

As one of the major contributions of this thesis, the second proposed positioning
solutions, namely SLAT EKF is introduced in this section. Since it is a SLAT-based
approach, the most significant feature is the capability of tracking the locations of
the mobile targets, while mapping the static anchors’ location, further enhancing
the positioning capability and performance for the industrial IoT systems.

Exploiting the flexibility in dealing with the non-linear measurement or state
transition models, the proposed SLAT EKF is formulated according to [105] as

state transition model : s[i] = Fs[i − 1]+u[i]

measurement model : y[i] = h (s[i])+w[i],
(3.19)

where y[i] represents the LRMs which are facilitated as the measurements in the
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EKF, and s[i] refers to the time-varying state vector4 that contains the information
of both targets and anchors such as

s=
�

sTT,1, · · · , s
T
T,K ,P

T
A,1, · · · ,P

T
A,M

�T
, (3.20)

in which, the state vector of the kth target is given as

sT,k =
�

PT
T,k ,v

T
T,k ,a

T
T,k

�T
, (3.21)

where vTT,k =
�

v (T,k)
x ,v (T,k)

y ,v (T,k)
z

�

and aTT,k =
�

a(T,k)x ,a(T,k)y ,a(T,k)z

�

are the target ve-
locity and acceleration vector, respectively. The index of targets k ∈ = {1, · · · ,K}.
Although only the locations of the anchors are considered in the state vector, their
velocity and acceleration can also be included to track themovements of the anchors.

Furthermore, the process noise vector is denoted as u ∼ 
�

09K+3M ,Q
�

where
09K+3M is a zero-vector with a dimension of 9K+3M , which are expressed as follows
together with the linear state transition matrix F and the state covariance matrix Σ

Q=





QT 0

0 QA



 ,F=





FT 0

0 FA



 ,Σ=





ΣT 0

0 ΣA



 , (3.22)

where QT ∈ �9K×9K , QA ∈ �3M×3M , FT ∈ �9K×9K , FA ∈ �3M×3M , ΣT ∈ �9K×9K

andΣA ∈�3M×3M are the process noise covariance matrix, the linear state transition
matrix and state covariance matrix of the considered targets and anchors, respec-
tively. In particular, bothQT and FT are block diagonal matrices that consist of the
corresponding matrix of each individual target, i.e., QT = blkdiag

�

QT,1, · · · ,QT,K
�

and FT = blkdiag
�

FT,1, · · · ,FT,K
�

, the individual FT,k andQT,k are written as

FT,k =











1 ∆t ∆t 2

2

0 1 ∆t

0 0 1











⊗ I3×3, QT,k = σ2
q ,k











∆t 5

20
∆t 4

8
∆t 3

6
∆t 4

8
∆t 3

3
∆t 2

2
∆t 3

6
∆t 2

2 ∆t











⊗ I3×3, (3.23)

where∆t represents the update time-step between two successive time instants, and
σ2
q ,k denotes the process noise variance of the acceleration of the kth target. For the

4The time index i is dropped thereafter for the notation’s simplicity.
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Table 3.1 The number of available LRMs as a function of the number of targets K and anchors M for
each considered measurement choice

Measurement Number of available LRMs, N

ToA, τ MK
TDoA,∆τ (M − 1)K
AoA, φ 2MK

ToA+AoA, τ+φ 3MK
TDoA+AoA,∆τ+φ (3M − 1)K

anchors, FA = I3M×3M andQA = I3M×3Mσ
2
q ,A. Similarly, the covariance matrices of

the initial state for both targets and anchors are (block) diagonal as well, in which
ΣT = blkdiag

�

ΣT,1, · · · ,ΣT,K
�

, where ΣT,k = blkdiag
�

ΣP,k ,Σv,k ,Σa,k
�

and for the
anchors ΣA = blkdiag

�

ΣA,1, · · · ,ΣA,M
�

, where ΣA,m = diag
�

σ2
x ,σ

2
y ,σ

2
z

�

.

Moreover, the measurement noise vector that reflects the accuracy of y is de-
noted as w ∼  (0N ,R) where N is the overall number of available LRMs, R =
blkdiag

�

R(1), · · · ,R(K)� and y =
�

yT1 , · · · ,y
T
K

�T . For instance, the number of LRMs
is equal to the number of anchors, i.e., N = M when only the ToA measurements
are available. As such, the measurement noise covariance matrix Rτ ∈ �MK×MK =
blkdiag

�

R(1)
τ , · · · ,R(K)

τ

�

in which, R(k)
τ = diag

�

σ2
τ,1,k , · · · ,σ

2
τ,M ,k

�

. The overall num-
ber of LRMs is essentially a function of the number of targets and anchors, given in
Table 3.1. It can be seen that when utilizing both time- and angle-domain LRMs, the
number of available LRMs becomes larger, which could be beneficial to the achiev-
able positioning performance, as will be shown in Section 3.5.

Additionally, the measurement function h (·) in (3.19) for all considered LRMs is
outlined in (3.6) and (3.11) from which the Jacobian matrix is evaluated. As a con-
crete example, when only the ToA measurements are utilized, the Jacobian matrix
Hτ ∈�MK×(9K+3M ) can be constructed as

Hτ =



















H(1)
τ,T 0 · · · 0 H(1)

τ,A

0 H(2)
τ,T

... H(2)
τ,A

...
. . . 0

...

0 · · · 0 H(K)
τ,T H(K)

τ,A



















, (3.24)

where H(k)
τ,T ∈ �M×9 and H(k)

τ,A ∈ �M×3M refer to the Jacobian matrix of the kth
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target, where the partial derivatives are taken with respect to the variables of targets
and anchors, respectively. In a similar manner,H∆τ ,Hφ,Hτ+φ andH∆τ+φ are con-
structed as (3.24), and evaluated at the a prior mean ŝ− which is shown in Algorithm
1 where the proposed SLAT EKF is briefly summarized. Furthermore, the specific
Jacobian matrices with respect to the ToA, H(k)

τ,T and the AoA, H(k)
φ,T

∈ �2M×9can
then be expressed as

H(k)
τ,T =























∆x̂ (k)1

c d̂
(k)
1

∆ŷ (k)1

c d̂
(k)
1

∆ẑ (k)1

c d̂
(k)
1

01×6

...
...

...
...

∆x̂ (k)M

c d̂
(k)
M

∆ŷ (k)M

c d̂
(k)
M

∆ẑ (k)M

c d̂
(k)
M

01×6























, (3.25)

H(k)
φ,T

=































































−
∆x̂ (k)1 ∆ẑ (k)1
�

d̂
(k)
1

�2
d̂
(k)
2D,1

−
∆ŷ (k)1 ∆ẑ (k)1
�

d̂
(k)
1

�2
d̂
(k)
2D,1

d̂
(k)
2D,1

�

d̂
(k)
1

�2 01×6

...
...

...
...

−
∆x̂ (k)M ∆ẑ (k)M

�

d̂
(k)
M

�2
d̂
(k)
2D,M

−
∆ŷ (k)M ∆ẑ (k)M

�

d̂
(k)
M

�2
d̂
(k)
2D,M

d̂
(k)
2D,M

�

d̂
(k)
M

�2 01×6

−
∆ŷ (k)1

d̂
(k)
2D,1

∆x̂ (k)1

d̂
(k)
2D,1

0 01×6

...
...

...
...

−
∆ŷ (k)M

d̂
(k)
2D,M

∆x̂ (k)M

d̂
(k)
2D,M

0 01×6































































, (3.26)

where ∆x̂ (k)m = x̂T,k − x̂A,m , ∆ŷ (k)m = ŷT,k − ŷA,m , ∆ẑ (k)m = ẑT,k − ẑA,m , d̂
(k)
m =

∥P̂T,k− P̂A,m∥ and the 2D distance between the kth target and the mth anchor is de-

noted as d̂
(k)
2D,m . In terms of the Jacobianmatrix of anchors in (3.24), they can be con-

veniently constructed by taking the opposite sign of each entry in (3.25) and (3.26).
Nevertheless, since the matrix dimension changes from M × 9 to M × 3M (for ToA-
based formulation) or 2M × 3M (for AoA-based formulation), the non-zero entries

34



Algorithm 1: SLAT EKF

1 At time index i = 0, initialize the state s, covariance Σ, process noise
covarianceQ

2 for i = 1, · · · ,NT do
3 Generate the LRMs vector y[i] and compute the corresponding

measurement noise covariance matrix R[i]
4 Calculate the Jacobian matrix according to, e.g., (3.24)
5 Implement the EKF equations [105]
6 Prediction:
7 state ŝ−[i] = Fŝ[i − 1]

8 state covariance Σ̂
−
[i] = FΣ̂[i − 1]FT +Q[i]

9 Kalman gain:

10 K[i] = Σ̂
−
[i]HT [i]

�

H[i]Σ̂
−
[i]HT [i]+R[i]

�−1

11 Correction/update:
12 ŝ[i] = ŝ−[i]+K[i]

�

y[i]−h
�

ŝ−[i]
��

13 Σ̂[i] = (I−K[i]H[i]) Σ̂
−
[i]

14 end

are to be shifted accordingly. An example ofH(k)
τ,A ∈�M×3M is provided as

H(k)
τ,A =



















H(k)
τ,A,1 01×3 · · · 01×3

01×3 H(k)
τ,A,2

...
...

. . .

01×3 01×3 · · · H(k)
τ,A,M



















, (3.27)

whereH(k)
τ,A,m ∈�1×3 is

H(k)
τ,A,m =





∆x̂ (k)m

c d̂
(k)
m

,
∆ŷ (k)m

c d̂
(k)
m

,
∆ẑ (k)m

c d̂
(k)
m



 . (3.28)

Meanwhile, the Jacobianmatrix of anchors when utilizing the AoAH(k)
φ,A

∈�2M×3M

can be computed and obtained in the sameway as (3.27). In the next section, another
EKF-based but different positioning approach is formulated.
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3.3.3 Sequential positioning II — normal EKF

Instead of joint positioning of both targets and anchors as the proposed SLAT EKF,
another EKF-based solution is presented, namely the normal EKF, where only the
location of targets are estimated, however, with the statistics of anchor location un-
certainty being taken into account. One advantage of the normal EKF lies in the re-
duced computational complexity compared to the SLATEKF due to a much shorter
state vector. Specifically, the normal EKF is formulated as

state transition model : sT,k[i] = FT,ksT,k[i − 1]+uT,k[i]

measurement model : yk[i] = h
�

sT,k[i]
�

+ w̃k[i],
(3.29)

where the noise noise uT,k ∼
�

0K ,QT,k
�

. The state vector becomes

sT,k =
�

xT,k , yT,k , zT,k ,v
T,k
x ,vT,k

y ,vT,k
z ,aT,kx ,aT,ky ,aT,kz

�T
. (3.30)

The major difference between normal EKF and SLAT EKF lies in the modelling of
the measurement noise in (3.29) that is denoted as w̃k ∼

�

0,C(k)
�

, the covariance
matrix of which is denoted as

C(k) =R(k) + R̃
(k)
. (3.31)

It is observed that the measurement covariance now consists of two components:
R(k) that represents the measurement noise coming from LRMs as in Algorithm 1,
and R̃

(k)
that refers to the extra noise coming from the anchors’ location uncertainty.

The specific way of calculating this extra noise component R̃
(k)

differs slightly when
considering different LRMs, which are expressed as

R̃
(k)
τ =H(k)

τ,AΣA

�

H(k)
τ,A

�T
, R̃

(k)
φ =H(k)

φ,A
ΣA

�

H(k)
φ,A

�T
, (3.32)

where R̃
(k)
τ and R̃

(k)
φ are the considered extra noise when utilizing ToA and AoA,

respectively. In addition, ΣA was given in (3.22) andH(k)
τ,A,H

(k)
φ,A

can be constructed
as (3.27). In such way, the anchor location uncertainty is integrated andmapped into
the measurement model and processed by the normal EKF procedure.

It is noteworthy that, although the target index k has been employed in the for-
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Figure 3.3 Joint positioning and tracking via mmWave D2D (sidelink) communications — a network-
centric scheme.

mulation, the positioning for each target when applying the normal EKF is indepen-
dent from each other since the obtained LRMs are statistically independent for each
pair of target-anchor. This evidence is also applied to the WCG algorithm. How-
ever, due to the joint estimation of both targets and anchors in the SLAT EKF, the
consideration of different number of targets possesses certain impact, which we will
take a close look at in Section 3.5.

3.4 Considered industrial IoT scenario for positioning

In the previous section, one geometry-based and two EKF-based positioning algo-
rithms have been proposed and formulated to cope with the difficulty/challenge of
positioning in the industrial environment, i.e., the location uncertainty of the an-
chors. The proposed algorithms can be considered as the answers to research ques-
tion 2 (see Section 1.2 and Table 1.1).

In this section, the considered industrial IoT scenario based on NR sidelink for
positioning is presented as in Fig. 3.3, where various mobile vehicles and sensor de-
vices coexist in an industrial environment, e.g., an outdoor harbor and an indoor
warehouse. As such, an improved location awareness can be beneficial for the en-
hancement of the overall situational awareness [78], which in turn reinforce the op-
erational efficiency and safety in the industrial system [21]. Since a D2D network is
considered, all the involved vehicles and sensor devices are referred to as UE, which
are categorized into two kinds, the target UE and the anchor UE. Specifically, the
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Figure 3.4 An indoor industrial warehouse environment for the industrial IoT systems. The ray-tracing
feature is enabled in the environment [129].

target UE, such as the ground or aerial vehicles, in general possesses high mobil-
ity in order to perform certain tasks, such as environment monitoring and video
surveillance. On the other hand, the anchor UE, e.g., the sensor devices or ground
machinery normally maintains lowmobility. They are deployed at certain locations
serving as anchors. Thereafter, the LRMs estimation as well as the positioning are
carried out as specified in Section 3.1. Last but not least, the ray-tracing enabled in-
dustrial environment, on which the channel emulation is carried out, is illustrated
in Fig. 3.4 [129].

3.5 Performance evaluation and analysis

This section presents and compares the achievable positioning performance within
a mmWave D2D network using the three proposed positioning algorithms.

3.5.1 Algorithm initialization

The initialization of the proposed SLATEKF is to be done for two entities: the target
UE and the anchorUE, as expressed in (3.20). In terms of the targetUE locations, the
proposed WCG approach is applied, however, with the available LoS APs or gNBs
as the anchors. The rationale of doing so is to control the initial uncertainty of the
overall positioning system, such that the uncertainty of initialized target UE is not
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correlated with the location uncertainty of the anchor UE. Moreover, the locations
of all the anchor UE are initialized based on a prior knowledge (that can be acquired
from the available database, such as the fingerprinting records) as the following form

ΣA,m = diag

�

σ2
AT,σ

2
AT,

σ2
AT

β2

�

, (3.33)

where σAT refers to the location uncertainty in x- and y-direction andβ= 10, ∀m ∈
 . That said, there exists a roughly 7.1 m uncertainty in 3D when σAT = 5 m, and
such parameter σAT is varied in the simulation in order to obtain the corresponding
positioning performance under different levels of anchor location uncertainty.

Furthermore, the process noise variance σ2
q ,k (for the targets) is tuned according

to the maximum acceleration |amax| such that σ2
q ,k = (|amax|/(6∆t ))2. Since all the

anchor UE are assumed to be static, the σ2
q ,A is set to 0. The initialization for normal

EKF is the same as the part for target UE in the SLAT EKF. There is no requirement
on the initialization for theWCG approach, which can be seen as another advantage
of the snapshot positioning method.

3.5.2 Positioning performance

The positioning performance of three proposed approaches are to be presented in
this section. The radio channel is emulated in the ray-tracing environment shown
in Fig. 3.4. The LoS region where the industrial vehicles and robots (i.e., target UE)
move occupies a horizontal space of 70 m×25 m, with a 18 m height in the verti-
cal direction. In addition, all target UE’s trajectories have been generated using a
random waypoint (RWP) model [50] that last for 200 seconds. Moreover, the signal
parameters (the carrier and the bandwidth) outlined in Table 3.2 are selected mainly
according to the NR sidelink specifications [4] for mmWave D2D communications.
The antenna system is configured as 8×8 URA under the consideration of a reason-
able physical size and acceptable angular resolutions.

3.5.2.1 Accuracy of the LRMs

Prior to the positioning performance of the proposed algorithms, the obtained accu-
racy of the LRMs is presented, including ToA, TDoA, azimuth and elevation AoA.
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Table 3.2 Utilized parameters in the simulation

Parameter Value

carrier frequency 26 GHz
sub-carrier spacing 60 kHz
signal bandwidth 10 MHz
transmit power 10 dBm

receive beamforming gain 20 dBi
EKF update time-interval 100 ms

anchor UE antenna 8× 8 URA
target UE antenna omni-directional
anchor UE height 1 - 11 m

avg. target UE velocity 1.1 m/s

Figure 3.5 The accuracy of CRLB-based LRMs.

As discussed in Section 3.2, the accuracy of ToA, azimuth and elevation AoA is eval-
uated based on the derived CRLB as expressed in (3.8) and (3.14) while that of TDoA
measurements can be calculated by summing the estimation uncertainty of two ToA
statistics (4.6). Assuming a Gaussian error in each ToA estimate, the TDoA is in-
evitably less accurate than the ToA, as shown in Fig. 3.5.

In the same figure, the AoA measurement accuracy is plotted with the unit of
degree (instead of radian). It can be observed that, the majority of the angle errors is
less than 0.9 degree, while the azimuth AoA measurements remain in general more
uncertain compared to the elevation AoA. This phenomenon has been indirectly
explained in Section 3.2.2.2, where the AoA uncertainty depends on the signal level
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(a) The 3D performance (b) The vertical performance

Figure 3.6 The positioning performance comparison among WCG, SLAT EKF and normal EKF.

(SNR), angular resolution (number of antenna elements), and the geometry (true
AoA). Thus, for either azimuth or elevation AoA, the corresponding measurement
uncertainty becomes rather large when the signal incidents from around ±90◦ (due
to the cosine term), in which case, the effective array aperture diminishes, reducing
the angular resolution significantly. Furthermore, since the moving area of target
UE is in general larger in the horizontal dimension than in the vertical dimension,
the SNR level at the azimuth extreme (±90◦) is normally lower than that at the eleva-
tion extreme, therefore, the SNR is most likely not large enough to compensate the
negative impact from the cosine term. Consequently, the azimuth AoA in general
yields a worse accuracy than the elevation AoA, as given in Fig. 3.5.

3.5.2.2 WCG vs SLAT EKF vs normal EKF

The obtained positioning performance applying the three proposed algorithms is
compared when overall one target UE and six anchor UE are considered in the en-
vironment. In particular, the horizontal locations of the anchor UE are randomly
generated and uniformly distributed over the 3D space shown in Fig. 3.4. In order
to avoid extreme cases when all the anchor UE are located rather close to each other,
a 8 m horizontal interval among them is ensured in the simulation setup.

For a fair comparison, both ToA and AoA measurements are utilized in both
EKF-based solutions. This is due to the fact that WCG applies both types of LRMs
to obtain the location estimates. The positioning performance in 3D and vertical
plane are obtained based on 500 trials (using random trajectories and locations) and
characterized via cumulative density function (CDF) in Fig. 3.6, in which the 1 m
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and 0.2 m accuracy threshold are explicitly highlighted using the cyan vertical lines
for a better demonstration of the reliability of the location estimates. Such thresh-
old values are employed according to [7, Table 7.3.2.2-1], where positioning per-
formance requirements are envisioned for NR system. Furthermore, the presented
performance refers to the target UE location estimation accuracy since both WCG
and normal EKF do not estimate the anchor UE’s locations.

As shown in Fig. 3.6, the performance of each approach become worse (shift
towards right) as the location uncertainty σAT becomes larger. This phenomenon
proves that a higher location uncertainty in general leads to a less accurate location
estimation. In terms of the performance difference among different algorithms, it
can be seen that at a given σAT (especially if larger than 0.5 m), the accuracy of SLAT
EKF is higher than that of WCG which outperforms the normal EKF in both 3D
and vertical plane. That being said, the integration of the location uncertainty of
the anchor UE into the measurement covariance by the normal EKF cannot well
compensate the resulting negative impact, whereas the SLAT EKF solution can, to
a large extent, finish the joint positioning of both target UE and anchor UE with
better performance than the normal EKF. In the case of σAT = 5 m that corresponds
to an approximate 7.1 m randomness in 3D obtained according to (3.33), the SLAT
EKF is able to achieve a 80% 3D sub-meter accuracy as well as vertical sub-0.2 meter
accuracy, whereas the WCG and the normal EKF stay at a 75% and 35% sub-0.2
meter accuracy, respectively, and both less than 10% 3D sub-meter accuracy.

Due to the observed disparity in the performance, in the following sections, focus
and efforts will be given to the SLAT EKF. The corresponding performance is eval-
uated under random anchor deployments by utilizing different types of LRMs indi-
vidually and collectively (’Individually’ means the utilization of one type of LRMs
e.g., only ToA, and ’collectively’ means more than one type of LRMs are applied,
e.g., ToA+AoA). Furthermore, the performance of different numbers of target UE
and anchor UE is also assessed and presented.

3.5.2.3 Performance under different number of targets and anchors

Finally, the overall positioning performance under different numbers of target UE
and anchor UE is characterized. Specifically, uniformly distributed anchor UE are
generated within the environment together with the RWP-based trajectories for tar-
get UE. The positioning performance of both target UE and anchor UE utilizing
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(a) Probability of 2D sub-meter accuracy (b) Probability of vertical sub-0.2 meter accuracy

Figure 3.7 Positioning performance of ToA based SLAT EKF at σAT = 4 m under various number of
target UE and anchor UE.

ToA-only, AoA-only and ToA+AoA is given in Fig. 3.7, Fig. 3.8 and Fig. 3.9, re-
spectively, applying the same metrics and initialization approach with σAT = 4 m.
Specifically, the vertical performance by ToA in Fig. 3.7b turns out to be constantly
poor regardless of the overall number of K or M . However, in terms of the perfor-
mance in 2D plane, interesting phenomenon is observed. Specifically, when M = 2,
the varying of K remains indifferent to the final outcome due to the fact that any
two anchor UE always form a collinear deployment, yielding bad geometry for ToA
based positioning (verified also in Fig. 4 of publication IV). An obvious performance
boost is seen at the top left corner where K changes from one to two. However, the
continuing growth of K (i.e., 3, · · · , 8) does not bring significant performance gain
any more for M = 3, · · · , 6. Moreover, given any considered K , more anchor UE in
generally returns a better performance.

The performance of AoA shown in Fig. 3.8. In particular, the system with more
than one target UE demonstrates a major performance improvement over the one-
target system, but the performance gain remains rather stable ever since the number
of target UE increases over two. Additionally, more anchor UE brings incremen-
tal performance gain in both 2D and vertical plane for K ≥ 2, and the overall best
obtained performance in terms of 2D sub-meter accuracy and vertical sub-0.2 meter
accuracy reaches around 50 % and 70%, respectively.

Moving towards Fig. 3.9 (the ToA+AoA based system5), it is seen that the perfor-
mance of both 2D and vertical plane possesses rather similar trend. In particular, the
performance remains at a lower level when M = 2 regardless of the value of K (be-

5The performance of TDoA+AoA based system and TDoA based system are omitted here due
to the similar performance. However, the plotted performance and analysis can be found in Fig.5 of
publication VI.
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(a) Probability of 2D sub-meter accuracy (b) Probability of vertical sub-0.2 meter accuracy

Figure 3.8 Positioning performance of AoA based SLAT EKF at σAT = 4 m under various number of
target UE and anchor UE.

(a) Probability of 2D sub-meter accuracy (b) Probability of vertical sub-0.2 meter accuracy

Figure 3.9 Positioning performance of ToA+AoA based SLAT EKF at σAT = 4 m under various number
of target UE and anchor UE.

tween 60%-70% sub-meter and sub-0.2 meter accuracy) than the rest of the cases. As
discussed and seen previously in Fig. 3.7, the presence of two anchor UE inevitably
yields the collinear deployment, positioning therefore only relies on the AoA mea-
surements, yielding worse performance compared to other rows. Nevertheless, the
corresponding performance is still much better than the performance demonstrated
in Fig. 3.7 (utilizing ToA only) and Fig. 3.8 (utilizing AoA only). When there are
two anchor UEs in total (M = 2), adding more target UE improves the vertical per-
formance more than the 2D performance (see the last row of Fig. 3.9a and Fig. 3.9b).
In the cases of M = 3, · · · , 6, the overall performance in both planes significantly
improves to approximately 80%-95%. That is to say, the growth of K value (from
1 to more) does not bring much performance gain to ToA+AoA based system as it
does to ToA or AoA based system. Therefore, the investigation on the number of
target and anchor UE demonstrates that acquiring LRMs from both time-domain
and angle-domain plays a vital role in enhancing the achievable positioning accuracy
especially under challenging system geometry.
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3.6 Summary

In this chapter, several positioning solutions of achieving the location awareness via
mmWaveD2D communications were presented. Although the air interface has been
selected to be the NR sidelink, the positioning solutions can also be applied in other
air interfaces and employed in other scenarios with a straightforward extension. In
particular, a network-centric positioning engine was adopted, and three position-
ing approaches were formulated with a focus on addressing the potential challenges
in the industrial environment, i.e., the location uncertainty of the anchors. With
regard to the positioning performance, it is seen that the SLAT EKF certainly out-
performs the other two methods in both horizontal and vertical planes, however, at
the expense of a longer state vector that leads to a higher computational complex-
ity. Nevertheless, such challenge on computational power can be alleviated by the
utilization of edge computing at the cloud, i.e., the adopted network-centric frame-
work.

In addition, the geometric impact on the achieved positioning accuracy was stud-
ied. The positioning outcome becomes significantly more robust when the LRMs
from both time and angle domain are available than only one type of LRMs is ac-
cessible. In terms of the positioning accuracy with different number of overall UE,
the simulation results showed that more anchor UE in the system can in general
improve the overall performance because of more available LRMs. However, the
growth of the number of target UE does not typically yield a performance improve-
ment, even though two-target system vastly outperforms one-target system when
utilizing LRMs individually.

With proper combination of efficient positioning and sensing solutions, it is rea-
sonable to believe that an improved 3D situational awareness can be obtained and
utilized in both physical and virtual world use cases, further expanding the proposed
wireless solution beyond the considered scenarios.
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4 EXPLOITING THE LOCATION AWARENESS

— A NETWORK-CENTRIC

POSITIONING-AIDED BEAMFORMING

STRATEGY

In the previous chapter, several positioning solutions were developed and presented
to achieve the location awareness in the context of industrial IoT. In this chapter, a
positioning-aided communication framework is introduced and formulated for en-
hanced communication performance. The achievable benefits in both initial access
latency and DL spectral efficiency further demonstrate the applicability of the pro-
posed PA-BF (positioning + BF) to the industrial IoT use cases.

Before a systematic discussion on the proposed framework, let us first introduce
the existed BF strategies, which has been so far discussed through the following three
representative categories:

• an exhaustive searching strategy, exhaustive beamforming (EX-BF) [30, 53]

• a multi-level searching strategy, hierarchical/genetic BF strategy [43, 131]

• a location-based strategy, context-information (CI)-based BF [13, 31, 37, 40]

The detailed elaborations on each type of BF are omitted herein, interesting readers
may refer to publication III for more information.

Aiming at enhancing the communication performance in the DL, a positioning-
aided communication framework is proposed to facilitate the location awareness of
the UE obtained via UL positioning. All in all, compared with proposed strategies
in the literature, the proposed PA-BF operates on a low-complexity analog BF in
which only one beam is generated at one time instant, while positioning is carried
out in the UL by means of multi-connectivity in a mmWave SCNs.
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feedback channel
estimated UE location

Figure 4.1 A cloud-oriented mmWave mobile network, facilitating the positioning-aided communications.

4.1 A cloud-oriented mmWave mobile network

This section begins with an overview of the considered cloud-oriented network.
Thereafter, the UL positioning as well as the DL positioning-aided communications
scheme are described and formulated.

4.1.1 System overview

Continuing with the network-centric feature employed for positioning in Chapter 3,
a cloud-oriented mmWave network is envisioned and discussed involving both com-
munication and positioning, as depicted in Fig. 4.1. In particular, a TDD-based sys-
tem is consideredwithmmWave as themainRAT1. Specifically, everyUE is assumed
to be omni-directional, fromwhich the pilot/reference signals are transmitted to the
APs in a periodic manner. Further, orthogonal frequency division multiple access
(OFDMA) is employed for multiple access among the UE, and the APs that are in
the LoS condition with respect to the UE are denoted as the LoS-APs. At the net-
work side, URA is assumed to be installed on each AP, fromwhich only one antenna
element remains active (omni-directional) in the UL positioning phase, whereas all the
antenna elements function in the DL transmission (directional).

Such configuration is adapted to reduce the positioning overhead in the ULwhile
exploiting directional communications in the DL that is determined by the UL posi-
tioning accuracy. Further detailswill be discussed in Section 4.1.3 and Section 4.2.2.1.
Moreover, the LRMs are estimated by the LoS-APs, then sent to the edge/cloud

1The work integrates both mmWave and WiFi RATs can be found in publication IV.
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server, where the UE locations are estimated based on the collected measurements.
The edge/cloud server can be considered as a central unit or data center that is re-
sponsible for scheduling, handover predictions, and radio resource management of
the overall network. With the estimated UE locations, the positioning-aided DL
communications are then implemented, which, as will be demonstrated, yield a
shorter initial access latency than a conventional beam alignment process.

It is also important to point out that, since it is a network-centric positioning
scheme, the round-trip delay between the cloud and the APs may cause extra delays,
namely, the cloud communication latency [134]. However, such latency is typically
much smaller than the periodicity of pilot/reference signal transmission, therefore,
can be ignored. Nevertheless, the system model and formulation do include the
cloud communication latency, which will be presented in Section 4.2.2.1.

4.1.2 UL positioning engine

In the considered multi-connectivity scenario, the UE maintains radio connections
with more than one LoS-AP. In particular, the set of LoS-APs indices is denoted as
 , where the known location of each AP is denoted as PAP,m = [xm , ym , zm]

T ,
∀m ∈ . The location of any arbitrary UE is denoted as p= [x, y, z]T . Since one
antenna element remains active at the AP in the UL, the received signal rm(t ) at the
mth LoS-AP is

rm(t ) =
�

gr PT,ULhm s (t −τm)+ (s ∗ ν) (t )+ n(t ), (4.1)

where PT,UL and gr refer to the linear scale transmit power of theUE and the received
antenna gain at the AP, respectively. Moreover, hm denotes as the corresponding
path-loss coefficient with respect to the mth LoS-AP. Additionally, s (t −τm) is the
time-domain signals with a duration of Ts and bandwidth Bw, and the additive Gaus-
sian noise is denoted as n(t )with a power spectrum density of N0. The propagation
delay is written as τm = ∥p−PAP,m∥/c . Moreover, the potential un-correlated scat-
tering in the environment is modeled as the convolution of signal s (t ) and diffuse
reflection components ν (t ) [67]

(s ∗ ν) (t ) =
∫

s (u) ν (t − u)du, (4.2)
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in which ν (t ) represents a zero-mean stochastic process, and the power ratio of h
and ν (t ) is decided by the Rician-K in [5, Table 7.5-6]. Since the direct path contains
almost the entire energy in the mmWave frequency band [86], the impact to rm (t )
due to either specular reflection or diffuse reflection can be disregarded.

4.1.2.1 Utilized LRMs

After the acquisition of UL pilot signals, the LRMs are extracted for positioning. In
this chapter, the UL positioning is carried out in a synchronized network consider-
ing the TDoA measurements∆τ̂ ∈�M−1

∆τ̂ = f∆τ (p)+n∆τ , (4.3)

where f∆τ (p) and n∆τ ∈ �M−1 represent the TDoA observation function and the
measurement noise vector, respectively. In particular, there are in total M LoS-APs.
The observation function f∆τ (p) is given as

f∆τ (p) =
�

d2− d1
c

, · · · ,
dM − d1

c

�T

, (4.4)

where the reference LoS-AP is selected to be the one with index 1, and dm is denoted
as the Euclidean distance between the UE and the mth AP

dm = ∥p−PAP,m∥=
�

∆x2m +∆y2m +∆z2m , (4.5)

where∆xm = x − xm ,∆ym = y − ym and∆zm = z − zm .
Furthermore, under a LoS propagation, the noise vector n∆τ fits a zero-mean

Gaussian distribution, that is, n∆τ ∼ 
�

0M−1,R∆τ

�

, in which the covariance ma-
trix is described as [101, Ch.4]

R∆τ =
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σ2
τ,1 σ2
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τ,1+σ2
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. (4.6)

It is worth pointing out that, the covariance (4.6) is assembled based upon the
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statistics of ToAmeasurements since each TDoAmeasurement is calculated via two
ToA measurements one of which refers to the same reference AP. The theoretical
characterization (via CRLB) of any individual σ2

τ,m was defined in (3.8).

4.1.2.2 Positioning error bound

PEB can be thought of as the CRLB with respect to the UE location p= [x, y, z]T .
The derivation begins with the Fisher information matrix (FIM) that is the Jacobian
matrix based on the utilized data/statistics [58, Ch.3]. In essence, PEB is an unbiased
estimator and the FIM with respect to the UE location p can be computed as [138,
Ch.2]

I∆τ =
�

∂ f∆τ (p)
∂ p

�T

R−1
∆τ

�

∂ f∆τ (p)
∂ p

�

, (4.7)

where the derivative w.r.t. f∆τ (p) is calculated in line with (4.4)

∂ f∆τ (p)
∂ p

=















∆x2
d2

−
∆x1
d1

∆y2
d2

−
∆y1
d1

∆z2
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−
∆z1
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∆xM
dM

−
∆x1
d1

∆yM
dM

−
∆y1
d1

∆zM
dM

−
∆z1
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. (4.8)

Thereafter, the 3D PEB can be computed as

PEB=CRLB(p) =
�

trace
�

I−1
∆τ

�

, (4.9)

where ’trace’ refers to the sum of the diagonal entries of a matrix. More importantly,
the derived PEB (4.9) serves as the prior information on the UE location to imple-
ment the proposed PA-BF, which will be described in the next section.

4.1.3 DL positioning-aided communications

After positioning, the estimated UE locations are transmitted back to one or several
APs to initialize the positioning-aided communications as demonstrated in Fig. 4.1.
In particular, the location awareness of the UE not only facilitates several location-
based use cases [2] but also enormously reduces the initial access latency. It is impor-
tant to note that all the antenna elements of the URA (at the APs) are active in the
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DL, therefore, the communication is a multiple-input single-output (MISO) model

r (t ) =
�

PT,DLh
H
DL f

∗ s (t −τDL)+ (s ∗ νDL) (t )+ n(t ), (4.10)

where hDL can be expressed as the product of channel coefficient hDL and the array
response bURA, that is, hDL = hDLbURA(φAoD) in which φAoD ≜ (ϕAoD,θAoD) is
the true angle of departure (AoD) pair and bURA is the array response described the
same way as (3.3) and (3.4).

