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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Granular, biofilm and planktonic as
semblages developed from the same 
seed reservoir. 

• Three assemblages forming meta
community differed in diversity and 
composition. 

• Multiple null models applied to quantify 
deterministic and stochastic 
mechanisms. 

• Dominant, active role of acetoclastic 
Methanosaeta confirmed in granules and 
biofilm. 

• Dynamic, non-core-microbiome taxa 
correlated with environmental 
variables.  
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A B S T R A C T   

Distinct microbial assemblages evolve in anaerobic digestion (AD) reactors to drive sequential conversions of 
organics to methane. The spatio-temporal development of three such assemblages (granules, biofilms, plank
tonic) derived from the same inoculum was studied in replicated bioreactors treating long-chain fatty acids 
(LCFA)-rich wastewater at 20 ◦C at hydraulic retention times (HRTs) of 12–72 h. We found granular, biofilm and 
planktonic assemblages differentiated by diversity, structure, and assembly mechanisms; demonstrating a spatial 
compartmentalisation of the microbiomes from the initial community reservoir. Our analysis linked abundant 
Methanosaeta and Syntrophaceae-affiliated taxa (Syntrophus and uncultured) to their putative, active roles in 
syntrophic LCFA bioconversion. LCFA loading rates (stearate, palmitate), and HRT, were significant drivers 
shaping microbial community dynamics and assembly. This study of the archaea and syntrophic bacteria actively 
valorising LCFAs at short HRTs and 20 ◦C will help uncover the microbiology underpinning anaerobic bio
conversions of fats, oil and grease.   
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1. Introduction 

Microbial consortia have been exploited for numerous biotechno
logical applications, such as for valorizing wastewaters, principally 
because mixed-species systems allow for easier management and pro
vide more diverse applications than pure-culture set-ups (McCarty and 
Ledesma-Amaro, 2019). The anaerobic digestion (AD) process, in 
particular, relies on the concerted activity of multiple microbial trophic 
groups to sequentially drive the bioconversion of organic matter to 
methane and CO2 in various assemblage modes – granular, biofilm or 
planktonic – and bioreactor configurations (Abdelgadir et al., 2014). 
The composition of the underlying methanogenic consortia responds to 
environmental and process selection pressures (Nemergut et al., 2013). 
Microbial taxa variously interact in forming community assemblages 
that are structured as biofilm slimes, flocs, granules and other aggre
gates, or, as planktonic communities (Aqeel et al., 2019). Thus, AD as
semblages harbouring multiple trophic-level interactions serve as 
suitable communities to evaluate microbial community dynamics and 
assembly. 

Unveiling microbial assembly mechanisms offers unprecedented in
sights into engineered bioconversion systems, such as AD bioreactors 
(Ferguson et al., 2018). Factors such as inoculum composition (Li et al., 
2019; Singh et al., 2019a), substrate composition and loading (Braz 
et al., 2019; Chen et al., 2019), operational duration (Lucas et al., 2015; 
Vanwonterghem et al., 2014), and process temperature (Heidrich et al., 
2018), were shown as strong drivers of microbial community assembly 
in various AD systems when operated at hydraulic retention times 
(HRTs) longer than 10 d. However, shorter HRTs (<3 d) are sought to 
economize the anaerobic wastewater treatment process. Under such 
conditions, stochastic community assembly may be promoted due to 
random changes from immigration, drift or dispersal of microbial taxa 
(Nemergut et al., 2013; Stegen et al., 2012). Alternatively, short HRTs 
may promote environmental filtering due to the selection of taxa with 
unique survival potential (Stegen et al., 2012; Zhou, 2017). Treatment of 
organics, including inhibitory compounds at low (sub-mesophilic) 
temperatures is also desirable in AD systems to improve the net energy 
yield (Petropoulos et al., 2019), but such conditions are regarded as 
challenging for optimal functioning of AD consortia. Operational con
ditions, including HRTs, the presence of inhibitory compounds, and 
operating temperatures, are likely drivers of microbial community as
sembly in methanogenic consortia. A mechanistic understanding of the 
concerted effects of these challenging growth conditions on the micro
bial community dynamics and assembly of methanogenic consortia will 
aid in further widening the applications of AD for waste bioconversion 
and valorisation. 

