498 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022 Ws

Dynamic Edge and Cloud Service Integration
for Industrial loT and Production
Monitoring Applications of Industrial
Cyber-Physical Systems

David Hastbacka
Martin Larranaga

, Member, IEEE, Jari Halme

Abstraci—Industrial cyber-physical systems rely in-
creasingly on data from Internet-of-Things (loT) devices
and other systems as continuously emerging use cases
implement new intelligent features. Edge computing can
be seen as an extension of the cloud in close physical
proximity, in which some of the typical cloud computing
loads are beneficial to run. This article studies data ana-
lytics application development for integration of industrial
loT data and composition of application services executed
on edge and cloud. A solution is designed to support het-
erogeneous hardware and run-time platforms, and focuses
on the service layer that enables flexible orchestration of
data flows and dynamic service compositions. The uni-
fied model and system architecture implemented, using the
open Arrowhead framework model, is verified through two
representative industrial use cases.

Index Terms—Arrowhead framework (AHF), condition
monitoring, cyber-physical systems (CPSs), interoperabil-
ity, production monitoring, system architecture.

Manuscript received June 26, 2020; revised October 4, 2020 and
January 28, 2021; accepted March 21, 2021. Date of publication April
6, 2021; date of current version September 29, 2021. This work was
supported in part by the EU ECSEL JU under Grant 737459 and by Busi-
ness Finland in the Productive4.0 project and in part by the Academy
of Finland under Grant 310098. Paper no. Tll-20-3109. (Corresponding
author: David Hastbacka.)

David Héastbacka is with Tampere University, 33100 Tampere, Finland
(e-mail: david.hastbacka@tuni.fi).

Jari Halme and Martin Larrafiaga are with the VTT Technical
Research Centre of Finland Ltd., 02044 Espoo, Finland (e-mail:
jari.halme@vtt.fi; larraunanue@gmail.com).

Laurentiu Barna is with Wapice, FI-6520 Vaasa, Finland (e-mail:
laurentiu.barna@wapice.com).

Henrikki Hoikka and Antti Jaatinen are with Metso Outotec
Group, 33900 Tampere, Finland (e-mail: henrikki.hoikka@metso.com;
antti.jaatinen@metso.com).

Henri Pettinen and Marko Elo are with CrossControl, FI-33100 Tam-
pere, Finland (e-mail: henri.pettinen@crosscontrol.com; marko.elo@
crosscontrol.com).

Mikael Bjérkbom and Heikki Mesid are with Konecranes Pic,
05830 Hyvinkaa, Finland (e-mail: mikael.bjorkbom@konecranes.com;
heikki.mesia@konecranes.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/T11.2021.3071509.

Digital Object Identifier 10.1109/T11.2021.3071509

, Laurentiu Barna
, Mikael Bjérkbom, Heikki Mesia

, Henrikki Hoikka, Henri Pettinen
, Antti Jaatinen, Member, IEEE, and Marko Elo

[. INTRODUCTION

NDUSTRIAL production systems are cyber-physical sys-
Items (CPSs) that integrate raw materials, equipment, hu-
mans, and processes on multiple sites into complex system of
systems (SoS) that depend on data to operate efficiently and
sustainably [1], [2]. Also, equipment and devices themselves
rely on data throughout the life-cycle as smart product systems
with the aim to offer support services optimizing operation or
improving designs [3], [4]. Modern cyber-physical production
systems (CPPSs) are based on composition of heterogeneous
systems and components from different suppliers that need to
exchange data and integrate services seamlessly at run time.

Cloud computing builds on the economies of scale in leverag-
ing performance, scalability, and reliability in a cost-efficient and
manageable manner. For Internet of Things (IoT) applications,
cloud computing can supplement the limited storage and large
scale compute and analytics demands. [oT data are being gen-
erated at an increasing pace with new applications making use
of this data [5] and also in the physical context with real-time
requirements [6]. The challenge is to analyze data efficiently
when striving for data-driven operations [1], [7]. In cloud com-
puting, transmission of data, allocation of processing resources,
and finally, making results available typically includes delays
and transfer costs [8], [9].

Edge computing can be seen as cloud computing brought
closer to the actual applications and users, and it is sometimes
also referred to as the extension of the cloud in a close phys-
ical proximity [10]. Edge computing is characterized by short
response times and reduced transfer of data to the cloud.

Application areas that benefit from low latency include typical
production and equipment control tasks, autonomous decision
making or monitoring applications. With edge computing data
does not necessarily need to be transferred over the Internet
at all, especially if it is only used locally, or that only a subset
needs to be aggregated to the cloud. For applications where large
amounts of data are processed, this can be a benefit in terms of
cost of transfer, storage, and processing.

Despite efforts in Industry 4.0, smart manufacturing, and
related paradigms standardization [11], [12], the integration
challenges have not been solved. The challenges are not only

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-8442-1248
https://orcid.org/0000-0002-8593-2477
https://orcid.org/0000-0003-0677-0279
https://orcid.org/0000-0003-2694-5523
https://orcid.org/0000-0001-7657-5159
https://orcid.org/0000-0003-3583-5561
mailto:david.hastbacka@tuni.fi
mailto:jari.halme@vtt.fi
mailto:larraunanue@gmail.com
mailto:laurentiu.barna@wapice.com
mailto:henrikki.hoikka@metso.com
mailto:antti.jaatinen@metso.com
mailto:henri.pettinen@crosscontrol.com
mailto:marko.elo@crosscontrol.com
mailto:mikael.bjorkbom@konecranes.com
mailto:heikki.mesia@konecranes.com
https://doi.org/10.1109/TII.2021.3071509

HASTBACKA et al.: DYNAMIC EDGE AND CLOUD SERVICE INTEGRATION FOR INDUSTRIAL loT 499

related to data interoperability produced by the heterogeneous
devices and systems [13] but also to interoperability of system
architectures [5] and dynamic compositions in their interplay [2]
as well as whole ecosystems. The production domain challenges
are emphasized by the still yet immature information and com-
munication technologies available for implementing a seamless,
open cloud-edge-IoT continuum [6], [14], [15].

This article researches functionalities and technical features
required to flexibly orchestrate cloud- and edge-based services
in production IoT applications. A unified approach is proposed
to manage heterogeneous data flows from IoT devices and other
production systems, and an integration architecture is suggested
to orchestrate configurations to and between application service
components both on edge and cloud. The architectural approach
is based on the service integration model of Arrowhead frame-
work (AHF) [16]. The approach is designed to accommodate
the reconfiguration of data flows that can span to hundreds or
thousands in numbers and/or produce huge amounts of data.
More flexible orchestration of computational services across
edge and cloud is required due to new emerging data use cases,
evolving application systems, and balancing network traffic and
computing resources. Two complementing industrial use cases,
production assembly monitoring and condition monitoring in
rock crushing, are presented implementing and evaluating the
approach. The contributions of this article can be summarized
as follows.

1) Outlining requirements and designing of a novel concep-
tual architecture for interoperability and dynamic cloud-
edge orchestration configuration of both data flows and
services in production IoT.

2) Evaluating the AHF service integration model and the
implemented conceptual architecture for meeting the re-
quirements in two real industrial use cases when devel-
oping SoS applications for the CPS.