In addition, the DL transmit power, LoS delay, time-domain transmit signal, ad-
ditive Gaussian noise and the receive signal are denoted as PT,DL, τDL, s (t ),n(t ) and
r (t ), individually. It is noteworthy that the power of DL diffuse reflection compo-
nents νDL is much less than that of UL because of a more directional transmission in
theDL than in theUL.Moreover, the selected AP forDL communication is denoted
as the primary AP that located at P0 = [x0, y0, z0]

T . In the considered system, the
precoder f ∗ (i.e., the beam-steering vector) is formed based on the predicted angle
pair with respect to the primary AP, φ̂AoD ≜ (ϕ̂AoD, θ̂AoD), that is obtained accord-
ing to the estimated UE location, p̂= [x̂, ŷ, ẑ]T as

ϕ̂AoD = arcsin
�

ẑ − z0
∥p̂−P0∥

�

,

θ̂AoD = atan2 (ŷ − y0, x̂ − x0) .
(4.11)

Basically, the estimated location of UE is described as p̂= p+e, in which the covari-
ance of the error vector e is reflected by the FIM (4.7) as


�

eeT
�

= I−1
∆τ . (4.12)

It is to be emphasized that the product of hH
DL f decides the achievable BF gain of the

PA-BF, and it attains the maximal value whenever the predicted angle pair φ̂AoD are
well aligned with the true angle pair φAoD.

4.2 Benchmark strategy and performance metric

In this section, the selected benchmark strategy as well as the considered perfor-
mance metrics are introduced.
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4.2.1 The benchmark strategy

A standardized codebook-based BF [11, 41] is chosen as the benchmark strategy, that
is, the EX-BF with a 3D discrete Fourier transform (DFT) [31]. It is noteworthy
that codebook other than DFT-based one [43, 131] can also be considered, how-
ever, those codebooks normally involve multi-level beam refinement (i.e., a sequen-
tial change of the beamwidth) that requires a digital or hybrid BF structure with high
power consumption.

4.2.2 Performance metric — Spectral efficiency

Unlike the general spectral efficiency defined and utilized in information theory
[118] where reliable communication is guaranteed at the price of infinite latency,
the initial access latency caused by beam training has to be included and considered
in the final calculation of the spectral efficiency. For a clear illustration, Fig. 4.2
demonstrates the principle of the initial access procedure in a typical scheme and
in the proposed positioning-aided communication scheme. In general, the overall
frame duration consists of both the initial access latency (for beam training) and the
data transmission latency, therefore, a natural trade-off between the throughput and
the positioning accuracy [31] needs to be considered for the conventional scheme in
Fig. 4.2a, where the positioning performance is determined by the beam resolutions
and applied BF strategies during the initial access.

Normally, a narrow beam resolution does return a good AoA estimation (which
then transfers into high positioning accuracy), however, at the expense of long beam
training latency, resulting in short data transmission time, thus low throughput.
Aiming at reducing the latency of beam training for initial access, the positioning-
aided communication scheme is proposed and depicted in Fig. 4.2b, where the (quasi)
omni-directional transmission (with wide beams) is adopted during the initial access.
With such configuration, theUE location can be estimated based on the delay (time)-
domain measurements rather than the angle-domain measurements, resulting in a
reduced latency for initial access (beam training) as well as an increased duration for
data transmission. The performance of such scheme depends on several parameters,
at which we will take a look next.

Specifically, the overall frame duration for DL communication is denoted as Tf ,
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initial access data transmission

frame duration

initial access data transmission

frame duration
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beam
training

delay-based
positioning

Figure 4.2 Demonstration of two different schemes for initial access and data transmission. (a) A stan-
dardized procedure [11] when both Tx & Rx equip directional antennas. (b) The proposed
positioning-aided communication scheme.

from which the effective transmit ratio η is defined as

η= 1−
TIA

Tf
, (4.13)

where TIA refers to the initial access latency, a certain amount of time for beam
sweeping, beam measurement and beam reporting, the length of which not only
decides the positioning accuracy, but also alters the communication performance in
terms of the achievable spectral efficiency. For a given channel realization hDL, the
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spectral efficiency is expressed as

R= ηlog2

�

1+
PT,DL|hDL|2

Pn
GBF(f

∗,φAoD)
�

, (4.14)

where Pn =N0Bw, defined in (3.8) refer to the noise power over the considered band-

width. In particular,
PT,DL|hDL|2

Pn
is denoted as the SNRwithout BF gain. As expressed

in (4.10), f ∗ ∈NR×1 refers to the chosen codeword (beam-steering vector) in accor-
dance with the applied BF strategy, andNR refers to the number of antenna elements
defined in Section 3.2.1. Last but not least, the resulting BF gain is denoted as GBF,
which is a function of f ∗ and the true AoD pair φAoD ≜ (ϕAoD,θAoD).

4.2.2.1 The proposed PA-BF

According to (4.10) and (4.14), PA-BF, the spectral efficiency of PA-BF in the DL can
be described as

RPA = ηPAlog2

�

1+
PT,DL|hDL|2

Pn
GBF(fPA,φAoD)

�

, (4.15)

where ηPA is the effective transmit ratio (to be defined in (4.17)) and fPA ∈ NR×1

refers to the beam-steering vector designed based upon the acquired location aware-
ness of the UE, that is defined as

fPA = aULA(ϕ̂AoD)⊗ aULA(θ̂AoD|ϕ̂AoD), (4.16)

where the estimated angle pair (ϕ̂AoD, θ̂AoD)was given in (4.11). Moreover, an essen-
tial benefit of the proposed PA-BF comes to the temporal effectiveness of obtaining
the codeword without the necessity of looking up throughout the whole codebook,
thus maintaining a short initial access latency.

Considering that one codeword occupies one OFDM symbol, the effective trans-
mit ratio ηPA is

ηPA = 1−
TIA

Tf
= 1−

Ts +Te

Tf
, (4.17)

whereTIA = Ts+Te inwhichTs refers to the positioning overhead, which, according
to the proposed scheme, takes one OFDM symbol. Furthermore, the round trip
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delay from the APs to the cloud and back to the primaryAP is denoted as Te , i.e., the
cloud communication latency [134]. It is noteworthy that Te is normally negligible
given the fact that the data center are generally located in the proximity of the APs
which are connected via fiber optics. Additionally, the BF gain is expressed as

GBF (fPA,φAoD)≜ |f HPA(φ̂AoD)bURA(φAoD)|
2, (4.18)

the numerical measure of which is determined by the precision and the accuracy of
the predicted angle pair φ̂AoD that depends on the positioning accuracy since (4.18)
is maximized whenever φ̂AoD ≈ φAoD. Additionally, the maximal value of (4.18) is
scaled according to the β0(NR,φ) in (3.3).

4.2.2.2 The benchmark EX-BF

For comparison, a 3D EX-BF is selected as the benchmark strategy. Specifically, by
exhaustively searching through the whole codebook, EX-BF applies the beam with
the highest BF gain for transmission. Specifically, the applied codebook for EX-BF
is organized as a DFT-form matrix, in which each column represents one codeword
and is orthogonal to the others. The whole codebook is denoted as  ∈ NR×Ncw

that consists of an overall Ncw beam-steering vectors f ∈ NR×1. Therefore, the
spectral efficiency of the EX-BF is expressed as

REX = ηEXlog2

�

1+
PT,DL|hDL|2

Pn
GBF(fEX,φAoD)

�

, (4.19)

where the selected beam-steering vector fEX is the codeword that maximizes the fol-
lowing criterion

fEX = argmax
f ∈

GBF(f ,φAoD), (4.20)

in which the BF gain GBF(f ,φAoD) ≜ |f H bURA(φAoD)|2. In terms of the effective
transmit ratio of EX-BF

ηEX = 1−
TIA

Tf
= 1−

NcwTs

Tf
, (4.21)

where the initial access latency consumes overall NcwTs seconds for beam training
according to (4.20). It is important to note that (4.17) and (4.21) are obtained based
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on the same criterion that each codeword utilizes one OFDM symbol.

Judging fromβ0(NR,φ) that is defined in (3.3), one may infer that, on one hand,
more antenna elements NR supports a narrower angular resolution which brings
higher BF gain in (4.19). On the other hand, a larger NR also indicates a larger num-
ber of codewords, which leads to a lower effective transmit ratio, thus a less spectral
efficiency. Comparing between (4.17) and (4.21), the advantage of PA-BF lies in a
larger effective transmit ratio because of the pre-determined AoD obtained through
UL positioning. Nevertheless, the performance of PA-BF depends hugely on the
positioning accuracy since it significantly affects the achieved BF gain GBF in (4.18).
In the mean time, the benefit of EX-BF is the ensured BF gain given a well-designed
codebook that provides complete spatial coverage, whereas its shortcoming lies in a
longer initial access latency due to the exhaustive search. The performance of EX-BF
and PA-BF with different positioning accuracy will be presented and analyzed next.

4.3 Scenarios and simulations

In this section, the considered 3D scenario and network deployment are described.
Thereafter, the simulation-based results and discussion are provided.

4.3.1 Scenario deployment

The top view illustration of an indoor/outdoor environment (120 m×90 m) is de-
picted in Fig. 4.3. In particular, the spatial-correlated RSS from the primary AP is
presented to demonstrate the propagation condition. Furthermore, the z-coordinate
of all the APs are equally set at 4 m, whereas that of total UE are fixed at 1 m. Specif-
ically, the URA orientations are marked as the red dotted lines separately at each
AP location. All the three plotted LoS-APs are involved in the positioning process,
forming themulti-connectivity. However, only the red circular marker located at [0,
20] participates in the communication, and it is referred to as the primary AP. Essen-
tially, the primary AP can be thought as a macro AP in the coverage layer whereas
the secondary APs represent the (remote) radio units that assist positioning.

In the simulation, there are in total ten randomAP deployments being generated.
As to each deployment, there exists a certain amount of APs, ranging from three to
six. It is important to note that, such randomly generated deployment may result in
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Figure 4.3 The top view illustration of a spatial correlated RSS distribution with respect to the AP in red
circle.

an ill-conditioned geometric relationship, as the lesson learnt and demonstrated in
Chapter 3. Therefore, all the generated AP deployments are checked before being
applied in the simulation, such that the maximal PEB among the whole map is con-
trolled under 2 m for fair comparison. Last but not least, the LoS propagation with
respect to at least three APs is assumed throughout the considered area.

4.3.2 Simulation evaluations and analysis

First of all, the overall frame duration Tf is selected with respect to the relative ve-
locityV between the AP and the UE. Basically, the duration of Tf is directly related
to the coherence time of the wireless channel, denoted as Tc , the time over which
the channel state remains as constant [107], which is expressed as a function of the
Doppler shift fd as [118]

Tc =
1
4 fd

, (4.22)

where fd =
Vd

λc
=

V cos (Ω)
λc

, in which cos(Ω) represents the directional cosine, and

Ω refers to the LoS incidence angle for calculating the projection of the 3D velocity
onto the plane formed by the AP and the UE. Therefore, the 3D velocityV is larger
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Figure 4.4 The effective transmit ratio 1−TIA/Tf as a function of Doppler velocityVd .

than and equal to the Doppler velocity Vd , i.e., V ≥Vd .

The considered system operates at 39 GHz with a 100 MHz bandwidth2. More-
over, the frame duration Tf is assumed to be as long as the channel coherence time
Tc , i.e., Tf = Tc . Furthermore, the effective transmit ratio is computed for the
considered two BF strategies under NR =16 (4×4 URA) / 256 (16×16 URA) with
different sub-carrier spacing fsc. In essence, the fsc is the beam sweeping rate given
the assumption that each training beam (codeword) occupies one OFDM symbol.
Based on (4.17) and (4.21), the effective transmit ratio for both EX-BF and PA-BF is
calculated and plotted in Fig. 4.4 as a function of Vd . It can be observed that, un-
der the same fsc of EX-BF, a smaller NR allows for a higher ηEX since a smaller NR

in general yields a smaller size of the codebook (less beam training time). Given a
certain NR, a wider fsc leads to a higher ηEX for the fact that each codeword uses up
shorter duration for a higher fsc, thus yielding longer time for data transmission.

On the other hand, the effective transmit ratio for PA-BF as shown in Fig. 4.4
is independent of antenna configuration since the corresponding codebook involves
only one codeword that is constructed based on the estimated UE location. Anal-
ogous to the EX-BF, a larger fsc also fulfills a higher ηPA. For better discussion, a
new metric, Doppler tolerance is introduced, which corresponds to the maximum
Doppler velocity when the effective transmit ratio is larger than 0. In Fig. 4.4, the
Doppler tolerance is reflected by the horizontal axis where the curves halts. This

2The same carrier was employed in, e.g., [95] with 200 MHz bandwidth for positioning in a 5G
network.
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Figure 4.5 The PEB in 3D obtained on the UE height using the TDoA measurements under the same
AP deployment of Fig. 4.3.

metric suggests the largest Vd the corresponding BF strategy can sustain without
utilizing the whole frame duration for beam sweeping/training only. It is shown
that a smaller NR or a wider fsc (or both) satisfy a higher Doppler tolerance, which
in turn, can be utilized for initial access in high speed applications [70]where objects
are moving with high speed.

Additionally, the PEB in 3D utilizing the TDoA measurements is plotted in
Fig. 4.5 showing the pattern of positioning accuracy as a function of different lo-
cations. Inspecting from (4.7) and (4.9), the 3D PEB is principally determined by
the measurement covariance R∆τ that was defined in (3.8). In principle, it is af-
fected by two factors, the signal bandwidth and the received SNR. Thus, given a
fixed bandwidth, a farther UE-APs distance leads to a higher PEB. Furthermore,
Fig. 4.5 merely manifests the theoretical PEB (4.9) under the specific APs deploy-
ment therein. That being said, the PEB varies according to the number and deploy-
ment of APs.

Based on the achieved location awareness of the UE, PA-BF is implemented in
the DL for enhanced communications. As the reference benchmark, EX-BF is also
carried out under the same condition using the simulation numerology that is sum-
marized in Table 4.1. The carrier frequency, sub-carrier spacing as well as the signal
bandwidth are selected according to the NR specification [5] with a focus on FR 2
communications. Furthermore, as discussed in Section 4.2.2.1, the BF performance
counts on two metrics, the effective transmit ratio η and the BF gainGBF. In partic-
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Table 4.1 Simulation parameters

Parameter Value

carrier frequency fc 39 GHz
sub-carrier spacing fsc 240 kHz
signal bandwidth Bw 100 MHz

UL transmit power PT,UL 10 dBm
DL transmit power PT,DL 27 dBm
max. array gain β0 (4,φ) 14 dBi
max. array gain β0 (16,φ) 25 dBi

pathloss model indoor shopping mall [5]

Table 4.2 Considered 3D positioning accuracies based on the positioning accuracy requirement in [2]

3D error [m] Error in x σx ,
[m]

Error in y σy ,
[m]

Error in z σz ,
[m]

3 2.09 2.09 0.51
10 7 7 1.41
50 35 35 7.07

ular, theGBF of EX-BF is guaranteed to reach the maximum at the cost of long beam
training latency, whereas that of PA-BF varies depending on the available location
awareness of the UE. Therefore, in order to evaluate the performance variations of
PA-BF under good or poor location awareness, different positioning accuracies are
considered and summarized in Table 4.2, in which the location uncertainty in each
direction (x-, y-, z-) applies a zero mean Gaussian distribution3.

Considering two feasible UE velocities (0.6m/s and 2m/s) in the indoor environ-
ment, the CDF of the spectral efficiency applying EX-BF and PA-BF throughout
the whole map are presented in Fig. 4.6 and Fig. 4.7. Specifically, Fig. 4.6 showcases
the spectral efficiency distribution of all the locations on the map at 0.6m/s. From
Fig. 4.6a where a 4× 4 URA is applied, it is observed that the overall performance
are quite similar except for the 50m-aided PA-BF. In Fig. 4.6b with a 16× 16 URA,
the performance gain does become noticeable, smaller positioning error does return
better spectral efficiency.

Further, the comparison between Fig. 4.6a and Fig. 4.6b demonstrates that the

3The values tabulated in Table 4.2 are selected according to the positioning accuracy requirements
defined in [2].
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(a) 4×4 URA (b) 16×16 URA

Figure 4.6 The spectral efficiency by PA-BF (aided by different positioning accuracy) and EX-BF at 0.6
m/s Doppler velocity over the considered area.

(a) 4×4 URA (b) 16×16 URA

Figure 4.7 The spectral efficiency by PA-BF (aided by different positioning accuracy) and EX-BF at 2.0
m/s Doppler velocity over the considered area.

performance of PEB-aided, 3m-aided PA-BF actually become better with narrow
antenna since the corresponding curves move towards the right, whereas the 10m-
aided, 50m-aided PA-BF and EX-BF shift to the left reflecting a degraded perfor-
mance (smaller spectral efficiency) when employing narrow antenna. This result
indicates that the PA-BF aided by more reliable location estimation harnesses the
higher array gain arising from a larger NR, such that the narrower beam can be pre-
cisely steered towards the right direction, whereas the disparity in terms of position-
ing accuracy possesses less effects on the communication performance with a wider
array beam (smaller NR). In the meantime, with an increasing NR, a degradation in
performance of EX-BF is observed because narrower array beam leads to a longer
beam training time, resulting in a lower effective transmit ratio as well as a smaller
spectral efficiency.
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Fig. 4.7 demonstrates the CDF of spectral efficiency at a higher velocity, i.e.,
Vd = 2 m/s. Comparing the results obtained at a lower mobility in Fig. 4.6a, the
performance in Fig. 4.7a remains roughly similar except that the EX-BF experienced
a slight degradation (since the black curve shifts towards left). Moving towards
Fig. 4.7b in which the beamwidth becomes narrower and the array gain becomes
higher, a similar performance of PA-BFs compared to Fig. 4.6b is achieved since bet-
ter positioning accuracy in general results in better spectral efficiency. In contrast,
the performance of EX-BF in Fig. 4.7b stuck approximately at 0 bits/s/Hz. This is
because the Doppler tolerance for 16 × 16 URA at fsc = 240 kHz is about 1.9 m/s
as given in Fig. 4.4, thereafter, the effective transmit ratio of EX-BF become negative
(for any Vd larger than 1.9 m/s), which indicates that the beam training for initial
access costs the whole period of a frame duration Tf and no time is available for the
data transmission.

4.4 Summary

In this chapter, a positioning-aided communication framework (positioning + BF)
is presented and evaluated in a cloud-oriented mmWave network, in which the loca-
tion awareness achieved via UL positioning was utilized to perform the PA-BF in the
DL. Albeit possessing a low initial access latency, the simulation evaluation demon-
strated that, the overall performance of PA-BF highly depends on the available loca-
tion awareness (positioning accuracy) as well as the relative geometry between the
Tx&Rx. A narrow beamwith high array gain is indeed compelling. However, such
configuration also comes along with high probability of beam misalignment, result-
ing in poor communication performance. Therefore, choosing the suitable system
configuration according to the available knowledge and the specific environment is
of paramount importance to apply the proposed framework in the industrial IoT
use cases. In the next chapter, the feasibility of a location-aware handover scheme is
studied, further exploring and analyzing the benefits of the location-aware commu-
nications scheme in the context of industrial IoT.
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5 EXPLOITING THE LOCATION AWARENESS

— A DEVICE-CENTRIC LOCATION-AWARE

HANDOVER SCHEME

In the preceding chapter, a positioning-aided communication scheme was demon-
strated, in which a PA-BF strategy is enabled with reduced initial access latency and
augmented DL throughput conditional on the achieved positioning accuracy (i.e.,
the location awareness). While the data transmission in cellular network is in gen-
eral DL-dominant, there are use cases where heavy data traffic is created by the indus-
trial robots or vehicles, which requires high UL throughput [113]. In this chapter, a
device-centric LHO scheme is presented.

Indeed, the concept of LHO has been recently investigated in [33, 36, 48, 108,
114, 136, 137], our work remains different mainly from two respects,

• instead of assuming perfect known UE locations/trajectories, positioning so-
lutions are integrated to achieve location awareness. The handover performance un-
der different positioning accuracy is evaluated;

• Besides the numerical simulation, a multi-RAT robotic platform is built up
and employed also in the experiments to examine the feasibility of the LHO.

This chapter provides a summary of publication IVwith a focus on the simulation-
based performance. For the experiment setup and results, please refer to Section 3
and Section 5.2 of publication IV.

5.1 System overview

In order to illustrate our technical context, the principle of the proposedLHOscheme
is depicted in Fig. 5.1, where a mmWave-enabled multi-RAT robot is moving inside
an industrial environment while performing tasks, like video surveillance and/or
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Figure 5.1 A conceptual illustration of the location-aware handover (LHO) scheme in an industrial multi-
radio environment.

cargo transportation. Therefore, it is expected that the robot generates a large-volume
data for video transmission, thus forming a UL-dominant data transportation. In or-
der to guarantee the quality of the UL connectivity, our key target is to strengthen
the link robustness while enhancing the throughput over the entire robot trajectory,
in such a way that the robot maintains a connection with the mmWave AP in its LoS
coverage, and switches to the cmWave AP whenever moving outside of the LoS cov-
erage by exploiting the available location awareness, i.e., LHO.

5.2 Scenario deployment

The scenario utilized for assessing the LHO is demonstrated in Fig. 5.2 where the
office corridor is applied to simulate an industrial multi-radio environment. Overall,
one mmWave AP, i.e., wireless Gigabit alliance (WiGig) and one cmWave AP, i.e.,
WiFi are considered in the environment. The LoS coverage of the mmWave AP is
created using Blender, as will be discussed in Section 5.3.1 and depicted in Fig. 5.2a.
A WiFi AP that is configured and positioned inside the office, remains in the NLoS
state w.r.t. the initial location of the robot.

In this study, the considered environment remains mostly static, which to some
extent fosters the feasibility of the proposed handover scheme. However, it should be
noted that when the dynamic environment is being dealt with, such as an automated
factory, the LoSmap of the environment has to be updated accordingly, e.g., through
ray-tracing, which would inevitably increases the overall complexity. Overall, the
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(a) (b)

Figure 5.2 Test scenario 3D model and layout. (a) The 3D view of the corridor from the WiGig perspec-
tive. The red line represents an exemplified robot trajectory; (b) The top view of floor plan
with the coordinates used in simulation. The yellow shadow refers to the LoS coverage of
WiGig.

main objective is to guarantee an augmented throughput by maximizing the radio
connectionwith themmWaveAP,while enhancing the link robustness by switching
to cmWave-RAT in the non-ideal condition for the industrial IoT use cases.

5.3 Enabling the handover with location awareness

5.3.1 From environmental awareness to mmWave LoS coverage

This section describes a method to convert the 3D map, i.e., the environmental
awareness into the LoS coverage for the prediction of the LoS statew.r.t. themmWave
AP at any specific locations within the considered environment. In particular, there
are three primary steps:

1. Building the 3D model and identifying the 2D plane.

2. Calculating the mmWave LoS coverage.
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Figure 5.3 The geometric relationships between the robot and mmWave AP from side view and top view.

3. Affine transform from 3D to 2D.

More specifically, the considered physical environment is constructed via 3D
modeling to provide visual descriptions from the perspective of the mmWave AP.
Thereafter, the 2D plane where the robot moves is identified, it is seen as the floor
plan. The LoS coverage is then produced based on the identified 2D plane in the
previous step, forming a ’warped’ map which is shown in Fig. 5.2a. Finally, a geo-
metric transformation from 3D to 2D (called affine transformation) is implemented
to acquire the top view of the environment and the LoS coverage.

In the simulation campaign, the red line plotted in both the subplots of Fig. 5.2 is
utilized as the ground truth of robot trajectory for the evaluations of the achievable
positioning and handover performance. Moreover, the LoS map is integrated in the
robot, then applied to determine the LoS relationship between the robot and the
mmWave AP for the evaluation of the LHO scheme, which will be discussed in
Section 5.3.3.

5.3.2 Proposed positioning solution

As demonstrated in Fig. 5.3, a geometry-based positioning (GBP) solution is de-
signed and constructed based on the geometric relationship between the mmWave
AP and the robot. In particular, the purple crossmarker denotes the robot, while the
red dot represents the mmWave AP. Furthermore, the URA installed on the robot
is highlighted by the black solid line on top of the purple markers. It is also notewor-
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Algorithm 2: Geometry-based positioning (GBP)

Input: ϕ̂, θ̂, α̂, xA, yA
Output: x̂, ŷ

1 Compute the 2D distance between mmWave AP and the robot based on
elevation AoA measurement ϕ̂ and the known antenna height difference h

d̂ 2D = h/tan (ϕ̂)

2 Convert the azimuth AoA measurement θ̂ at the robot to the AoD θ̂A at the
mmWave AP taking into account the array orientation measurement α̂ of
the robot

θ̂A=π− |θ̂− α̂|.

3 Calculate the robot location based on d̂ 2D and θ̂A

�

x̂

ŷ

�

=





xA+ d̂ 2Dcosθ̂A

yA+ d̂ 2Dsinθ̂A





thy that since a device-centric scheme is considered in this chapter, i.e., positioning
and handover are implemented at the robot side, the orientation of the antenna ar-
ray on the mmWave AP is negligible. Further, the noiseless elevation AoA, azimuth
AoA, and the true orientation of the antenna array (in the azimuth plane) of the
robot after the transformation from the robot coordinates to the local coordinates
[56] are denoted as ϕ, θ, and α, respectively. It is noteworthy that only the azimuth
array orientation has to be considered since the elevation array orientation remains
unvaried as the robot moves forward. The robot orientation is the same as the an-
tenna orientation. Additionally, the notationˆdenotes the noisy measurement of the
corresponding noiseless quantity. The time index in Algorithm 2 is not necessary
since the proposed algorithm is a snap-shot based solution, and the location estimates
of the adjacent time instants is independent.

5.3.3 Proposed handover scheme

The procedures of the proposed handover scheme, LHO is presented in Fig. 5.4.
In a nutshell, the decision of LHO is made based on the knowledge of the location
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Figure 5.4 Procedures of the proposed LHO scheme.

awareness (i.e., the estimated robot locations) in association with the knowledge of
the LoS coverage of the mmWave AP (i.e., the environmental awareness). Therefore,
in order to smoothly execute the LHO, a accurately updated/calculated LoS coverage
is periodically needed together with amechanism for switching the packet flow from
oneRAT to another. Specifically, the LHO is initiatedwhenever the estimated robot
lies inside the handover buffer region that is defined with respect to the LoS–NLoS
boundary, such that the handover is preempted and completed in a proactivemanner.
As a result, the handover decision is in general made and executed a little before
the actual LoS–NLoS boundary to avoid connection loss. It is also important to
note that the performance of such handover scheme depends on multiple factors
including the robot velocity, the available RAT, the positioning accuracy as well as
the update frequency especially at the presence of dynamic obstacles. The handover
efficiency can in fact be improved by taking into account multiple factors, such as
the predefined robot trajectory, the radio environment map and the sensor data.
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5.4 Handover performance and analysis

Since a device-centric handover scheme is discussed, both the RSS and the elevation
and azimuthAoA at the robot side are plotted in Fig. 5.5. Specifically, the pre-defined
robot trajectory is divided into three segments, each is represented by different col-
ors: In light green region – the robot remains static initializing system. In light red
region – the robot moves toward the office entrance, where it makes a turn (shown
as the black dashed line), then drives into the office (toward the NLoS region with
respect to the mmWave AP, i.e., the light blue region). The robot passes the LoS–
NLoS border on its way into the office, where the RSS value significantly drops.

The obtained positioning accuracy via GBP is shown in Fig. 5.6a. In particu-
lar, the 2D root mean square errors along the considered robot track (the red curve
in Fig. 5.2) within the LoS region is characterized to reflect the location awareness.
The parameters applied in the simulation are given in Table. 5.1. The RF values
therein are chosen based on the WiGig specifications. In this simulation campaign,
the CRLB-based LRMs [101, Ch. 3] are applied. That being said, the elevation and
azimuth AoA measurements based on the SNR are generated according to (3.14),
which are then utilized as the input LRMs (ϕ̂, θ̂) of Algorithm 2 to obtain the loca-
tion estimates.

Additionally, the uncertainty of orientation α̂ is modeled by an un-biased Gaus-
sian error with a standard deviation σα that is set to two levels, σα = 0.1◦or 5◦ [143].
Consequently, Fig. 5.6a demonstrates that, the obtained positioning error is small
for a low σα. More importantly, the positioning accuracy becomes higher when the
robot approaches the mmWave AP owing to the fact that for a given AoA error, the
robot suffers a smaller positioning error when the relative distance is smaller.

In terms of the handover performance, the cumulative density function of the
handover location in time is plotted in Fig. 5.6b. It is observable that when the lo-
cation awareness is not trustworthy (i.e., AoA error suffers from σα = 5◦), the han-
dover is in general performed much earlier than that when the location awareness
is reliable (σα = 0.1◦). Such early switch to another RAT has negatively impact on
the achievable throughput, service latency and jitter, which consequently degrade
the QoS and/or the quality of experiences (QoE) of the robot. Therefore, achiev-
ing reliable location awareness remains as the key to maintain a satisfactory LHO
performance.
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Table 5.1 Parameter table for simulation

Parameter Value

carrier frequency 60.5 GHz
signal bandwidth 2.16 GHz

transmit power @ AP∗ 21.64 dBm
max. array gain @ AP∗ 13.48 dBi
max. array gain @ robot 13.48 dBi
robot update interval 0.5 sec

pathloss model InH-office [5]
fast fading model Rician distribution

∗ The "AP"s mentioned in the table refer to the WiGig rather than WiFi since the sim-
ulation is carried out to model the communication between the mmWave AP and the
robot.
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Figure 5.5 Simulation-based numerical characterization as a function of time along the simulated robot
trajectory (see Figure 5.2b) ).
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Figure 5.6 Positioning and handover performance via simulations.
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Figure 5.7 The handover frequency as a function of AoA accuracy for two considered tracks.

Last but not least, the handover frequency of LHO is presented as a function of
the AoAmeasurement accuracy at two different tracks. Besides the track in red that
shown in Fig. 5.2, another track is considered, which is parallel to the track in red
but 0.25 m towards the center of the corridor. For the sake of clear definitions, these
two considered tracks are specifically described as:

• track 1: the red track shown in Fig. 5.2, located 40 cm away from the corridor
wall;

• track 2: another track that is 65 cm away from the corridor wall, i.e., 25 cm
away from track 1 towards the center of corridor.

That being said, track 2 is set slightly further from the sensitive edge, i.e., the LoS-
NLoS border than track 1. Consequently, the handover frequency of both tracks
increases as the degradation of AoA accuracy as shown in Fig. 5.7, indicating that
an unsatisfactory location awareness (positioning accuracy) leads to a poor LHO
performance. In particular, under a given AoA accuracy, the handover frequency of
track 1 is in general higher than that of track 2. The reason lies in the fact that track
1 is closer to the sensitive edge than track 2, therefore, for a given location awareness,
the tracks that are further away from the sensitive edge is able to achieve amore stable
performance than the tracks near the sensitive edge. Hence, the performance of
LHO depends on not only the achievable location awareness but also the geometric
relationship in the considered environment, the situational awareness.
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5.5 Summary

In this chapter, the performance of the LHO is analyzed by employing the obtained
location awareness together with the available environmental awareness. In partic-
ular, the simulation based handover performance is presented. Integrating also the
experiment-based outcome, we believe that the considered handover schemes can be
exploited for a more efficient handover scheme design enabling a mmWave-ready
HetNets with automated guided vehicles [24]. With accurate location estimates,
timely environmental knowledge as well as the radio statistics, a hybrid handover
scheme can be developed to guarantee the link robustness and to provide sufficient
data throughput in any dynamic environments.
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6 CONCLUSIONS AND FUTURE

PERSPECTIVES

6.1 Conclusions

In this thesis, a set of mathematical models and simulation tools have been formu-
lated and developed to provide accurate 3D positioning solutions and location-aware
communication frameworks in the context of 5G-empowered industrial IoT.
Frompositioning perspective, the following conclusions and contributionswere pre-
sented:

1. Characterization of different LRMs. As the inputs to the positioning algo-
rithms, the theoretical achievable accuracy of several LRMs, such as ToA,
TDoA and AoAwere evaluated based on realistic mmWave channel simulated
using ray-tracing engine. Such theoretical characterization fundamentally de-
scribes the utilized radio resources in closed forms, facilitating improved con-
figurations and design of radio positioning system.

2. Development and evaluation of 3D positioning algorithms. Targeting the in-
dustrial IoT scenarios, snapshot and sequential positioning solutions were de-
veloped to cope with the location uncertainty of the anchors. Joint position-
ing and tracking (also named as SLAT-EKF) does in general provide perfor-
mance with higher accuracy and reliability at the expense of a higher com-
putational complexity than the other considered approaches, such as WCG.
Furthermore, approximately 80% 3D sub-meter accuracy can be achieved by
SLAT-EKF for all the involved agents when the initial anchor location uncer-
tainty is around 7m (in 3D). Together with other proposed positioning ap-
proaches, Chapter 3 provided several practical choices for positioning with
anchor location uncertainty being taken into account.
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In terms of location-aware communication aspects, the following conclusions and
contributions were presented:

1. Apositioning-aided communication schemewith reduced initial access latency
aswell as improved throughput in a cloud-oriented networkwas proposed. Via
a network-centric positioning scheme, the achieved location awareness was ex-
ploited to perform an efficient BF, namely, the PA-BFwith lower latency than
the standardized strategy. The performance in terms of throughput can be sig-
nificantly improved especially under high mobility scenario on condition that
the positioning accuracy is higher than a threshold that is dependent on the
AP-UE geometry. Such communication scheme (i.e., positioning+BF) could
provide feasible means and useful insights into the design of a joint positioning
and communication framework.

2. The feasibility of a LHO scheme in the HetNets was evaluated. Integrating
both sub-6 GHz and mmWave radio interface, a user-centric LHO scheme
in a multi-radio environment was designed and tested for augmented through-
put and reinforced link robustness. Applying a "proof-of-concept" evaluation,
an enhanced location awareness has been proved to effectively improve the
throughout compared to the RSS-based benchmark strategy, while maintain-
ing the link robustness1. The conducted study, therefore, sheds light on the
possibility and feasibility for the further development of autonomous vehicles,
with wireless technology as an unique and indispensable enabler.