A growing body of literature has characterized assembly and suc
cession of microbial communities in granules (Liébana et al., 2019), 
biofilms (Xu et al., 2019) and planktonic assemblages (Xu et al., 2020) 
obtained from engineered microcosms, including more recently from AD 
bioreactors (Trego et al., 2021). However, AD bioreactors may rely on 
distinct assemblage types to perform specific roles across reactor com
partments (e.g., in hybrid bioreactors containing both granular and 
fixed-film biofilm; Singh et al., 2020). Thus, a systematic inference of the 
selective environmental pressures on the development of distinct as
semblages from a common, seed community reservoir in AD bioreactors 
is needed to comprehend their comparative roles and assembly 
mechanisms. 

The objective of this study was to characterize three distinct micro
bial assemblages (granules, biofilm, and planktonic communities) that 
were sampled from replicated bioreactors inoculated with one com
munity reservoir of anaerobic sludge. The assemblages were developed 
in novel, two-compartment bioreactors treating long-chain fatty acids 
(LCFA)-rich wastewater at low HRTs (72–12 h) at 20 ◦C, which we 
previously evaluated and reported (Singh et al., 2020). The temporal 
variations in active microbiomes from each of the assemblages were 
studied to evaluate the effect of environmental variables on microbial 

community dynamics (diversity, composition, and core and dynamic 
taxa). We applied multiple null model approaches to study community 
assembly, and to quantify the relative contribution of assembly pro
cesses involved in structuring the three assemblages. 

2. Materials and methods 

2.1. Sample collection 

Microbial samples were collected from three, identical anaerobic 
dynamic sludge chamber-fixed film (DSC-FF) bioreactors, which were 
operated in parallel to treat mixed-LCFA-rich synthetic dairy wastewater 
at 20 ◦C for 150 d as described previously (Singh et al., 2020). Granules 
from the sludge-bed layer (the DSC), the biofilm (the FF, which was 
grown on pumice stones) and the planktonic community from effluent 
samples were collected from different operating phases at the applied 
HRTs (72, 42.5, 24, 18, 12 h) corresponding to days 8, 24, 58, 100 and 
148. The anaerobic sludge used as the inoculum was also sampled. 
Pumice stones were aseptically collected from the FF section, and, 
sonicated in an ultrasonic water bath (PUL-125 ultrasonic bath, Kerry 
Ultrasonics, England) with an output power of 150 W at 28 kHz for 5 
min at 20 ◦C with 10 mL of phosphate buffer saline (pH 7.2) to dislodge 
microbial cells from the attached biofilm. The supernatant from biofilm, 
and the effluent samples (25 mL), were each centrifuged at 8,000 rpm 
for 10 min (8,470 × g) at 4 ◦C to harvest cells. The resultant pellets, 
along with the granules and the inoculum samples, were flash-frozen in 
liquid nitrogen immediately upon collection and stored at − 80 ◦C. 

2.2. Nucleic acids extraction and 16S rRNA gene amplicon sequencing 

The microbial samples were thawed on ice, and the nucleic acids 
(DNA and RNA) were extracted using the phenol chloroform method, 
followed by quantification of DNA and RNA concentrations using a 
Qubit fluorometer (Life Technologies), and evaluation of DNA purity 
using a Nanodrop (NanoDrop Technologies, Wilmington, USA) and gel 
electrophoresis (Singh, 2019). Next, DNase treatment was performed to 
remove DNA using Invitrogen Turbo-DNase kit (Thermo Fisher, USA) by 
following the recommended procedure, and the DNA-free samples 
consisting of RNA were converted to cDNA using M− MuLV Reverse 
Transcriptase kit (New England BioLabs, USA) according to the in
structions provided by the supplier. PCR amplification of the V4 region 
of the 16S rRNA gene was performed on cDNA transcripts with the 
universal primers 515f and 806r (Caporaso et al., 2011), with the 
sequencing of the active microbiomes on the Illumina MiSeq platform 
using 2x300 bp paired-end run. Biofilm and effluent samples obtained 
from 72 h HRT were not sequenced because extractions yielded inade
quate quantities of cDNA. The 16S rRNA sequences used to support the 
findings of this study have been deposited in the NCBI Sequence Read 
Archive under bioproject accession PRJNA657615. 