The rest of this article is organized as follows. Section II
presents related work integrating [oT, edge computing, and cloud
computing in industrial production. The requirements derived
from two representative industrial use cases are explained in
Section III. A conceptual architecture outlining the objectives
and opportunities is presented in Section IV, and enabling soft-
ware technologies and components used for implementing the
technical architecture are described in Section V. Implementa-
tion in two industrial use cases and the results are presented in
Sections VI and VII. A discussion is provided in Section VIII,
and finally, Section IX concludes this article.

[I. RELATED WORK

Internet-based monitoring of production assets and as con-
nected smart products have been previously discussed in [1],
[4], [7], and [17]. These approaches, however, do not sufficiently
consider the need for interoperability and how to engineer com-
positions efficiently. Integrated solutions are needed to deliver a
unified approach to orchestrate services across technologies and
heterogeneous devices, further increasing with 10T as studied
and proposed in [6], [15], and [18].

In [19], a system design method and system architecture is
proposed for the smart product-quality monitoring systems for

intellectual system design considerations for different needs, and
how these can be implemented in Industry 4.0 settings based
on big data, I0oT, and artificial intelligence (AI). A system for
machine tools based on fog computing, claimed to improve
autonomy and collaboration using data available, is presented
in [20]. In [21], an approach is proposed where data acquisition
sensors are distributed across machines, and feature extraction
and health condition classification is on fog nodes. Maintenance
service architectures for the CPS making use of data have
been presented in [22]-[24]. These approaches are either only
conceptual, mainly focused on the data, or lack interoperability
and integration to wider ecosystems.

The AHF has been developed as an infrastructure for services
in various fields of application, initially for IoT integration [25],
and an SoS composition model has been proposed with require-
ments for industrial information distribution using graphs [26].
Using the AHF, an approach decentralizing ISA 95 production
functions to the lower levels has been presented [27] also utiliz-
ing edge computing in a service-based SoS.

Offloading computation to the edge has been studied in [8]
and [9], and edge computing and related paradigms have been
surveyed in [10], [14], [28], among others. In [29], the authors
propose a method for the dynamic management of service
resources for cloud, fog, and edge-based CPPS. The model
includes descriptions of the environment, resources, evaluation
metrics, and algorithms to optimize the configuration to tackle
different needs and heterogeneous systems and hardware. The
placement of heterogeneous edge services has been studied
by [30] to optimize response times in the mobile edge-cloud
context. The use of edge and fog computing for data manage-
ment has been studied by [31], where the load of sensor data
preprocessing has been distributed away from the cloud.

[Il. TECHNICAL NEEDS AND REQUIREMENTS

Two real industrial use cases provide requirements and the
context for validating the developed approach and the solution.

A. Manufacturing Monitoring

Product assemblies require multiple manufacturing steps until
a final product is ready. Hoisting equipment is typically used
to handle different components to the assembly station or cells.
Manufacturing is usually divided into several subprocesses, each
with their own set of steps using different tools from different
manufacturers. Operation is often manual and independent from
other manufacturing cells as technology to connect the disparate
systems has not yet become mainstream.

The state information and performance metrics need to be
gathered from the monitored systems and subsystems in a man-
ufacturing process and immediately communicated further. The
information needed can be different for each manufacturing
process, depending on the monitoring needs. Furthermore, the
data collection solution can be device specific. Thus, for manu-
facturing monitoring, the system should enable independent and
exchangeable software components and communication. In this
use case, it would be beneficial to be able to deploy and manage
arbitrary software services in a diverse set of devices to enable
the different monitoring needs.



500 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

B. Condition Monitoring

Vibrating screens are devices used to separate materials with
different granularities such as different kinds of ores. These
machines are not mechanically complex but monitoring is re-
quired as large accelerations and masses cause wear. In a typical
use case, the screen is part of a production line where an
unexpected failure will cause larger halts and production losses.
Condition monitoring measurements can be gathered from the
screen movement acceleration levels and the bearings.

Different use cases have varying needs ranging from “some-
thing is wrong” to identifying the problematic part and on to
predicting future failures. For example, a predictive system using
a digital twin model may need only a daily acceleration sample
to detect something has failed, whereas preventing additional
failures may require millisecond-level measurements.

It is straightforward to build systems based on transferring
all sensor data to the cloud for processing but this is not always
feasible in practice. The costs associated with data transfers,
storage, and analysis become prohibitive for an equipment man-
ufacturer on a large scale. This is especially the case for mining
operations in remote locations across the globe. The situation
could be different if data and analysis results were utilized more
extensively as part of the production.

The objective of the condition monitoring use case is to
simplify the architecture of the condition monitoring system
so that it would be similar on different levels, even when the
physical components and measurement systems are different.
Also, evolving the systems and shifting processing from cloud
to edge should be possible as the product matures and knowledge
of the measured phenomena increases.

C. Summary of Requirements

As functional requirements, the system is expected to fulfill
the following:

1) exchange IoT data and other data streams from various
sensors and systems in a unified and standardized format,
supporting rerouting to different consumers, e.g., Al;

2) (pre)process data and execute advanced data analytics
functions locally on the edge and/or in the cloud, balanc-
ing and optimizing where computation is taking place;

3) centrally manage dynamic system configurations and
decentralized information flows, and authorizations of
service compositions into applications.

Additional features and requirements of the system are as
follows.

1) Information security—Ensure information security from
devices to processing, and that dynamic compositions are
only formed for trusted service compositions, and hence,
also enable different parties to operate on the same data
and in the same networks.

2) Performance, scalability and reliability—Support com-
municating simple values to massive raw measurement
data reliably to existing and new application services.

3) Manageability and support—Methods for managing ap-
plications without system specific dependencies on indi-
vidual IoT devices or participating systems, and scalabil-
ity to develop new application system integrations.

\W

Cloud ) Continuous big data Scalable
L®° analytics, machine learning and reliable
computing
/ \ resources.
@ Internet
| ) dependence,

no low-latency

Application
on guarantees.

services

Enterprise
\or fleet Dynamic run-time orchestration of
services, also across edge and cloud

/— Y

@8 @/

Limitations in
compute and
@ storage
capacity.
. Flexible configuration of pactty
Site or plant loT and other system data flows r Capable
of reliable
&% ¥V low-lat
loT and_ 3 — — cocr’nwm:n?g:t)i,on
production systems (e.g. 5G,
@ mmWave,
L ~ ~ = ) TSN, ...)

Fig. 1. Architectural concept for composing data-based applications
in which data flow from loT and other plant floor level systems are
configured and dynamically orchestrated with application services on
edge and cloud.

4) Interoperability—Based on open models and specifica-
tions not limited to specific hardware or protocols, and
capable to cater for a wide range of application uses.

IV. FLEXIBLE ARCHITECTURE FOR EDGE AND CLOUD

To enable the requirements presented, a conceptual architec-
ture for data and software services is outlined as shown in Fig. 1.
Paramount to the design is to enable the development of new
applications based on production data or IoT measurements for
various purposes. An important goal is also supporting various
existing hardware and software platforms.