Meanwhile, the potential answers and proposed solutions to all three research
questions identified in Chapter 1 were specifically provided throughout Chapter 2
and Chapter 5:

• In terms of research question 1, illustrations and analysis on the challenges
and opportunities for communications and positioning from different funda-
mental perspectives, such as mmWave, SCNs, MIMO and BF were given in
Chapter 2, further discussing and highlighting the benefits of the synergy of
the considered ingredients (e.g., see the left plot of Fig. 6.1).

• Chapter 3 offered specific solutions to research question 2, where the chal-
lenges for positioning in the industrial environment (e.g., anchor location un-

1Although the RSS-based handover was not introduced specifically in the introductory part, its
performance was evaluated and discussed together with LHO in publication IV.
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Figure 6.1 From the complement of technologies and use cases towards the ultimate merging of the
physical world, the digital world and the virtual world.

certainty and system geometry) were resolved by the proposed joint position-
ing and tracking approach.

• Regarding research question 3, the benefits and feasibility of location-aware
communication scheme were investigated and demonstrated in Chapter 4 and
Chapter 5, respectively, enhancing the importance of positioning functional-
ity and achievable location awareness further beyond the industrial IoT use
cases.

6.2 Future perspectives

From 3G to 5G, wireless technology has undergone significant transformation over
the past two decades, from a one-dimensional mobile communication system to a
multi-dimensional computing platform with seamless connectivity. With the ad-
vent of novel techniques and immersive digital penetration, it can be foreseen that
5G and beyond wireless shall be fully deployed in the near future, forming a cloud-
oriented intelligent communication networks with diverse IoT use cases. Therefore,
theAuthor could courageously predict that the successfulmerging of physical world,
digital world and virtual world (as illustrated in the right plot of Fig. 6.1) will be grad-
ually and eventually realized on our way towards the sixth generation (6G) wireless
system. As such, continuous development on the key techniques and radio access
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networks from different layers and dimensions call upon further investigations. Par-
ticularly, the future research and investigation can start from the following perspec-
tives:

Joint positioning and sensing — fusion of location awareness and environmental
awareness towards situational awareness. Positioning is no longer about estimating
the UE location only, but also the locations of dynamic APs, such as drone-anchors.
In addition to locations, the orientations (as were described in Section 2.4 and Sec-
tion 3.2) at bothTx&Rx can be estimated jointlywith locations to, e.g., improve the
efficiency of directional communications. With sensing technique in the picture, a
3Dmap of the environment can be constructed using the information extracted from
the propagation channel. Therefore, a joint positioning and sensing scheme remains
to be investigated to achieve the situational awareness for more engaging use cases.

Enhanced reliability via situational awareness, diverse spectrum, and cognitive slic-
ing. Although FR 2 is open for wireless usage, link robustness in front of dynamic
mobility and blockage should be dealt with efficiently to reduce the latency and
enhance the reliability. Situational awareness that is achieved via positioning and
sensing can be exploited to find several candidate paths for efficient routing at the
physical layer. Furthermore, smart spectrum management and cognitive network
slicing can be applied to increase the network versatility to satisfy heterogeneous
verticals and diverse use cases.

Optimization among radio resources, system geometry, and positioning accuracy in
dynamic environments. Positioning performance is essentially a function of several
parameters, such as the available radio resources, the utilized LRMs, the applied posi-
tioning algorithms and the system geometry. As an extension of study in Chapter 3,
a smart optimization strategy shall be investigated in a way that the radio resources,
e.g., signal bandwidth, transmit power are adapted accordingly to optimize the po-
sitioning accuracy while adjusting the geometric relationships within the network.

Unification of communications, positioning, and sensing technologies with artificial
intelligence — beyond RF convergence. More data than ever can be and will be col-
lected from wireless system and IoT devices. Ubiquitous mobile edge computing
could vastly drive the fusion of channel information and context information (lo-
cation + environment), which is then intelligently processed via learning-based ap-
proaches, further harnessing the knowledge from all wireless dimensions and per-
spectives.
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Abstract—This paper discusses several features of 5G position-
ing in the context of applications for the Industrial Internet of
Things (IIoT) which demand high accuracy of position informa-
tion. The main opportunities to come with 5G networks, such
as huge available spectrum, small cell networks, Multiple Input
Multiple Output antennas and beamforming are summarized,
and the challenges in the context of robot 5G positioning are
pointed out. A case study for the localization of an indoor
robot in a multi-wall multi-floor scenario is presented, based
on various carrier frequencies and access node densities. We
find out that sub-meter positioning accuracy required for most
of the future industrial applications is theoretically achievable
via a combination of small cell networks, mmWave carriers and
antenna arrays, but practical issues such as node synchronization,
connectivity and ultra dense network deployment costs have to
be tackled.

I. INTRODUCTION

With the fast advances of 5G standardization, several
new opportunities are brought along, such as Augmented
Reality (AR), eHealth, telepresence and Industrial Internet
of Things (IIoT). Among those, in our opinion it is the IIoT
that can benefit the most from the positioning capabilities
of 5G networks, because position information can help to
optimize and to automatize the processes in various vertical
sectors, ranging from logistics and manufacturing to mining
and transportation. It is usually understood that there are
three main segments within the IIoT, namely the industrial
control, the factory automation, and the process automation.
Especially within the industrial control and factory automation
segments, the positioning information is highly beneficial at
both communication sides: for the (mobile) terminals (or robots)
to accomplish their tasks and for the network to allocate and
control the resources and to increase the processing efficiency.

IIoT applications are characterized by stringent requirements
in terms of the quality, latency and reliability of the commu-
nication link as well as of the accuracy and precision of the
positioning. These demands need to be met both indoors and
outdoors, and typically over large coverage areas. Moreover,
additional information about the surroundings, e.g. from sensor
networks or maps, might be required such that, for example,
the unmanned robots can navigate in a dynamic environment
and autonomously accomplish their critical tasks within a
manufacturing process. This paper outlines how different
features of the 5G networks can improve the 5G positioning
and it assesses their trade-off in the context of IIoT robot
localization.

The goal of this paper is three-fold: first to present a survey
of the opportunities and challenges in the IIoT localization
based on 5G positioning; secondly, to present an analytical
model for indoor path losses, shadowing, and Time of Arrivals
(ToA) under Line of Sight (LoS) and Non Line of Sight
(NLoS) conditions; and lastly, to show a case-study based on
an indoor multi-floor multi-wall simulator for 3D positioning
of a robot within cmWave and mmWave spectra. We will show
the impact on the positioning accuracy of the indoor robot if
we use mmWave signals, if we increase the AN (Access Node)
density, and if we make use of MIMO antenna gains through
beamforming.

II. 5G POSITIONING

In this section, we discuss the benefits of various 5G
network features in terms of achieving accurate and robust 5G
positioning of the robots.

A. mmWave and beyond

The first benefits in 5G networks is the availability of a
rich spectrum by utilizing the abundant mmWave band (i.e.,
spectrum larger than 30GHz) which is not used in previous
wireless communication system (i.e., 2G, 3G and 4G LTE).
At mmWave, we have higher path loss and higher sensitivity
to the atmosphere (absorption and penetration) [1] than at
cmWave. The mmWave spectrum is therefore widely recognized
to be used for short distance communications [2]. Certain
transformations of the structure of networks have to be made
to make use of mmWave at its full potential, and these will be
discussed in the next subsections.
In terms of positioning benefits of the mmWave, higher

accuracy and lower latency positioning of robots are made
possible, due to more available signal bandwidth compared
with cmWave spectrum. Specifically, a more accurate ToA
(Time of Arrival) estimation in 5G positioning is enabled
because of a finer delay domain resolution brought by the
larger bandwidth, which at its turns leads to a more precise
range estimation. Secondly, by leveraging the sparsity of the
mmWave channel, the robot can in theory be localized with
only one AN because multipath components can be converted
to virtual anchors that contributes to the position estimate [3],
[4].
However, a few challenges are incurred at the same time.

Firstly, the positioning methods in 5G mmWave systems are
quite opportunistic, especially with high mobility, i.e., the



communication quality as well as the positioning accuracy
are closely tied to the environment, thus, the link reliability
is highly context based. Also, several factors such as a poor
geometry w.r.t. the ANs in view or temporary blockage of the
LoS can have severe negative impact on the radio link.
Research beyond 5G also focuses on sub-mmWave band

or TeraHertz (THz) bands, where the signal bandwidth will
become even larger, antenna array size become even smaller
(half-wavelength of 1THz is only 150µm which means,
e.g., that a 128 elements antenna array only possesses a
physical length of 19.2mm). Therefore, massive MIMO will
be enhanced to achieve further larger bandwidth and to reduce
the interference. Moreover, the backhaul link of a network
can take advantage of THz band in order to provide higher
backhaul data rate than fronthaul [5]. Some of the challenges
in THz bands (also sometimes referred to as ”THz gap”) are:
extremely high path losses and atmosphere sensitivity, as well
as large heat dispersion at antennas.

B. Small cell networks (SCNs)

The advantage brought in by the SCNs concept into the 5G
positioning comes mainly from the fact that the SCNs can
compensate the mmWave propagation loss. The severe path
loss problem of mmWave can be addressed if the maximum
distance between AN and robots (or terminals) within a single
cell become shorter. Network densification is the key solution
as it is much more easier for one AN to track a few (e.g.,
less than 10) robots than tens or hundreds of robots as in a
conventional network (2G-4G). As such, the direct benefit to
positioning brought by network densification is the potential
to higher accuracy. The frequency reuse factor is also raised
by using SCNs, yielding a high spectral efficiency. In addition,
SCN can provide better cell-edge communication quality than
conventional AN deployment, because the interference coming
from adjacent cells is minimized due to high attenuation of
mmWave signal.
In terms of positioning, SCNs enhance communication

reliability and quality to any robot in indoor and urban
areas, because when the mmWave signal from one AN is
blocked, the robot can simply switch to a nearby ANs which
has a better link quality. Thus, also the LoS probability
increases in SCNs, which is considered as crucial in order
to achieve sub-meter positioning accuracy. Moreover, SCNs
can lead to a better positioning accuracy from the upper bound
perspective: the radius of cell coverage defines a upper bound
of absolute positioning error, therefore, small cells possess
generally smaller radius that yields a smaller upper bound. In
our simulator (Section IV), we model LoS probability according
to the walls and the floors present in the propagation path and
we investigate the average number of LoS connections per
robot in a realistic multi-floor multi-wall scenario.
The main challenge coming with SCNs is the cost of

backhaul communications and the backhaul routing algorithm
among the ANs, further discussion of SCNs can be found
in [6].

C. Massive MIMO

A third feature in 5G networks is the concept of massive
MIMO, which lays the foundation of a high directional
communication system by employing large antenna array
techniques at both sides of the transmission chain. Massive
MIMO provides a high energy efficiency thanks to a high
directivity of the antenna arrays,a high spectrum efficiency due
to large multiplexing gain, and a high reliability or robustness
due to large diversity gain [7], [8]. The large multiplexing gain
between the AN, on one hand, and the robot on the other hand,
would enable the ultra high mobile broadband connection that
4G LTE cannot currently provide. Regarding to its benefits to
positioning, massive MIMO offers a high directional beam
which translates into a high SINR (Signal to interference
noise ratio), which at its turn reduces the uncertainty of the
ToA estimation. The highly directional link improves further
the positioning and communications, by reducing the average
number of multipath components received by the robot [8].
A challenge in massive MIMO is the signal processing

algorithm complexity, due to the large number of antennas at
both sides. Additionally, the acquisition of the channel state
information (CSI) at AN on the downlink is rather difficult,
as each robot has to estimate an amount of channel responses
that is proportional to the number of AN antennas. This
can be avoided if location-based beamforming (or geometric
beamforming) is used [9].

D. Beamforming

Associated with massive MIMO, the beamforming (BF)
technique, which is an array signal processing technique, makes
the communications more efficient based on the awareness in
the angular domain. Without antenna array and BF, the access
nodes and the robots would acquire the signals in an omnidi-
rectional (’blind’) manner. This would make the multipaths to
be a troublesome. As a result, the ToA measurements would
be corrupted by multiple delays and the direction of arrival
(DoA) estimation would not be possible. On the other hand,
with BF, the high directional beam radiated by antenna array
can be steered towards certain directions, forming dedicated
transmission and reception at both sides. Not only can the
high path loss and the interference coming from inter-cell and
intra-cell be minimized, but also the ToAs from different paths
become distinguishable. Thus, the DoA can be also estimated.
As a consequence, with the ToA and DoA estimates, positioning
can be carried out with a lower number of ANs compared to
what is required by the RSS-based or ToA-based positioning
system.

If also the robot is equipped with a BF capable multi-antenna
system, the DoA and the Direction of Departure (DoD) can be
estimated, facilitating the estimation of the robot’s orientation
with respect to the AN. By taking advantage of the sparsity of
mmWave propagation channel, compressive sensing theory [4]
can be used to efficiently estimate DoD and/or DoA which
in turn contribute considerably to the positioning accuracy.
Articles regarding BF based positioning application can be
found in [9]–[12].



III. POSITIONING-RELATED REQUIREMENTS AND
CHALLENGES IN INDUSTRIAL APPLICATIONS

Table I summarizes the needed positioning-related features
in various IIoT applications, according to the authors’ view.
Sub-m positioning accuracy is expected for the robot to be able
to operate safely and reliably. A higher latency in positioning
estimation is expected to be tolerated at smaller robot speeds.
The challenges related to positioning in industrial environ-

ments include:

• Device heterogeneity: many sensors and robot types
available, some supporting only Received Signal Strength
(RSS) measurements and some other supporting also ToA
or DoA measurements.

• NLoS and multipath propagation: such situations introduce
positioning errors in ToA and DoA estimates; solutions
are, for example, to combine ToA/DoA information with
other available information (e.g., visual reality, building
maps, etc.).

• Synchronization issues: ToA-based positioning estimators
typically rely on the assumption that the ANs are synchro-
nized. Such synchronization is not always easy to achieve,
especially with heterogeneous devices.

• Bandwidth and carrier frequency: the higher the available
bandwidth, the more accurate positioning solutions can
be found. For carrier frequencies above 30GHz, currently
more than 500MHz contiguous bandwidths are available,
while for carriers around 1–5GHz, the available band-
widths are typically below 100MHz. This points towards
the advantage of employing mmWave signals for accurate
positioning. On the other hand, the path losses are much
higher at mmWave than at cmWave, which means that
accurate positioning solutions are likely to be achieved
only with a high AN density.

TABLE I
POSITIONING AND NAVIGATION TARGET REQUIREMENTS IN INDUSTRIAL

APPLICATIONS

Application
Indoor
accuracy
(cm)

Outdoor
accuracy
(cm)

Obstacle
detection

Availability
(%)

Latency
(ms)

Indoor
robot
control

< 10 – Yes 100 < 50

Outdoor
robot
control

– < 30 Yes 100 < 10

Indoor
item
tracking

< 50 – Yes 99 < 200

Outdoor
item
tracking

– < 100 Yes 99 < 100

Remote
control
with AR

< 10 < 10 Yes 100 < 1

IV. ANALYTICAL MODELLING FOR INDOOR POSITIONING

In this section, we introduce our indoor multi-floor multi-
wall simulator that is based on a real building map with three
floors. Two types of measurements are generated based on
reasonable parameters and the geometry of the map, followed
by a brief summary of the positioning method.

A. RSS-based positioning

The first positioning method is a RSS-based non-linear least
square (NLS) estimator. The RSS Pa,i from the a-th AN to
the i-th robot is modelled according to a frequency-dependent
multi-wall multi-floor model as follows,

Pa,i =





PTa − 20 log10(fc[Hz])

− 20 log10(da,i)

− 20 log10
(
4π
c

)
+ ηLOS if LOS

PTa
− 20 log10(fc[Hz])

− 20 log10(da,i)

−Niwa,i
Liw −Nfa,i

Lf

− 20 log10
(
4π
c

)
+ ηNLOS if NLOS

(1)

where PTa
is the “apparent” transmit power of the a-th AN, (i.e.,

’apparent’ means here that we take into account all the cable
losses and antenna gains at both ends), fc[Hz] is the considered
carrier frequency, Liw = 10 dB and Lf = 20 dB are the losses
due to wall and floor attenuation (assumed constant within the
building), da,i, Niwa,i

and Nfa,i
are the distance, the number

of walls and the number of floors between the a-th AN and
the i-th robot, respectively. The speed of light is denoted by c,
and ηLOS and ηNLOS express the shadowing for LoS and NLoS
cases. The shadowing was modelled as a Gaussian-distributed
variable with zero mean and standard deviation 2 dB for LoS
cases and 6 dB for NLoS cases. The LoS cases were identified
based on the building map, shown in Fig. 1: if there was no
floor and no wall between the AN and robot, then we were in a
LoS situation; if there was at least one floor or one wall on the
AN–robot path, then we were in a NLoS situation. A receiver
sensitivity of −110 dBm was assumed, meaning that signals
received below this value are not heard, therefore, measurement
from that specific AN will be discarded. We remark that our
proposed model in eq. (1) is also similar to the indoor 3GPP
channel models proposed for mmWave propagation [13].

B. ToA-based positioning

Here we assume perfectly synchronized ANs and robots and
that the channel between ANs and robots is LoS-dominant
(i.e., any multipath can be distinguished). Then, the ToA
measurements from any arbitrary AN to any given robot
(indices a, i have been dropped here for clarity) is modelled as

τobs = τtrue + b+ v, (2)

where τtrue = ‖pr−pAN‖/c, pr and pAN are the position vector
of the robot and AN and v is a normally distributed random
variable, v ∼ N

(
0, σ2

ToA

)
. The term b reflects the NLoS bias

(see fig. 2), which is related with the thickness of the obstacle,
γ, as well as the relative permittivity, εr, [15]
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Fig. 1. The building map used in the simulator. Red circles show examples
of AN location and blue crosses show examples of robot locations

Fig. 2. LoS path blocked by an obstacle

b = (
√
εr − 1) γ/c. (3)

If the signal passes through Niw walls and Nf floors to reach
the robot, the whole bias is expressed as

b =

Niw∑

k=1

(√
ε
(w)
r,k − 1

)
γk/c+

Nf∑

j=1

(√
ε
(f)
r,j − 1

)
ξj/c, (4)

where ε
(w)
r,k is the relative permittivity of the walls, γ refers to

the thickness of the walls, ε(f)r,j is the relative permittivity of
the floors, and ξ refers to the thickness of the floors. The table
of relative permittivity of typical construction materials can be
found, for example, in [15], [16]. In our case study, the walls
are assumed to be made of dry walls and the floors ceilings
of solid concrete. It’s worth pointing out that different choices
of the materials lead to larger or smaller bias b, which affects
the final positioning accuracy.

The last term in eq. (2) refers to the uncertainty of the ToA
measurement which is caused by the noise v. To model the
variance of the ToA, σ2

ToA, we start with a typical multi-tap
channel impulse response of a wireless channel, given as

h (t) =
L−1∑

i=0

αiδ (t− τi) . (5)

Let the transmit passband signal be s(t) = Re
{
sb(t)e

j2πfct
}
,

where sb(t) refers to the baseband signal, the received passband
signal y(t) can be expressed as

y(t) = Re

{
L−1∑

i=0

αisb(t− τi)e
j2πfc(t−τi)

}
. (6)

The baseband receive signal yb(t) is therefore [17]

yb(t) = Re

{
L−1∑

i=0

αisb(t− τi)e
−j2πfcτi

}
. (7)

All L taps are resolvable if we have a wide enough bandwidth
available; and with known pilot signal and appropriate match
filter, the attenuation factors αi, i = 1, . . . , L are omitted;
therefore, ToA of each path is enveloped in the phase of the
channel phasor e−j2πfcτi that is corrupted by AWGN only.
The phase noise added on the channel phasor is modelled as a
zero mean Gaussian random variable with variance [18]

σ2
θ =

[
1

2SNR

(
1 +

1

2SNR

)]
/ (2π)

2
. (8)

Hence, the noise statistics of the ToA, σ2
ToA, is obtained by

dividing eq. (8) by f2
c , yielding

σ2
ToA =

[
1

2SNR

(
1 +

1

2SNR

)]
/ (2πfc)

2 ≈ 1

8π2f2
c SNR

.

(9)
It’s worth pointing out that the approximation in eq. (9) is
equal to the CRB (Cramér-Rao Bound) of the variance of ToA
estimate [19] if the product BTs is close to 1. The signal
bandwidth is denoted by B and Ts is the signal duration.
The SNR (in log-scale) in eq. (9) was computed as

SNR = Pa,i −N0, (10)

with Pa,i given in eq. (1). The thermal noise power spectral
density N0 is given by N0 = −174 + 10 log10(B) +NF , and
NF the receiver noise figure. We assumed that the available
bandwidth B was equal at all carrier frequencies for a fair
comparison, i.e., B = 100 MHz.

C. Positioning method

The positioning method applied here is based on NLS
method [14]

p̂ = argmin
p

‖m− h (p) ‖22, (11)

where m represents the measurements (RSS from eq. (1) or
ToA from (2)) received by robots from a set of heard ANs and
p = [x, y, z] is the robot position. The function h(·) refers to the
deterministic part (including the corresponding bias) in eq. (1)
for RSS measurements and eq. (2) for ToA measurements.
Initial values for the NLS algorithm are computed with the
centroid localization method [10], i.e. the initial position
estimate of each robot is the centroid of all the heard ANs.



V. SIMULATION RESULTS

Fig. 3 shows the average number of LoS connections in
function of the total number of ANs in the building, distributed
uniformly on each floor of the considered three-floor building.
We used 1000 uniformly distributed random robot placements
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Fig. 3. Average number of LoS connections with different number of ANs

to compute this statistic. A LoS situation was counted when
there were no walls and no floors between an AN and a robot.
Clearly, if only 5 ANs are available in the whole building (three
floors, with a floor surface equal to 183×163 = 29.8 ·103 m2),
there are rather few LoS connections. However, if we have 50
or more ANs distributed uniformly in the building, we notice
an average of around 2 LoS connections or more for each
robot, which is the typical assumption of SCNs.

Fig. 4 shows the RMSE of the RSS-based and the ToA-based
positioning methods at different carrier frequencies in cmWave
and mmWave spectra and for three AN densities; namely i)
when 5 ANs are available in the whole building (i.e., density
about 55 ANs per km2), ii) when 100 ANs are available in the
whole building (i.e., density about 1113 ANs per km2), and iii)
when 500 ANs are available in the whole building (i.e., density
about 5567 ANs per km2). RSS-based estimates are rather
independent of the carrier frequency and they do not achieve
sub-meter accuracy, even with a very high density of ANs. On
the other hand, the ToA-based estimators are becoming more
accurate, both with an increased carrier frequency (explained
by a lower variance in ToA estimates due to a higher root

0 20 40 60 80 100 120

Carrier frequency [GHz]

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
M

S
 o

f 
p

o
s
it
io

n
in

g
 e

rr
o

r 
[m

]

'Apparent' tx power: 54 [dBm] Rx sensitivity: -110 [dBm] BW: 100 [MHz]

RSS with 5 ANs

ToA with 5 ANs

RSS with 100 ANs

ToA with 100 ANs

RSS with 500 ANs

ToA with 500 ANs

AN density increase

=>

SCNs gain => sub- m

accuracy achievable

with ToA

X: 120

Y: 5.536

X: 120

Y: 1.216

X: 120

Y: 0.002407

Fig. 4. RSS-based and ToA-based positioning accuracy under different AN
densities
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mean square bandwidth at high carrier frequencies) and with
an increased AN density. Nevertheless, in order to achieve a
sub-meter accuracy needed for industrial applications, a very
high AN density is required. In our case study about 500 ANs
are required to yield sub-meter accuracy.
Fig. 5 shows the RMS of the positioning error versus the

carrier frequency at two different apparent transmit powers, with
RSS-based estimator and ToA-based estimator, respectively.
In our study, there were 40 dB difference of apparent Tx
power indicating an antenna array gain (i.e., MIMO gain). The
obtained result reveals that even under a 40 dB MIMO gain,
the accuracy of RSS-based estimates remains unchanged on
average; whereas, the ToA-based estimator’s accuracy improves,
especially in dense network scenarios (i.e., higher than 100
ANs over 3 floors). A positioning accuracy of 2.3mm, at
120GHz, proves the benefits of 5G positioning, brought by
the rich spectrum, MIMO, and SCNs. As seen in the bottom
plot of Fig. 5, with the exception of the case with a very
low number of ANs (i.e., 5), the ToA performance is highly
improved with an increased antenna gain. We also remark that
a similar positioning accuracy is achieved by either applying a
high apparent Tx power (e.g., 54 dBm, i.e., high MIMO gain)
and a moderate number of ANs (e.g., 100), or by applying
a low apparent Tx power (e.g., 14 dBm) but increasing the
number of ANs (e.g., 500). The tradeoff between the Tx power
and AN density is an interesting future research direction, in
order to estimate the overall costs of the network.

Finally, Fig. 6 presents the positioning performance of both
RSS-based and ToA-based estimators as a function of the
number of ANs deployed in the building. An apparent Tx
power of 54 dBm was used (i.e., MIMO gain of 40 dB was
included). Fig. 6 shows that, with increasing number of ANs,
the error of the RSS-based estimator decreases only slightly,
while the error of ToA-based estimator decreases significantly.
An error threshold of 50 cm is plotted, in accordance with
Table I. We see that in our case study we would need about
200 ANs to achieve 50 cm accuracy at mmWave and 100 ANs
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TABLE II
OPPORTUNITIES AND CHALLENGES OF 5G FOR WIRELESS POSITIONING IN

INDUSTRIAL APPLICATIONS

5G feature Opportunity Challenge

mmWave Accurate ToA estima-
tion node synchroniza-
tion

Link reliability and
coverage

SCN High LoS probability Deployment cost

Massive MIMO High SINR, i.e., less
ToA uncertainty

Algorithm complexity

Beamforming Accurate DoA/DoD
estimation

Beam alignment cost

to achieve a similar accuracy at cmWave (assuming similar
antenna gains, bandwidth and transmit powers). This is due to
a higher path loss at higher carrier frequencies. Nevertheless,
when SCNs and massive MIMO are exploited, positioning in
mmWave spectrum promises higher accuracy than in cmWaves
spectrum.

VI. CONCLUSION

In this paper we analyzed the opportunities and challenges
for IIoT applications from different specific perspectives of 5G
positioning and we presented a case study for 5G positioning
of robots placed indoor in a multi-wall multi-floor building. A
summary of this analysis is given in table II.
Our case study for indoor robot positioning showed that

with SCNs (i.e., high AN density) and MIMO gain, a ToA-
based estimator is able to achieve the sub-meter positioning
accuracy needed for IIoT; additionally, an accuracy tradeoff
between the apparent Tx power and the AN density was pointed
out. Several technical challenges remain to be tackled, such
as the AN–robot synchronization, attitude determination of
robots, connectivity limitation, deployment costs of high density
ANs. Future research will focus on ToA/DoA modelling and
hybridization approaches for more accurate positioning with a
moderate AN density.
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Abstract—High accuracy positioning enabled by 5G cellular
networks will play a crucial role in the robot-based industrial
applications, where the vertical accuracy will be as significant
as the 3D accuracy. Aiming at target applications relying on
flying robots in industrial environments, this paper presents and
formulates two positioning algorithms when the location uncer-
tainty of the access nodes (ANs) is taken into consideration. The
first algorithm is a low-complexity geometry-based 3D positioning
algorithm that utilizes both time-of-arrival and angle-of-arrival
measurements. The second algorithm relies on extended Kalman
Filter (EKF)-based positioning, by mapping the ANs’ location un-
certainty into the measurement noise statistics. The performance
of the two proposed method is studied in terms of 3D and vertical
positioning accuracy, sensitivity to location uncertainty of the
ANs, and computational complexity in indoor scenarios. Based on
the conducted complexity analysis, the proposed geometry-based
algorithm is computationally more efficient than the EKF-based
algorithm. In addition, the proposed geometry-based positioning
method demonstrates a higher robustness against a high location
uncertainty of ANs than the considered EKF-based method.

Index Terms—robot tracking, 5G networks, indoor positioning,
non-linear mapping, location uncertainty of access nodes

I. INTRODUCTION

Several applications of the future Industrial Internet of
Things (IIoT) systems empowered by 5G networks are likely
to require a flying robot to perform various tasks, such
as air quality monitoring, between-floor transportation of
goods, worker safety control, problem diagnosis or remote
maintenance for high-elevation spaces, which are difficult to
access manually. The 3D positioning plays an important role
in the use cases where the flying robots must be localized
and tracked continuously and reliably, both in the horizontal
plane and in the vertical plane [1]. Accurate methods for
robot positioning typically rely on location-dependent radio
measurements, such as the received signal strength, delay and/or
angle measurements coming from access nodes (ANs) with
precisely known locations [2]–[7]. However, in the case of
mobile or wheel-mounted ANs or industrial environments with
assets regularly displaced or moved around, the knowledge of
the locations of the ANs might not be precise. In other words,
depending on device-centric positioning or network-centric
positioning, the location-dependent radio measurements are
thought to be transmitted from or received at a location that
is not the actual location of the ANs. A classical solution to
the problem is to perform the joint estimation of locations of

both ANs and robot using Bayesian filters, e.g., the extended
Kalman filter (EKF). However, an extremely large state vector
due to the joint estimation leads to an increased computational
complexity that may be unfeasible for the industrial robots
with a limited battery life.

In this work, we study two types of positioning algorithms
in order to deal with the location uncertainty of the ANs
without increasing the computational complexity. Firstly, we
extend the 2D positioning method from [8] into a 3D geometry-
based positioning method, named as the weighted centroid
geometric (WCG). In the WCG, the location of a robot is
estimated by fusing both the time of arrival (ToA) and the
angle of arrival (AoA) measurements into the robot positioning
algorithms. Secondly, instead of incorporating the location of
both the robot and the ANs into the state vector of an EKF
algorithm, we derive and formulate the EKF-based positioning
algorithm with the location uncertainty of the ANs being
mapped to the measurement noise statistics. Besides the 3D
positioning accuracy, the vertical accuracy is also employed
as a performance metric [7], as the vertical accuracy can be
particularly crucial in certain applications that relies on robot-
positioning in an indoor environment.

The remaining of this paper is organized as follows. First, the
system model is described in Section II where the utilized path-
loss model, observation models of the considered measurements
as well as the location uncertainty model of the ANs are
given separately. Both the geometry-based and the EKF-based
positioning algorithms are described and formulated in Section
III and IV, respectively. In Section V, the test scenario as well
as the simulation-based results are present and examined. The
conclusion and future works are summarized in the end.

II. SYSTEM MODEL

We consider a single-input-multiple-outputs (SIMO) posi-
tioning system for robot-based industrial applications where a
flying robot transmits uplink (UL) pilot signals to the network
edge (ANs) where the location-dependent measurements are
acquired. In particular, the transmitted data is assumed to
employ the form of an orthogonal frequency division multiplex
(OFDM) signal sent periodically from the robot equipped
with an omnidirectional antenna, while moving along a pre-
designed trajectory. We also assume that the ANs are equipped
with uniform rectangular antenna (URA) arrays and support



3D beamforming technique. The network edge estimates and
collects ToA and AoA measurements and uploads them to a
central unit, where the robot’s location is then estimated. In this
work, positioning is carried out at the network side in order to
keep the computational burden on the robot to a minimum.

A. Path loss model and beamforming gains

The robot’s location is denoted as P[i] = [x[i], y[i], z[i]]
T

at the ith time-instant along the trajectory. Furthermore, we
assume that there are M [i] line-of-sight (LoS)-ANs at the
considered time instant (for the sake of clarity we omit the
time index of M for the rest of this paper). Based on the
location geometry, the received signal strength (RSS) PR,m[i]
in dBm at the ith time-instant from the robot to the mth
LoS-AN located at PAN,m = [xm, ym, zm]

T is written as

PR,m[i] = PT − PL (dm[i]) + S (P[i]) +GT +GR, (1)

where PT is the transmitted UL signal power in dBm,
PL (dm[i]) in dB is the path-loss as a function of the Euclidean
distance between the robot and the mth LoS-AN, denoted
as dm[i] = ‖P[i] − PAN,m‖. Meanwhile, S (P[i]) represents
the shadowing that depends on the robot’s location. In this
paper, we adopted the 3GPP indoor hotspot (InH) path-loss
model with LoS path and a Gaussian distributed shadow fading
[9]. Moreover, the beamforming gains at the transmitter and
receiver are denoted as GT and GR, respectively where GT

is normalized to 0 dBi since the robot is equipped with an
omnidirectional antenna, whereas GR depends on the AoA
since beamforming technique is enabled at all ANs. In this
work, we assume that the GR is obtained by an exhaustive
3D beam-training strategy in order to ensure that the UL pilot
signals are received within the half-power beamwidth of the
antenna at each LoS-AN. Note that the RSS values in (1)
are not utilized for positioning as such, but rather applied to
quantify the accuracy of both ToA and AoA measurements.

B. Observation model of location-dependent parameters

1) ToA measurements and clock offset model: The ToA
observation model reflecting the distances between the LoS-
ANs and the robot is expressed as

τ̂ [i] = b[i] + fτ (P[i]) + nτ [i], (2)

where b[i] ∈ RM×1 refers to the clock offset vector. Here, we
model the clock offset as a Gaussian random process [10] that
meets the synchronization requirement of 5G network, that is,
b[i] ∼ N (0M ,Rclk) where Rclk = σ2

clkIM×M in which 0M
and IM×M are vector containing M zeros and M×M identity
matrix, respectively, and σclk is set to 10 ns [11]. The ToA
observation function fτ (P[i]) is then expressed as

fτ (P[i]) = [τ1[i], · · · , τM [i]]
T

= [‖P[i]− PAN,1‖, · · · , ‖P[i]− PAN,M‖]T /c,
(3)

where c is the speed of light. Furthermore, the variable
nτ represents an additive Gaussian noise vector with zero-
mean under the LoS scenario and non-zero mean under the

non-ideal propagation conditions, such as non-line-of-sight
(NLoS) propagation. Since the LoS scenario is typical in
the future 5G ultra dense networks [12], the noise vector
nτ [i] is modelled as a zero-mean Gaussian variable, that
is, N (0M ,Rτ [i]) with a diagonal noise covariance matrix
Rτ [i] = diag

(
σ2
τ,1, · · · , σ2

τ,M

)
. The noise variance of the mth

ToA measurement, σ2
τ,m (the time index omitted), is bounded

by the following Cramér-Rao lower bound (CRLB) for OFDM
signals [5, Ch.3]

σ2
τ,m ≥ 3Pn

8π2f2
scPr,m[i]Mu(Mu + 1)(2Mu + 1)

, (4)

where fsc represents the sub-carrier spacing, and Mu = Nu−1
2 ,

Nu is the overall number of sub-carriers. Furthermore, Pr,m[i]
is the linear scale of RSS at the ith time instant of the mth AN
calculated from (1) and Pn is the noise power over the entire
bandwidth. It is worth noting that (4) applies only for OFDM
with uniformly distributed energy among all the sub-carriers.