2.3. Bioinformatics and statistical analysis 

The sequence data was analyzed using Quantitative Insights Into 
Microbial Ecology (QIIME v1.9, and QIIME v2) pipeline (Bolyen et al., 
2019; Caporaso et al., 2010). The paired-end reads were joined using a 
fastq-join method with a min overlap of 50 bp and a perc_max_diff of 
15%, after which quality filtering was performed using the split_librar
ies_fastq.py script in QIIME. The sequences were clustered into opera
tional taxonomic units (OTUs) using the open-reference OTU picking 
with uclust using default settings. It should be noted that chimeric se
quences were identified using ChimeraSlayer and the final OTU table 
was generated from the nonchimeric sequences following standard 
recommendations in QIIME. QIIME2 was then utilised to assign taxon
omy using the SILVA SSU Ref NR database release v.132 as well as to 
generate the rooted phylogenetic tree after alignment of the OTU 
sequences. 
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Statistical analyses were performed in R using all of the OTUs (data 
generated as above) as well as the meta data associated with the study. 
The details of these methods are given in authors’ recent publications 
(Nikolova et al., 2021; Trego et al., 2021). For alpha diversity, we 
calculated: (i) rarefied richness – This gives the estimated number of 
species in a rarefied sample (to minimum library size); (ii) Pielou’s 
evenness – This gives the diversity values from 0 (no evenness) to 1 
(complete evenness). The figures were then supplemented with p-values 
from Analysis of Variance (ANOVA) where significant. Furthermore, we 
utilized phylogenetic alpha diversity measures such as (i) nearest taxa 
index (NTI), which, is a measure of mean pairwise phylogenetic distance 
at local level and quantifies tip-level divergences (putting more 
emphasis on terminal clades and is akin to “local” clustering) in phy
logeny; and (ii) net relatedness index (NRI), which, is a measure of mean 
pairwise phylogenetic distance of all the taxa in a sample, relative to 
phylogeny of an appropriate species pool and quantifies overall clus
tering of taxa on a tree. Briefly, these methods record original phylo
genetic distances in a phylogenetic tree, and then generate 1000 
randomizations of the phylogenetic tree (whilst keeping richness pre
served) to calculate the phylogenetic distances on these distributions. 
Afterwards, the mean and standard deviation of these distances obtained 
from randomization procedure are used in a method called “statistical 
effect size” for comparison against the original distances to give NRI/ 
NTI estimates. The values of NRI/NTI hold importance as they can be 
used to discern an underlying ecological mechanism. For a single com
munity, NTI values > +2 suggest environmental filtering (phylogenetic 
clustering), and values < -2 indicate competitive exclusion (phyloge
netic overdispersion) among species as the driver of community struc
ture (Stegen et al., 2012). Although both NRI and NTI use similar 
thresholding cut off, NTI is typically preferred over NRI for ecological 
interpretation because of the presence of phylogenetic signal across 
short phylogenetic distances (Wang et al., 2013). 