Traditional IoT relies on transferring measurement data to
the cloud for analysis and development. Many IoT applications,
however, produce significant amounts of data and there are
applications where it is neither feasible nor desired to transfer
everything to the cloud. Preprocessing or analytics on the edge
saves data transfer and can also reduce Internet dependence. Re-
liable low-latency and real-time communication can be imple-
mented locally, whereas Internet services cannot be guaranteed
the latencies sometimes required.

Edge computing is not a substitute for cloud computing but
a complement [6]. Edge computing resources are limited in
the sense that additional compute resources cannot be easily
provisioned as in the cloud. Therefore, the solution builds on the
premise that computational functions can be deployed both to
edge and cloud. If new computationally demanding tasks emerge
they can be executed on the cloud and connected similarly to the
applications as they were in the local premises.

Fleet wide analytics, and, e.g., training of machine learning
(ML) models, is typically taking place in the cloud (as shown
in Fig. 1) because data may need to be gathered from several
sites. In the future, edge computing demands are expected to
increase in this area not only with ML inference [5] but also
with contextualized training at separate edge locations. These are
tasks that occur sporadically on the edge, whereas preprocessing,
for instance, is something that needs to always run and for which
the capacity and storage needs to be reserved.



HASTBACKA et al.: DYNAMIC EDGE AND CLOUD SERVICE INTEGRATION FOR INDUSTRIAL loT 501

The set of available services on edge and cloud can be defined
as S ={Si,...,5;}. The composition of edge and cloud
services can be formulated as a graph G5 = {V, E'}, where
V denotes the vertex set between all services and E the in-
teractions between services. Considering the quality-of-service
(QoS) attributes of different service instances, we can further
formulate the composition problem into a service graph G =
{V, E,QoS}. By selecting based on components of QoS, e.g.,
cost, delay, and accuracy, the composition of suitable services for
the composition can be achieved. At run time, this composition
needs to be done when new systems come online or when QoS
attributes are changing. The QoS component or its optimization
is not discussed further as this article focuses on the enabling
technology for orchestrating and configuring the composition of
edge and cloud services at run time.

As application needs differ, it is essential to have flexibility in
the way data flows are configured starting from field level IoT
devices and sensors. IoT devices initiating the connection get
configurations set from managing infrastructure, e.g., where to
push acquired data. Similarly, application services that retrieve
(pull) data from IoT devices or data stores can retrieve their
configurations on startup and update them periodically in case
compositions or information flows need updating.

Central to the concept is managing the configurations and ser-
vice compositions within the infrastructure in a unified method
independent of characteristics of the different participating de-
vices, services, or systems integrated. This requires agreement
upon application programming interfaces (API) as well as setup
and configuration mechanisms.

Application systems developed on the architecture need to use
existing standards or agree on message structures per application
system or per integration. Messages and application service APIs
need to follow a unified, standardized structure in order to be
interchangeable in flexible compositions.

V. TECHNICAL ARCHITECTURE AND IMPLEMENTATION
A. Approach Overview

To realize the concept, a set of novel tools and practices must
be adopted. In this section, Arrowhead is first presented as the
chosen open service-oriented architecture (SOA) model used
as the basis. Then, the various computing devices residing on
the edge of the network are presented. Particularly of interest
is their functionality, hardware and software capabilities and
connectivity interfaces. Finally, the cloud-side integration to the
production systems is examined. Together they demonstrate the
multitude of different hardware and software platforms often
needed.

B. Arrowhead for Interoperable Service Integration

A central part of the software architecture is built around AHF
(version 4.1.3) as the means to discover, bind and authorize
application compositions. In the SoS approach of the AHF [26]
systems are used as building blocks to form the larger systems.
In the AHF, systems are divided into the following three groups.

1) Application systems implement the business logic of
actual solutions by providing and consuming services.

- AUTHORIZATION

- ORCHESTRATION

- SERVICE REGISTRY

- GATEKEEPER

- GATEWAY

- CONSUMER/PROVIDER

GLOBAL LEVEL

b |
— ENTERPRISE 3§ ®---

nn Lt/

SITE LEVEL

EQUIPMENT LEVEL

EQUIPMENT gi
o Lt/

—

EQUIPMENT 34
o Lt/

N

Fig. 2. Arrowhead core services include Service Registry, Authoriza-
tion, and Orchestration. Service clouds and their application services
can be relayed to other clouds through gateways, also to support logical
hierarchical structure.

2) Core systems include orchestrator, authorization, and
service registry [16], which provide means for service
discovery, authorization, and registration, respectively.
The application systems form the SoS via them.

3) Supporting core systems provide extra functionality for
the SoS. These include functions like event-handling,
message brokering via gateways, QoS monitoring, etc.

A main component within an AHF SoS is the orchestrator that
queries the service registry on behalf of the consuming appli-
cation systems for available services that providing application
systems have registered. Before responding to the consumer, the
orchestrator makes sure that the consumer is allowed to use that
particular service. The orchestrator has the following two modes:
Static store mode, hosting a defined set of rules on who should
provide and consume which service; and Dynamic mode, in
which the orchestrator responds with a list of available services,
which can be reduced with additional request parameters set by
the consuming system including, for example, desired provider
and key-value metadata.

One SoS working under one set of mandatory core systems
is often referred to as an AHF local cloud. These local clouds
can be connected to each other via Gateway and Gatekeeper
systems [32], which belong to the supporting core systems. The
Gatekeeper system is responsible on relaying service discovery
requests from one local cloud to another in an intercloud service
negotiation process. After a successful negotiation, the Gateway
system is leveraged, and a tunnel between the local clouds is es-
tablished. Multilevel AHF clouds can be arranged hierarchically,
e.g., into global level clouds, local site level clouds, and even
device or cell clouds (see Fig. 2).

To summarize, the AHF process of registering providers
and consumers, authorizing parties, orchestrating, and finally,
enabling systems to interact on the local level is illustrated in
Fig. 3. Depicted here is the dynamic orchestration method. The
sequence has the following steps.

1) Both providing and consuming service connect to the
Service Registry core system and register themselves.

2) Authorization system is informed about the access rights
of the new service.



502 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

Service Orchest . Service Cloud
Consumer liay -1Author|zat|on Provider' |Manager

M - rn
Register service F Register service

R OK

>

Authorize service consuming

Request orchestration

Query service providers

Service registry entries
Pttt

Verify access rights

Authorized services

PRt

]| Consume a service
=} =)

Fig. 3. Before service consumption, the AHF dynamic service orches-
tration requires that consumers and providers are first registered and
authorized for each other.

3) Service consumer requests a suitable service end point
from the Orchestrator. By having the possibility to specify
multiple search attributes, the consumer can be certain to
receive the wanted provider’s address.

4) The Orchestrator looks from the Service Registry for a
match to all the specified attributes. If it finds one or more,
it will check that the consumer is authorized to use them
from the authorization system.

5) Consumer will receive a list of suitable providers that it
is allowed to consume and can start interaction.

C. Edge Gateways and Software

The AHF core services are installed in Raspberry Pi 3 Model
B+ and industrial embedded Linux PCs in the local network. The
gateways host services, such as data storage registered with AHF,
providing a (HTTPS) REST service for storing the messages
received to a local database. The data model that has been
used is the open MIMOSA data model, which is an ontology
for defining and managing operation, condition-based mainte-
nance, and predictive maintenance activities based on data and
metadata. In addition, edge gateways also host communication
protocol translation services, registered as AHF services, e.g.,
to convey MQTT messages to REST, or vice versa, to improve
the interoperability of IoT devices and application services.