2) AoA measurements: The AoA measurements can also be
utilized to estimate the direction of the robot’s location based
on the LoS propagation between every AN-robot pair [5]. In
the considered 3D scenario, AoA observations consists of the
elevation AoA as well as the azimuth AoA. Taking the URA’s
orientation into account, the AoA observation is expressed as

φ̂[i] = fφ (P[i]) +α+ nφ[i], (5)

where φ̂[i] ∈ R2M×1 consists of the elevation AoA mea-
surements ϕ̂[i] ∈ RM×1 as well as the azimuth AoA
measurements θ̂[i] ∈ RM×1. Furthermore, we denote the
known angular offset due to the specific array orientations
as α ∈ R2M×1, where α contains the angular offsets
along both elevation domain and azimuth domain denoted
as αϕ ∈ RM×1 and αθ ∈ RM×1, respectively. Moreover, the
AoA noise vector is also a zero-mean Gaussian process, that
is, nφ[i] ∼ N (0M ,Rφ[i]) with a noise covariance matrix
Rφ[i] = diag

(
σ2
ϕ,1, · · · , σ2

ϕ,M , σ2
θ,1, · · · , σ2

θ,M

)
(Same as

with σ2
τ,m, we drop the time index here). The non-linear AoA

observation function fφ (·) in (5) consists of the observation
function for elevation angle, denoted as fϕ (·), and the
observation function for azimuth angle, denoted as fθ (·).
Altogether, the AoA observation function w.r.t. P[i] is expressed
as fφ (P[i]) =

[
fT
ϕ (P[i]) ,fT

θ (P[i])
]T

, where

fϕ (P[i]) =




arcsin (∆z1[i]/d1[i])
...

arcsin (∆zM [i]/dM [i])


 , (6)

fθ (P[i]) =




atan2 (∆y1[i],∆x1[i])
...

atan2 (∆yM [i],∆xM [i])


 , (7)

in which ∆xm[i] = x[i] − xm, ∆ym[i] = y[i] − ym, and
∆zm[i] = z[i]−zm for all m = 1, . . . ,M . Additionally, arcsin
and atan2 denote the inverse sine function and four-quadrant
inverse tangent function, respectively.



Assuming that the distance between any two adjacent antenna
elements is half of the carrier wavelength c/fc, and taking the
azimuth AoA between the mth LoS-AN and the robot, i.e.,
θm as an example, the measurement noise variance of the mth
azimuth AoA measurement, σ2

θ,m, is bounded by the CRLB
that is derived based on [5, Ch.3] as

σ2
θ,m ≥ 6Pn

L (L2 − 1)Pr,m[i] (πcosθm)
2 , (8)

where L is the number of antenna elements along the azimuth
plane and Pr,m[i] and Pn are the same variables as in (4). It
is noteworthy that the angular CRLB depends on the geometry
between the robot and the AN, because (8) reaches to infinity
whenever the azimuth AoA approaches ±π/2, and it suggests
that for θm → ±π/2, the effective aperture of the array grows
smaller which results in the diminishing angular resolution of
the array.
Additionally, since an L× L URA is utilized, we assume

the angular resolution in both elevation and azimuth direction
are the same, and hence, the noise statistics of the elevation
AoA measurement, σ2

ϕ,m, shares the same expression as (8). In
(8), the given noise variance is analysed based on dividing the
URA model into two separate uniform linear antenna (ULA)
arrays including both azimuth and elevation angles. Thus, when
appropriately utilizing measurements jointly from all URA
antenna elements, the given AoA measurement noise variance
can be even further reduced.

C. Location uncertainty of ANs

We denote the error-bearing locations of ANs as P̃AN ∈
R3×M that are known at the central unit whereas the actual
ANs’ locations are denoted as PAN ∈ R3×M . Their relationship
is expressed as

P̃AN = PAN + eAN, (9)

where the uncertainty of ANs’ locations is denoted as eAN =
[eAN,1, · · · , eAN,M ], in which eAN,m is defined as

eAN,m ∼ N
(
03, diag

(
σ2
AN, σ

2
AN,

σ2
AN

β2

))
. (10)

In particular, since the horizontal plane in general occupies a
much larger size than that of the vertical plane, we assume that
the ANs’ locations uncertainty in the z-direction is β times
smaller than the uncertainty in x-direction (we use β = 10
in our simulations), while both x- and y- directions share the
same uncertainty σAN. Note that σ2

AN is not indexed as in this
paper we assume that all the ANs suffer from the same level
of location uncertainty. In order to obtain the statistics for the
ANs’ locations, e.g., a training database containing fingerprints
can be employed. However, due to several error sources in
estimating ANs’ locations, the value of σAN is varied in the
simulations to characterize different levels of such uncertainty.

III. WEIGHTED CENTROID GEOMETRIC POSITIONING

As the main contribution of this work, we now derive the
proposed WCG approach based on the fusion of information
from ToA and AoA measurements and the geometry relation

Fig. 1: 3D Geometry between the mth pair of LoS-AN-robot
in the presence of measurements and AN location uncertainty.

between the LoS-AN and the robot as shown in Fig. 1.
Throughout this section, the time index is omitted for the
sake of clarity. With a perfect knowledge on the mth LoS-
AN where m = 1, . . . ,M and the corresponding noise-free
ToA/AoA measurements, the robot location P can be acquired
as

P =



x
y
z


 =



xm + cτmcosϕmcosθm
ym + cτmcosϕmsinθm

zm + cτmsinϕm


 . (11)

However, in practical scenarios, especially in the industrial
environments, not only the measurements are corrupted by
noise, but also there might be errors in the assumed ANs’
locations. By taking into account both measurement noise and
the location uncertainty of the ANs, (11) is expressed as

P̂m =



x̂m

ŷm
ẑm


 =



x̃m + cτ̂mcosϕ̂mcosθ̂m
ỹm + cτ̂mcosϕ̂msinθ̂m

z̃m + cτ̂msinϕ̂m


 , (12)

where the location of the mth LoS-AN known to the central
unit is denoted as P̃AN,m = [x̃m, ỹm, z̃m]

T . The (green) star
marker in Fig. 1, that is acquired by applying (12), is the
position estimate based on imperfect AN location knowledge
as well as the noisy measurements between the mth pair of
LoS-AN and robot. Therefore, we obtain in total M position
estimates from overall M pairs of LoS-ANs and robot, denoted
in a matrix form as P̂ =

[
P̂1, · · · , P̂M

]
. In order to combine

the obtained M position estimates into a single robot position
estimate, a weight vector is designed by considering the quality
of measurements and available clock statistics, such that

w = [w1, · · · , wM ]
T

=
[(
σ2
τ,1 + σ2

clk

)−1
, · · · ,

(
σ2
τ,M + σ2

clk

)−1
]T

.
(13)

Finally, the position estimate obtained by the WCG is
the product of the estimate UE location matrix P̂ and the
normalized weight vector w̃ such that

P̂WCG = P̂w̃, (14)



where w̃ = w/
∑M

m=1 wm.

IV. EXTENDED KALMAN FILTER BASED POSITIONING

As a comparison method for the proposed WCG positioning
method that only relies on the available measurements at the
current state and no prior information is needed, we present a
well-known tracking algorithm for robot positioning that is, an
EKF. Several works such as [6], [7], [13] have presented the
positioning performance achieved by the EKF under 5G mobile
networks. Given the available measurements, we consider
two EKF-based methods, one utilizes both ToA and AoA
measurements, denoted as ’EKF T+A’, while the other utilizes
only AoA measurements, denoted as ’EKF A’. By considering
the location, velocity and acceleration of the robot, the state
vector at the ith time instant is given as

s[i] = [x[i], y[i], z[i], vx[i], vy[i], vz[i], ax[i], ay[i], az[i]]
T
,

(15)
where x[i], y[i], z[i] refers to the location of the robot in
x-, y- and z-coordinate, and vx[i], vy[i], vz[i] are the velocity
components in terms of x-axis, y-axis and z-axis. Similarly,
we have the acceleration components in all three directions,
denoted as ax[i], ay[i], az[i]. Furthermore, we assume that the
state transition between any two adjacent states follows a linear
model and the observation model that connects the state vector
with the measurements obeys a non-linear model, which are
described in a general form as [14]

s[i] = Fs[i− 1] + v[i]
y[i] = h (s[i]) + w[i],

(16)

where F and h are the linear state transition matrix and non-
linear observation function, respectively, v[i] ∼ N (0,Q) is the
state process noise vector, and w[i] ∼ N (0,R) refers to as the
measurement noise vector. Throughout this paper, we denote
y[i] as the measurement vector that contains the available
measurements at the ith time step. Assuming the models in
(16) and the statistics of the initial state, the predicted state
ŝ−[i] and state covariance matrix Σ̂−[i] can be evaluated as

ŝ−[i] = Fŝ[i− 1]

Σ̂−[i] = FΣ̂[i− 1]FT +Q.
(17)

Both a priori mean and covariance estimates in (17) are to be
corrected by incorporating the incoming measurements at the
specific time instant using the following steps

K[i] = Σ̂−[i]HT [i]
(
H[i]Σ̂−[i]HT [i] + R

)−1

ŝ[i] = ŝ−[i] +K[i]
(
y[i]− h

(
ŝ−[i]

))

Σ̂[i] = (I−K[i]H[i]) Σ̂−[i],

(18)

where ŝ[i] and Σ̂[i] are the a posteriori estimate of the state
vector and state covariance matrix, respectively. In addition,
the state-dependent Kalman gain matrix is denoted as K[i], and
H[i] refers to the Jacobian matrix of the observation function
h (·) evaluated at the predicted state ŝ−[i].

Since an indoor industrial environment is under consideration,
the robot is assumed to move with a constant acceleration which
indicates that the acceleration remains almost constant between
consecutive states. Hence, the state transition matrix F and
state noise covariance matrix Q can be described as [6], [15]

F =



I3×3 ∆tI3×3

∆t2

2 I3×3

03×3 I3×3 ∆tI3×3

03×3 03×3 I3×3




Q =




∆t5I3×3

20
∆t4I3×3

8
∆t3I3×3

6
∆t4I3×3

8
∆t3I3×3

3
∆t2I3×3

2
∆t3I3×3

6
∆t2I3×3

2 ∆tI3×3


σ2

q ,

(19)

where ∆t represents the time-interval between two adjacent
states, and σ2

q denotes the uncertainty in the acceleration, that
is, the variance of the acceleration noise. The 3× 3 identity
matrix is denoted as I3×3. In terms of tuning the process noise
covariance matrix Q for both EKFs, σ2

q has been adjusted such
that a centimeter-level 3D RMSE is achieved when σAN = 0.
Thereafter, the same Q matrix has been applied for σAN > 0.

When both ToA and AoA measurements are considered
for positioning, the measurement vector yT+A[i] ∈ R3M+1

is essentially the fusion of (2) and (5) which is written

as yT+A[i] =
[
τ̂T [i], φ̂T [i]

]T
. Similarly, the observation

function of the EKF T+A can be stacked as hT+A (s−[i]) =[
fT
τ ,fT

φ

]T
. Moreover, the Jacobian matrix of hT+A (s−[i]) is

denoted as HT+A[i] ∈ R3M×9 and it is given as HT+A[i] =[
HT

τ [i],H
T
φ [i]

]T
, in which HT

τ [i] and H
T
φ [i] denote the Jacobian

matrix of the ToA measurements and AoA measurements as

Hτ [i] =




∆x̂1[i]

cd̂1[i]

∆ŷ1[i]

cd̂1[i]

∆ẑ1[i]

cd̂1[i]
01×6

...
...

...
...

∆x̂M [i]

cd̂M [i]

∆ŷM [i]

cd̂M [i]

∆ẑM [i]

cd̂M [i]
01×6


 , (20)

Hφ[i] =




−∆x̂1[i]∆ẑ1[i]

d̂2
1[i]d̂2D,1[i]

−∆ŷ1[i]∆ẑ1[i]

d̂2
1[i]d̂2D,1[i]

d̂2D,1[i]

d̂2
1[i]

01×6

...
...

...
...

−∆x̂M [i]∆ẑM [i]

d̂2
M [i]d̂2D,M [i]

−∆ŷM [i]∆ẑM [i]

d̂2
M [i]d̂2D,M[i]

d̂2D,M [i]

d̂2
M [i]

01×6

−∆ŷ1[i]

d̂2D,1[i]

∆x̂1[i]

d̂2D,1[i]
0 01×6

...
...

...
...

− ∆ŷM [i]

d̂2D,M [i]

∆x̂M [i]

d̂2D,M [i]
0 01×6




,

(21)
where ∆x̂m[i] = x̂[i] − x̃m, ∆ŷm[i] = ŷ[i] − ỹm, ∆ẑm[i] =
ẑ[i]− z̃m, d̂m[i] =

√
∆x̂2

m[i] + ∆ŷ2m[i] + ∆ẑ2m[i] and the 2D
distance between the predicted robot’s location and the mth
AN is denoted as d̂2D,m[i] =

√
∆x̂2

m[i] + ∆ŷ2m[i], where m =
1, . . . ,M .

In general, without the uncertainty of ANs’ location, the
measurement noise covariance matrix is denoted as RT+A[i] =
blkdiag{Rτ [i],Rφ[i]} for EKF T+A, and RA[i] = Rφ[i] for
EKF A. However, in the considered scenario and application,
the error statistics that incurred due to the assumed ANs’



location uncertainty and clock bias have to be incorporated
in the observation model and reflected by the measurement
noise covariance matrix. That being said, the uncertainty in
the location of the ANs must be mapped to the measurement
noise statistics. A linearization is therefore implemented for
each AN-robot pair in order to perform the nonlinear mapping
from multi-dimension AN location error to a single dimension
measurement error. Hence, the resulting RT+A[i] is given as

RT+A[i] = blkdiag
{
Rτ [i] + R̃τ [i] +Rclk,Rφ[i] + R̃φ[i]

}
,

(22)
where R̃τ [i] ∈ RM×M and R̃φ[i] ∈ R2M×2M . The -̃sign is
used to represent the extra noise statistics to ToA and AoA
measurements caused by the location uncertainty of ANs.
Since all the ANs are assumed to suffer from the same

location uncertainty as discussed in II-C, we express R̃τ [i]
and R̃φ[i] as

R̃τ [i] =

[
∂fτ

∂P̃AN

∣∣∣∣̂
s−[i]

]
RAN

[
∂fτ

∂P̃AN

∣∣∣∣̂
s−[i]

]T

(23)

R̃φ[i] =

[
∂fφ

∂P̃AN

∣∣∣∣̂
s−[i]

]
RAN

[
∂fφ

∂P̃AN

∣∣∣∣̂
s−[i]

]T

, (24)

where RAN = diag
(
σ2
AN, σ

2
AN,

σ2
AN
β2

)
denotes the covariance

matrix of ANs’ location uncertainty defined in (10). Moreover,
the Jacobian matrix w.r.t. the ANs can be obtained by simply
taking the opposite sign of the non-zero terms in (20) and (21)
yielding

∂fτ

∂P̃AN

∣∣∣∣̂
s−[i]

=




−∆x̂1[i]

cd̂1[i]

−∆ŷ1[i]

cd̂1[i]

−∆ẑ1[i]

cd̂1[i]

...
...

...
−∆x̂M [i]

cd̂M [i]

−∆ŷM [i]

cd̂M [i]

−∆ẑM [i]

cd̂M [i]


 (25)

∂fφ

∂P̃AN

∣∣∣∣̂
s−[i]

=




∆x̂1[i]∆ẑ1[i]

d̂2
1[i]d̂2D,1[i]

∆ŷ1[i]∆ẑ1[i]

d̂2
1[i]d̂2D,1[i]

− d̂2D,1[i]

d̂2
1[i]

...
...

...
∆x̂M [i]∆ẑM [i]

d̂2
M [i]d̂2D,M [i]

∆ŷM [i]∆ẑM [i]

d̂2
M [i]d̂2D,M[i]

− d̂2D,M [i]

d̂2
M [i]

∆ŷ1[i]

d̂2D,1[i]
−∆x̂1[i]

d̂2D,1[i]
0

...
...

...
∆ŷM [i]

d̂2D,M [i]
−∆x̂M [i]

d̂2D,M [i]
0




,

(26)
where ∆x̂m[i], ∆ŷm[i], ∆ẑm[i], d̂m[i] and d̂2D,m[i] for m =
1, . . . ,M refer to the same notations as (21).

V. TEST SCENARIO AND SIMULATION-BASED RESULTS

A. Scenario deployment

The positioning performance of the studied positioning
algorithms (i.e., WCG, EKF A and EKF T+A) is tested with
a realistic wall-divided indoor map with a length of 150 m,
width of 112 m, and height of 4 m as shown in the left plot
of Fig. 2. The overall trajectory is plotted in the blue curve
along which the robot is moving at nearly constant velocities,

TABLE I: Configuration of the UL OFDM pilot signal

Parameter Value
Carrier frequency fc 39 GHz
Sub-carrier spacing fsc 120 kHz
No. of sub-carrier Nu 1024
Signal bandwidth Bw 123 MHz
Transmit power PT 27 dBm

Receive beamforming gain GR 20 dBi

around 1.1 m/s (human walking speed is around 0.6 m/s), and
at a linearly varying height between 1 m and 2 m given in the
right plot of Fig. 2. In particular, the corners of the trajectory
are smoothed in order to reflect a practical trajectory of a
moving robot. Moreover, we design the ANs to be installed on
the walls at 3m height shown in red circle markers, and the
corresponding array orientations of the ANs, i.e., the angular
offsets α are assumed to be known. In particular, we set
αϕ = 0M , whereas the values of αθ, i.e., the orientations
in the azimuth domain, are initialized so that the arrays are
parallel to the corresponding wall. Furthermore, there are at
least four LoS-ANs available along the studied trajectory, and
the AN density is around 1.24/25m2. Finally, we summarize the
UL pilot signal parameters used in our simulations in Table I.
Note that the carrier frequency is chosen at the millimetre
wave (mmWave) band at 39 GHz with an approximate of 123
MHz signal bandwidth. In order to enhance the received signal
strength at the ANs, the transmit power is set at 27 dBm which
can be further reduced in a multi-robot scenario in order to
ease the interference level.

B. Performance evaluation

The cumulative distribution function of the ToA measurement
error as well as the AoA measurement error are shown in
Fig. 3 where the values of the horizontal axis are described
in meters for ToA measurement error, and in degrees for the
AoA measurement error. Based on the results, it can be seen
that the ToA errors are generally below ±10m while the
AoA errors rarely reaches beyond ±0.5◦. The behavior of
the ToA measurement errors can be explained based on the
ToA observation model (2) where the considered error sources
consists of the thermal noise as well as the synchronization
error with a 10ns standard deviation that corresponds to 3m
error in distance. We point out here that the thermal noise error
is dominated by the synchronization error as the former returns
a ToA error in the magnitude of 0.1 - 8 cm owing to the wide
signal bandwidth Bw. Compared to the ToA measurements,
the AoA measurements seem to be more accurate as 95%
of the errors for both the elevation and azimuth angle are
within ±0.5◦. However, the small values in degrees does not
necessarily indicate a better positioning accuracy since even a
small error in the AoA measurements may lead to significant
positioning errors when the distance between the robot and a
given AN is large.
Both the 3D and vertical RMSE as a function of the

location uncertainty of the ANs σAN (along the x-direction)
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Fig. 3: The cumulative distribution function (CDF) of the ToA
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(in degrees) that were utilized as the inputs of the considered
positioning algorithms.

are given in Fig. 4. Note that the results is obtained based on
2000 simulation trials through the whole trajectory. The ANs’
locations P̃AN, known at the central unit are initialized based
on (9) in the beginning of each trial. Moreover, the location
estimates of both considered EKFs are initialized around the
reference location using the standard deviations of 1 m and 0.1
m in horizontal and vertical direction, respectively. Based on
the obtained results, the EKF-based approaches outperform the
WCG in terms of both 3D and vertical RMSE whenever the
uncertainty in ANs’ locations remains small enough i.e., σAN ≤
0.5m, in which case, the EKFs are seen as better positioning
solutions. On the other hand, the positioning performance of the
EKFs degrades more severely than the WCG when σAN raises
beyond 0.5m although a worse performance is seen to all the
algorithms. One possible reason for the vast drop in terms of
positioning performance of the EKFs especially at relative high
σAN lies in the un-fulfillment of linearization of the nonlinear

TABLE II: Computational complexity of positioning algorithms

Algorithm Computational Complexity
EKFs O(MN2

s )+O(M2Ns)
WCG O(M)

observation functions fτ , fϕ and fθ w.r.t. the ŝ− due to the
highly un-precise location of the ANs contained in all the
nonlinear observation functions. Numerically, the 3D/vertical
RMSE of EKF T+A and EKF A raise to about 19m/5.2m
and 29m/7.5m respectively whereas that of the WCG are kept
roughly at 7m/0.6m at the highest considered uncertainty of
ANs’ locations, i.e., σAN = 5m. It has been observed that
the WCG distinctly demonstrates a better robustness to higher
location uncertainty of the ANs than the EKFs under the
considered scenario and assumptions.
In addition to the positioning accuracy, we analyze and

compare the computational complexity of all the algorithms in
terms of the overall number of the involved real multiplications
at a single time instant. According to [16], there are 21MN2

s +
144M2Ns + 3MNs and 14MN2

s + 64M2Ns + 2MNs real
multiplications for EKF T+A and EKF A, respectively where
M is denoted as the number of LoS-ANs and Ns refers to
the number of entries in the state vector (15). Meanwhile,
we computed that there are in total 11M real multiplications
involved for WCG. Finally, the computational complexity in
terms of O of EKFs and WCG are summarized in Table II.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed and formulated two types of
positioning algorithms with the location uncertainty of the ANs
being considered and modelled statistically. The first method
is a 3D geometry-based positioning approach utilizing both
the ToA and AoA measurements. The second one is based
on the Bayesian frame work, i.e., the EKF-based approach
with the ANs’ location uncertainty being mapped into the
measurement error statistic. Additionally, the clock errors were
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Fig. 4: Left plot: 3D RMSE of different positioning methods as a function of AN uncertainty σAN. Right plot: Vertical RMSE
of different positioning methods as a function of AN uncertainty σAN.

also taken into consideration. The 3D and vertical RMSE as
well as the number of operations needed to implement the
considered algorithms (at one time instant) were utilized as
the metrics for comparison. The numerical results showed
that the utilized EKF-based algorithms remain as a better
choice in terms of both 3D and vertical RMSE performances
as long as the error contained in the location of ANs was
kept at less than 0.5m (i.e., standard deviation along the x-
direction). On the other hand, the proposed geometry-based
approach, namely the WCG, was capable of maintaining a
higher positioning accuracy than EKF-based approaches when
exposed to the ANs locations uncertainty larger than 0.5m
(standard deviation error), thus yielding a higher robustness.
Nevertheless, we point out that the performance threshold (the
σAN where RMSE curves of both EKFs and WCG cross) may
vary for a different assumption/scenarios. The main advantage
of the proposed WCG approach comes from the huge reduction
in the computational complexity compared with considered
EKFs, which makes it a very promising candidate for sensor
and robot positioning in industrial environments where the
ANs are not precisely known or located. Future work will
concentrate on the simultaneously estimation of both the robots
and ANs locations, as well as on mapping the uncontrolled
environment through simultaneous localization and mapping
(SLAM) algorithms.
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ABSTRACT The extension from centimeter wave frequencies to millimeter wave (mmWave) frequencies
has triggered an enormous transformation in terms of radio access architecture for future wireless networks,
and it has therefore empowered unlimited opportunities for the user-oriented services and applications.
Besides mmWave as a driving element, beamforming (BF) will be incorporated as a key enabling technology
for the future wireless networks. In this paper, we propose a positioning-aided beamforming (PA-BF)
framework for enhanced downlink communications in a cloud-oriented mmWavemobile networks.We show
that the proposed PA-BF achieves a higher effective transmit ratio that is equivalent to a lower initial
access latency than the conventional codebook-based BF, which in turn manifests its capability to support
high-velocity mobile users. We also analyze the impact of positioning accuracies on the performance of
PA-BF and discuss the trade-offs between different BF strategies with varied system parameters. Our
simulation results demonstrate that, with a narrow beam phased array and reasonably good positioning
accuracy, the PA-BF framework is capable of achieving higher spectral efficiency than the considered
codebook-based BF especially at higher velocities.

INDEX TERMS Exhaustive beamforming, millimeter wave mobile networks, positioning-aided
beamforming, positioning-aided communications.

I. INTRODUCTION
Without a doubt, upcoming wireless communication systems
will extend the radio channels towards a higher frequency
range, namely the millimeter wave (mmWave) band, in order
to enable various user-driven services that require ultra-high
channel capacity in both uplink (UL) and downlink (DL),
such as virtual reality and video conference. Although the
abundance in the available signal bandwidth is ensured, a con-
siderable challenge of mmWave lies in the fact that the
mmWave signals have a higher path-loss and a higher pene-
tration/absorption loss than centimeter wave signals, depend-
ing on the materials and structures within the propagation
environment [1]. Consequently, in order to overcome the
severe propagation losses, the future wireless communica-
tion systems incorporate several other features such as the
small cell networks (SCNs) and beamforming (BF) as the

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed Mohamed Ahmed Almradi .

ingredient technologies [2] that empower a multi-function
wireless mmWave mobile network. In general, SCNs, also
known as ultra dense networks (UDNs), bring various ben-
efits to both communications [3] and radio positioning [4]
due to a high probability of having a line-of-sight (LoS)
connection between the transmitter and receiver, for instance.
From the communications perspective, SCNs alleviate the
significant path-loss and reflection/diffraction loss thanks to
a shorter end-to-end propagation distance.

Apart from SCNs, the mmWave mobile networks will
incorporate the BF functionalities as another enabling tech-
nology to overcome the severe path-loss and to better opti-
mize the interference level at both UL and DL. Together with
a massive multiple-input multiple-output (MIMO) antenna
technology [5], transmission towards the desired direction
is enabled. Therefore, BF not only alleviates the signifi-
cant path-loss by taking advantage of the MIMO antenna
gain, but it also reduces both the potential intra-cell and
inter-cell interference via the elegant spatial reuse [6, Ch.1].
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Nevertheless, an optimal spatial reuse requires a sophisticated
BF strategy in terms of the beam management [7]. In other
words, an optimized BF ensures better spatial multiplexing
and better receive signal-to-noise ratio (SNR) but it yields
a longer latency of the initial access (IA) especially when
narrow beams are utilized at both ends of the communication
link. However, a long IA latency is not acceptable for the
mission-critical applications such as the autonomous driving
and robotics that require a ultra reliable low latency commu-
nication (URLLC) [8]. Herein, we adapt the semi-directional
communication mode [9] where an omni-directional user
equipment (UE) and an analog BF enabled access point (AP)
are assumed throughout this paper.

In order to enhance the DL communication quality,
we propose a positioning-aided beamforming (PA-BF)
framework that exploits the location information of the
UE via network-centric UL positioning, thus leading to a
lower IA latency and a higher throughput than utilizing
the codebook-based BF strategies [7]. The contributions of
this paper include the demonstration, formulation, and sim-
ulation of the PA-BF strategy leveraging a cloud-oriented
mobile network, and we summarized the key contributions
as follows:

• Introducing a PA-BF strategy tailored for mmWave
mobile network that is operating on an envisioned
cloud-oriented radio access architecture;

• Presenting a theoretical formulation of the systemmodel
for performing the PA-BF in the DL, showing that a
better spectral efficiency and lower IA latency can be
achieved compared to the codebook-based BF;

• Deriving the positioning-error bound (PEB) based on
the time difference of flight measurements by assuming
LoS-dominant connections among each pair of AP and
the UEs.

• Demonstrating that the proposed PA-BF framework
can support much higher UE velocities than the
codebook-based BF, while maintaining the same com-
munication quality in terms of the achievable spectral
efficiency.

II. RELATED WORKS
The intuitive trade-off between the IA latency and achiev-
able communication quality has been previously addressed
in the literature through three main BF strategies for IA
in 5G mmWave networks: i) an exhaustive beamforming
(EX-BF) strategy [10], [11], ii) a hierarchical/genetic BF
strategy [12]–[14] and iii) a context-information (CI)-based
BF strategy [15]–[18] which is also known as location-based
BF. Generally speaking, EX-BF and hierarchical BF strate-
gies rely on a pre-defined single/multi-level codebook, thus
they can be regarded as belonging to the same family of
codebook-based BF. For the CI-based BF strategy, its advan-
tage comes mainly from the reduced IA latency compared to
the codebook-based strategies, due to the pre-defined spa-
tial direction indicated by the context information of the
user location typically acquired via available positioning

technology on the UE, which must be then informed to the
APs [16]. The usefulness of the location information in the
context of BFwas analyzed in [17], where the authors focused
on the benefits in terms of channel estimation duration and
in the received SNR level when exploiting location informa-
tion of targets with different location accuracies. Moreover,
the authors in [18] analyzed the connection between posi-
tioning accuracy and the effective data rate as a function of
different training overheads such as the number of beams.

Additional related studies on the CI-based BF and
location-aware communications can be found in
[4], [19]–[23]. In [19], the authors have proposed a
location-aware BF strategy for multi-user (MU) massive
MIMO system for the high speed train (HST) scenario, where
the location information has been exploited to reduce the
complexity of BF. However, the impact of the positioning
error on the BF performance has not been examined therein.
Regarding the CI-based BF strategy, a compressive sensing
(CS) based BF with CI was proposed in [20] where the
location-uncertainty of mobile users is exploited to reduce the
sweeping range in the angle domain. Assuming a symmetric
positioning error, the CS based multi-level BF has been
applied to find the optimal beam for mmWave communica-
tions and a performance in terms of spectral efficiency close
to the EX-BF has been achieved. Additionally, the authors
in [21] have studied the benefits of the location-based BF
over the codebook-based BF in a 2D scenario where the
location estimate comes from a global navigation satellite
system (GNSS). However, neither the impact of positioning
accuracy on the considered location-based BF nor the way
that the AP acquires the location estimate of UE1 before the
BF were clearly investigated therein. Moreover, a network-
centric system is proposed to enable the location-based BF
in the DL in [22], [23]. Via the tracking of directional
parameters (elevation and azimuth angles) by an extended
Kalman filter at the network side, the precoder for DL
communication is designed for location-based BF, and the
results shown that, despite a closer performance, the matched
filter (MF) based precoder has achieved a better signal-
to-interference-plus-noise ratio (SINR) and user throughput
than the zero-force (ZF) based precoder. While considering a
network-centric system, the authors in [4] presented the posi-
tioning performance in a dense 5G network, and compared
the location-based BF with the channel state information
(CSI)-based BF in terms of the user throughput. In particular,
the location-based BF manifested a certain advantage over
the CSI-based BF because of a reduced pilot overhead owing
to the available location information.

In this work, the CSI-based BF is not considered mainly
due to the short effective duration of the CSI [9] as well as
due to the high cost of acquiring the perfect CSI of each
antenna element especially in large-scale mmWave systems
[12], [24]. Furthermore, the other strategy, CS-based BF,

1Since a GNSS-based positioning was applied, it implies that only the UE
knows its estimated location but AP does not before the BF.
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is not chosen as the benchmark here for several reasons.
We elaborate our rationale from two major perspectives: i)
the realization of CS-based BF strategy such as [20], [25]
is normally conditional on the acquisition of the CSI at
both the transmitter and the receiver sides, which yields
a higher algorithm complexity and a longer latency [26];
ii) the CS-based BF in general requires the utilization of
fully digital beamforming or hybrid beamforming in order
to change the beamwidth which remains as a high-demand
on the device hardware. All in all, compared with aforemen-
tioned works, our proposed PA-BF framework operates on a
low-complexity analog BF, where the positioning is done via
multi-connectivity in the UL within a cloud-oriented network
architecture.

Besides the simulation-based study on BF for the mmWave
networks, experimental work has been conducted in [27],
[28], where different specificmodel-driven 3D beam-steering
mechanisms were applied to achieve high communica-
tion performances in terms of several micro-benchmarks
in 60 GHz wireless networks. Assisted by the measure-
ment campaign, the authors in [27] analyze the impact
of 3D motion and rotation to the link performance of the
60 GHz connection. The discovery revealed a ‘‘deformed-
cross’’ pattern of the channel quality distribution applying 3D
beams, which leads to an optimal beam-steering mechanism,
the OScan. Based on the evaluations, the designed OScan
outperforms existed mechanisms in terms of convergence,
accuracy and overhead, therefore providing higher through-
put gain for different applications, environments and users.
In [28], the authors proposed a robust 60 GHz network archi-
tecture for seamless room-scale coverage with multi-Gbps
throughput. In the context of multiple APs and UEs, the pro-
posed method maximizes the spatial reuse as well as reduces
the overwhelming IA latency in the mmWave networks by
exploiting the UE’s pose information (location and orienta-
tion) and predicting the best beam pattern of each AP among
several UEs.

These two works have devoted tremendous contributions
towards 3D beam-steering by the means of theoretical analy-
sis, algorithm development and experimental measurements.
It is noteworthy that in the aforementioned works, the UE
positioning was carried out by utilizing, e.g., the motion
sensors in a device-centric manner, after which BF is carried
out to select optimal AP and harvest a higher throughput
via mmWave communication. However, our proposed frame-
work is essentially a combination of both positioning and
BF. That is, the UE location is first estimated via an UL
positioning at the network side, and the PA-BF is performed
thereafter to take advantage of the obtained location aware-
ness yielding a lower IA latency as well as a better commu-
nication quality. We provide a simulation-based performance
characterization under various positioning errors, while con-
sidering the impact of geometric relations on the system level
performance.

Throughout this paper, the EX-BF is chosen as the
benchmark for the performance comparison with the

proposed PA-BF. The choice of this benchmark was moti-
vated by two main factors: i) neither EX-BF nor PA-BF
require the change of beamwidth yielding a similar mech-
anism complexity. Therefore, it makes the comparison fair;
ii) EX-BF was shown to give better performance than other
strategies in terms of detection probability [16] as well as
the spectral efficiency [20] which serves as another factor.
Finally, we point out that all BF strategies considered herein
refer to the analog BF, i.e., only one beam can be generated
at one time.

III. THE PROPOSED CLOUD-ORIENTED SYSTEM
In this section, an overview of the cloud-oriented mobile
network is given, followed by a systematic description of UL
positioning as well as DL positioning-aided communications.