For beta diversity, the dissimilarity in species community composi
tion between pairwise comparisons of bacterial communities were rep
resented in Principal Coordinate Analysis (PCoA) ordination plots by 
calculating three different dissimilarity measures between the samples: 
(i) Bray Curtis distance that only considers the species abundance of 
samples; (ii) Unweighted Unifrac distance that is based on the proportion 
of phylogenetic tree shared between the samples by calculating branch 
lengths, and (iii) Weighted Unifrac distance which is similar to (ii) but 
weights the branch lengths by species abundance counts. In all three 
cases, the resulting distance values are normalized between 0 (similar) 
and 1 (dissimilar) for any pair of samples, and when used in an ordi
nation plot (PCoA), they provide visual cues on how similar the samples 
are. The PCoA plots were further supplemented with ellipses repre
senting the standard errors of the (weighted) averages of the sample 
values on PCoA plot, and this is plotted for each sample group (assem
blage type or HRT). 

We then used the core microbiome analysis by selecting taxa that 
have a minimum prevalence of 85% across all the samples. Furthermore, 
two dimensional plot at varying detection threshold (abundances) was 
obtained for these selected taxa (Lahti et al., 2019). To find the taxa that 
are important for variance in microbial community, a subset analysis 
was performed to reduce the OTU table to the minimum set of repre
sentative OTUs that roughly preserved the same beta diversity between 
the samples as the entire OTU table. The procedure uses Bray Curtis 
distance to record all the pairwise distances between the samples using 
all the observed OTUs. These recorded distances were then correlated 
with the distances obtained from different permutations of the original 
table (considering the top 2000 abundant OTUs) in an iterative manner. 
Using the top subsets, we then performed PERMANOVA against all 
sources of variation (sample grouped by assemblage types or HRT) to see 
if these subsets are significant. To reduce the associated meta data 
(physico-chemical parameters) to meaningful parameters, Redundancy 
analysis (RDA) on the Hellinger-transformed sequence data with for
ward selection (based on 999 permutations, variables retained at p <

0.05) was performed to select for environmental variables most strongly 
associated with the variance of the observed microbial communities. 
Finally, correlation analysis was performed to measure the strength of 
association between representative OTUs (obtained from subset anal
ysis) and the selected environmental variables, using Kendall correla
tion. The p-values were then adjusted for multiple comparisons using 
Benjamini and Hochberg procedure to give significant associations. 

2.4. Null model quantification of microbial assembly mechanisms and 
ecological processes 

Different null modeling approaches with different analytical for
mulations were performed to achieve a general consensus on community 
assembly trends, and to mask out any biases associated with the 
methods. First, ecological stochasticity in community assembly was 
calculated based on beta diversity using Normalized Stochasticity ratio 
(NST) with various distance measures (incidence-based: Jaccard, Kulc
zynski and abundance-based: Ruzcika, Kulczynski) in R using the NST 
package with 50% as the boundary point between more deterministic 
(<50%) and more stochastic (>50%) assembly (Ning et al., 2019). For 
the calculations, the taxa occurrence frequency and the sample richness 
were constrained as proportional (P) or fixed (F) in the combinations PF 
or PP, and 1000 randomizations were performed for each model. Sta
tistical significance was computed based on permutational multivariate 
ANOVA (PANOVA). NST values rely on the underlying beta diversity 
distance metrics used. Some of these distance metrics do not consider 
phylogeny in calculating the dissimilarities and may not be appropriate 
to discern the ecological phenomena. Secondly, some of the beta di
versity distance metrics do not have a fixed upper limit or clearly defined 
similarity measure, and as a result a further standardization procedure is 
required before using NST. Nonetheless, these limitations in NST usage 
were avoided by using the recommended distance measures where a 
simulated community with known stochasticity values was evaluated 
and achieved high accuracy and precision (Ning et al., 2019). 