The lightweight edge devices, presented in the next section,
are AHF compliant service consumers for the aforementioned
data storage service as well as other services adhering to the
same API and information model. They request orchestration
from the AHF that searches for registered and authorized service
providers for the particular consumer based on the dynamic rules
specified by the consumer.

D. Edge Devices and Measurements

Edge level data acquisition (DAQ) instances are realized with
two lightweight devices and one industrial grade DAQ for hoist
movement and load monitoring. The two first ones are a Rasp-
berry Pi 3 Model B and a NodeMCU (ESP8266). Both devices
measure the signals from the hoist and consume data storage

services registered in the AHF. Regarding the Raspberry Pi, it
measures the analog load value (ADC 10 bits) with 10-Hz sam-
pling frequency through an extension board attached directly to
the pins of the Raspberry. Whereas the NodeMCU is concerned,
it has an internal ADC pin (10 bits) for an analog signal that
is used for measuring the load signal. For each second ten load
values are read during the first 400 ms with a 40-ms interval
between samples (25 Hz). After the sampling is complete, a
message is formed containing both ten load values and three
bits for the hoist movement.

The reference hoist DAQ is a robust IoT edge device for
remote management, measurement, and control. The real-time
linux device features an ARMCortex-AS5 processor, has wireless
connectivity (3G, WLAN, BLE), comes with built-in sensors
incl. acceleration, and supports a multitude of standard wire
protocols. This AHF-compliant DAQ instance only needs to be
aware of the core services after which it dynamically configures
itself to send configured measured hoist process data to all
destinations returned by the AHF orchestration, in addition to
its own IoT platform.

An industrial computer can be used to visualize the data
collected at the edge level. The computer is based on an ARM
Quad Cortex-A9 CPU and has a 12-in multitouch display at-
tached to it. It runs a custom-made, and thus, lightweight, Linux
distribution as its operating system and likewise comes equipped
with multiple connectivity options. On the software side, it uses
Qt runtime to render the visualization dashboard. Alternatively,
it can show a dashboard embedded into a web page by using a
QtWebEngine powered browser.

E. loT Platform and Cloud Integrations

A first step in integrating an existing IoT platform to the
AHF would be to simply define it as a single system with
multiple interfaces. However, in the AHF world, the tools and
applications offered by an IoT platform should be ultimately vis-
ible as completely independent services, programmatically con-
figurable and individually accessible, and easy to interchange
with other similar services. Such tools include, for instance,
data storage for big data and historic data, data analytics, data
visualisation, alarms and events, reports, data forwarders (e.g.,
from one communication path or protocol to another), and device
management and control, including legacy devices. The goal in
integrating different IoT platform tools into the AHF should
be in building up flexibility of selecting and dynamically inter-
changing tools and applications offered by a specific platform
or manufacturer with separate similar or aggregated components
offered virtually by any other. From the AHF point of view, this
only requires that [oT platforms update the authorization service
with their own information, which is then stored and relayed
upon request by the AHF.

The IoT platform integrated in this implementation is cloud
native and can be deployed to any environment. It is a complete
IoT tool suite and platform that allows to build web, mobile,
cloud, and reporting applications in minutes with easy to use
tools ranging from the drag-and-drop content building to plug-
and-play connectivity. Initially, the simpler approach was taken
for integrating the IoT platform with AHF, i.e., a single system



HASTBACKA et al.: DYNAMIC EDGE AND CLOUD SERVICE INTEGRATION FOR INDUSTRIAL loT 503

DATA
FORWARDING

GENERIC
VIBRATION

HOIST (REST - MQTT) ANALYSIS —
WORKCYCLE ¢ —
PROCESSING g— éj\)\)\)\)\ é)foLrLfL/L 1 10T
>—M PLATFORM
Data analytics = —( INTERNET / CLOUD > (REST)
service (Python) —O ARROWHEAD FRAMEWORK P

] g
& IIIIT ? TTT DATA STORAGE
- DATA VISUALISATION
DAT’?RSETS‘%F;‘AGE — GATEKEEPER DEVICE MANAGEMENT

DEVICE CONTROL
MIMOSA
DATABASE

Remote services are made available within
the local framework instance to be consumed
instead or in addition to local services.

MIMOSA
“~ DATABASE

_— GATEKEEPER @
HOIST < III O

WORKCYCLE ¢ > DATA
PROCESSING [ >—Ml STORAGE
HOIST LOCAL / EDGE >—8 (REST)

REPORTS AND ALARMS
RELAY

SYSTEM

- AUTHORIZATION =<
- ORCHESTRATION Data analytics [1—C ARROWHEAD FRAMEWORK ~ >—fil
- SERVICE REGISTRY  service (Python) —O

- GATEKEEPER / RELAY &IIIIT IIIIT IIIIT?F/

- GATEWAY

- CONSUMER / PROVIDER DATA FORWARDING
DATA AQUISITION _ DATA DISPLAY (REST - MQTT)

RPi3 NodeMCU / Industrial PC —

1..* Commercial DAQ with Qt

Fig. 4. Services deployed in the production monitoring use case can
be flexibly exchanged between edge and cloud levels, e.g., based on
availability or capability, using the AHF relay system linking trusted
framework instances.

definition was made with separate interfaces for some of the
tools offered, instead of transforming the platform into separate
units, as required by proper AHF architecture.

VI. INDUSTRIAL USE CASE EXAMPLES

The architectural concept of edge-cloud orchestration is
demonstrated using two representative industrial production use
cases with complementing features. The use cases also evaluate
the solution and the suitability of the AHF for this purpose and
the requirements outlined in Section III-C.

A. Production and Assembly Monitoring

This use case aims at creating an intelligence system that
provides end-to-end process visibility and task optimization
recommendations for material handling production processes.
The system is deployed as a local factory cloud on the edge and
there can be many such instances globally.

The solution uses a highly decoupled architecture based on
SOA and edge computing for gathering, processing, analyzing,
and exchanging data, and for providing monitoring and intel-
ligence services to the factory floor staff. Only local site and
global level AHF clouds are used, as shown in Fig. 4.

The implementation involves enhancing the material handling
equipment with data gathering devices (RPi3 and NodeMCU
as well as reference commercial DAQ); see Section V-D) for
sensing acceleration, load, torque, current, location, and material
handling events. The measurement devices are part of the site
level local cloud.

Real-time data gathered by the equipment level devices is con-
tinuously processed on the edge gateway in the site level cloud,
using dedicated intelligence algorithms. These are implemented
as data analytics services either as traditional Python-based

applications or as Docker-based microservices. Both the raw
data and processed results are saved in data storage service
(REST HTTP and Mimosa SQL DB). The analytics services
as well as storage services implement a similar API expecting
a predefined JSON format content. The results are further vi-
sualized for the factory personnel using an industrial PC with
an embedded display, as well as transmitted to global cloud for
long-term storage and future analysis. For local visualization, a
local storage service is used for querying the desired analysis
results.