A. SYSTEM OVERVIEW
Our envisaged radio access architecture is depicted in Fig.1,
where a cloud-oriented mobile network is proposed for a
mmWave-based communication and positioning system in
which the signals for both UL and DL employ orthogonal fre-
quency division multiplexing (OFDM) waveforms. In addi-
tion, a time-division duplex (TDD) protocol is considered in
the system with a focus on mmWave-enabled radio access
technology (RAT), and a multi-RAT-enabled heterogeneous
network (HetNet) was proposed and analyzed in [29].
Moreover, each UE within the network is assumed to be
equipped with an omni-directional antenna from which the
UL pilot signals2 are transmitted to the network (i.e., to the
APs) in a periodic manner. The APs that are in the LoS
condition with respect to the UEs are referred to as the
LoS-APs. At the network edge, we assume that a uniform
rectangular array (URA) is installed on each AP, from which
only one antenna element is assumed to be active in the UL
positioning phase whereas all the elements function during
the DL communication phase.

Such a system is tailored to minimize the positioning
overhead in the UL whereas taking advantage of array gain in
the DL that is conditional on the UL positioning performance,
as will be discussed in Section III-C and V-A. Furthermore,
we assume that the location-dependent measurements such
as time of flight (ToF) and/or angle of arrival (AoA) are
measured by the APs and sent to the cloud, where the UE
location is estimated based on the aggregated measurements.
In terms of functionality, the cloud can be considered as a data
center (entity) that operates the radio resource management,
the scheduling and the handover decisions for the entire
network. After the cloud-based UE location estimation, this
estimated location is transmitted from the cloud back to the
network.3 With this estimated UE location, the positioning-
aided DL communications are implemented, which, as we

2The UL pilot signals can be, for instance, the sounding reference signals
(SRS) [30].

3Herein, the cloud communication latency, i.e., the round-trip delay
between the cloud and the APs is assumed to be much smaller than the
periodicity of UL pilot signal, and therefore, the cloud communication
latency can be ignored [31].
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FIGURE 1. The envisioned radio access architecture — a cloud-oriented mobile network.

will show, will yield a shorter IA latency compared with a
conventional IA-BF procedure.

B. UL POSITIONING
This subsection presents the UL positioning system in
which the location of a UE is estimated. In general,
the positioning solution that utilizes UL pilot signals in
a network-centric manner has several advantages over a
device-centric positioning approach, such as
1. No knowledge or estimation on the orientation of the UE

array is needed. Although an omni-directional antenna
is assumed for the UE in this work, UL positioning
arguments the aforementioned advantage especially for
multi-antenna UEs.

2. Since the positioning algorithms are not evaluated at the
UE side, the power consumption of the UE battery is kept
to a minimum, thus it can highly benefit power-sensitive
applications such as industrial robotics.

3. The estimated UE location can be directly utilized by the
network to enable any location-based services, therefore,
no additional links are needed for the UE to report its
location back to the network.

4. The location awareness of the UE at the network side is
beneficial to beam tracking as the beam-steering vector
can be continuously pointed towards the UE.

For positioning, we consider a multi-connectivity scenario
where the UL pilot signal from the UE reaches more than
one LoS-AP, which is a reasonable assumption in the light
of future SCNs/UDNs. We further denote the set of LoS-APs
indices as M, where each AP is located at a known location
PAP,m = [xm, ym, zm]T , ∀m ∈ M. The UE location vector is
denoted as p = [x, y, z]T . Assuming a L × L URA with one
active antenna element in the UL, the received signal rm(t) at
the mth LoS-AP is

rm(t) =
√
grPT,ULhms(t − τm)+ (s ∗ ν) (t)+ n(t), (1)

where PT,UL and gr refer to the UL transmit power in a
linear scale and the received antenna gain at the AP, respec-
tively. Moreover, hm denotes as the corresponding channel
coefficient w.r.t. the mth LoS-AP. In this work, hm has been
modeled according to the 3GPP indoor hotspot (InH) shop-
ping mall channel model [32]. In addition, s(t − τm) is the
continuous time-domain transmit signals with a duration of
Ts and bandwidth Bw, and n(t) denotes the additive Gaussian
noise with a power spectrum density of N0. The LoS delay τm

is the quotient of the Euclidean distance between the UE and
mth AP and the speed of light, τm = ‖p − PAP,m‖/c. Also,
the Hermitian transpose is denoted as H . Last but not least,
the convolution of signal s (t) and diffuse reflection com-
ponents ν (t) is applied to model the un-correlated scatter-
ing with the un-planar surfaces/obstacles of the environment
[33], [34]

(s ∗ ν) (t) =
∫
s (u) ν (t − u) du, (2)

where ν (t) is a zero-mean Gaussian process, and the power
ratio of h and ν (t) is determined and calculated by the
Rician-K factor in [32, Table 7.5-6]. However, given the
fact that the direct path contains nearly all the energy in
the mmWave communications [35], the effect to rm (t) from
both the specular reflection and diffuse reflection can be
overlooked.

1) MEASUREMENT MODEL
Once the UL pilot signal is acquired, location-dependent
measurements needs to be extracted for positioning. Typi-
cally, the positioning related measurements consists of ToF
and AoA that offer the information in terms of distance and
spatial direction w.r.t. the location of APs. However, due to
the disparate nature of the clock offsets among the APs and
the UE, the ToF measurements remain useless until the syn-
chronization is achieved or otherwise compensated [36]–[38].
Therefore, by assuming a network with synchronized APs,
the UL positioning in this work is carried out considering the
time difference of flight (TDoF) measurements �τ̂ ∈ RM−1

that are observed according to
�τ̂ = f�τ (p)+ n�τ , (3)

where f�τ (p) refers to the TDoF observation function and
n�τ ∈ RM−1 is the measurement noise vector. Note that M
represents the overall number of the LoS-APs. Specifically,
the non-linear function f�τ (p) is expressed as

f�τ (p) =
[
d2 − d1

c
, · · · ,

dM − d1
c

]T
, (4)

where the reference LoS-AP is selected to be the one with
index 1, and dm is denoted as the Euclidean distance between
the UE and the mth AP, that is given as

dm = ‖p− PAP,m‖ =

√
�x2m +�y2m +�z2m. (5)

where �xm = x − xm,�ym = y− ym and �zm = z− zm.
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Moreover, since the LoS propagation is assumed, the noise
vector n�τ is modelled as a zero-mean Gaussian process,
such that n�τ ∼ N (0M−1,R�τ ) with the noise covariance
matrix being described as [39, Ch.4]

R�τ =



σ 2
τ1
+ σ 2

τ2
σ 2
τ1

· · · σ 2
τ1

σ 2
τ1

σ 2
τ1
+ σ 2

τ3
· · · σ 2

τ1
...

...
. . .

...
σ 2
τ1

σ 2
τ1

· · · σ 2
τ1
+ σ 2

τM


 . (6)

In essence, the noise covariance matrix (6) is constructed
based on the Cramér-Rao lower bound (CRLB) of the ToF
measurement, and that is in fact the reason why (6) is
non-diagonal (i.e., more correlated) as each TDoF measure-
ment is calculated based on two ToF measurements one of
which comes from the same reference AP. Taking the noise
variance of the ToF measurement between the mth LoS-AP
and the UE as an example, we have [39, Ch.3]

σ 2
τ,m ≥

3
8π2f 2scSNRmMu(Mu + 1)(2Mu + 1)

, (7)

where the CRLB of ToF lies on the right side of the
equation, and the received SNR at themth LoS-AP is denoted
as SNRm = EIRPUL|hm|2/N0Bw, in which EIRPUL =

PT,ULgr is the equivalent isotropic radiated power [40, Ch.4].
Since only one active antenna element is assumed in the
UL, the received antenna gain gr in (1) is set to be 0 dBi.
Furthermore, fsc is the sub-carrier spacing, and Mu =

Nu−1
2 ,

Nu is the overall number of sub-carriers. With a fixed signal
bandwidth Bw, the following numerical condition is satisfied

Bw = fscNu = fsc (2Mu − 1) . (8)

Therefore, beside the received SNR, the ToF measurement
noise variance is also inversely proportional to the overall
bandwidth Bw.

2) POSITIONING ERROR BOUND (PEB)
PEB, which is essentially the CRLB when the parameters of
interest refer to each component of the UE location vector
p = [x, y, z]T , normally starts with the calculation of
Fisher information matrix (FIM) based on the available mea-
surements [41, Ch.3]. Since only TDoF measurements are
considered and its measurement noise is zero-mean Gaussian
distributed under LoS, the FIM of location p can be computed
as [42, Ch.2]

I�τ =

[
∂f�τ (p)

∂p

]T
R−1
�τ

[
∂f�τ (p)

∂p

]
, (9)

where the derivative w.r.t. f�τ (p) is calculated in line with
(4)

∂f�τ (p)
∂p

=




�x2
d2

−
�x1
d1

�y2
d2

−
�y1
d1

�z2
d2

−
�z1
d1

...
...

...
�xM
dM

−
�x1
d1

�yM
dM

−
�y1
d1

�zM
dM

−
�z1
d1



. (10)

Given the FIM in (9), the 3D PEB is then calculated as

PEB = CRLB(p) =

√
trace

(
I−1
�τ

)
, (11)

where ’trace’ denotes the summation of the diagonal values
of the matrix. In particular, the derived PEB (11) serves as
a prior information to implement the proposed PA-BF. Hence,
in the next sub-section, we describe how this information can
be exploited to enhance the DL communications.

C. DL POSITIONING-AIDED COMMUNICATIONS
Once positioning is done at the data center, the estimated UE
location is sent to one or several APs via the feedback channel
shown in Fig.1. The knowledge of the UE location not only
enables various location-based services [43] but also vastly
reduces the latency caused at IA process. It is to note that
in the DL, all the antenna elements of the URA at the AP
is active, as such, the multiple-input single-output (MISO)
model is applied to describe the DL communication model
at the receiver side as

r(t)=
√
PT,DLhHDLf

∗s(t−τDL)+(s ∗ νDL) (t)+ n(t), (12)

where the DL channel vector hDL is the product of channel
coefficient hDL and the array response bURA, that is, hDL =

hDLbURA(φAoD), in which, φAoD � (ϕAoD, θAoD) is the true
angle of departure (AoD) pair and bURA can be understood as
a combination of several uniform linear arrays (ULAs), which
is therefore obtained as [44]

bURA(φm) =
√
β0(L, φm)aURA(φm),

aURA(φm) = aULA(ϕm)⊗ aULA(θm|ϕm), (13)

where β0(L, φm) represents the antenna gain that depends on
the overall number of antenna elements L2 as well as the
AoA pair, φm � (ϕm, θm) w.r.t. the mth LoS-AP. Note that
aULA (θm|ϕm) refers to the ULA response at θm given ϕm.
Meanwhile, we assume that the URA consists of identical
isotropic antenna elements, and all adjacent elements are λ/2
apart in both elevation and azimuth plane, where λ is the
wavelength of carrier frequency fc. Hence, both the ULA
response aULA(ϕm) and aULA(θm|ϕm) for the kth antenna
element are expressed as

[aULA(ϕm)]k = e−jkπsin(ϕm)/L,

[aULA(θm|ϕm)]k = e−jkπcos(ϕm)sin(θm)/L, (14)

where k = [−L−1
2 , L−1

2 ]. The normalized array response
aURA ∈ CL2

×1 can be calculated by the kronecker product,
denoted as ⊗, of the two ULA responses as in (13).

Additionally, PT,DL and τDL refer to the linear scale
transmit power and the LoS delay in the DL, respectively,
and the transmit signal, the additive Gaussian noise and the
receive signal in the time domain are denoted as s(t), n(t)
and r(t), individually. Similar to the UL (1), the diffuse
reflection components are considered in the DL (12) as
well. However, due to a more directional transmission,4 the

4Herein, we present a single-input single-output (SISO) model in the UL,
and a MISO model in the DL.
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power of DL diffuse reflection components νDL is much less
than that of UL which can therefore be ignored as well.
Furthermore, we denote the selected AP for DL communi-
cation as the primary AP that located at P0 = [x0, y0, z0]T .
More importantly, in positioning-aided communication sys-
tem, the beam-steering vector f ∗ (the precoder) is constructed
based on the predicted angle pair w.r.t. the primary AP that
is defined as φ̂AoD � (ϕ̂AoD, θ̂AoD), that is obtained in
accordance with the estimated UE location, p̂ = [x̂, ŷ, ẑ]T

as

ϕ̂AoD = arcsin
(

ẑ− z0
‖p̂− P0‖

)
,

θ̂AoD = atan2
(
ŷ− y0, x̂ − x0

)
. (15)

Here, it is to note that the considered UE location estimate is
given as p̂ = p + e, where the covariance of the zero-mean
error vector e is related with the FIM (9) as

E
[
eeT

]
= I−1

�τ . (16)

That is, we consider an unbiased location estimator
p̂ [39, Ch. 4]. Moreover, we point out that the product of hHDLf
reflects the beamforming gain of the PA-BF, and it reaches the
maximum whenever the predicted angle pair φ̂AoD matches
with the true angle pair φAoD. And the way on choosing
and/or constructing the codewords for both considered beam-
forming strategies is given in the next section.

IV. UTILIZED 3D CODEBOOK FOR EX-BF AND PA-BF
In essence, the codebook acts as a dictionary that consists of a
group of codewords (beam-steering vectors) in order to find
the optimal path in the spatial domain to establish the best
possible communication link based on the current channel
conditions and environments. In this section, we demonstrate
the codebook utilized for both considered BF strategies.

A. THE 3D DFT CODEBOOK FOR EX-BF
The codebook we consider for the EX-BF herein is the
discrete Fourier transform (DFT) codebook [18] due to its
orthogonality among all codewords. And a 3DDFT codebook
is needed for BF in a 3D environment. As described in (1),
each codeword is essentially a function of an angle in 2D or
an angle pair for 3D case [45]. Therefore, the 3D codebook
for EX-BF consists of a set of angle pairs, each of which is
applied for constructing one specific codeword to cover one
spatial direction. Furthermore, the angular coverage of the 3D
codebook should be the whole spatial direction on a sphere,
which is fully described by the angle pairs that consists of
the azimuth and elevation angles that specify the phase shift
for each antenna element (14). Particularly in the 3D sce-
nario, it is noteworthy that the circumference of the longitude
remains constant with respect to all azimuth angles whereas
that of the latitude becomes smaller as the elevation angle
approaches ±π/2 (the North pole or South pole). Therefore,
the sampled azimuth angles at higher elevation plane should
be less dense than at lower elevation plane to avoid the
oversampling.

FIGURE 2. A demonstration of the selected angle pairs based on the DFT
codebook for 4× 4 and 16× 16 URA for half a sphere.

TABLE 1. The total number of codewords within the 3D DFT codebook of
different URA configuration for the EX-BF.

The selected angle pairs that mapped onto the sphere sur-
face are demonstrated in Fig. 2 yielding less samples at higher
elevation level for both 4× 4 and 16× 16 URA. If we denote
the resulting codebook as B, any individual codeword g ∈ B
can be expressed as

g = aURA
(
φi,j

)
= aULA (ϕi)⊗ aULA

(
θi,j|ϕi

)
, (17)

where g ∈ CL2
×1 and φi,j �

(
ϕi, θi,j

)
represent one of

the selected angle pairs. The total number of codewords of
half the sphere for 2 specific URA configuration is tabulated
in Table 1.

B. THE 3D CODEBOOK FOR PA-BF
Unlike any typical codebooks for EX-BF or hierarchical BF
[14], which contains several codewords, the 3D codebook for
PA-BF is essentially a single codeword, constructed based
on the spatial knowledge acquired from the UL positioning.
Therefore, the codeword f PA for PA-BF is obtained as

f PA = aULA(ϕ̂AoD)⊗ aULA(θ̂AoD|ϕ̂AoD), (18)

where the estimated angle pair (ϕ̂AoD, θ̂AoD) was given in
(15). One of the key advantages of applying the PA-BF lies
in the effectiveness of acquiring the final codeword without
consuming extra time on searching throughout the whole
codebook exhaustively or hierarchically, therefore enjoying
a short IA latency. We further elaborate the performance
metrics of PA-BF and EX-BF in the next section.

V. PERFORMANCE METRICS
One of the most relevant performance metrics in wireless
communications is the spectral efficiency [46], which is
therefore chosen herein to characterize the performance of
studied BF strategies. The achievable spectral efficiency is
examined under varying parameters, such as the effective
transmit ratio, the transmit power, channel realization and the
BF gain. The effective transmit ratio is a indirect measure of
the IA latency and it depends on the codebook size, which at
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FIGURE 3. The overall frame duration Tf that consists of both IA duration
TIA and data transmission duration TDT.

its turn is determined by the applied BF strategy. For illus-
tration purposes, the overall frame time that contains both IA
and data transmission is depicted in Fig. 3. Herein, we define
that the DL communication occurs over the duration of the
whole frame period Tf fromwhich the effective transmit ratio
η is defined as

η = 1−
TIA
Tf

, (19)

where TIA refers to the IA latency that typically used for
beam alignment, the length of which largely depends on the
BF strategy and codebook size. For any given DL channel
realization hDL, the spectral efficiency is given as

R = ηlog2

(
1+

PT,DL|hDL|2

Pn
GBF(f ∗, φAoD)

)
, (20)

where Pn = N0Bw refer to the thermal noise power over the
entire signal bandwidth. Note that PT,DL|hDL|2

Pn
is denoted as

the SNR without BF gain. Additionally, f ∗ ∈ CL2
×1 refers

to the selected beam-steering vector subject to the applied
BF strategy. Furthermore, GBF is defined as the achieved BF
gain that is a function of f ∗ and the true AoD pair φAoD �
(ϕAoD, θAoD).

A. SPECTRAL EFFICIENCY OF THE PROPOSED PA-BF
When utilizing the PA-BF, the achieved DL spectral effi-
ciency according to (12) and (20) can be described as

RPA = ηPAlog2

(
1+

PT,DL|hDL|2

Pn
GBF(f PA, φAoD)

)
, (21)

where f PA, defined in (18), is the normalized beam-steering
vector designed according to the acquired knowledge on
the UE location via UL positioning. By assuming that one
codeword takes up one OFDM symbol duration, the effective
transmit ratio ηPA is

ηPA = 1−
TIA
Tf

= 1−
Ts + Te

Tf
, (22)

where TIA = Ts+Te, in which, Ts refers to the UL positioning
overhead that takes one OFDM symbol5 and Te is the cloud
communication latency [31] that is attributed to the round
trip delay from the APs to the cloud and back to the primary
AP. It is noteworthy that Te is generally negligible due to
the fact that the cloud servers are normally distributed in the

5Recall that a SISO communication was assumed in the UL, therefore,
the positioning overhead of PA-BF within the IA latency TIA takes up one
OFDM symbol, i.e., one beam.

proximity of the APs which are connected via fiber optics.
In addition, the BF gain is acquired as

GBF
(
f PA, φAoD

)
� |f HPA(φ̂AoD)bURA(φAoD)|

2. (23)

Note that the BF gain of PA-BF is decided by the precision
of the predicted angle pair φ̂AoD that relies on the positioning
accuracy because (23) is maximized whenever φ̂AoD ≈ φAoD.
And the maximum achievable value of (23) is decided by the
β0(L, φ) in (13).

B. SPECTRAL EFFICIENCY OF THE EX-BF
The EX-BF [18] extended to 3D case is employed herein
as a benchmark for the comparison of the performance.
Specifically, EX-BF applies the best beam for communica-
tion via searching through the whole codebook in an exhaus-
tive manner. In particular, the applied codebook for EX-BF
is designed in Section. IV-A in a form of the DFT matrix
in which each column is orthogonal to the others and we
denote it as F ∈ CL2

×Ncw that consists of Ncw beam-steering
vectors f ∈ CL2

×1 in total, in which the Ncw depends on the
codebook design algorithm and array configuration. As such,
the spectral efficiency of the EX-BF for a given DL channel
realization is expressed as

REX=ηEXlog2

(
1+

PT,DL|hDL|2

Pn
GBF(f EX, φAoD)

)
, (24)

where f EX is the selected beam-steering vector, that is,
the codeword that maximizes the following

f EX = argmax
f∈F

GBF(f , φAoD), (25)

where GBF(f , φAoD) � |f HbURA(φAoD)|2. Moreover,
the effective transmit ratio of EX-BF ηEX is

ηEX = 1−
TIA
Tf

= 1−
NcwTs
Tf

, (26)

where the IA latency consumes NcwTs seconds in total for
beam training and selecting the best codeword according to
(25). Note that (22) and (26) are obtained based on the same
assumption that each codeword takes up oneOFDM symbol.6

Together with β0(L, φ), we can infer that, on one hand,
a larger number of antenna elements yields a finer angular
resolution which in turn leads to better BF gain in (24).
On the other hand, a larger number of antenna elements L
suggests a larger number of codewords, which conversely
causes a lower effective transmit ratio and therefore a smaller
spectral efficiency than with smaller L. Via the inspection of
(22) and (26), the advantage of PA-BF is that ηPA will be
mostly higher than ηEX by virtue of the pre-determined AoD
obtained through the UL positioning. Nevertheless, the per-
formance of PA-BF is directly determined by the position-
ing accuracy which highly affects the BF gain GBF in (23).

6We clarify that even if, in 5G NR, 4 OFDM symbols take up one
training beam (one codeword) in the synchronization signal (SS)-block for
IA [47, Ch. 16], the UL SRS that spans one OFDM symbol [7] is utilized
in the PA-BF. Thus, we assume the same numerology for EX-BF for a fair
comparison.
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FIGURE 4. An illustration of the top view of a specific AP deployment
with the RSS distribution. The red circular marker and white squared
markers represent the primary AP and secondary APs, respectively. The
red dotted lines refer to the array orientation of each AP. The colormap is
used to reflect the RSS w.r.t. the primary AP under spatial correlated
shadow fading that is generated with a 10m correlation distance and 2dB
(initialized) shadow fading [32, Table 7.5-6 part 2].

Meanwhile, the advantage of EX-BF is a guaranteed BF gain
given a complete spatial coverage of the applied codebook
whereas its disadvantage lies in the exhaustive search which
will return a lower ηEX. The spectral efficiency of EX-BF and
PA-BF with different positioning accuracy will be given and
analyzed in the next section.

VI. SCENARIO DEPLOYMENT AND SIMULATION RESULTS
In this section, we first describe and discuss about the con-
sidered scenario and network deployment, after which we
provide simulation-based results with detailed analysis.

A. SCENARIO DEPLOYMENT AND DISCUSSION
An illustration of the top view of the scenario deployment
of an indoor space with a physical size of 120m×90m (with
a 0.5m resolution in both x- and y- directions) is presented
in Fig. 4 together with the received signal strength (RSS)
considering a spatial correlated shadow fading that is gen-
erated via the Gaussian process [42, Ch. 11] for which the
applied parameters are found in [32]. In order to model a
3D indoor environment, the z-coordinate of UE is fixed at
1m whereas that of APs are all equally set at 4m. Moreover,
the URA orientation is marked as the red dotted line at
each AP location. Furthermore, for the 3 illustrated LoS-APs
in Fig. 4, we refer to the red circular marker located at [0, 20]
as the primary AP which is capable of both UL positioning
and DL communication whereas the other two APs (marked
as the white square markers) located at [20, -20] and [20,
60] respectively as the secondary APs that only receive and
process the UL pilot signals. Basically, the primary AP can
be considered as the AP in the coverage layer whereas the
secondary APs are seen as the remote radio heads (RRHs)
that assist the UL positioning.

Without the loss of the generality, we generated 10 ran-
dom layouts (each with random locations of several APs,
and only one of them serves as the primary AP) for

FIGURE 5. Coherence time Tc as a function of Doppler velocity Vd at
various carrier frequencies.

simulation purposes, and each layout consists of a limited
number of APs (from minimum 3 to maximum 6 APs),
whereas in practice, the density of APs can be much
higher considering the SCNs. Finally, the LoS propagation
is assumed throughout the considered area.

B. SIMULATIONS RESULTS AND PERFORMANCE
ANALYSIS
We start the analysis with our approach to select the over-
all frame duration Tf w.r.t. a physical quantity, the relative
velocity between the AP and the UE. Since all the APs are
static, the relative velocity is reflected by the UE mobility
only. Basically, the connection is established based on the
coherence time of the wireless channel, denoted as Tc, that is
the time over which the channel condition remains as constant
[48]. In particular, the coherence time Tc can be expressed as
a function of the Doppler shift fd as [46]

Tc =
1
4fd

, (27)

in which the Doppler shift is inversely proportional to the

carrier wavelength as fd =
Vd

λc
=

V cos (�)

λc
, where cos(�)

is normally known as the directional cosine, and� is the LoS
incidence angle that can be used to calculate the projection of
the 3D velocity onto the connection between the AP and the
UE. As a result the actual mobility V is lower bounded by the
Doppler velocity Vd , i.e., V ≥ Vd . For any given directional
cosine cos(�), and carrier frequency fc, a larger velocity lead
to higher Doppler shift fd , which in return yields a shorter
coherence time Tc.

Considering different carrier frequencies, the coherence
time as a function of Doppler velocity is illustrated in Fig. 5.
It is worth pointing out that the horizontal axis refers to
the Doppler velocity Vd rather than the 3D velocity V . It is
observed that the coherence time Tc at 5.2 GHz (the WiFi
band) shows a clear longer duration compared with that at
higher mmWave band which matches the fact that a high
carrier is more sensitive to a higher mobility. In particular,
the channel coherence time Tc at Vd = 0.6 m/s drops to
roughly 3 ms at 39 GHz and 2 ms at 73 GHz, both are much
shorter than the 10 ms benchmark (red dashed line) defined
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FIGURE 6. The effective transmit ratio 1− TIA/Tf as a function of Doppler
velocity Vd for the considered BF strategies.

as the frame duration of 5G NR [49]. We mark this difference
in Fig. 5 enhancing the importance of reducing the IA latency
which can be achieved by the proposed PA-BF, as is discussed
and demonstrated next.

Herein, the cloud-oriented mobile networks are operating
at a carrier of 39 GHz with 100 MHz bandwidth. The same
carrier was adopted in, e.g., [50] with double bandwidth
for positioning in 5G network. Furthermore, we assume the
frame duration Tf has the same length as the channel coher-
ence time Tc, Tf = Tc. Thereafter, we first present the
effective transmit ratio of the considered two beamforming
strategies over different number of antenna elements L and
the sub-carrier spacing fsc used in the UL OFDM signal. It is
noteworthy that the fsc is essentially the beam-switching rate
since we assume that each training beam (codeword) occu-
pies one OFDM symbol. Based on (22) and (26), the effec-
tive transmit ratio for both EX-BF and PA-BF is presented
in Fig. 6 as a function of the Doppler velocity. It is observed
that for EX-BF, under the same fsc (the same colored curves),
a smaller L in general yields a higher ηEX as smaller L yields
a smaller size of the codebook. Furthermore, for a given the
number of antenna elements L, the larger the fsc in general
leads to the higher the ηEX due to the fact that each codeword
takes up less time for a higher fsc, which in return, leavesmore
time for data transmission.

Meanwhile, the effective transmit ratio of the PA-BF that
is independent of antenna configuration since the codebook
of PA-BF consists of only one codeword that is constructed
based on the estimated UE location is also depicted in Fig. 6.
Similar to the EX-BF case, a larger fsc fulfills a higher ηPA.
Moreover, we introduce a new metric, the Doppler tolerance
that corresponds to the maximum Doppler velocity that the
effective transmit ratio remains positive, that is, the horizontal
coordinate where the curves ends in Fig. 6. In particular,
themetric indicates the largest velocity that the corresponding
BF strategy can support without using the whole frame dura-
tion only for beam training. We see that a lower L or a higher
fsc or both yield a higher Doppler tolerance which can be
employed to the IA for high velocity applications. Comparing
the EX-BF with the PA-BF, it is seen that under the same fsc,
the PA-BF not only achieves a higher effective transmit ratio
for the most of the tested velocities, but more significantly,
a much higher Doppler tolerance than the EX-BF. Hence, for

FIGURE 7. The 3D PEB acquired via TDoF measurements in the UL on the
UE height under the same AP deployment of Fig. 4 for a consistent
demonstration.

TABLE 2. Simulation parameters.

the HST applications [51], [52] where objects are moving
around 100 m/s, the PA-BF is clearly a better candidate.

In addition, the 3D PEB based on the TDoF measurements
in the UL is given in Fig. 7 showing how the positioning
accuracy varies at different locations. It is noted from (9)
and (11) that the PEB is mainly affected by the measurement
noise statistics R�τ which is characterized in (7) that is
determined by two factors. In particular, the first one refers
to the signal bandwidth which is fixed7 in the considered
scenario. The second one is the received SNR that is mainly
inversely proportional to the distance. Therefore, it is seen
that the farther the UE goes from the LoS-APs, the higher
the resulting PEB for that location. More importantly, Fig. 7
demonstrates the theoretical PEB (11) under the APs deploy-
ment therein. As expected, when the number and deploy-
ment of APs changes (see Section. VI-A), the PEB varies
accordingly.

Once the location accuracy of the UE is acquired,
the PA-BF is to be carried out to enhance the DL
communications. For comparison, the EX-BF strategy is
applied under the same scenario and the same set of param-
eters summarized in Table 2. According to the discussion
in Section V-A, the performance of BF mainly depends
on two metrics, the effective transmit ratio η and the BF

7Even though the signal bandwidth is fixed herein, it is noteworthy that
a wider bandwidth suggests a smaller determinant of R�τ , which in turn,
yields a larger FIM and therefore a smaller PEB.
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TABLE 3. Considered 3D positioning accuracies based on the positioning
accuracy requirement in [43] where the Gaussian distribution is assumed
in all the directions.

FIGURE 8. The CDF of spectral efficiency obtained via EX-BF and PA-BF
aided by different positioning accuracy with UEs at 0.6 m/s Doppler
velocity over the whole map.

gain GBF. Due to the natural attributes of the studied BF
strategies, the GBF for EX-BF can always be guaranteed to
reach the maximum whereas that for PA-BF varies based on
the available a prior of the UEs’ locations. Hence, to evaluate
the performance of PA-BF under different positioning accu-
racies, we summarize considered (UL) positioning accuracies
in Table 3 where the 3D error as well as the error along each
direction (x-, y-, z-) are specified, in which the error along
each direction fits a zero mean Gaussian distribution. Note
that the values tabulated in Table 3 are selected according to
the positioning accuracy requirements defined in [43].

Taking two feasible UE mobilities in the indoor environ-
ment into account, we present the cumulative distribution
function (CDF) of the spectral efficiency achieved by the
EX-BF and all the considered PA-BF throughout the whole
map in Fig. 8 and Fig. 9. Note that the results are obtained
based on 1000 simulation trials over all the 10 randomly
generated AP deployments. The CDF of spectral efficiency
for all the considered locations on the map at normal UE
speed (0.6m/s) is given in Fig. 8. From Fig. 8a where
each AP is equipped with a 4 × 4 URA, we see that the
performance of EX-BF together with all the tested PA-BF
except the 50m-aided are quite similar. In Fig. 8b where the
16 × 16 URA is considered, the performance of all con-
sidered beamforming techniques becomes distinguishable,
and higher positioning accuracy does return higher spectral
efficiency. It is also noteworthy that, the comparison between
Fig. 8a and Fig. 8b demonstrates that the curves for
PEB-aided, 3m-aided and 10m-aided PA-BF actually shift
towards the right yielding a better performance whereas the

FIGURE 9. The CDF of spectral efficiency obtained via EX-BF and PA-BF
aided by different positioning accuracy with UEs at 2 m/s Doppler
velocity over the whole map.

behaviors for 50m-aided PA-BF and EX-BF shift to the left
manifesting a worse performance. This result suggests that
the PA-BF aided by higher positioning accuracy can actually
take advantage of a higher array gain coming from a larger
L, such that the narrower beam is accurately pointed towards
the UE, whereas the difference in terms of positioning accu-
racy plays a less significant role for a wider array beam
(smaller L). However, the considered 50m positioning accu-
racy is simply too high for PA-BF to ensure a stable spectral
efficiency under the considered scenario. Meanwhile, when
the number of antenna elements L increases, the worse per-
formance of EX-BF is mainly due to the fact that narrower
array beam leads tomore codewords to cover the entire spatial
domain, which leads to a lower effective transmit ratio and
worse overall performance.

In Fig. 9, we further compare the performance at a higher
mobility where the Doppler velocity Vd = 2 m/s. Specif-
ically, the performance at 4 × 4 URA case in Fig. 9a for
all considered methods remains comparable with the results
in Fig. 8a although the EX-BF suffered a little degradation
in performance as the black curve shifts towards left. On the
other hand, in Fig. 9b where the array gain becomes higher
and the beamwidth becomes narrower, a similar performance
of PA-BFs compared to Fig. 8b is seen as better positioning
accuracy yields better spectral efficiency. A major difference
compared to Fig. 8b lies in the performance of EX-BF which
stuck roughly at 0 bits/s/Hz. The numerical reason is given
in Fig. 6 which demonstrates that the Doppler tolerance at
fsc = 240 kHz and L = 16 is about 1.9 m/s, therefore,
the effective transmit ratio of EX-BF is negative for a 16×16
URA at 2 m/s Doppler velocity, which means that there is no
time for data transmission as the beam training takes up the
whole frame duration Tf .

Finally, we present the average spectral efficiency µR as a
function of 2D distance d2D,18 (from the UEs to the primary
AP) together with the ±1 standard deviation of the spectral
efficiency σR interval in Fig. 10. Although the CDF in Fig. 8

8Thereafter, we denote d2D,1 as d2D for simplicity.
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FIGURE 10. The µR ± σR interval plot of the spectral efficiency as a function of 2D distance d2D from the primary AP
applying the PA-BF with various positioning accuracies and EX-BF.

and Fig. 9 present the global performance through the entire
map, the µR ± σR as a function of d2D provides insights on
the performance dependency of both PA-BF and EX-BFw.r.t.
the distance. It can be seen that the average spectral effi-
ciency µR of EX-BF and PEB-aided PA-BF decrease when
d2D increases (mainly due to a larger path-loss), whereas
non-PEB-aided PA-BFs have the worst performance at very
small and very large d2D. The worse performance at smaller
d2D implies that positioning accuracy has a bigger impact
on PA-BF when AP and UE are close to than they are far
away from each other. Furthermore, it is noteworthy that the
performance of some non PEB-aided PA-BFs does converge9

to the performance of PEB-aided PA-BF when d2D reaches
beyond a certain threshold that is dependent on the array
beamwidth.

Specifically, for the 4 × 4 URA that is shown in Fig. 10a,
the performance of 10m-aided and 3m-aided converges to
PEB-aided performance at d2D = 10m and d2D = 38m,
respectively. The performance of 50m-aided PA-BF remains
as the worst on account of a low µR and a larger σR over the
whole d2D. For the 16× 16 URA presented in Fig. 10b, only
3m-aided PA-BF converges towards the PEB-aided perfor-
mance at approximately d2D = 50m. Meanwhile, the per-
formance gap in terms of µR between the 10m-aided and
PEB-aided PA-BF gradually gets smaller as the 2D distance
increases, but suffered a bigger σR. Similar to the 50m-aided
PA-BF under 4× 4 URA, the corresponding performance of
16 × 16 URA remains at a much lower level with σR = 5
bits/s/Hz throughout the whole tested d2D.
Based on the results and analysis, we conclude that, i) for

a given array beamwidth, the farther the UE is from the
primary AP, the less accurate positioning is needed for the
PA-BF to achieve the same spectral efficiency; ii) a wider
array beamwidth (smaller L) yields a shorter d2D at which
the communication performance of PA-BFs (aided by dif-
ferent positioning accuracies) converges. On the other hand,
the EX-BF has demonstrated a extreme-close performance
to the PEB-aided PA-BF when L = 4 and a much worse
performance if the number of antenna elements L raises to 16.

9The performance convergence includes both µR and σR.

It is worth pointing out that under both URA configurations,
EX-BF demonstrates a comparable or even better perfor-
mance than the non PEB-aided PA-BF especially at a closer
distance. Furthermore, the EX-BF has manifested a distance
independent σR throughout the whole considered d2D which
means that EX-BF provides a stable communication qual-
ity that might be favored for certain applications that the
reliability outweighs the throughput.

VII. CONCLUSION AND DISCUSSION
In this paper, we proposed and examined a cloud-oriented
communication systemwhere the achieved location-awareness
via UL positioning was exploited to carry out efficient BF
in the DL (i.e., the PA-BF), which, as a result, enhanced the
communication performance in a mmWave mobile networks.
In terms of the positioning accuracy, we considered and
analyzed the theoretical PEB obtained based on the TDoF
measurements in the context of multi-connectivity. We fur-
ther evaluated the dependency of such PEB on the received
SNR, on the array size, as well as on the geometric relations.
For comparison, the EX-BF strategy was employed as a
benchmark, based on a 3D DFT-codebook. We showed that,
with the knowledge of the UE location, the proposed PA-BF
achieved a much higher effective transmit ratio than the
EX-BF which in turn leaded to a longer time for data trans-
mission. The PA-BF is therefore inherently much more suit-
able for applications that require high velocity, such as HST.

In terms of communication performance, we assessed
the spectral efficiency of EX-BF and PA-BF under var-
ious positioning accuracy assumptions besides the PEB.
Our simulation results showed that, with reasonably small
positioning error and narrow beam antenna configurations,
the PA-BF in general achieved a higher spectral efficiency
than the EX-BF especially at higher velocities. Although a
larger positioning error in general leaded to a worse perfor-
mance, the degradation of performance became less signifi-
cant as the distance between UE and the primary AP reached
beyond a certain threshold that is dependent on the antenna
beamwidth. In other words, the aforementioned threshold is
farther for a narrower array beamwidth (more antenna ele-
ments) than a wider array beamwidth (less antenna elements).
Additionally, under a certain UE-to-AP distance, the wider
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the array beamwidth is, the less accurate the positioning has
to be for achieving the same communication performance.
Therefore, a wide array beamwidth shall be favored if posi-
tioning uncertainty is large, whereas the narrow-beam array
is preferred when positioning accuracy is high. Additionally,
it is observed that the EX-BF, which does not rely on UL
positioning, maintained a stable performance that was mainly
affected by the path-loss, but was unable to support high
velocity UEs.

As such, the insight obtained via our results serves as a
look-up table (see results in Fig. 8, Fig. 9 and Fig. 10) on
selecting the BF strategywith a better performance in terms of
spectral efficiency under specific array sizes according to the
uncertainty of UEs’ location. For future investigation, we pro-
pose a hybrid-BF strategy that integrates the advantage of
both codebook-based BF and PA-BF in order to cope with the
joint LoS/NLoS conditions in a more practical environment.

ACKNOWLEDGMENT
The authors appreciate Dr. G. Destino (from the University
of Oulu, Finland) for his insightful comments on improv-
ing the quality of this paper. In addition, they express their
sincere gratitude towards the Finnish Foundation for Tech-
nology Promotion. Finally, they sincerely thank the Editor
and anonymous reviewers for the encouraged advice and
constructive comments that improved the contribution of this
work.

REFERENCES
[1] M. Marcus and B. Pattan, ‘‘Millimeter wave propagation: Spectrum man-

agement implications,’’ IEEE Microw. Mag., vol. 6, no. 2, pp. 54–62,
Jun. 2005.

[2] Y. Lu, P. Richter, and E. S. Lohan, ‘‘Opportunities and challenges in the
industrial Internet of Things based on 5G positioning,’’ in Proc. 8th Int.
Conf. Localization GNSS (ICL-GNSS), Jun. 2018, pp. 1–6.

[3] M. Kamel, W. Hamouda, and A. Youssef, ‘‘Ultra-dense networks: A sur-
vey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522–2545,
4th Quart., 2016.

[4] M. Koivisto, A. Hakkarainen, M. Costa, P. Kela, K. Leppanen, and
M. Valkama, ‘‘High-efficiency device positioning and location-aware
communications in dense 5G networks,’’ IEEE Commun. Mag., vol. 55,
no. 8, pp. 188–195, Aug. 2017.

[5] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive
MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[6] E. Björnson, J. Hoydis, and L. Sanguinetti, ‘‘Massive MIMO networks:
Spectral, energy, and hardware efficiency,’’ Found. Trends Signal Process.,
vol. 11, nos. 3–4, pp. 154–655, 2017, doi: 10.1561/2000000093.

[7] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, ‘‘A tutorial
on beam management for 3GPP NR at mmWave frequencies,’’ IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 173–196, 1st Quart., 2019.

[8] P. Popovski, J. J. Nielsen, C. Stefanovic, E. D. Carvalho, E. Strom,
K. F. Trillingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park, and
R. B. Sorensen, ‘‘Wireless access for ultra-reliable low-latency commu-
nication: Principles and building blocks,’’ IEEE Netw., vol. 32, no. 2,
pp. 16–23, Mar. 2018.

[9] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and M. Zorzi,
‘‘Millimeter wave cellular networks: A MAC layer perspective,’’ IEEE
Trans. Commun., vol. 63, no. 10, pp. 3437–3458, Oct. 2015.

[10] C. Jeong, J. Park, and H. Yu, ‘‘Random access in millimeter-wave beam-
forming cellular networks: Issues and approaches,’’ IEEE Commun. Mag.,
vol. 53, no. 1, pp. 180–185, Jan. 2015.

[11] V. Desai, L. Krzymien, P. Sartori, W. Xiao, A. Soong, and A. Alkhateeb,
‘‘Initial beamforming for mmWave communications,’’ in Proc. 48th Asilo-
mar Conf. Signals, Syst. Comput., Nov. 2014, pp. 1926–1930.

[12] H. Guo, B. Makki, and T. Svensson, ‘‘A genetic algorithm-based
beamforming approach for delay-constrained networks,’’ in Proc. 15th
Int. Symp. Modeling Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt),
May 2017, pp. 1–7.

[13] Z. Xiao, T. He, P. Xia, and X.-G. Xia, ‘‘Hierarchical codebook design for
beamforming training in millimeter-wave communication,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 5, pp. 3380–3392, May 2016.

[14] W.Wu, D. Liu, Z. Li, X. Hou, andM. Liu, ‘‘Two-stage 3D codebook design
and beam training for millimeter-wave massive MIMO systems,’’ in Proc.
IEEE 85th Veh. Technol. Conf. (VTC Spring), Jun. 2017, pp. 1–7.

[15] A. Capone, I. Filippini, and V. Sciancalepore, ‘‘Context-based cell search
in millimeter wave 5G networks,’’ in Proc. 21th Eur. Wireless conf.,
May 2015, pp. 1–5. [Online]. Available: http://arxiv.org/abs/1501.02223

[16] M. Giordani, M. Mezzavilla, and M. Zorzi, ‘‘Initial access in 5G mmWave
cellular networks,’’ IEEE Commun. Mag., vol. 54, no. 11, pp. 40–47,
Nov. 2016.

[17] N. Garcia, H. Wymeersch, E. G. Strom, and D. Slock, ‘‘Location-
aided mm-wave channel estimation for vehicular communication,’’ in
Proc. IEEE 17th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), Jul. 2016, pp. 1–5.

[18] G. Destino and H. Wymeersch, ‘‘On the trade-off between positioning and
data rate formm-wave communication,’’ inProc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), May 2017, pp. 797–802.

[19] X. Chen and P. Fan, ‘‘Low-complexity location-aware multi-user massive
MIMO beamforming for high speed train communications,’’ in Proc. IEEE
85th Veh. Technol. Conf. (VTC Spring), Jun. 2017, pp. 1–6.

[20] E. Mohamed, H. Esmaiel, and A. Abdelreheem, ‘‘Adaptive location-based
millimetre wave beamforming using compressive sensing based channel
estimation,’’ IET Commun., vol. 13, no. 9, pp. 1287–1296, Feb. 2019.

[21] R. Maiberger, D. Ezri, and M. Erlihson, ‘‘Location based beamform-
ing,’’ in Proc. IEEE 26th Conv. Elect. Electron. Eng. Israel, Nov. 2010,
pp. 184–187.

[22] P. Kela, M. Costa, J. Turkka, M. Koivisto, J. Werner, A. Hakkarainen,
M. Valkama, R. Jantti, and K. Leppanen, ‘‘Location based beamforming in
5G ultra-dense networks,’’ in Proc. IEEE 84th Veh. Technol. Conf. (VTC-
Fall), Sep. 2016, pp. 1–7.

[23] P. Kela, M. Costa, K. Leppanen, and R. Jantti, ‘‘Location-aware beam-
formed downlink control channel for ultra-dense networks,’’ in Proc. IEEE
Conf. Standards Commun. Netw. (CSCN), Sep. 2017, pp. 7–11.

[24] X. Cheng, M.Wang, and S. Li, ‘‘Compressive sensing-based beamforming
for millimeter-wave OFDM systems,’’ IEEE Trans. Commun., vol. 65,
no. 1, pp. 371–386, Jan. 2017.

[25] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., ‘‘Chan-
nel estimation and hybrid precoding for millimeter wave cellular sys-
tems,’’ IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846,
Oct. 2014.

[26] A.-S. Bana, E. de Carvalho, B. Soret, T. Abrão, J. C. Marinello,
E. G. Larsson, and P. Popovski, ‘‘Massive MIMO for Internet of
Things (IoT) connectivity,’’ 2019, arXiv:1905.06205. [Online]. Available:
http://arxiv.org/abs/1905.06205

[27] A. Zhou, L. Wu, S. Xu, H. Ma, T. Wei, and X. Zhang, ‘‘Follow-
ing the shadow: Agile 3-D beam-steering for 60 GHz wireless net-
works,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018,
pp. 2375–2383.

[28] T. Wei and X. Zhang, ‘‘Pose information assisted 60 GHz networks:
Towards seamless coverage and mobility support,’’ in Proc. 23rd
Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), New York, NY,
USA, 2017, pp. 42–55. [Online]. Available: http://doi.acm.org/10.1145/
3117811.3117832

[29] A. S. Mubarak, H. Esmaiel, and E. M. Mohamed, ‘‘LTE/Wi-Fi/mmWave
RAN-level interworking using 2C/U plane splitting for future 5G net-
works,’’ IEEE Access, vol. 6, pp. 53473–53488, 2018.

[30] NR; Radio Resource Control (RRC) Protocol Specification (Release 15),
document TS 38.331 V15.6.0, 3GPP, Jun. 2018.

[31] K. Xu, K.-C. Wang, R. Amin, J. Martin, and R. Izard, ‘‘A fast cloud-based
network selection scheme using coalition formation games in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 64, no. 11, pp. 5327–5339,
Nov. 2015.

[32] Study on Channel Model for Frequency Spectrumb Above 6 GHz (Release
15), document TR 38.900 V15.0.0, 3GPP, Jun. 2018.

[33] J. Kulmer, E. Leitinger, P. Meissner, S. Hinteregger, and K. Witrisal,
‘‘Cooperative localization and tracking using multipath channel infor-
mation,’’ in Proc. Int. Conf. Localization GNSS (ICL-GNSS), Jun. 2016,
pp. 1–6.

55524 VOLUME 8, 2020



Y. Lu et al.: Positioning-Aided 3D Beamforming for Enhanced Communications in mmWave Mobile Networks

[34] J. Kulmer, E. Leitinger, S. Grebien, and K. Witrisal, ‘‘Anchorless coopera-
tive tracking using multipath channel information,’’ IEEE Trans. Wireless
Commun., vol. 17, no. 4, pp. 2262–2275, Apr. 2018.

[35] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, ‘‘A survey of mil-
limeter wave communications (mmWave) for 5G: Opportunities and chal-
lenges,’’ Wireless Netw., vol. 21, no. 8, pp. 2657–2676, Nov. 2015, doi:
10.1007/s11276-015-0942-z.

[36] B. Etzlinger, H. Wymeersch, and A. Springer, ‘‘Cooperative synchroniza-
tion in wireless networks,’’ IEEE Trans. Signal Process., vol. 62, no. 11,
pp. 2837–2849, Jun. 2014.

[37] M. Koivisto, J. Talvitie, M. Costa, K. Leppänen, and M. Valkama,
‘‘Joint cmWave-based multiuser positioning and network synchronization
in dense 5G networks,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2018, pp. 1–6.

[38] J. Medbo, I. Siomina, A. Kangas, and J. Furuskog, ‘‘Propagation channel
impact on LTE positioning accuracy: A study based on real measurements
of observed time difference of arrival,’’ inProc. IEEE 20th Int. Symp. Pers.,
Indoor Mobile Radio Commun., Sep. 2009, pp. 2213–2217.

[39] S. Sand, A. Dammann, and C. Mensing, Positioning in Wireless Commu-
nications Systems. Hoboken, NJ, USA: Wiley, Jun. 2014.

[40] Y. Huang and K. Boyle, Antennas: From Theory to Practice. Hoboken, NJ,
USA: Wiley, 2008.

[41] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[42] R. Zekavat and R. M. Buehrer, Handbook of Position Location: Theory,
Practice and Advances, 1st ed. Hoboken, NJ, USA: Wiley, 2011.

[43] Study on Positioning Use Cases: Stage 1 (Release 16), document TR
22.872 V16.0.0, 3GPP, Jun. 2018.

[44] A. Richter, ‘‘Estimation of radio channel parameters: Models and algo-
rithms,’’ Ph.D. dissertation, Ilmenau Univ. Technol., Ilmenau, Germany,
2005.

[45] J. Wang, Z. Lan, C.-S. Sum, C.-W. Pyo, J. Gao, T. Baykas, A. Rahman,
R. Funada, F. Kojima, I. Lakkis, H. Harada, and S. Kato, ‘‘Beamform-
ing codebook design and performance evaluation for 60 GHz wideband
WPANs,’’ in Proc. IEEE 70th Veh. Technol. Conf. Fall, Sep. 2009, pp. 1–6.

[46] D. Tse and P. Viswanath, Fundamentals of Wireless Communications.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[47] E. Dahlman, S. Parkvall, and J. Skold. (2018). 5G NR: The Next Gener-
ation Wireless Access Technology. Elsevier Science. [Online]. Available:
https://books.google.fi/books?id=lcSLswEACAAJ

[48] G. L. Stüber, Principles of Mobile Communication, 3rd ed. New York, NY,
USA: Springer, 2011.

[49] NR: Physical Layer; General Description (Release 15), document TS
38.201 V15.0.0, 3GPP, Jan 2018.

[50] E. Rastorgueva-Foi,M. Koivisto,M. Valkama,M. Costa, andK. Leppänen,
‘‘Localization and tracking in mmWave radio networks using beam-
based DoD measurements,’’ in Proc. 8th Int. Conf. Localization GNSS
(ICL-GNSS), Jun. 2018, pp. 1–6.

[51] J. Talvitie, T. Levanen, M. Koivisto, K. Pajukoski, M. Renfors, and
M. Valkama, ‘‘Positioning of high-speed trains using 5G new radio syn-
chronization signals,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2018, pp. 1–6.

[52] T. Levanen, J. Talvitie, R. Wichman, V. Syrjälä, M. Renfors, and
M. Valkama, ‘‘Location-aware 5G communications and Doppler compen-
sation for high-speed train networks,’’ in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2017, pp. 1–6.

YI LU (Student Member, IEEE) was born in
Tianjin, China, in 1988. He received the M.Sc.
degree (Hons.) in mobile communications from
Heriot-Watt University, U.K., in 2012. From
2014 to 2017, he was working as a Research Assis-
tant with the Universitat Autonoma de Barcelona
(UAB), Spain, on several different projects that
cover topics from the phase-shift holography for
electrically large antenna measurement to statis-
tical signal processing for GNSS-oriented appli-

cations. Since March 2018, he has been employed with the Electrical
Engineering Unit, Tampere University, as a Doctoral Researcher. His
research interests include network-centric positioning system and
positioning-aided communications in mmWave mobile networks.

MIKE KOIVISTO (Student Member, IEEE) was
born in Rauma, Finland, in 1989. He received
the M.Sc. degree in applied mathematics from
the Tampere University of Technology (TUT),
Finland, in 2015. He is currently pursuing the
Ph.D. degree with the Electrical Engineering Unit,
Tampere University. His research interests include
cellular networks and network-based positioning
with an emphasis on positioning algorithm devel-
opment and the utilization of location information
in future mobile networks.

JUKKA TALVITIE (Member, IEEE) was born
in Hyvinkää, Finland, in 1981. He received the
M.Sc. degree in automation engineering and
the Ph.D. degree in computing and electrical
engineering from the Tampere University of Tech-
nology (TUT), Finland, in 2008 and 2016, respec-
tively. He is currently a University Lecturer with
Tampere University, Finland. In addition to aca-
demic research, he has involved several years in
industry-based research and development projects

on a wide variety of research topics, including radio signal waveform design,
network-based positioning and next generation WLAN, and cellular system
design. His main research interests include signal processing for commu-
nications, wireless locations techniques, radio signal waveform design, and
radio network system level development.

MIKKO VALKAMA (Senior Member, IEEE) was
born in Pirkkala, Finland, in 1975. He received
the M.Sc. and Ph.D. degrees (Hons.) in elec-
trical engineering from the Tampere University
of Technology (TUT), Finland, in 2000 and
2001, respectively. In 2002, he received the Best
Ph.D. Thesis Award from the Finnish Academy
of Science and Letters for his dissertation enti-
tled Advanced I/Q Signal Processing for Wide-
band Receivers: Models and Algorithms. In 2003,

hewas aVisiting Postdoctoral Researcher with the Communications Systems
and Signal Processing Institute, SDSU, San Diego, CA, USA. He is currently
a Full Professor and the Laboratory Head of the Electrical Engineering Unit,
Tampere University. His general research interests include communications
signal processing, estimation and detection techniques, signal processing
algorithms for flexible radios, cognitive radios, full-duplex radios, radio
localization, 5G mobile cellular radio networks, digital transmission tech-
niques such as different variants of multicarrier modulation methods and
OFDM, and radio resource management for ad-hoc and mobile networks.

ELENA SIMONA LOHAN (Senior Member,
IEEE) received the M.Sc. degree in electrical
engineering from the Polytechnic University of
Bucharest, in 1997, the D.E.A. degree in econo-
metrics from Ecole Polytechnique, Paris, in 1998,
and the Ph.D. degree in telecommunications from
the Tampere University of Technology, in 2003.
She is currently an Associate Professor with the
Electrical Engineering Unit, Tampere University
(formerly known as the Tampere University of

Technology), and a Visiting Professor with the Universitat Autonoma de
Barcelona (UAB), Spain. She is leading a research group on signal pro-
cessing for wireless positioning. She is a Co-Editor of the first book
on Galileo satellite system Galileo Positioning Technology (Springer), the
Co-Editor of a bookMulti-Technology Positioning (Springer), and the author
or coauthor of more than 185 international peer-reviewed publications, and
holds six patents and inventions.

VOLUME 8, 2020 55525



128



PUBLICATION

IV

Feasibility of Location-Aware Handover for Autonomous Vehicles in
Industrial Multi-Radio Environments

Y. Lu, M. Gerasimenko, R. Kovalchukov, M. Stusek, J. Urama, J. Hosek,
M. Valkama and E. Lohan

Sensors 20.21 (2020)
DOI: 10.3390/s20216290

Publication reprinted with the permission of the copyright holders





sensors

Article

Feasibility of Location-Aware Handover for
Autonomous Vehicles in Industrial
Multi-Radio Environments

Yi Lu 1,* , Mikhail Gerasimenko 1,2 , Roman Kovalchukov 1, Martin Stusek 1,2, Jani Urama 1 ,
Jiri Hosek 2 , Mikko Valkama 1 and Elena Simona Lohan 1

1 Department of Electrial Engineering, Tampere University, 33720 Tampere, Finland;
gerasimenkoma89@gmail.com (M.G.); roman.kovalchukov@tuni.fi (R.K.); xstuse01@vutbr.cz (M.S.);
jani.urama@tuni.fi (J.U.); mikko.valkama@tuni.fi (M.V.); elena-simona.lohan@tuni.fi (E.S.L.)

2 Department of Telecommunications, Brno University of Technology, 616 00 Brno, Czech Republic;
hosek@feec.vutbr.cz

* Correspondence: yi.lu@tuni.fi

Received: 28 August 2020; Accepted: 2 November 2020; Published: 5 November 2020
����������
�������

Abstract: The integration of millimeter wave (mmWave) and low frequency interfaces brings an
unique opportunity to unify the communications and positioning technologies in the future wireless
heterogeneous networks (HetNets), which offer great potential for efficient handover using location
awareness, hence a location-aware handover (LHO). Targeting a self-organized communication
system with autonomous vehicles, we conduct and describe an experimental and analytical study
on the LHO using a mmWave-enabled robotic platform in a multi-radio environment. Compared
to the conventional received signal strength indicator (RSSI)-based handover, the studied LHO not
only improves the achievable throughput, but also enhances the wireless link robustness for the
industrial Internet-of-things (IIoT)-oriented applications. In terms of acquiring location awareness,
a geometry-based positioning (GBP) algorithm is proposed and implemented in both simulation
and experiments, where its achievable accuracy is assessed and tested. Based on the performed
experiments, the location-related measurements acquired by the robot are not accurate enough for the
standalone-GBP algorithm to provide an accurate location awareness to perform a reliable handover.
Nevertheless, we demonstrate that by combining the GBP with the dead reckoning, more accurate
location awareness becomes achievable, the LHO can therefore be performed in a more optimized
manner compared to the conventional RSSI-based handover scheme, and is therefore able to achieve
approximately twice as high average throughput in certain scenarios. Our study confirms that
the achieved location awareness, if accurate enough, could enable an efficient handover scheme,
further enhancing the autonomous features in the HetNets.

Keywords: dead reckoning; geometry-based positioning; indoor industrial environments;
location-aware handover; mmWave communications; multi-radio access; radio positioning

1. Introduction

Wireless communications and mobile networks are inherently integrated into the daily activities
of every business sector, ranging from academic events to industrial operations. With the paradigm
introduced by ITU, known as “Always Best Connected” (ABC) [1], the 3rd generation partnership
project (3GPP) has proposed the coordinated multi-point (CoMP) operation in [2], where coordinated
transmission and reception applies between macro cell(s) and micro cell(s) of heterogeneous
networks (HetNets) to provide seamless, quality of service (QoS)-aware media services to the active
user equipment (UE), including Internet of Things (IoT) devices and/or mobile vehicles therein.
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Furthermore, dual connectivity (DC) has been proposed in [3], where any arbitrary UE enjoys radio
resources provided by access point (AP) with the same/different radio access technology (RAT) under
non-ideal backhaul. To further exploit the benefits of DC from the perspectives of user throughput and
mobility enhancement within small cell networks (SCNs), multi-radio dual connectivity (MR-DC) [4]
grows to become a feasible solution for the cooperation/co-existence of 4G long term evolution (LTE)
and 5G new radio (NR), facilitating the convergence of communications and positioning solutions
as well as enabling the autonomous function for the connected vehicles. As an extension of DC,
MR-DC suggests that the UE can be configured to maintain multiple connections [5] and utilize
resources of multi-RAT enabled networks, i.e., the HetNets.

In the context of multi-RATs and SCNs, seamlessly handing over to or selecting a network/RAT,
which provides the best possible QoS to the UE, remains a crucial enabler of a self-organized
communication system, in which the connected vehicles/robots are capable of performing efficient
handover in a self-organized manner via the obtained location awareness, such that the throughput as
well as the link quality are jointly optimized. Apart from the IEEE 802.21 multimedia-independent
handover (MIH) standard that supports a QoS-based handover within the HetNets, several
works [6–18] investigated the location-aware handover (LHO) and/or location-aware network selection
(LNS) strategy ensuring that the mobile users have access to the required media service via the best
available network. The objective of our work is therefore to investigate the feasibility and benefits of
such efficient handover decision making schemes (i.e., the LHO) when integrating the positioning
solutions. Furthermore, as a result of the proliferation of industrial vehicles [19], we believe that the
LHO algorithm will not only be beneficial to the conventional mobile users, but also it will be desirable
for vehicle/robot-based industrial Internet of things (IIoT) applications where multi-Gbps throughput
is required for data offloading/exchange (e.g., virtual reality [20]) with one or several millimeter wave
(mmWave) APs.

In this paper, we describe an efficient LHO scheme for a multi-RAT robotic platform in an indoor
multi-radio environment. Thereafter, an experimental study is performed to evaluate the concept
feasibility and demonstrate the achievable performance. In our measurement setup, one mmWave AP
and one centimeter wave (cmWave) AP (WiFi at 2.5 GHz) are deployed and utilized. Furthermore,
we construct a 3D line-of-sight (LoS) map for the area of interest where the LHO algorithm is tested.
This map indicates the area where the robot has the LoS communications with the mmWave AP. Then,
by considering the available location-related measurements (LRMs) (to be discussed in Section 2.2)
at the robot side, we formulate a geometry-based positioning (GBP) algorithm and evaluate the
corresponding achievable positioning accuracy in theory.

Although the theoretical positioning accuracy is shown to be promising, the experimental
outcomes with a standalone GBP are hardly satisfactory due to the inaccuracy and instability of
LRMs, as we discuss in Section 5.2. However, by combining the GBP and the dead reckoning (DR)
methods, the experimental results corroborate that with the LHO scheme a handover can be performed
right before the robot loses its LoS connection with respect to (w.r.t.) the mmWave AP. Hence, the LHO
scheme guarantees higher throughput for the robot than the conventional received signal strength
indicator (RSSI)-based handover approach. The key contributions of our paper are summarized
as follows:

• we formulate and analyze a positioning algorithm, GBP, based on the angle measurements from
one mmWave AP enabling 2D positioning in the 3D environment;

• we propose an efficient LHO handover scheme that utilizes both the GBP positioning algorithm
as well as the DR method;

• we study and test the proposed handover scheme using a multi-RAT prototype robot developed
by our group, and we assess the statistics of RSSI, latency, and estimated robot locations.

The rest of the paper is organized as follows. In Section 2, we systematically review the
state-of-the-art in LHO/LNS, which is followed by the introduction of the problem formulation.
Section 3 outlines the utilized multi-RAT robotic platform as well as the scenario of interest for
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conducting the LHO. In Section 4, we describe the constructed 3D map for our simulation campaign
together with the proposed positioning algorithm and handover scheme. Section 5 provides a
discussion on the simulation results of the theoretical positioning accuracy and the experimental
results related to the handover schemes. Finally, Section 6 wraps up this paper with a conclusion.

2. State-of-the-Art Overview and Problem Formulation

Here, an overview of both the handover schemes and the positioning techniques is given followed
by the state-of-the-art and the problem formulation.

2.1. Overview of Handover Schemes

The implementation of a handover procedure is necessary in any wireless network because of the
mobility of the users within. However, such implementation depends on various factors including the
average coverage of the serving entities e.g., AP or base station (BS), the trajectory and the velocity of
the users, the multiple access scheme (orthogonal or non-orthogonal multiple access), carrier frequency
and the type of the network (mmWave based or cmWave based, Homogeneous Networks or HetNets,
etc.). Handovers are also classified based on the decision entity, decision criteria, and performance
metrics. A comprehensive overview of handover schemes can be found in [21,22], where the authors
paid particular attention to the so-called vertical handover. The latter is a switch between different
RATs or standards, which is a key mechanism to enable the HetNets. In cellular networks, handover
decisions are usually made in a centralized manner. In other words, the handover is in general carried
out based on the downlink RSSI measurements together with the corresponding hysteresis and timer,
during which the RSSI of the target cell should be higher than the RSSI of the original cell. However,
in vertical handover it is not always efficient to use traditional metrics [23].

In addition, handovers can be classified based on the target performance. For example, a handover
scheme allowing to switch the cell without a service interruption (minimized packet loss) is called
“seamless” handover, while in “fast” handover the latency of packets is minimized. In the case of
mmWave access, additional issues arise: due to high channel penetration loss, the zone where a
handover may be performed without session interruption is usually very small [24]. This problem
also appears in the case of LoS–non line-of-sight (NLoS) boundary crossing, where mmWave signal
level drops significantly and rapidly, and the traditional RSSI-based handover schemes cannot react
fast enough.

2.2. Overview of Positioning Techniques

In general, positioning techniques are categorized in several different ways [25,26], wherein each
category may differ in terms of various physical media signal used (e.g., sound, light, or radio signal),
or different principles of obtaining the location of the target of interest (e.g., proximity, fingerprinting,
or multilateration). Alternatively, the positioning techniques stem from a specific positioning
system, which can be classified into two groups: self-positioning systems and remote-positioning
systems ([27] Ch. 1). While the former is essentially a DR system [28], as it computes the current
location based on the previous location by fusing the heading and the distance measurements obtained
from the inertial measurement unit (IMU) sensors, the remote-positioning system is referred to as
a radio-positioning system, as it relies on the LRMs wherein the relative location information is
embedded. Typical LRMs consists of RSSI, time of arrival (ToA), and/or angle of arrival (AoA).

For a radio-positioning system, the acquisition of the LRMs relies on different equipment and/or
methods. Owing to the simplicity of acquisition and low-complexity in terms of the needed hardware,
RSSI-based positioning remains an attractive approach especially for indoor scenarios ([27] Ch. 11).
However, several error sources, such as multi-path and NLoS, impair the stability and prediction
quality of the RSSI measurements and therefore may keep the positioning accuracy away from being
acceptable by the requirements specified for certain use cases [29]. In addition, the ToA measurements
can also be employed for positioning by using a multilateration principle ([27] Ch. 6), such as the global
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navigation satellite system (GNSS)-based positioning. Conditional on a perfect synchronized clock
among the UE and AP, the ToA-based positioning is capable of achieving much higher accuracy than
the RSSI-based positioning especially at higher carrier frequencies and over wider bandwidths [30].
However, due to inherent clock offset among transmitters and receivers, certain approaches are
required to compensate for the synchronization errors [31,32]. Last but not least, there is also the
AoA-based positioning enabled by antenna arrays or directional antennas ([27] Ch. 9), such that the
direction from which the signal arrives at the receiver (i.e., the AP in a network-centric positioning
system) is known. Hence, a location estimation is obtained by applying the multi-angulation
principle ([33] Ch. 2). Under both LoS and NLoS propagation, the antenna orientation at the receiver
side must be known or estimated to make the AoA measurements reasonable for positioning.

Besides the positioning principles for different LRMs, various algorithms can be applied to learn
the location estimates based on one or multiple LRMs ([27] Ch. 2, [34,35]). In this work, the robot
location is acquired by combining the radio-positioning techniques (for the estimation of initial
location of the robot) and the self-positioning (for subsequent positioning) by utilizing the outputs of
the on-board sensors to predict the moving distance and the direction of the robot at each time instant.

2.3. State-of-the-Art in the Location-Aware Communications and Handover Schemes

A location-aware adaptive communication system has been investigated in ([33] Ch. 9),
where adaptive modulation and coding (AMC) together with location information was cooperatively
combined in order to achieve macro diversity. It was suggested in [33] that wireless communications
can benefit from a proactively updated location information of the UEs. This is because location-aware
communication systems are capable of predicting more precisely the channel state information (CSI) at
the transmitter for adaptive beamforming as compared to location-unaware communication systems.
With a perfect knowledge of location and a fingerprint database, a location-aware system showed
decent improvements in terms of the mean capacity over pure CSI-based systems especially for the
applications with long feedback delays and large channel variations. However, the advantage of a
location-aware system may not hold when positioning error increases above a certain threshold. In
practical situations, it is likely that positioning errors may be excessive for the UE to benefit from a
location-aware communication mechanism.

As an indispensable component of the handover process, network selection algorithms have been
studied with location awareness, i.e., LNS. In [6], a TCP/IP based LNS architecture was proposed
on top of IEEE 802.21 MIH standard. Specifically, location awareness of mobile users as well as
the available network information were monitored periodically by a location & network monitor
(LNM). The former was then exploited to predict the distances to the currently available networks,
user trajectory, as well as the mobility patterns, for designing the LNS algorithms. Despite better
handover performance than without location awareness, the impact of location errors of the mobile
users towards the LNS was not considered therein. Additionally, cloud-based network selection for
vehicular networks was proposed in [7] for leveraging the rich computing power and data storage of a
cloud computing server. The efficiency of the aforementioned network selection algorithms stemmed
from offloading complex computations to a geographically distributed cloud server, which in turn
provided better decision-making in the network selection, based on a broader network information.
Moreover, a fast convergence algorithm for solving a coalition formation game was proposed in [7] to
enable optimization over larger scale networks and practical implementation.

Works on LHO under different scenarios can be found in [8–10] and the references therein.
Taking into account the information of both user location and network load, the authors in [8] studied
the LHO scheme in multi-cell networks. Two metrics have been utilized to optimize the handover
process, namely, the angle of handover and the load-balancing index. The former suggests that the
moving direction of the UEs can be computed based on the previous location estimates by the GNSS,
which is then exploited to predict the most likely target cell that the UE will connect to. Further,
the consideration of the load balancing index is to ensure that the QoS of the UEs does not drop if the
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target cell is already heavily loaded. The simulation results in [8] showed that the proposed LHO
algorithm outperforms the conventional one, especially for UEs with high-but-constant velocity and
UEs that make turns less frequently.

Similarly, relying on the location estimation provided by GNSS, authors of [9] proposed an
efficient network selection scheme based on not only the estimated location of the users (via GNSS
technique) but also maps reflecting the channel quality information (i.e., the average of signal strength)
as well as the traffic load. Due to the rapid changes of traffic load, frequent updates of such information
are therefore necessary which poses a stringent requirement in terms of the latency and throughput of
back-haul link of the HetNets. However, the proposed schemes may suffer severe degradation when
GNSS-based positioning is disabled or provides low-accuracy location estimates, which can be the
practical cases especially in the urban macro scenario.