B. Condition Monitoring of Vibrating Screens

The second use case leverages AHF’s dynamic service dis-
covery functionality in condition monitoring application of min-
ing screens. The setup at the edge is collecting vibration data
with wireless sensors equipped with Bluetooth LE radios and
accelerometers. The raw data are collected with an industrial
Linux PC, which utilizes various signal processing techniques,
functioning both in frequency domain and time domain, and
transforms the data to a format where the physical state of the
screen can be presented in noise free and more dense format.
Later on, these data points are transferred to upstream processes
residing in cloud to perform refinement and analysis, which
finally enables detailed information on the state of the product
to be given to the owner.

In the demo application, the details of the calculations and
data collection were taken as is, and the backend producing the
refined data was thought as being a black box. The demo applica-
tion interfaced with the backend producing the data via an OPC
UA server, from which the fresh data were pulled to a database.
Additionally to the fact that data producing mechanism already
existed, this was also done because the AHF aims to provide a
generic approach on service composition, and therefore, does not
dictate any implementational details on the level of the business
domain or the larger scale purpose of the application. In other
words, from the perspective of the AHF, the set of services used
in transferring the data can be made in a domain agnostic manner.
The demo application consist of one AHF local cloud at the edge
of the network and one in a public cloud, as shown in Fig. 5.

The communication between the clouds is handled via Gate-
keeper and Gateway systems. However, since the AHF only
provides the means for service discovery, authorization, and
orchestration, various tooling that fulfill different vacant roles,
were needed as well. As a whole, the two clouds in the demo
have the following components.

1) Two systems at the edge: Screen Data that consume a
service used for pushing the data to the cloud and Screen
Control that consumes services through which the edge
computers configuration is fetched. The configuration
includes a payload filter and interval of the data pushed
to a particular counterpart.

2) Two systems in the cloud: One application system is re-
sponsible for providing a service that the data are pushed
to and another one is responsible for offering services
related to the configuration of the edge computers, both
toward the edge and toward an user interface (UI).



504 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

SCREEN ____— SCREEN

CONTROL \

_—— DATA
== == 57 CoMMERCIAL
< - >
GENERIC
viBraTION B¢ é LLLL éIIII >4  loT

i< >—@ PLATFORM
ANALYSIS ¢ INTERNET / CLOUD -
ARROWHEAD FRAMEWORK

AR SRR

MTA STORAGE
DATA STORAGE — G ATEKEEPER DATA VISUALISATION

(REST) DEVICE MANAGEMENT

]:[ I DEVICE CONTROL
MIMOSA
DATABASE
RELAY

REPORTS AND ALARMS
SYSTEM

(REST)

Remote services are made available
within the local framework instance for
screen configuration and data acquisition.

GATEKEEPER

T

I - AUTHORIZATION SCREEN LOCAL / EDGE
I - ORCHESTRATION ARROWHEAD FRAMEWORK
BN - SERVICE REGISTRY
- GATEKEEPER / RELAY T IIIIT
B - GATEWAY SCREEN SCREEN DATA
- CONSUMER / PROVIDER oS AL
for config S BLE connectivity
Fig. 5. In the condition monitoring use case, the AHF is used to

connect data services and retrieve screen control settings. This is done
uniformly independent of their location thus future-proofing increased
use of the edge.

All application system components are Docker containers
and Docker-compose is used for deployment in cloud instances.
PostgreSQL database is used for caching data and configuration,
and PostgREST is used between the application systems and the
database as a medium serving the contents of the DB through
a REST API. The AHF Gatekeeper and Gateway are used as
described in Section V-B.

While the demonstration is limited to two AHF cloud in-
stances, the implementation supports multiple sinks for data
and multiple sources for configuration. Each destination can
be configured separately and different subsets of available data
points can be directed to each at different intervals, as long as
the sink is discoverable through AHF’s orchestrator system and
a configuration determining the interval and subset exists.

One additional goal tackled with the AHF was easing in-
stallation and replacement of the edge computers. The systems
responsible for configuration do not only configure the data flow,
but are also capable of sending generic configuration objects.
These objects are stored in the database and can be used system
wide, e.g., when various parameters are initially set on system
boot up. The parameters can be related to many arbitrary use
cases, but one particularly interesting use is the bootstrapping
of the data collection black box used as the data source. To
enable this kind of behavior, where the AHF makes sure its
dependencies downstream are up, the AHF has to be started
during the boot-up process and it has to be configured in a
way that discovering the service needed for the configuration
is possible. This can be easily achieved, for example, with
commonly used init and service managers found in Linux.

VII. RESULTS AND EVALUATION
A. Meeting Requirements and Use Case Experiences

The presented approach focuses on orchestration of software
services and data flows across device, edge, and cloud levels in

data-driven applications. The objectives, presented as require-
ments in Section III-C, were to flexibly redirect data flows from
IoT devices and other production systems, configure system
compositions dynamically from services executed both locally
on the edge and on Internet cloud platforms, and manage the
composition centrally in a unified manner regardless of the
hardware or software platforms.

Benefits of the solution architecture and using the AHF are as
follows.

1) Flexible operation based on the set of running services,
i.e., the composition of needed services can be accom-
plished based on services available at a given time.

2) New services can be dynamically added to the system.
For instance, new data analysis services can be deployed
to the local site cloud and measurement devices can send
data to them without extra device configuration.

3) Services at global cloud can provide their services in case
the local services are not running, or in case, the data
storage or processing is desired to be done at global level.
Services can be deployed to local cloud, e.g., to reduce
latency and cloud storage and data transmission costs.

4) An orchestration template can facilitate duplicating the
setup to other local clouds in similar commissioned sys-
tems, thus, making it easy and efficient to scale.

The developed solution proved in both industrial use cases
that systems can be composed interoperably and securely from
different kinds of IoT devices, sensor systems, and application
services both on the edge and in the cloud. Data flows can be
changed at run time and the configuration is centralized to the
core AHF services utilized in the approach. In the production
monitoring use case, it was especially observed that information
from multiple sources can be managed and integrated with
services running both on edge and cloud. For the condition
monitoring use case, the uniform architecture further enables
evolving the system and increase the use of edge computing in
analytics applications. In summary, the solution meets the earlier
identified functional requirements.

Additional required features were information security, reli-
able performance and scalability, uniform manageability, and
interoperability with hardware and protocols.

In the implementation, the AHF is used as the SOA in-
frastructure providing an open, unified model how services
are discovered, authorized, and bound at run time. Returning
to the composition problem G, = {V, E, QoS}, presented in
Section IV, it can be stated that the developed solution enables
compositions to be formed from a set of possible services. This is
illustrated in Fig. 6 where selected data processing services are
connected by the solid lines and other possible compositions
are denoted by the dotted lines. For this, the AHF provides
the technical functionality for run-time composition, but in the
dynamic orchestration, requires consumers to filter the services
to be returned. As a result, the optimization of what services are
to be composed is not given by the AHF, unless the static mode is
used, and it is on the application system or SoS responsibility to
maintain. This can be considered a benefit, as this is application
dependent by nature, but in that sense, the AHF does not fully
solve of this and requires supporting management operations to
be integrated along the AHF.