With the proxy mobile IPv6 (PMIPv6) in mind, the authors of [10] investigated several handover
schemes, such as fast handover for PMIPv6 (FPMIPv6), smart buffering, and low-latency handover,
and compared the corresponding handover performancewith the proposed location-aware fast PMIPv6
(LA-FPMIPv6). In particular, the FPMIPv6 aims at reducing the packet loss by scanning and detecting
the network status of all APs around the source AP. The handover is thus prepared once the RSSI
of the source AP falls below a certain threshold. Similarly, the smart-buffering scheme, which also
predicts the handover based on the RSSI, was proposed in [10] to reduce the packet loss. The main
difference between smart-buffering scheme and FPMIPv6 lies in the fact that in the FPMIPv6 the UE
scans the surrounding APs once handover decision is made, whereas for the smart-buffering scheme,
the target AP, with which the UE is connected, searches for the source AP to retrieve the buffered
packets. The resulting handover latency is the same as with the PMIPv6, but smart buffering enjoys a
lower packet loss. Furthermore, by omitting the UE’s authentication procedure, low-latency handover
was also proposed in [10] to reduce the packet loss. However, due to the fact that only RSSI has been
considered as the parameter, the handover cannot be predicted precisely whenever the measured RSSI
is considerably different from the actual values. Hence, the LA-FPMIPv6 was proposed to perform
a handover based on both the location information of the UE as well as the RSSI. Hence, both the
handover timings and the next AP to which the UE will connect can be predicted more precisely than
in the aforementioned algorithms, and therefore it achieves enhanced performance in terms of the
reduced signaling cost, buffering cost, and handover latency.

As key components in reducing the network latency and increasing the link robustness,
control/user plane separation (CUPS) [36] together with MR-DC have been employed to improve the
handover performance in mmWave HetNets. The authors of [11] proposed a prevenient handover
scheme with radio resource control signalling duplication and master-secondary switch in order
to reduce the handover failure rate and service interruption time. Similarly, for a CUPS network,
the authors of [12] presented a seamless handover scheme by introducing a handover-assisted micro
evolved NodeB (HO A-eNB) in the overlapping area. Such HO A-eNB maintains a continuous
connectivity with the UE throughout the handover process, resulting in improved success probability
of handover. However, deploying such HO A-eNBs in all the possible overlapping areas may incur
prohibitive costs as well as posing a stringent requirement on the backhaul link capacity of the network.

By integrating the mmWave networks with the sub-6GHz networks for better link robustness and
higher throughput, the benefit of performing handover with location awareness of the UE has been
investigated in [13–15]. In [13], the location and velocity information (mobility information) of the UE
was exploited to optimize the overall network performance, such as reducing the number of handovers
as well as enhancing the user QoS. However, similar to the aforementioned works, the way of acquiring
a perfect knowledge of the mobility information of the UE was not clearly specified. Moreover,
the importance of location information has been investigated in [14,15]. By exploiting the available CSI
at sub-6 GHz bands, the authors in [14] proposed to apply a machine learning method to predict the
location information of the UE, which is then utilized to achieve faster handover. The results showed
that with location awareness, the UEs enjoy higher spectral efficiency than with the conventional
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handover scheme. Furthermore, with the objective of allowing the mmWave networks to operate at
scale, the authors in [15] shared their thoughts on the scalability challenges in mmWave networks and
also presented positioning algorithms (network-based and device-based) for achieving high accuracy
of location awareness. Such positioning algorithms can be not only employed to enable location-based
services, but also help reduce the handover costs and make optimized handover decisions.

In addition to the handover schemes based on location- and mobility-awareness, other contextual
information, such as quality of experience (QoE) and radio environment map (REM), has also
been employed and exploited to improve the handover performance. Targeting at improved UE’s
QoE, the authors in [16] have presented a Q-learning based algorithm for vertical handoff in the
HetNets. Via continuous interaction with the environment, an optimized handoff strategy is achieved,
i.e., the QoE is maximized based on created mappings between QoS metrics and achieved subjective
experience on the side of UEs). Meanwhile, in [17], the REM aswell as the UE trajectories are considered
to predict the quality of network connectivity that is then exploited for handover process. It is seen
that the handover performance improves when the time-to-trigger, the UE velocity, and the location
error are low. However, the addressed carrier lies in sub-6 GHz band, and REM of mmWave APs was
not considered.

Further work using REM for handover can be found in [18], where positioning and radio maps
have been combined together for intra-frequency handover. Applying two location prediction methods,
the handover decision was made by determining the BS that may offer the highest reference signal
received power (RSRP) based on the radio map. However, unconditionally switching to the BS with
the highest RSRP might result in frequent handovers and a high ping-pong rate [11]. Contrary to
the handover that chooses the BS with the highest RSRP, the authors of [37] proposed to perform
a handover only if the signal-to-interference-plus-noise ratio (SINR) at the UE side is lower than a
certain threshold over the entire time-to-trigger period. Accordingly, a handover is not triggered even
if the RSSI from the serving BS is not the highest, thus, reducing the unnecessary handovers. However,
the impact produced by the prediction error of the RSSI was not considered therein, which is the case
in practical HetNets.

In addition to service-based architecture (SBA) and CUPS, both the core network and the radio
access network (RAN) of 5G NR support network slicing (NS) [38] as another enhancement compared
to evolved packet core (EPC) ([39] Ch. 6). Essentially, NS serves as the key enabler for the deployment
of multiple virtual networks operating on a shared physical network/infrastructure, and each virtual
network can therefore be configured to support different specific network functions indicated by
the SBA. Consequently, a RAN slicing-based handover scheme was proposed to provide better UE
QoS during a handover [40]. Based on the envisioned hierarchical control model, a handover was
triggered based on the current link quality as well as the network condition. More importantly,
the handover decision not only indicated the target BS, but also suggested a target RAN slice that
better satisfied the UE QoS. Given a highly virtualized network, such a handover scheme is capable of
more flexible resource utilization and allocation. However, the performance of such scheme is limited
by the available bandwidth/resources of the corresponding RAN as well as the respective propagation
condition. In the case of realistic situation, such as, blockage/NLoS, a vertical handover between
cmWave and mmWave RATs remains crucial to ensure the reception/decoding of signals from both
control and user planes, thus, is more efficient than NS-based handover.

More related works using similar RATs and addressing industrial use cases can be found in [41–43].
Specifically, the authors of [41] presented a proactive handover method based on an assessment of the
RSSI, the procedure of which remains rather similar to one of the handover methods considered in our
work. However, the handover was considered between APs of the same RAT instead of a multi-RAT
situation. In the conclusion, the authors also mention that such RSSI-based handover can be improved
by considering the user mobility, which is another measure of the location awareness being considered
in our work as well. Additionally, the authors of [42] have presented a WiFi/WiGig handover based on
the RSSI, no other handover schemes were studied nor investigated therein. Furthermore, the authors
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of [43] proposed handoff schemes for applications involving the mobility of robots and devices in a
real industrial environment. By considering multiple metrics, such as the mobility awareness, RSSI and
packet delivery condition, the study showed that the handoff can be triggered with high accuracy
and reduced ping-pong effect. Admittedly, handover considering one metric may lead to inaccurate
and frequent triggering, therefore, integrating various metrics results in accurate decision making for
the handover. In our work, we demonstrate that when location awareness is accurate and reliable
enough, the trigger timing for handover can be computed with high accuracy. It is noteworthy that
integrating several metrics undoubtedly increases the algorithm complexity and latency in the overall
handover process.

Compared with the aforementioned works, our work differs in two major aspects, (i) instead of
assuming perfect knowledge of the UE locations/trajectories, we develop a dedicated positioning
algorithm (i.e., GBP) to achieve location awareness. In addition, the positioning results and their
impact on the handover performance are analyzed and assessed by our simulations as well as
practical experiments; (ii) unlike the works supported only by numerical simulation, a multi-RAT
robotic platform is employed in our experiments to justify and assess the real-world feasibility of the
LHO algorithm.

2.4. Problem Formulation

Based on the HetNets structure that is featured with the MR-DC (multi-connectivity [5]), the
main objectives of our work are to experimentally assess the feasibility of performing an efficient
handover scheme, i.e., the LHO in a multi-radio environment, to evaluate the benefits of such handover
over the conventional RSSI-based approaches, and to understand the key factors of maintaining such
improvements. Essentially, the LHO benefits from the advantages of both cmWave and mmWave
APs within the HetNets that we summarize in Table 1. In particular, the throughput of the robot
is augmented by connecting it with the mmWave AP as long as the robot is in the LoS state w.r.t.
the mmWave AP. Meanwhile, more robust connectivity can be ensured by handing over to the cmWave
AP before the robot loses the LoS connection w.r.t. the mmWave AP. Therefore, the key performance
indicators of the LHO are the reliability of the achieved location awareness and the corresponding
positioning accuracy.

To illustrate our technical context, a conceptual figure of the principle pf the proposed handover
scheme is developed in Figure 1, where a robot (i.e., a mobile vehicle) is moving within an industrial
multi-radio environment while performing certain tasks, such as cargo transportation or video
surveillance. To ensure the service quality of the tasks that require wireless connectivity, our objective
is to enhance the link robustness while augmenting the throughput throughout the whole robot
trajectory. As illustrated by Figure 1, the robot is communicating with the mmWave AP, wherever there
is LoS radio connection between them (with a potential horizontal handover, i.e., a switch between the
networks of the same RAT in the light blue region), and switches to WiFi (i.e., a vertical handover)
before entering the NLoS region of the mmWave AP (see the light green region) based on the available
location awareness of the robot, i.e., LHO.

Table 1. Advantage and disadvantage of different RATs.

RAT Advantages Disadvantages

cmWave
(WiFi)

High robustness to blockage;
low diffraction loss

Low throughput due to limited
bandwidth

mmWave
(WiGig)

High throughput at LoS owing
to large bandwidth

Low robustness to blockage;
high diffraction loss

WiFi standard: IEEE 802.11n. WiGig standard: IEEE 802.11ad.
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Figure 1. A conceptual figure of the principle of the location-aware handover (LHO) scheme in an
industrial multi-radio environment.

Even though a related topic was investigated in several past works as discussed in Section 2,
most of the existing papers report enhanced communication performance by assuming ideal location
information for all the UEs/vehicles within the network. In our work, the location information is not
assumed to be known perfectly, but rather is estimated via the positioning solutions. Exploiting a
laboratory setup, we implement and evaluate the positioning algorithms as well as the LHO scheme
utilizing a multi-RAT robotic platform. From the network-level perspective, all data are transferred
by the evolved packet core (EPC) with 3GPP RAT (mmWave) stream routed via the serving gateway
(S-GW) and packet data network gateway (PGW) to the Internet, represented by the packet data
network (PDN). The non-3GPP data is served in the same manner utilizing the evolved packet data
gateway (ePDG). At the same time, inter-networking is ensured by the mobility management entity
(MME), which communicates with both the home subscriber server (HSS) and the authentication,
authorization, and accounting (AAA) unit. Further details on the handover procedure implementation
between 3GPP and non-3GPP networks are given in [44].

3. Equipment and Scenario Description

This section describes the multi-RAT robotic platform and the scenario of interest for LHO evaluation.

3.1. Multi-RAT Robotic Platform

Here, the multi-RAT robotic platform used to evaluate our LHO scheme is presented. It can carry
up to four kilograms of payload and reach 7 km/h speed. It is currently capable of performing remote
operations in indoor environments for approximately two hours without recharging. The installed
hardware allows us to detect obstacles located half-a-meter away from the vehicle, which in
combination with the data obtained from the on-board camera makes it possible to implement
capabilities for autonomous driving.

Our vehicular platform is equipped with cmWave (WiFi) and mmWave (WiGig) interfaces in
order to provide multi-connectivity features. Wi-Fi interface is SL-1506 dongle working on RT5370N
chip and implementing the standard 802.11n. The module uses closed-loop power control with an
output power range between 2 and 18 dBm conveyed via a single 2 dBi omnidirectional antenna.
As we used a Linux-based operating system, the communication rate adaptation was driven by the
Minstrel algorithm, which is part of the mac80211 kernel subsystem [45]. In the case of mmWave
connection, the vehicular platform is equipped with a Mikrotik wAP 60G client station based on the
Qualcomm QCA6320 WiGig module with maximum Tx power of 21.67 dBm. The module is further
provided with a 6× 6 phased array antenna with a maximum gain of 13.5 dBi.
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At the core of the platform is an UDOO x86 single-board computer. In particular, the two motors
of the vehicular platform are controlled via a RoboClaw motor controller connected to the UDOO
board. Further, the RoboClaw has a power connection to external battery packs and a voltage regulator.
A photo detailing the components of the platform is shown in Figure 2 and the technical details and
features of the platform are summarized in Table 2. The platform can also operate in manual mode,
where the vehicle is controlled by the operator remotely. Hence, the operator is monitoring the video
stream provided by the camera installed on the front of the vehicle.

The platform allows us to collect various types of statistics. First, we monitor the communication
performance by analyzing signal strength, end-to-end packet latency, and throughput data. For the
installed WiGig transceiver, we also collect antenna array configuration statistics provided by the
application programming interface (API) of the device. On top of that, UDOO board has an integrated
six-axis sensor, which allows us to monitor the heading of the vehicle. Further, the motors of the
driving wheels have magnetic encoders, which make it possible to estimate the location of the vehicle
in relation to the starting position.

Table 2. Technical specifications and features of multi-RAT robotic platform.

Framework Dagu Wild Thumper Chassis with 6 Wheels and 2 Motors

Computing unit UDOO ×86
Operating system Debian Jessie

Radio access technologies MikroTik wAP 60G (mmWave) and 802.11n Wi-Fi transceiver
Battery 2× 8000 mAh LiPo
Camera Logitech C270 HD

Sensors SEN-13959 distance meters and 2× quadrature wheel encoders and
BMI160 six-axis sensor

Figure 2. Prototype photo (disassembled) with notes.

3.2. Scenario of Interest

The scenario for evaluating the LHO scheme is presented in Figure 3 where a typical office setting
is employed to mimic an industrial environment. The corridor, where the test was held is 3× 2.5 m
wide/high. The offices are separated from the corridor with 10 cm wide partition walls. Inside the
office, the WiFi AP is installed on a 1.5 m height (see Figure 3). Along the office walls there are installed
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three wooden tables, four metal chairs and two cupboards, which do not obstruct the LoS condition
between robot and WiFi nor robot trajectory during the test.

(a) (b)

Figure 3. Test scenario 3D model and layout. (a) The 3D model of the corridor. (b) Test scenario layout
combined with LoS map.

In terms of the robot trajectory, the starting location was 15 m away from the mmWave AP that is
attached to the ceiling and tilted 15 degrees down, to provide stable coverage to the robot in the LoS
conditions. The LoS coverage of the mmWave AP is modeled in Blender, as is discussed in Section 4.1
and shown in Figure 3a with the viewing angles corresponding to the location of the AP and its antenna
array configuration span. TheWiFi is located inside the office, in the NLoS state w.r.t. the initial location
of the robot. It is noteworthy that there exists only one mmWave AP (WiGig) and one cmWave AP
(WiFi) within the considered environment, and we tried to minimize the existing interference from
other WiFi APs operating in the same area by choosing the least used frequency channel. The overall
robot trajectory is as follows. After the first 10 s of initialization (when the vehicle remains stationary),
the robot starts moving along the corridor with the constant velocity of approximately 0.5 m/s, until it
reaches the entrance to the office, in which the WiFi is located, see Figure 3b. Further, it turns left and
moves into the office (entering the mmWave NLoS area). In the end, the robot drives one meter inside
the office and stops. All in all, the core objective of this work is to maximize the radio connection with
the mmWave AP for an augmented throughput, while switching to the WiFi in the non-ideal condition
for enhanced link robustness in the industrial environment.

Last but not least, we emphasize that the proposed handover scheme works the best in static
environments, where the scenario layout either changes rarely, or changes are periodic and predictable.
If there is a need to consider dynamic scenario reconfiguration, the LoS map of the environment
should be modified accordingly, which certainly increases the overall complexity. An example
of an environment with predictable geometry dynamics could be a fully automated factory or
storage/production hall.
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4. Enabling Multi-RAT Indoor Handover

In this section, the method of constructing the 3D indoor environment as well as the LoS map
w.r.t. the mmWave AP is provided. Inheriting the ideas from [35,46], the developed GBP algorithm is
then presented and formulated. Finally, the proposed handover scheme is described and discussed.

4.1. Determining mmWave LoS

Here, we describe the method [47] of building the LoS map of the mmWave AP within the
considered environment. The main purpose of this method is to construct a 3D model of a particular
environment in order to predict the LoS state w.r.t. the mmWave AP at any specific locations.
In particular, the necessary steps are given as follows.

1. Building 3D model. The first step is to obtain a considered environment in the 3D modeling
software that provides sufficient details to reflect all the objects that obstruct the LoS path between
the objects of interest (e.g., the mmWave AP and the robot).

2. Identifying 2D plane. In the 3D model, we add a plane on the height corresponding to the
device antenna. The surface of the plane in the 3D environment represents the set of all possible
points where the device antenna can be situated. For further image processing simplification,
the plane is uniformly colored, while the choice of its material results in the absence of shadows
and reflections (illustrated in Figure 3a).

3. AP point of view (PoV) LoS map. A 2D render from the AP’s point of view is used to produce a
“warped” map (shown as Figure 3a). The viewing angles are set to the antenna parameters of the AP.

4. Affine transform. The final step is to perform a geometric transformation to the projected PoVmap
in order to eliminate the z-coordinate as well as restore the proportions such that the orthogonal
coordinate system (top view) of the LoS map of the area is obtained. In particular, the transform
is carried out by applying three anchor points, which have been marked with the red cross shown
in Figure 3b. It is important to note that the red line shown therein is employed as the ground
truth of the robot trajectory in the simulation campaign (see Section 5.1), which is different from
the ground truth of the robot trajectory in the experiments that is not measured and therefore
remains unknown.

The red line plotted in Figure 3b is applied as the robot trajectory for simulation-based study
on the RSSI, AoA and proposed positioning algorithm. The information provided by the LoS map
(such as the LoS–NLoS border) is first integrated in the robot, and then utilized to decide whether the
robot resides in the LoS region w.r.t. the mmWave AP for the experimental evaluation of the proposed
handover scheme, which will be discussed in Section 4.3.

4.2. Proposed Positioning Algorithm

Since the proposed positioning algorithm is geometry-based, we provide an illustration of the
geometry relation between the mmWave AP and the robot in terms of the side view and top view in
Figure 4, in which the GBP algorithm is constructed. Specifically, the mmWave AP is represented by
the red dot, while the purple cross marker denotes the robot. Further, the antenna array deployed
on the robot is highlighted by the black solid line on top of the purple markers. It is important to
note that since the positioning is implemented at the robot side, the antenna array of the mmWave
AP is therefore omitted. In addition, we denote the noiseless elevation and azimuth AoA at the robot
side as ϕ and θ, and the true orientation of the antenna array (in the azimuth plane) on the robot after
the transformation from the robot coordinates to the local 3D Cartesian coordinates [28] is α. In this
work, only the array orientation in the azimuth plane (horizontal plane) has to be considered because
the elevation orientation of the array remains vertical to the ground as the robot moves along the
trajectory. Further,ˆdenotes the noisy measurement of the corresponding noiseless quantity. By solving
the geometrical relationship between the mmWave AP and the robot shown in Figure 4, the GBP
algorithm is described in Algorithm 1, where the inputs contain the AoA measurements, ϕ̂ and θ̂,
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and the orientation measurements α̂. Additionally, the GBP requires the location information of the
mmWave AP to complete the radio-positioning for the robot. It is noteworthy that the time index
is omitted in Algorithm 1 due to the independence between the location estimates of the adjacent
time instants.

Figure 4. Illustration of geometric relationships between the robot and mmWave AP from two points
of view.

Today, there are various methods to estimate the robot location, e.g., the extended Kalman filter
(EKF) [31,34,35,48] or the theoretical positioning error bound [27,49]. Here, we propose and apply
the GBP for robot positioning due to three major reasons. The first one is the limited availability
of LRMs. Given the considered scenario, there is only one mmWave AP available for acquiring the
LRMs. For positioning with two unknowns (i.e., x−, y− components of a 3D coordinate), most of
the existing algorithms require at least three APs. The second reason is the algorithm complexity. In
order to reduce battery usage during positioning, the applied positioning algorithm needs to be less
computationally complex. Comparing with the EKF, the GBP algorithm was shown to have much
lower computational complexity while providing reasonable positioning accuracy [35]. Third, the main
target of this work is not to compare different positioning algorithms but to acquire location awareness
for better handover performance. Generally, a better positioning performance is directly related to a
better LHO performance; however, as we discuss in Section 5.2, the LRMs obtained by the robot is too
coarse to be used for accurate positioning by any positioning algorithms.

Algorithm 1: Geometry-based positioning (GBP)

Input: ϕ̂, θ̂, α̂, xA, yA
Output: x̂, ŷ

1 Compute the 2D distance between mmWave AP and the robot based on elevation AoA
measurement ϕ̂ and the known antenna height difference h

d̂2D = h/tan (ϕ̂)

2 Convert the azimuth AoA measurement θ̂ at the robot to the angle of departure (AoD) θ̂A at
the mmWave AP taking into account the array orientation measurement α̂ of the robot

θ̂A = π − |θ̂ − α̂|.

3 Calculate the robot location based on d̂2D and θ̂A

[
x̂
ŷ

]
=

[
xA + d̂2Dcosθ̂A
yA + d̂2Dsinθ̂A

]
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4.3. Proposed Handover Scheme

The proposed handover scheme, LHO that is illustrated and described in Figure 5, is in general
based on the knowledge of estimated robot locations and the potential LoS zone w.r.t. the mmWave
AP location. In particular, the LHO is initiated whenever the robot enters/exits the mmWave NLoS
area. To predict and execute the handover, the robot compares its current estimated location with the
handover location on the LoS map of the environment that is shown in Figure 3. For instance, if the
robot starts off in the LoS area, the LHO is triggered only if the estimated robot location no longer lies
on the LoS map, in which case, a switch from mmWave RAT to WiFi shall occur. The performance of
this scheme depends on multiple factors including the positioning accuracy, the presence of moving
obstacles, and the robot speed. To improve the handover efficiency, one can take into account the
robot trajectory, the channel statistics (measured signal level) and the sensor data (e.g., images/video,
pseudo-range measurements).

In addition, traditional RSSI hysteresis and time triggers may be used to eliminate possible
ping-pong effects [10]. However, in this paper we use a “proof of concept” scheme, which only takes
into account the current estimated location of the robot, and triggers a handover when the robot
crosses the LoS-NLoS border. Assuming that we know the map of the building and the LoS border,
together with the current location of the robot, the task of predicting if the robot is in the LoS area
becomes in checking if it is located inside the polygon of an arbitrary shape, i.e., points in polygon
(PiP). Since the observed polygon can be non-convex, the most efficient way to solve the problem is
via a ray intersection method with the complexity of O(N), where N represents the number of edges
in the considered polygon [50]. In order to decrease the computing power requirements, the LoS area
polygon should be calculated separately (using e.g., Blender) for each mmWave AP in the deployment
scenario, while the checking algorithm should be applied only for the currently used AP.

The complexity and the feasibility of our scheme, therefore, depend on the complexity and the
accuracy of the employed location estimation algorithm together with the complexity of the chosen PiP
algorithm. As in the conventional schemes, the resultant computation intensity of the location-aware
solution depends on the status (location) updates frequency. The implementation of the LHO scheme
requires the storing of pre-calculated LoS maps and the realization of a mechanism to switch the packet
flow from one RAT to another. In the paper, we compare the performance of the proposed handover
scheme with a traditional RSSI-based approach. The RSSI-based handover is triggered when the
WiFi RSSI is higher than the mmWave RSSI plus a 3 dB margin, for the duration of three consecutive
measurements. Herein, the 3 dB hysteresis margin is set according to the recommendation made
in [11]. It serves as the handover threshold throughout the overall handover process. Furthermore,
the handover is implemented in a network-layer using “soft handover” approach—the data flow
switching is enabled by changing the destination IP address, which triggers the routing table update
and changes the physical interface (WiGig or WiFi TX) used for the transmission. In other words,
the association (signaling) with appropriate AP (WiGig or WiFi) is not discontinued in order to
record the appropriate statistics since it is connected to both APs at the same time. However, the
implementation of the proposed algorithm could be realized using “hard handover” approach as well.

In terms of the fairness of the comparison between the two considered handover scheme,
we provide the following elaborations: in general, both the RSSI-based handover and the LHO
belong to the context-aware handover scheme. Therefore, the two handover schemes are different in
terms of the utilized context for handover prediction and triggering. In [23], various context-aware
handover schemes are discussed and compared. In particular, some works utilized the positioning
system, such GNSS as the context parameter, whereas others measured the RSSI values and used
them as the context parameter. In a way, the comparison between RSSI-based handover and LHO
(in the same environment) is fair enough, since they merely utilized different context parameters for
triggering the handover procedure. Nevertheless, LHO is in general more difficult to implement than
the RSSI-based handover since it requires more information about the environment. Our contribution
in this work is to demonstrate the potential performance gain when utilizing the estimated location
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information for the handover, hence the LHO, further enhancing the unification of positioning and
communication technologies in the HetNets.

Start

LoS map calculation (Section 4.1)

Initial location calculated via
GBP algorithm (Section 4.2)

Robot starts moving

Estimated robot location (x̂, ŷ)
calculated based on sensor data

Location
(x̂, ŷ) lies in
LoS map

(Section 4.3)

Switch to/stay
on Wi-Fi

Switch to/stay
on WiGig

Sampling delay

NO YES

Figure 5. Procedures of the roposed LHO scheme.

5. Obtained Results and Evaluation

In this section, the performance of both the simulation-based positioning algorithm and the
experiment-based handover scheme is presented and discussed.

5.1. Simulation-Based Positioning Accuracy

First, noiseless elevation and azimuth AoA with respect to the mmWave AP together with the
RSSI (at the robot) without shadow fading are plotted in Figure 6 for the comparison with the acquired
experimental results, as will be shown in the next subsection. Specifically, the robot trajectory is
divided into three segments, which are marked with different colors: first, the robot remains static in
the light green region performing operational system initialization. Thereafter, it moves toward the
office entrance (the light red region), where the robot makes a turn (black dashed line), and drives
inside the office (toward the NLoS region w.r.t. the mmWave AP, i.e., the light blue region). On its way
into the office, the robot passes the LoS-NLoS border, where the RSSI value significantly drops.

The positioning accuracy via a numerical simulation shown in Figure 7 is characterized by the 2D
root mean square error (RMSE) and the corresponding cummulative distribution function (CDF) of
the 2D positioning error along the considered robot track within the LoS region (see the red curve in
Figure 3b). Further, the applied parameters of the simulation are summarized in Table 3, where the
utilized pathloss model refers to the 3GPP indoor hotspot (InH)-office LoS scenario. In our simulation
campaign, the Cramér-Rao lower bound (CRLB)-based LRMs ([33] Ch. 3), i.e., the elevation and
azimuth AoA measurements based on the RSSI (see Figure 6a) are generated according to the methods
in [35], which are then utilized as the input LRMs (ϕ̂, θ̂) of Algorithm 1 to obtain the corresponding
theoretical accuracy in Figure 7. It is worth pointing out that, in Figure 7a, the positioning performance
gradually becomes better in the light red region before the turning point, this is due to the fact that
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the robot is moving towards the mmWave AP, the RSSI level becomes higher (as shown in Figure 6a)
which leads to more accurate AoA measurements that yields lower positioning errors.

The array orientation measurement α̂ is assumed to be corrupted by an un-biased Gaussian
error with the standard deviation of σα that is set to two different values in the simulation campaign.
Specifically, the curves in Figure 7 manifest the difference in terms of the obtained positioning accuracy
at two different orientation error statistics (σα = 0.1◦or 5◦ [51]), which reflects the impact to the LRMs
that stems from the stable or coarse orientation measurements obtained from a six-axis sensor on the
robot. As it is observed in Figure 7, the positioning accuracy by GBP is generally higher for a smaller
orientation error statistics σα, as well as when the robot approaches the mmWave AP owing to the fact
that for a given AoA measurement error, the robot suffers a smaller positioning error when it is closer
to the mmWave AP. In other words, the AoA measurement error is translated into a larger/smaller
positioning error at a larger/smaller UE-AP distance. It is also worth noting that the RMSE curve
stops when the robot enters the NLoS region, thus indicating the fact that the communication with the
mmWave AP is discontinued when the LoS is blocked.
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Figure 6. Simulation-based numerical characterization as a function of time along the simulated robot
trajectory (see Figure 3b). (a) The received signal strength indicator (RSSI) applying InH office pathloss
model ([52] Table 7.4.1-1); (b) Noiseless AoA with respect to mmWave AP.

Table 3. Utilized simulation parameters.

Parameter Value

Carrier frequency 60.5 GHz
Signal bandwidth 2.16 GHz

Transmit power @ AP * 21.64 dBm
Max. array gain @ AP * 13.48 dBi
Max. array gain @ robot 13.48 dBi
Robot update interval 0.5 s

Pathloss model InH-office [52]
Fast fading model Rician distribution

* The “AP”s mentioned in the table refer to the mmWave AP rather than WiFi since the simulation is carried out to model
the communication between the mmWave AP and the robot.
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Figure 7. Positioning performance via GBP along the robot trajectory in Figure 3b over 2000 trials in
the simulation campaign. It is noteworthy that the timeline of Figure 6a is slightly different than that of
Figures 8 and 9, which are obtained from the experiment. The reason lies in the fact that the ground
truth of the robot trajectory is unknown in the experiment but is defined in the simulation campaign.
(a) 2D RMSE as a function of time via simulation. (b) CDF of positioning error via simulation.

5.2. Experiment-Based Handover Performance

In this experiment, we considered a user-centric handover procedure; hence, the serving entities
(mmWave and cmWave APs) are used only to provide the necessary data for the robot to make a
handover decision. While on a network-scale, the experiment may be envisioned as simply providing
WiFi accessibility, handover targeting the preservation of appropriate data session continuity is carried
out on the user side.

The connection-related performance is displayed in Figure 8, where the horizontal axis represents
the timeline of the handover experiment starting from 0 s. With the black, yellow and red vertical lines,
the time of the RSSI-based (1), location-aware (2) and preferred (3) handover schemes are indicated,
respectively. It is noteworthy that the handover (3) does not correspond to any practical handover
schemes, it indicates the preferred handover location that maximizes the throughput while maintaining
the link robustness throughout the whole considered robot trajectory in the experiment. Specifically,
the RSSI measurements are shown in Figure 8a. It can be observed that the RSSI-based handover
scheme switches to mmWave too early, while the location-based scheme is triggered just before the
signal strength from the mmWave AP drops. Here, it should be mentioned that the RSSI-based
handover performance is displayed for a particular measurement set and is limited by high variations
of the WiFi RSSI in the NLoS environment. While adjustment of the hysteresis and time margins
might improve the efficiency of the scheme in question, it is more complicated to achieve optimized
performance due to the multi-RAT nature of the considered scenario. Similarly, in Figure 8b it is visible
that the location-based scheme makes a switch just before the latency issues begin on the mmWave
link; hence, it offers better performance than with the RSSI-based handover, which provides higher
average throughput.
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Figure 8. Measurements collected by the robot at the test scenario, (a) RSSI measurements; (b) WiGig
latency measurements; (c) physical layer (PHY) rate.
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For a clear demonstration of the performance difference, we summarize the achieved physical
layer (PHY) rate of the robot by both of the considered handover schemes in Figure 8c, in which,
we refer to handover (1) as the RSSI-based scheme and handover (2) as the LHO scheme, respectively.
It is evident that the maximum rate is achieved when the robot is connected to the mmWave AP,
whereas the minimum case is acquired by the WiFi connection. More importantly, our experimental
results indicate that over the considered time duration, the handover (2), i.e., the LHO, achieves nearly
twice as high average rate (1.523 Gbits/s against 0.806 Gbits/s) than the handover (1) owing to location
awareness that maximizes the connected time to the mmWave AP that provides a higher bandwidth,
hence a higher throughput. Meanwhile, the link robustness is satisfactory as well since the vertical
handover to WiFi was performed before the robot entered the NLoS region w.r.t. the mmWave AP.

Ideally, the robot should keep using the mmWave technology as long as possible, due to its higher
throughput and lower latency. An early switch toWiFi affects not only the achieved throughput but also
delay and jitter, which may become unsatisfactory for delay-sensitive applications, such as telemetry
or high-resolution video streaming. Even though the performance of location-aware handover is better
than a particular realization of the RSSI-based scheme, it is still not as efficient as the performance
of handover scheme (3), the “preferred” option (illustrated as the red line in Figure 8a,b). However,
delaying a handover may lead to high packet losses and potential disconnections due to small
LoS–NLoS region on the border of the mmWave coverage areas. For example, it is observed in
Figure 8a that after approximately 30 s the mmWave data are not collected due to a connection loss.

Further, the performance of the LHO algorithm can be improved or degraded largely depending
on the accuracy of the location awareness. In other words, when the positioning accuracy is high
and reliable enough according to the environment and requirement, the LHO in general can achieve
higher throughput than the RSSI-based handover. In the experiment, we apply the proposed GBP
algorithm to compute only the initial location of the robot, thereafter, DR is applied for the location
estimation of the rest of the trajectory. This is done because of the large errors of the measured AoA
at the output of the antenna array, as shown in Figure 9a. By comparing Figure 9a,b, it is clear that
the AoA measurements acquired by the robot do not reflect the changes of the AoA with a sufficient
accuracy. Hence, standalone-GBP cannot provide adequate AoA accuracy for a reliable positioning
accuracy and is therefore applied only to calculate the initial robot location. In terms of the reasons
for the large errors of measured AoA, we provide the following elaborations. First, the employed
mmWave equipment does not allow for continuous and “smooth” control over the array directivity.
Instead, the used array has several fixed configurations, each corresponding to a particular vertical
and horizontal direction of the main lobe. Each configuration covers approximately 10 degrees in the
horizontal and vertical planes, which significantly decreases the accuracy of the LRMs, i.e., the AoAs.
Second, we do not have access to the beam-searching algorithm, which makes it difficult to evaluate if
the utilized configuration corresponds to a direct link or to a reflection from the wall or another object.

In Figure 9b, the estimated robot locations along the trajectory are plotted. For the DR-only
case, we manually measure the true initial location of the robot, and the subsequent locations are
measured by using robot IMU and wheel encoders data, i.e., the DR. In the “GBP+DR" case, the GBP
(see Algorithm 1) is utilized to calculate the initial location, while the rest of the algorithm operates
in the same way as in the DR-only case. The array configuration data received from the mmWave
AP allows us to estimate the initial location of the robot with approximately one meter precision,
which is sufficient to make adequate handover decisions in our case. However, we did not use the
standalone-GBP method to estimate the location due to the precision-related issues as discussed
above. It should also be noted that the precision requirements depend on the building layout and the
robot dimensions.
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Figure 9. Practical implementation of location estimation algorithm, (a) WiGig beamforming variation;
(b) Estimated and measured location.

In summary, our experiments and the corresponding results validate the feasibility of the
LHO for mobile communications in a multi-radio environment, the observed performance gap of
the considered handover schemes can be exploited for a more efficient handover scheme design
enabling a self-organized communication system with autonomous vehicles in mmWave-ready
HetNets, where both the link robustness and data throughput can be reliably guaranteed and
sufficiently provided.

6. Conclusions

In this paper, we presented the enablingmethods and the experimentally-oriented feasibility study
on the LHO utilizing a multi-RAT robotic platform in an indoor HetNets environment with the target
to achieve enhanced link robustness as well as augmented throughput, thus enabling a self-organized
communication system with autonomous vehicles. In terms of location awareness, we developed and
presented the GBP algorithm for positioning the constructed robot. The corresponding positioning
accuracy has been tested via simulations by utilizing the CRLB-level AoA measurements with the
array orientation uncertainty taken into account.

In addition to the numerical analysis, an experimental measurement campaign was conducted
with the multi-RAT robotic platform in order to justify the feasibility of the proposed positioning
algorithm as well as the LHO algorithm. Despite the coarse AoA measurements, our experimental
results confirmed that the “GBP+DR" method is capable of providing sufficient positioning accuracy,
which is essential to perform the LHO. With the obtained location awareness, the handover was carried
out more precisely before the robot entered the NLoS region. Owing to a longer LoS connection with
the mmWave AP, the LHO can achieve twice higher throughput than the conventional RSSI-based
handover scheme. During the experiments, two independent data streams were maintained: one to
control the telemetry connection and another one to provide video feedback between the robot and its
remote operator. In both cases, session continuity targeted by the handover procedure was preserved,
although a noticeable lag was observed in the video stream.

Even though the performance of the LHO scheme is bounded by the practical limitations of
the employed equipment, it was shown via simulations that the applied positioning approach is
capable of offering accurate enough location estimates in realistic indoor environments, thus further
improving the performance of the discussed LHO in a multi-radio environment. Four directions of
future work are currently envisioned: (i) development of advanced algorithms for more accurate AoA
estimation based on the received signals at the mmWave array on the robot; (ii) assessment of practical
performance levels in different types of environments and under varying densities of multi-radio
network deployments considering potential interference; (iii) study and investigation of a hybrid
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handover scheme integrating various metrics, such as RSSI and location awareness under different
environments and scenarios; (iv) together with positioning, the sensing techniques will also be applied
to produce a simulated environment for multi-RAT handover with efficient beamforming strategy,
expanding the proposed algorithm well beyond the considered scenario.
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Abstract—The millimeter wave (mmWave) device-to-device
air interface not only supports a direct wireless connectivity
among devices, but it also offers an improved beamforming
capability to obtain the direction information among the vehicles
and devices for positioning. Both features serve as the key
physical layer components for communications and positioning
in the industrial Internet of things (IIoT) systems. Exploiting
both accurate beamforming and wide bandwidth in a mmWave
network, high-accuracy positioning is achievable, which can be
then facilitated for location-aware communications, for instance.
However, the uncertainty of anchors’ locations in the industrial
environment highly degrades the achievable positioning accuracy
if left without proper consideration. In order to resolve such
challenge, this paper presents a cooperative positioning system
(CPS), where the locations of all the vehicles and anchors can
be jointly estimated based on acquired location-related mea-
surements (LRMs). Furthermore, the positioning performance
is evaluated under random trajectories and different geometric
relationships between the vehicles and the anchors. We show
that, the proposed positioning solution is capable of resolving
the aforementioned challenge by simultaneously tracking the
mobile vehicles while mapping the locations of the static anchors.
Utilizing the LRMs from both time and angular domains, the
achieved positioning accuracy in both 2D and vertical plane is
demonstrated based on extensive numerical simulations. Last but
not least, the impact of different numbers of the mobile vehicles
on the overall positioning performance is also investigated.

Index Terms—Cooperative positioning, extended Kalman filter,
industrial IoT, millimeter wave device-to-device communications,
NR sidelink, simultaneous localization and mapping

I. INTRODUCTION

With the growing employment of Internet of things (IoT)
technology in various industry verticals [1], an increasing
amount of wireless-enabled vehicles and sensors are to be
deployed in the typical industrial environments, such as harbor
area and warehouses for tasks like data collection and envi-
ronment monitoring. Therefore, an enhanced inter-connectivity
among the vehicles via the device-to-device (D2D) air interface,
i.e., the sidelink, is required for seamless communications
and data exchange. As studied in [2], the new radio (NR)
sidelink, not only facilitates such inter-connectivity that can
be exploited for both communications and positioning, but it
also plays an important role in ultimately enabling a wireless-
controlled industrial Internet of things (IIoT) system with

This work was financially supported by the Academy of Finland, under the
projects ULTRA (328226, 328214) and FUWIRI (319994), and the Finnish
Funding Agency for Innovation under the project 5G VIIMA. Online videos
are available at: https://research.tuni.fi/wireless/research/positioning/cps-d2d/

connected vehicles especially in the context of the proximity-
based services (ProSe) and the vehicle-to-everything (V2X)
services [3].

Although the advantages of the sidelink for communications
were studied, for instance, in [4], its potential benefits for
positioning have not been widely investigated especially in the
millimeter wave (mmWave) networks featured with beamform-
ing capability. In contrast to a typical cellular scenario [5], a
potential and crucial challenge from the positioning perspective
remains, i.e., the location uncertainty of the anchors. Indeed, the
location information of the anchors may not be precisely known
as usual due to a frequent deployment and re-deployment of
the anchors in order to enable wireless communications in
certain area of the industrial environment. In such context, we
propose a cooperative positioning system (CPS) that builds
on a Bayesian framework, in which, the locations of all the
vehicles and anchors can be jointly estimated based on the
acquired location-related measurements (LRMs) via signaling
through NR sidelink. The corresponding performance in both
2D and vertical plane is evaluated via extensive ray-tracing
based numerical simulations.

In terms of the related works on cooperative positioning, the
authors in [6] derived the positioning error bound for mobile
agents based on a single type of LRMs, such as received signal
strength (RSS), time of arrival (ToA) and angle of arrival
(AoA), and discussed the feasibility of acquiring LRMs by
utilizing different technologies, such ultra-wideband (UWB)
and acoustic media. However, the achievable positioning
accuracy by collectively utilizing different types of LRMs
(e.g., RSS+AoA) were not discussed therein. Due to the high
temporal resolution, the authors in both [7] and [8] adopted
the UWB to verify the positioning performance experimentally.
In particular, the authors in [7] proposed a robust algorithm
by mapping the graphical model into the network topology,
yielding small communication overhead and good positioning
accuracy. Moreover, an anchorless and cooperative tracking
algorithm was proposed in [8] where the multi-path components
were utilized for positioning with an available 2D floorplan.
Nevertheless, the vertical accuracy which is crucial for certain
industrial use cases was not characterized therein. Last but
not least, the cooperative positioning was addressed using the
set-theoretic estimation methods in [9].
Finally, the main contributions of the proposed positioning

framework in this paper are summarized as:
1) By categorizing the involved vehicles and devices into



Fig. 1: In the considered positioning framework, the anchor-agents first estimate
the location-related measurements (LRMs) based on the received pilot signal
from the target-agents via the established sidelink (shown as green and orange
dashed lines), after which these LRMs are first communicated to and aggregated
at the radio unit (RU), and then fused into the location estimates of both
anchor-agents and target-agents at the data center (or locally at the RU [10])
in a sequential manner by employing the proposed extended Kalman filter
(EKF)-based approach. The locations of neither the target-agents nor the
anchor-agents are perfectly known, the uncertainty is indicated by the blue
and magenta shaded circles.

two kinds (targets and anchors) depending on their
mobility and functionality, the LRMs are needed only
over a subset of the overall D2D connections (i.e., less
data) compared to aforementioned works;

2) By fusing the acquired LRMs individually and collec-
tively1, we provide an extended Kalman filter (EKF)-
based formulation that enables the positioning and
tracking of both the targets and the anchors in 3D;

3) With two sets of anchor deployment, we evaluate the
impact on positioning due to different geometric rela-
tionships between the targets and the anchors;

4) Last but not least, we investigate the positioning per-
formance of the proposed algorithm when considering
different number of targets.

II. SYSTEM MODELS AND DESCRIPTIONS

A. The cooperative positioning system (CPS)

In this paper, the considered wireless IIoT system is
composed of various aerial or ground vehicles and sensor
devices, which we refer to as agents that are capable of
transmitting and receiving radio signals. As illustrated in Fig. 1,
two types of agents are considered herein, one refers to the
target-agent (T-agent), e.g., unmanned aerial vehicles, which
possesses high mobility in order to perform certain tasks, such
as environment monitoring and video surveillance. Another
type of an agent is the anchor-agent (A-agent), such as the

1’Individually’ means utilizing of one type of LRMs, e.g., only ToA;
’Collectively’ means more than one type of LRMs are applied, e.g., ToA+AoA.

sensor device, which maintains a low mobility for most of the
time serving as anchors. Under such context, the core objective
of the proposed CPS is to track the moving T-agents while
mapping the locations of the static A-agents, thus establishing
the simultaneous localization and tracking (SLAT) approach.

In terms of beamforming capability, we assume that all the
A-agents are equipped with a directional antenna, such as a
uniform rectangle array (URA) in order to estimate the angle-
domain LRMs (i.e., the AoA) when periodically receiving
the transmitted pilot signals (e.g., the sidelink synchronization
signals [11]) from the T-agents. In particular, the pilot signals
employ the orthogonal frequency division multiplex (OFDM)
waveforms, and the othogonal frequency division multiple
access (OFDMA) is adopted as the resource assignment scheme
among the T-agents and A-agents. Thereafter, the estimated
LRMs at each A-agent are sent to the radio unit (RU) and
finally received via backhaul at the data center of the network
(i.e., the edge or cloud server) for cooperative positioning.

B. Radio signal and channel models

We continue with the theoretical characterization of the con-
sidered signal and channel models. Specifically, at an arbitrary
time instant i, the kth T-agent, where k ∈ K = {1, 2, · · · ,K},
transmits sidelink physical signals [11] by means of OFDM.
In this particular work, all the T-agents are equipped with
omni-directional antennas (an array with a single antenna
element). Hence, we have a NR × 1 channel matrix for each
pair of T-agent and A-agent, where NR refers to the number of
antenna elements at the receiver side (A-agent). Furthermore,
we denote the transmitted OFDM symbol at the pth sub-carrier
as sk[p, i] ∈ C. After passing through a line-of-sight (LoS)-
dominant mmWave multi-path channel, the transmitted signals
are received at the A-agents via a beam sweeping process2.

The received frequency-domain complex symbol r(q,k)m [p, i]
at the mth A-agent, where m ∈ M = {1, 2, · · · ,M} from
the kth T-agent at the ith time instant and the pth sub-carrier
through the qth analog beamformer is expressed as

r(q,k)m [p, i] =
(
w(q)

m [i]
)H

(Λm[p]sk[p, i] + n[p, i]) , (1)

where n[p, i] ∼ CN
(
0, σ2

nINR

)
refers to the complex-

Gaussian noise with a power density of σ2
n imposed on

overall NR antenna elements. Furthermore, the qth beamformer
w

(q)
m [i] ∈ CNR×1 can be constructed, but not limited to, via

phase-shifters according to certain spatial angles in the utilized
codebook. In addition, the identity matrix and Hermitian
operation are denoted as I and (·)H, respectively.

The channel matrix of each sub-carrier, denoted as Λm[p] ∈
CNR×NT (note that NT = 1 in this work) can be written as

Λm[p] = AΓ[p]

=
L−1∑

l=0

bURA (φl) γle
−j2πfscpτl ,

(2)

2The beam sweeping refers to one beam management process [12], where
multiple beamformers, i.e., beam steering vectors are applied to acquire the
received signals from different directions.



where L is the overall number of propagation paths and the
channel state vector Γ[p] ∈ CL×1 is described as

Γ[p] =
[
γ0e

−j2πfscpτ0 , · · · , γL−1e
−j2πfscpτL−1

]T
, (3)

where the index of active sub-carrier p ∈ P = {1, · · · , P} and
fsc is the sub-carrier spacing. The array response matrix in (2) is
represented as A ∈ CNR×L = [bURA(φ0), · · · , bURA(φL−1)].
Specifically, bURA (φl) ∈ CNR×1 refers to the URA response
at the spatial angle φl � (θl, ϕl), and γl is the complex
channel coefficient including the pathloss of the lth path with a
propagation delay of τl. Moreover, bURA (φl) is a combination
of two uniform linear array (ULA) responses

bURA(φl) =
√

β0(NR, φl)aULA(ϕl)⊗ aULA(θl|ϕl), (4)

where ⊗ denotes the Kronecker product and the scaling factor
β0(NR, φl) represents the array gain as a function of the overall
number of antenna elements NR as well as the spatial angle
pair φl. As defined previously, the angle pair φl consists of
the azimuth angle θl as well as the elevation angle ϕl, and
together, they define a spatial direction in a 3D environment.
Hence, the individual normalized ULA responses are given as

aULA(ϕl)=
e
−jπsin(ϕl)

[
−Nel−1

2 ,··· ,Nel−1

2

]T

√
Nel

,

aULA(θl|ϕl)=
e−jπcos(ϕl)sin(θl)[−Naz−1

2 ,··· ,Naz−1
2 ]

T

√
Naz

,

(5)

where Nel and Naz represent the dimensions of the URA, such
that NR = NelNaz. In case of a 8× 8 URA, Nel = Naz = 8.

C. The location-related measurements (LRMs)

Denoting the locations of the kth T-agent and the mth
A-agent as PT,k[i] = [xT,k, yT,k, zT,k]

T and PA,m[i] =

[xA,m, yA,m, zA,m]
T , respectively, we formulate all the desired

time-domain and the angle-domain LRMs as

τ̂ (k)m = τ (k)m + n(k)
τ,m = ‖PT,k − PA,m‖/c+ n(k)

τ,m,

∆̂τ
(k)

m = ∆τ (k)m + n
(k)
∆τ,m

= ‖PT,k − PA,m‖/c− ‖PT,k − PA,1‖/c+ n
(k)
∆τ,m,

ϕ̂(k)
m = ϕ(k)

m + n(k)
ϕ,m

= arcsin
(
∆z(k)m /‖PT,k − PA,m‖

)
+ n(k)

ϕ,m,

θ̂(k)m = θ(k)m + n
(k)
θ,m

= atan2
(
∆y(k)m ,∆x(k)

m

)
+ n

(k)
θ,m,

(6)

where the considered LRMs consist of ToA τ̂
(k)
m [i], time

difference of arrival (TDoA) ∆̂τ
(k)

m [i], elevation AoA ϕ̂
(k)
m [i]

and azimuth AoA θ̂
(k)
m [i], and the time index in (6) are omitted

for simplicity. Furthermore, c is the speed of light, ∆x
(k)
m =

xT,k − xA,m, ∆y
(k)
m = yT,k − yA,m, ∆z

(k)
m = zT,k − zA,m.

Additionally, the inverse sine function and four-quadrant inverse
tangent function are denoted as arcsin and atan2, respectively.

More importantly, we model all the LRMs noises in (6) as
unbiased additive Gaussian white noise having the variance

that is bounded by the established Cramér-Rao lower bound
(CRLB) [13, Ch. 3]. For instance, we express the CRLB of
ToA and elevation AoA as follows

σ2
τ,m,k[i] ≥

3

8π2f2
scSNR

(k)
m [i]Mp(Mp + 1)(2Mp + 1)

, (7)

σ2
ϕ,m,k[i] ≥

6

Nel (N2
el − 1) SNR(k)

m [i] π2cos2
(
ϕ
(k)
m [i]

) , (8)

where Mp = P−1
2 , P is the overall number of active sub-

carriers. We see that both CRLB are a function of several
parameters, such as the signal bandwidth, Bw = fscP , the
signal-to-noise ratio (SNR), SNR(k)

m [i], the number of antenna
elements, Nel and the true AoA, ϕm. Additionally, the TDoA
noise model can be computed as σ2

∆τ,m[i] = σ2
τ,m[i]−σ2

τ,1[i]
3,

whereas the azimuth AoA shares the same formulation as (8)
except that the term Nel shall be swapped to Naz.
Of all the parameters, the SNR remains significant since

it is a time-variant variable due to the movement of all the
T-agents and its value determines the ultimate LRMs’ accuracy.
After beam sweeping, the obtained SNR is expressed as

SNR(k)
m [i] =

max
(
B(k)
m [i]

)

Pn
, (9)

where Pn refers to the noise power over the total signal
bandwidth, and the obtained beam reference signal received
power (B-RSRP) vector is denoted as B(k)

m [i] ∈ RQ×1 where
Q is the overall number of the beamformers in the codebook,
and the qth B-RSRP B(q,k)

m [i] is calculated based on (1)

B(q,k)
m [i] =

1

P

P∑

p=1

|r(q,k)m [p, i]|2, (10)

that is essentially the average power over all the active sub-
carriers.

III. COOPERATIVE POSITIONING VIA EKF

The proposed CPS for positioning of T-agents and A-agents
are building on an EKF that is widely applied for positioning
in works such as [8]. The choice of an EKF is determined
by its flexibility in dealing with the non-linear state transition
or measurement models. The proposed EKF is formulated
according to [14] as

state transition model : s[i] = Fs[i− 1] + u[i]
measurement model : y[i] = h (s[i]) + w[i],

(11)

where y[i] represents the LRMs which are facilitated as the
measurements in the EKF, and s[i] refers to the time-varying
state vector4 that contains the information of both T-agents
and A-agents such as

s =
[
sTT,1, · · · , sTT,K ,PT

A,1, · · · ,PT
A,M

]T
, (12)

3The ToA noise statistics of reference A-agent is denoted as σ2
τ,1[i].

4Thereafter, we drop the involved time index i for simplicity of the notation.



Algorithm 1: EKF-based cooperative positioning
At time index i = 0, initialize the state s, covariance Σ,
process noise covariance Q according to Section IV-A
for i = 1, · · · , T do

Generate the LRMs vector y[i] and compute the
corresponding measurement noise covariance
matrix R[i]

Calculate the Jacobian matrix according to, e.g.,
(16)
Implement the EKF equations [14]
Prediction:
state ŝ−[i] = Fŝ[i− 1]
state covariance Σ̂−[i] = FΣ̂[i− 1]FT +Q[i]

Kalman gain:
K[i] = Σ̂−[i]HT [i]

(
H[i]Σ̂−[i]HT [i] + R[i]

)−1

Correction/update:
ŝ[i] = ŝ−[i] +K[i]

(
y[i]− h

(
ŝ−[i]

))

Σ̂[i] = (I−K[i]H[i]) Σ̂−[i]
end

TABLE I: The number of available LRMs as a function of the number of
T-agents K and A-agents M for each considered measurement type

Measurement type Number of available LRMs, N
ToA, τ MK

TDoA, ∆τ (M − 1)K
AoA, φ 2MK

ToA+AoA, τ+φ 3MK
TDoA+AoA, ∆τ+φ (3M − 1)K

in which, the state vector of the kth T-agent is given as

sT,k =
[
PT
T,k, v

T
T,k, a

T
T,k

]T
, (13)

where vTT,k =
[
vT,kx , vT,ky , vT,kz

]
and aTT,k =

[
aT,kx , aT,ky , aT,kz

]

denote the state of target velocity and acceleration, respectively.
Although only the locations of the A-agents are considered
in the state vector, their velocity and acceleration can also be
included to enable the tracking of certain movements.
Moreover, the process noise vector is denoted as u ∼

N (09K+3M ,Q) where 09K+3M is a zero-vector with a
dimension of 9K+3M . Together with the linear state transition
matrix F and the state covariance matrix Σ, we have

Q =

[
QT 0
0 QA

]
,F =

[
FT 0
0 FA

]
,Σ =

[
ΣT 0
0 ΣA

]
, (14)

where QT ∈ R9K×9K , QA ∈ R3M×3M , FT ∈ R9K×9K ,
FA ∈ R3M×3M , ΣT ∈ R9K×9K and ΣA ∈ R3M×3M are the
process noise covariance matrix, the linear state transition ma-
trix and state covariance matrix of the considered T-agents and
A-agents, respectively. In particular, both QT and FT are block
diagonal matrices that consist of the corresponding matrix of
each individual T-agent, i.e., QT = blkdiag

(
QT,1, · · · ,QT,K

)

and FT = blkdiag (FT,1, · · · ,FT,K). Assuming a constant

acceleration between consecutive states, we have [15]

FT,k =



1 ∆t ∆t2

2
0 1 ∆t
0 0 1


⊗ I3×3,

QT,k = σ2
q,k




∆t5

20
∆t4

8
∆t3

6
∆t4

8
∆t3

3
∆t2

2
∆t3

6
∆t2

2 ∆t


⊗ I3×3,

(15)

where ∆t denotes the time interval between two consecutive
time steps, and σ2

q,k refers to the process noise variance
of the acceleration of the kth T-agent. For the A-agents,
FA = I3M×3M and QA = I3M×3Mσ2

q,A. Similarly, we have
the initial state covariance of both agents as the block diagonal
matrices as well where ΣT = blkdiag (ΣT,1, · · · ,ΣT,K),
where ΣT,k = blkdiag (ΣP,k,Σv,k,Σa,k) and for the A-
agents ΣA = blkdiag (ΣA,1, · · · ,ΣA,M ) in which ΣA,m =
diag

(
σ2
x, σ

2
y, σ

2
z

)
.

Furthermore, we denote the measurement noise vector as
w ∼ N (0N ,R) where N is the overall number of available
LRMs. In the case where only the ToA measurements are
available, the number of LRMs is equal to the number of A-
agents, i.e., N = M . Therefore, the measurement noise covari-
ance matrix Rτ ∈ RMK×MK = blkdiag

(
R(1)

τ , · · · ,R(K)
τ

)
in

which, R(k)
τ = diag

(
σ2
τ,1,k, · · · , σ2

τ,M,k

)
. The overall number

of LRMs as a function of the number of T-agents and A-
agents is given in Table I, from which, we see that the overall
number of LRMs is larger when utilizing both time- and angle-
domain LRMs, which would be beneficial to the performance
of CPS, as will be shown in Section IV-D. Furthermore, the
measurement function h (·) in (11) for all types of LRMs
has been explicitly given in (6) from which the Jacobian
matrix is computed. Taking as a concrete example the case
when only ToA measurement are utilized, the Jacobian matrix
Hτ ∈ RMK×(9K+3M) can be written as

Hτ =




H(1)
τ,T 0 · · · 0 H(1)

τ,A

0 H(2)
τ,T

... H(2)
τ,A

...
. . . 0

...
0 · · · 0 H(K)

τ,T H(K)
τ,A



, (16)

where H(k)
τ,T ∈ RM×9 and H(k)

τ,A ∈ RM×3M refer to the Jacobian
matrix of the kth T-agent, where the partial derivatives are
taken with respect to (w.r.t.) the variables of T-agent and A-
agent, respectively. Additionally, H∆τ , Hφ, Hτ+φ and H∆τ+φ

are constructed in the same manner as (16), and they are
evaluated at the a prior mean ŝ− which is shown in Algorithm
1 where the proposed cooperative positioning EKF is briefly
summarized. Moreover, the specific Jacobian matrices of H(k)

τ,T

and H(k)
φ,T can be found in [15, Section IV].

IV. NUMERICAL SIMULATIONS AND RESULTS ANALYSIS

A. Initialization
For the numerical evaluation of the proposed positioning

algorithm, the EKF state s was initialized with random



target-agents trajectory, a random
waypoint model

anchor-agents set 1
(non-collinear)

anchor-agents set 2
(collinear)

the propagation paths obtained via ray-tracing engine

employed 3D ray-tracing environment

Fig. 2: The ray-tracing enabled 3D industrial environment [16] with two
practical A-agents sets, i.e., non-collinear (set 1) deployment in red and
collinear (set 2) deployment in green. An example of T-agent trajectory based
on a 3D random waypoint (RWP) model in plotted in light yellow.

T-agent locations that are normally distributed w.r.t. the
true locations and with standard deviation of one meter
in all directions, whereas the velocities and accelerations
are set to zeros. Consequently, the initial state covariance
matrix is given as ΣT,k = blkdiag (I3×3,Σv,k,Σa,k) in
which Σv,k = diag

((
vT,kx ∆t

)2
,
(
vT,ky ∆t

)2
,
(
vT,kz ∆t

)2)
and

Σa,k = diag
((

aT,kx ∆t2
)2

,
(
aT,ky ∆t2

)2
,
(
aT,kz ∆t2

)2)
, ∀k ∈

K. In addition, the locations of all the A-agents are also
initialized around their true locations with a covariance
ΣA,m = diag

(
σ2
AT, σ

2
AT,

σ2
AT
β2

)
, where σAT refers to the location

uncertainty in the horizontal plane and β = 10, ∀m ∈ M.
Moreover, the process noise variance σ2

q,k (of T-agents) is
tuned according to the maximum acceleration |amax| such that
σ2
q,k = (|amax|/(6∆t))

2. Since the A-agents are assumed to be
static in this work, the σ2

q,A is set to 0.

B. Test scenarios

The performance of the proposed CPS is evaluated using
ray-tracing simulations [16] and numerical evaluations in a
mmWave D2D network. In particular, six static A-agents were
deployed in a 60m × 60m area according to two different
sets (as depicted in Fig. 2) to evaluate the effect of different
geometric relationships. Furthermore, we design the trajectories
of all T-agents based on the 3D random waypoint (RWP)
model [17] within the considered area, the height of each
trajectory is controlled from 0.5m to 8m range, whereas the
horizontal range is bounded by the borders of the warehouse.
In particular, there are approximately 25 paths (including the
LoS path) being generated for each pair of target-anchor
at each time instant using ray-tracing simulations. For the
purpose of demonstration, the LoS path together with one
first-order reflection path are given as examples in Fig. 2.
In addition, all the T-agents move independently along their
individual trajectories. Subsequently, we summarize the relevant
parameters utilized in the simulation in Table II. It is also
noteworthy that with the considered parameter configurations,
the theoretical maximum D2D distance in the LoS condition

Fig. 3: The overall number of LRMs (left y-axis) and the overall number of
unknowns (right y-axis) as a function of the number of considered T-agents
with the number of considered A-agents fixed at M = 6. The formula of
calculating the number of LRMs are given in Table I.

TABLE II: Utilized parameters in the simulation

Parameter Value
Carrier frequency 26 GHz
Sub-carrier spacing 60 kHz
Signal bandwidth 10 MHz
Transmit power 10 dBm

Receive beamforming gain 18 dBi
EKF update time-interval 100 ms

A-agents antenna 8× 8 URA
T-agents antenna Omni-directional
A-agents height 1.5 m
T-agents height 0.5 – 8 m

Avg. T-agents velocity 1.1 m/s

is more than 500m, which is enough to ensure the full radio
coverage within the environment.

C. The number of LRMs vs the number of unknowns

Given the number of T-agents, K, and the number of A-
agents, M , the number of unknowns in the estimation problem
is 9K + 3M . In particular, Fig. 3 demonstrates the number
of available LRMs, N , as a function of K in the case of
six A-agents5 when utilizing different types of LRMs. It is
observed that with the increasing value of K, the number
of both the unknowns and the LRMs increases. Nevertheless,
for the considered number of T-agents, the problem is under-
determined (N < 9K + 3M ) for CPS that applies the time-
domain LRMs (ToA, TDoA) and angle-domain LRMs (AoA)
individually, and become over-determined (N > 9K + 3M )
for CPS collectively utilizing the LRMs from both time- and
angle-domain (ToA+AoA and TDoA+AoA). A critical case
occurs when K = 2 and both ToA and AoA measurements
are utilized, in which case, N = 9K + 3M . In the following
subsections, we will present positioning performance under
different K and M values.

D. The impact of different numbers of T-agents and A-agents

To assess if the presence of more T-agents could bring
practical benefits to the CPS, we first test and present the

5We emphasize that M can be any positive integer number, and M = 6 is
chosen here such that there is one A-agent every 25m×25m area approximately.



(a) Probability of 2D sub-meter accuracy in set 1 (non-collinear A-agents).

(b) Probability of 2D sub-meter accuracy in set 2 (collinear A-agents).

(c) Probability of vertical sub-0.2 meter accuracy in set 1 (non-collinear A-agents).

(d) Probability of vertical sub-0.2 meter accuracy in set 2 (collinear A-agents).

Fig. 4: Positioning performance of T-agents. Circle solid lines denote the
positioning performance with two T-agents (two-target CPS); Cross dashed
lines denote the positioning performance with one T-agent (one-target CPS).

positioning performance at K = 1 (one-target CPS) and K = 2
(two-target CPS). Moreover, we adopt the probability of sub-
meter accuracy in 2D (the horizontal plane) and probability
of sub-0.2 meter accuracy [18, Table 7.3.2.2-1] in vertical
plane as the performance metrics. Furthermore, we perform
in total 500 simulation trials with overall 1000 independent
RWP trajectories generated, thus implying that two independent
trajectories are generated in each simulation trial6. In particular,
the length of each RWP trajectory is set to 2000 points with
100 ms interval.

The positioning performance of T-agents is given in Fig. 4.
In terms of the performance difference between two-target CPS
and one-target CPS7, it is noticeable that when utilizing the

6One out of the two RWP trajectories is selected as the trajectory of the
T-agent for one-target CPS.

7Comparison between curves in the same colors but with different markers.

time- and angle-domain LRMs individually, the two-target CPS
outperforms the one-target CPS in both (anchor) sets and both
2D and vertical planes. However, the performance gap between
two-target and one-target CPS becomes nearly invisible when
collectively utilizing the LRMs from both time- and angle-
domains. As expected, when utilizing different LRMs8, both 2D
and vertical positioning accuracy of the CPS that collectively
utilizes the LRMs is in general higher than that of the CPS that
utilizes the LRMs from a single domain. Nevertheless, it is
important to note that the ToA-based two-target CPS achieves
nearly equivalent 2D performance as the CPS that collectively
utilizes LRMs from both domains. For both K = 1, 2 cases, the
AoA-based CPS demonstrates a rather similar performance in
both A-agents sets and both 2D and vertical planes, whereas the
time-based CPS suffers a huge performance loss in set 2 (when
A-agents are collinear deployed), in which a roughly 20%
2D sub-meter accuracy (in Fig. 4b) and a nearly 3% vertical
sub-0.2 meter accuracy (invisible in Fig. 4d) are achieved.

The above observed behavior shows that the time-based CPS
suffers severely from the collinear deployment (set 2), which
further proves the impact on the positioning performance due
to the different geometric relationships between the T-agents
and the A-agents when utilizing different LRMs. Moreover,
the results in Fig. 4c and Fig. 4d demonstrates that the angle-
based CPS offers a much better vertical accuracy in both sets
than the time-based CPS over the entire considered σAT values.
Additionally, the weighted centroid geometry (WCG) [15] that
utilizes ToA+AoA is applied herein for comparison. It is seen
that over the entire considered σAT values, the WCG in general
achieves a comparable vertical performance, whereas its 2D
accuracy becomes much worse than the (ToA+AoA)-based
CPS when σAT > 1m.
In addition to the T-agents, the positioning performance of

A-agents is also obtained and presented in Fig. 5. It is to
note that WCG is not included therein due to the fact that
WCG is only capable of positioning the T-agents. Moreover,
a comparison between Fig. 4 and Fig. 5 reveals the fact that
despite slight numerical differences, the obtained performance
of the A-agents is rather similar to that of the T-agents except
two differences. One is that in set 2 (collinear deployment set),
the A-agents (Fig. 5b and Fig. 5d) do not suffer huge accuracy
loss as the T-agents (Fig. 4b and Fig. 4d) when utilizing the
time-domain LRMs. The reason lies in the fact that for each
A-agent in set 2, the geometric relationships between itself
and other agents (i.e., the T-agents and other A-agents) are
not collinear anymore. Another difference lies in the fact that
the vertical performance of A-agents (Fig. 5c and Fig. 5d) is
much better than that of T-agents (Fig. 4c and Fig. 4d) when
utilizing time-domain LRMs.

The CPS performance is visualized and available online at:
https://research.tuni.fi/wireless/research/positioning/cps-d2d/

V. CONCLUSION

In this paper, we proposed and evaluated a cooperative
positioning solution operating on the mmWave D2D air

8Comparison between curves with the same markers but in different colors.



(a) Probability of 2D sub-meter accuracy in set 1 (non-collinear A-agents).

(b) Probability of 2D sub-meter accuracy in set 2 (collinear A-agents).

(c) Probability of vertical sub-0.2 meter accuracy in set 1 (non-collinear A-agents).

(d) Probability of vertical sub-0.2 meter accuracy in set 2 (collinear A-agents).

Fig. 5: Positioning performance of A-agents. Same as Fig. 4, circle solid lines:
two-target CPS; Cross dashed lines: one-target CPS.

interface for the IIoT. The locations of all the agents (including
mobile vehicles and anchor devices) can be jointly estimated,
forming a SLAT-sense framework. Employing the CRLB-
based LRMs from both time- and angle-domains, numerical
simulations were carried out with two sets of A-agents under
different geometric relationships. Our results demonstrated that
the performance in both 2D and vertical plane was boosted
when utilizing the LRMs collectively (i.e., time- and angle-
domain LRMs together) rather than individually (i.e., either
time- or angle-domain LRMs). Furthermore, compared with
angle-based positioning, time-based positioning in general
performed better in 2D plane and worse in vertical plane.
The results also showed that the collinear geometry could
severely degrade the 2D positioning performance of the T-
agents rather than that of the A-agents of the CPS that utilized
only time-domain LRMs.
Last but not least, we found that although with more un-

knowns than the LRMs, system with one more target (two-target
CPS) in general obtain a better positioning performance than
that with less target (one-target CPS) especially when utilizing
the LRMs individually rather than collectively. Therefore,
when only one type of LRMs (e.g., only ToA or only AoA)
is available, a multi-target system can reduce the hardware
requirement of the A-agents without much performance loss.
This key observation can be considered to guarantee certain
positioning performance for device with complexity limitations,
since acquiring LRMs from both domain requires a more
challenged hardware design. Future work will focus on the
performance evaluation at various numbers of both T-agents
and moving A-agents.
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