HASTBACKA et al.: DYNAMIC EDGE AND CLOUD SERVICE INTEGRATION FOR INDUSTRIAL loT 505

Service 2| |Service 3 Service i

( Service 11 | (es. CSSZ;
.N\ @ —@ | 4@_/(10&,

™ S13 S Pam

(e.g. edge)

Fig. 6. Composition of edge and cloud services can be seen as a
directed acyclic graph of data flowing between service instances part of
different environments with different QoS attributes (possibly even per
service).

The AHF solves several of the security challenges in dynamic
service compositions as authorization is shifted from individual
components to a central entity, building a chain of trust between
consumers and providers of an AHF cloud. Similarly, the AHF
Gatekeeper relay paves the way for application service ecosys-
tems extending this model between multiple AHF clouds. In this
regard, the AHF can be seen meeting the technical requirements
of the architectural concept outlined.

The AHF does not limit communication protocols or message
semantics of application systems, and thus, performance and
reliability are solely dependant on the application systems once
the orchestration and authorizations have been set up. This
means that even hard real-time communication is possible, e.g.,
for the CPS, given that such protocols are being used between
the interacting application systems. In our use case examples,
both high-frequency measurements as well as aggregated ana-
lytics were communicated successfully between consumers and
providers as they are not conveyed via the AHF or any other
possible central bottleneck.

Our solution focuses mainly on the software service layer
without considering how the applications are developed or
deployed in their run-time environments. Using the AHF, the
individual consumers and providers are composed, authorized,
and configured similarly independent of the different underlying
implementations, as demonstrated in both use cases. Interop-
erability of application services is ensured through uniformly
defined service interfaces and agreed data models. This leaves
freedom in implementation for different hardware platforms,
operating systems, and execution environments.

B. Engineering Efficiency Evaluation

The AHF is expected to improve the engineering efficiency
of SOA-based SoS through easily developing new services and
easily integrating services and developing new compositions.

In earlier versions, like 4.1.2, development of application
systems included writing boilerplate code for service registration
and orchestration calls via common HTTP client libraries to the
core service interfaces. There were some templates, where users
could insert their code, but this was not ideal, and the develop-
ment was stiff due to lack of clear boundaries between user code
and boilerplate. This meant that the development efforts needed
were high compared to what the framework offered, since if the
templates were not used, every developer effectively had to write
their own “library.”

- AUTHORIZATION

- ORCHESTRATION

- SERVICE REGISTRY

- GATEKEEPER / RELAY

- GATEWAY

- CONSUMER / PROVIDER

o

T
INTERNET / CLOUD
ARROWHEAD FRAMEWORK

LLL

1oL
—C HOIST LOCAL / EDGE
- ARROWHEAD FRAMEWORK

LI LLL]

Lo
SCREEN LOCAL / EDGE
ARROWHEAD FRAMEWORK

Fig. 7. In addition to relaying between edge and cloud service con-
sumers and providers, the AHF can manage authorizations across mul-
tiple domains, e.g., supply chains. In the demonstration, the use cases
shared the Internet cloud.

Recently, more systematically maintained and well-designed
libraries for application system development have emerged and
much of the logic needed by every application system is wrapped
behind an API with clear boundaries. One example is Arkalix
for Java [33], which makes implementation of AHF compliant
application systems streamlined. Arrival of libraries is a good
sign since they also enable smoother introduction of new features
for the AHF, which could lower the learning curve for new
developers and save time for more experienced ones.

Regarding integration of services and developing new compo-
sitions, the AHF can significantly improve the efficiency once
the infrastructure is deployed. New applications can easily be
developed tapping into the services and, by using the authoriza-
tion and orchestration model, no changes are necessary, e.g., [oT
devices or existing systems providing services.

The AHF shifts binding of services, authorization of con-
sumers, and orchestration of compositions away from the in-
dividual components (e.g., compute modules, storages,...). It
does this also in a secure way, required by today’s connected
production systems, based on certificates and tokens issued in the
service clouds. Doing all these in an uniform manner compared
to multiple different proprietary solutions can have a big impact
on the SoS engineering efficiency. Additionally, the AHF sup-
ports integrating AHF clouds, e.g., for larger ecosystems such
as supply chains. In the use cases presented, the same Internet
level AHF cloud was used as illustrated in Fig. 7.

Analyzing composition engineering efficiency, we can define
the total effort simplified as Ei = M x E; + N x Ey, where
M is the number of different integration models, F; the average
integration effort for a unique model, NV is the number of unique
services or components to be integrated, and I the effort for
functional integration of such a component (that is consider
similar independent whether the AHF is used).

As a theoretic example, assuming integration F; is modestly
one third of the functionality effort £y, N = 10, and reducing
the number of different integration models M to one from
M = N = 10, we can estimate an effort reduction of over
20%. This oversimplified example does not count for individual



506 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

implementation differences but shows the improvement poten-
tial shared integration models could bring, and further transfer to
operation and maintenance. This requires that chosen integration
models used in integration are in the same effort magnitude, as
also brought up earlier for the individual services and libraries.

VIII. DISCUSSION

Edge computing can provide real value for many industrial
IoT applications but introduces additional management com-
plexity in addition to the cloud layer management. As new data
use cases emerge, it is important to be able to move computa-
tional loads flexibly across edge and cloud. Due to heterogeneity
of execution platforms, and lack of federation techniques to
provision computational resources also on the edge, there is yet
no established model for implementation.

A fact often misunderstood by new adopters of the AHF is that
although it facilitates the development of services, it does not
implement the actual services or act as a middleware for the data
exchange. Thus, it is capable to support a multitude of different
protocols (even real time), hardware and devices, and existing
platforms and their integrations. Compared to approaches such
as OPC UA and MQTT/AMAQP integrations, it is more generic
and provides a broader range of support for different protocols
and systems to be integrated while retaining uniform configura-
tion and authorization means. However, compared to OPC UA
or MQTT/AMAQP, it does not provide defined application system
APISs or the detailed information exchange semantics OPC UA
offers. This means that such application system interfaces and
messaging semantics need to be agreed upon and this is also
AHF’s intention.

As the AHF only provides an SOA infrastructure, the follow-
ing tools are also needed: run-time environment for services,
management and monitoring of services, deployment and ser-
vice update mechanisms, and management of service orches-
trations for different deployments. In the use cases, dedicated
edge devices were installed and proprietary systems were used
to manage these devices, as well as deploy, run and monitor the
different services running in the local clouds.

A lesson learned from the use case implementations is that
a configuration or management agent or service could become
useful as soon as the SoS is comprised of more than two or
three systems. This would make the necessary registration and
authorization steps easier on behalf of the systems involved.

Through its core and support services and run-time configura-
tion flexibility, the AHF could relief significant burden from the
implementation costs of complex SoS solutions, especially in
dynamic environments. However, in its current implementation,
the AHF still has noteworthy limitations: For instance, service
authorizations are based on the numerical ids of consumers and
providers assigned by the AHF upon their successful registra-
tion. This requires that before the authorization can even be
configured, all the consumers and providers are registered and
their AHF numeric ids are known to the cloud manager. Though
quite manual and error prone, this is perhaps acceptable when it
has to be done only once. However if systems reboot often their
AHF internal ids change and the authorization process has to be

repeated. Same happens if for any reason the AHF itself has to be
restarted. This numeric id approach becomes even a bigger chal-
lenge when services are on different clouds handled by different
managers. This means authorization can only be done at run
time and currently it cannot be preconfigured. Another challenge
is that even though dynamic orchestration will provide all the
services fitting the specified criteria, it will not check nor signal
possible service incompatibilities in terms of, e.g., data format,
communication protocol, version, etc. Simply put a consumer
service might not be able to consume the provided service. As a
consequence of the previous limitation, complex orchestrations
are also not possible yet. That is, dynamic employment of data
and protocol translators or requesting one service to be pipelined
through another service at the registration time (i.e., service
specification) and orchestration time. For instance, orchestrating
a data analysis service A to consume process data from service
B and only provide the results in a specified format (unknown
internally to service B but available through a translator service
T) to service C. One can see that this would be a key feature
especially for edge devices with limited resources.

Such problems are currently being overcame through use case
specific components implemented externally to the AHF but
solid work is undergoing enabling their eventual implementation
in the AHF through SySML and AHF support core services and
systems (e.g., translation and plant description).

Considering that both AHF and most IoT platforms originate
in the concept of [oT middleware aimed at linking hardware and
devices to application layers, one could reasonably argue that
they are partly redundant. There are a multitude of IoT platforms
already implementing the functionality found in the AHF. In
practice, however, there are plenty of reasons for them being
still quite complementary. Whereas some may be interested in a
one-stop I[oT platform solution, others may be inclined to put
in the extra effort of setting up their own in order to, e.g.,
reduce costs, avoid vendor lock-in, or take advantage of the
other benefits of using open source. Another important thing
to consider is that by abstracting IoT to services and enabling
their interoperability, the AHF does offer the means for easily
building an open IoT-based automation solution but it does
not yet come with all the tools and extensive communication
that proprietary IoT platforms typically offer. As the AHF is a
maturing open source project with expected improvements in
certain configuration and utilization aspects, it has the potential
to become the open SoS integration method.

IX. CONCLUSION

Edge computing has several interesting uses for industrial
IoT and industrial CPS. In many cases, IoT devices generate
large amounts of data that combined with their huge amount in
industrial production applications requires using computing also
closer to the source of data. Also, as new data-based applications
emerge, new models are required to build application systems
securely and efficiently.

This article presented an approach to orchestrate services
and industrial IoT data flows across edge and cloud levels
for data-driven applications in production environments. The



HASTBACKA et al.: DYNAMIC EDGE AND CLOUD SERVICE INTEGRATION FOR INDUSTRIAL loT 507

developed model and architecture was based on the AHF for
SOA infrastructure and evaluated in two industrial use cases.
As a result, application services running both on edge and
cloud could be dynamically composed in a secure, unified
way to operate with IoT device and production system data.
In conclusion, the AHF does offer the means for building an
open IoT solution but it does not yet come with all the tools and
ease of use as a proprietary IoT platform. As a maturing open
source project with expected improvements, it has the potential
to become the open SoS integration method.

An interesting future research direction in industrial CPS is
provision of edge resources that could also take QoS and real-
time constraints into consideration. Truly edge native solutions
could be developed when these would be combined into a pool
of compute function building blocks across edge and cloud.

REFERENCES

[11 A.W. Colombo, S. Karnouskos, O. Kaynak, Y. Shi, and S. Yin, “Industrial
cyberphysical systems: A backbone of the fourth industrial revolution,”
IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 616, Mar. 2017.

[2] V. Jirkovsky, M. Obitko, P. Kadera, and V. Mafik, “Toward plug play
cyber-physical system components,” IEEE Trans. Ind. Informat., vol. 14,
no. 6, pp. 2803-2811, Jun. 2018.

[3] A. Ghanbari, A. Laya, J. Alonso-Zarate, and J. Markendahl, “Business
development in the Internet of Things: A matter of vertical cooperation,”
IEEE Commun. Mag., vol. 55, no. 2, pp. 135-141, Feb. 2017.

[4] B. Liu, Y. Zhang, G. Zhang, and P. Zheng, “Edge-cloud orchestration

driven industrial smart product-service systems solution design based on

CPS and IIoT,” Adv. Eng. Informat., vol. 42, 2019, Art. no. 100984.

H. Ning, Y. Li, F. Shi, and L. T. Yang, “Heterogeneous edge computing

open platforms and tools for Internet of Things,” Future Gener. Comput.

Syst., vol. 106, pp. 67-76, 2020.

[6] L. Bittencourt et al., “The Internet of Things, fog and cloud continuum:
Integration and challenges,” Internet Things, vol. 3/4, pp. 134-155, 2018.

[7]1 B. Cheng, J. Zhang, G. P. Hancke, S. Karnouskos, and A. W. Colombo,
“Industrial cyber-physical systems: Realizing cloud-based big data infras-
tructures,” IEEE Ind. Electron. Mag., vol. 12, no. 1, pp. 25-35, Mar. 2018.

[8] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The role
of edge computing in Internet of Things,” IEEE Commun. Mag., vol. 56,
no. 11, pp. 110-115, Nov. 2018.

[9] C. Cicconetti, M. Conti, and A. Passarella, “Architecture and performance
evaluation of distributed computation offloading in edge computing,”
Simul. Model. Pract. Theory, vol. 101, 2020, Art. no. 102007.

[10] A. Yousefpour et al., “All one needs to know about fog computing and
related edge computing paradigms: A complete survey,” J. Syst. Arch.,
vol. 98, pp. 289-330, 2019.

[11] F. Fraile, R. Sanchis, R. Poler, and A. Ortiz, “Reference models for digital
manufacturing platforms,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. 4433.

[12] T.Burns,J. Cosgrove, and F. Doyle, “A review of interoperability standards
for industry 4.0,” Procedia Manuf., vol. 38, pp. 646—653, 2019.

[13] V.Jirkovsky, M. Obitko, and V. Mafik, “Understanding data heterogeneity
in the context of cyber-physical systems integration,” IEEE Trans. Ind.
Informat., vol. 13, no. 2, pp. 660-667, Apr. 2017.

[14] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Gener. Comput. Syst., vol. 97, pp. 219-235,
2019.

[15] L.M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S.N. Srirama,
and M. F. Zhani, “Research challenges in nextgen service orchestration,”
Future Gener. Comput. Syst., vol. 90, pp. 20-38, 2019.

[16] P. Varga et al., “Making system of systems interoperable—The core
components of the arrowhead framework,” J. Netw. Comput. Appl., vol. 81,
pp. 85-95, 2017.

[17] J. Halme et al., “Monitoring of production processes and the condition
of the production equipment through the internet,” in Proc. 6th Int. Conf.
Control, Decis. Inf. Technol., 2019, pp. 1295-1300.

[18] D. Histbacka et al., “Dynamic and flexible data acquisition and data
analytics system software architecture,” in Proc. IEEE Sensors, 2019,
pp. 14.

[5

[19] K. Shin and H. Park, “Smart manufacturing systems engineering for
designing smart product-quality monitoring system in the industry 4.0,”
in Proc. 19th Int. Conf. Control, Automat. Syst., 2019, pp. 1693—-1698.

[20] Z. Zhou, J. Hu, Q. Liu, P. Lou, J. Yan, and W. Li, “Fog computing-based
cyber-physical machine tool system,” IEEE Access, vol. 6, pp. 44 58044
590, 2018.

[21] A.Xenakis, A. Karageorgos, E. Lallas, A. E. Chis, and H. Gonzalez-Velez,
“Towards distributed IoT/cloud based fault detection and maintenance in
industrial automation,” Procedia Comput. Sci., vol. 151, pp. 683-690,
2019.

[22] C.Hegediis, P. Varga, and I. Moldovin, “The mantis architecture for proac-
tive maintenance,” in Proc. 5th Int. Conf. Control, Decis. Inf. Technol.,
2018, pp. 719-724.

[23] J. Lee, H. D. Ardakani, S. Yang, and B. Bagheri, “Industrial big data
analytics and cyber-physical systems for future maintenance & service
innovation,” Procedia CIRP, vol. 38, pp. 3-7, 2015.

[24] G. Di Orio, P. Mal6, J. Barata, M. Albano, and L. L. Ferreira, “Towards a
framework for interoperable and interconnected CPS-populated systems
for proactive maintenance,” in Proc. IEEE 16th Int. Conf. Ind. Informat.,
2018, pp. 146-151.

[25] J. Delsing, “Local cloud Internet of Things automation: Technology and
business model features of distributed internet of things automation solu-
tions,” IEEE Ind. Electron. Mag., vol. 11, no. 4, pp. 8-21, Dec. 2017.

[26] H. Derhamy, J. Eliasson, and J. Delsing, “System of system composi-
tion based on decentralized service-oriented architecture,” IEEE Syst. J.,
vol. 13, no. 4, pp. 3675-3686, Dec. 2019.

[27] H. Derhamy, M. Andersson, J. Eliasson, and J. Delsing, “Workflow
management for edge driven manufacturing systems,” in Proc. IEEE Ind.
Cyber-Phys. Syst., 2018, pp. 774-779.

[28] P.Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni,
“A survey on fog computing for the Internet of Things,” Pervasive Mob.
Comput., vol. 52, pp. 71-99, 2019.

[29] M. Engelsberger and T. Greiner, “Dynamic management of cloud- and
fog-based resources for cyber-physical production systems with a realistic
validation architecture and results,” in Proc. IEEE Ind. Cyber-Phys. Syst.,
2018, pp. 109-114.

[30] K.Cao,L.Li,Y.Cui, T. Wei, and S. Hu, “Exploring placement of heteroge-
neous edge servers for response time minimization in mobile edge-cloud
computing,” IEEE Trans. Ind. Informat., vol. 17, no. 1, pp. 494-503,
Jan. 2021.

[31] K. Matsui and H. Nishi, “Error correction method considering fog and
edge computing environment,” in Proc. IEEE Ind. Cyber-Phys. Syst.,2019,
pp- 517-521.

[32] C.Hegedus, P. Varga, and A. Franko, “Secure and trusted inter-cloud com-
munications in the arrowhead framework,” in Proc. IEEE Ind. Cyber-Phys.
Syst., 2018, pp. 755-760.

[33] E. Palm, U. Bodin, and O. Schelén, “Kalix: A Java 11 library for devel-
oping eclipse arrowhead system-of-systems,” in Proc. 25th IEEE Emerg.
Technol. Factory Automat., 2020, pp. 1389-1392.

David Hastbacka (Member, IEEE) received the M.Sc. (Tech.) and D.Sc.
(Tech.) degrees in automation science and engineering from the Tam-
pere University of Technology, Tampere, Finland, in 2007 and 2013,
respectively.

He is an Assistant Professor with Tampere University, Tampere. His
research interests include system and software architectures and in-
teroperability of software systems in production and energy systems
applications.

Jari Halme received the M.Sc. (Tech.) degree from the Lappeenranta
University of Technology, Lappeenranta, Finland, in 1995.

He is a Senior Scientist with Operation and Maintenance team, VTT,
Espoo, Finland. Since 1995, he has been employed by VTT having
various project responsibilities related to maintenance, condition mon-
itoring, and diagnosis of rotating machinery. He is currently responsible
for predictive maintenance substance with VTT.



508 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 1, JANUARY 2022

Laurentiu Barna received the M.Sc. and Dr. Tech. degrees in informa-
tion technology from the Tampere University of Technology, Tampere,
Finland, in 2003 and 2008, respectively.

From 2000 to 2008, he was a Researcher with the Signal Processing
Laboratory, Tampere University of Technology. He is currently working
as a Senior Project Manager with Wapice Oy, Vaasa, Finland, and
coordinates Wapice’s efforts in several EU R&D projects.

Henrikki Hoikka received the M.Sc. degree in automation engineering
from Tampere University, Tampere, Finland, in 2019.

He is currently working with Metso Outotec, Tampere, as a Soft-
ware Engineer. He works on Industrial Internet of Things and edge-
computing-related projects in mining and aggregates industries.

Henri Pettinen received the M.Sc. degree in automation engineering
from Tampere University, Tampere, Finland, in 2020.

His research interests include architectures for cyber-physical sys-
tems and edge computing.

Martin Larrahaga is currently working toward the double Master’s de-
gree in cloud and network infrastructures with Sorbonne Université,
Paris, France, and the University of Trento, Trento, Italy.

He is a Telecommunications Systems Engineer with VTT, Espoo,
Finland.

Mikael Bjérkbom received the D.Sc. (Tech.) degree from Aalto Univer-
sity, Espoo, Finland, in 2010.

He was a Postdoctoral Researcher and the Research Coordinator
with the Wireless Sensor Systems Group, Aalto University, until 2014.
Currently he works as a Senior Chief Engineer with Konecranes. His
main research interests include adaptive control and simulation of wire-
less control systems, computing, and machine learning at the edge.

Heikki Mesia received the M.Sc. (Eng.) degree from the Tampere Uni-
versity of Technology, Tampere, Finland, in 1984.

He joined Konecranes, Hyvinka4, Finland, in 2008, where he currently
works with Konecranes Research and Innovation as a Senior Research
Specialist for crane intelligence. He has previously worked with VTI
Technologies, expert in microelectromechanical systems technology-
based acceleration sensors, and with Vaisala in the global humidity sen-
sor business holding several positions from product design to product
line management.

Antti Jaatinen (Member, IEEE) received the M.Sc. (Tech.) degree in
automation and control from the Tampere University of Technology,
Tampere, Finland, in 2003.

He is a Digital Development Manager with the Digital Platforms De-
partment, Metso Outotec, Tampere. He has been working with R&D of
automation and connectivity for industrial machines since 2008.

Marko Elo received the M.Sc. degree from the Tampere University of
Technology, Tampere, Finland, in 1993.

He is currently an R&D Manager with CrossControl Oy, Tampere.
He has a special interest in technology partnerships and cocreation.
His research interests include applied research and architecture de-
sign of industrial IT systems in the segment of mobile vehicles, with
focus on human—machine interfaces, edge computing, artificial intelli-
gence/machine learning, and connectivity.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