Next, we used an alternative approach utilizing Quantitative Process 
Estimates (QPE)(Vass et al., 2020) to further explore the prevailing 
ecological niches, breaking down the community assembly mechanisms 
into five ecological processes, namely, ‘homogenizing selection’, ‘vari
able selection’, ‘dispersal limitation’, ‘homogenizing dispersal’, and 
‘undominated stochastic processes’. This is a preferred approach as it 
also utilises the phylogenetic tree and describes microbial community 
assembly processes in terms of selection (variable or homogenous), 
dispersal (dispersal limitation, or homogenising dispersal) or ‘undomi
nated’ mechanisms (Stegen et al., 2015; Vellend, 2010). Variable se
lection leads to several ecological niches due to different selective 
environmental conditions, whilst homogenous selection holds when 
stable environmental conditions result in consistent selective pressure. 
Dispersal processes refer to the movement of microbes throughout the 
space. High rates of dispersal result in similar communities, referred to 
as homogenising dispersal. Conversely, dispersal limitation increases 
differences in community composition resulting in more dissimilar 
communities and occurs when low dispersal rates result in a high 
community turnover. Generally, dispersal limitation drives ecological 
drift, and is considered a stochastic assembly process. 

To obtain the above estimates, using the OTU abundance table and 
the phylogeny, deviation from the observed βMNTD (β-mean-nearest- 
taxon-distance) and the mean of the null distribution was evaluated 
using βNTI (β-nearest-taxon-index) for each pair of samples (n) in a 
sample group (assemblage type or HRT) recording n(n-1)/2 compari
sons. When the observed value of βMNTD deviated significantly from 
the null expectation, the community was assembled by variable (βNTI 
>+2) or homogenous (βNTI < − 2) selection processes, and these were 
obtained as the proportion of all pairwise comparisons where the 
thresholds were satisfied. If the difference was not significant, the 
observed differences in phylogenetic composition were considered to be 
the result of dispersal mechanisms enabling ecological drift. These were 
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differentiated using the abundance-based βRC and a Bray-Curtis 
dissimilarity metric for beta diversity. If the βRCbray > + 0.95, assem
bly was driven by dispersal limitation coupled with drift; if βRCbray < −

0.95 then homogenising dispersal mechanisms contributed to commu
nity assembly; and if βRCbray was between − 0.95 and + 0.95, community 
turnover was due to undominated mechanisms (i.e., dominated neither 
by dispersal nor selection processes). 

3. Results and discussion 

3.1. Microbial diversity patterns in granular, biofilm and planktonic 
assemblages 

Microbial diversity (Fig. 1A,B) in the bioreactors varied with the 
applied HRT across the three assemblages (granules, biofilm and 
planktonic communities). Rarefied richness and Pielou’s evenness in the 
granules had not changed by the first sampling (day 8), but both were 
significantly (p < 0.01) reduced when HRT was shortened from 72 to 12 
h (Fig. 1A,B). This is in line with the previous studies using anaerobic 
microcosms, wherein niche specialization was linked to substrate- 
specific metabolic adaptations in the community (Braz et al., 2019). 
Meanwhile, in the biofilm, rarefied richness and Pielou’s evenness 

increased significantly (p < 0.05) with the growing, de novo biofilm and 
with the changing HRT (Fig. 1A,B). Ultimately (by the time the HRT had 
been reduced to 12 h), the biofilm community was similarly diverse as, 
but more even (p < 0.01) than in the granules or the planktonic 
microbiomes. 

Phylogenetic alpha diversity analysis further differentiated the three 
assemblages, since NTI determined significant increase in phylogenetic 
clustering in the biofilm and planktonic assemblages when the HRT was 
reduced from 72 to 12 h (NTI > 0, p < 0.01) and in granular assemblages 
when the HRT was reduced from 18 to 12 h (NTI > 0, p < 0.01) 
(Fig. 1D). Environmental filtering (NTI > 0) dominated the three as
semblages at the different HRTs; and eventually at 12 h HRT, NTI fol
lowed the trend: effluent > granules > biofilm. Thus, NTI values support 
that deterministic processes (environmental variables) contributed 
majorly to structuring of the microbial community in the three assem
blages during their temporal development. It is noteworthy to mention 
that NTI is preferred when assessing the presence of significant phylo
genetic signal across short phylogenetic distances (Wang et al., 2013), 
and thus, was considered more useful than NRI due to the lack of sub
stantial trait data in this dataset. 

Assemblages when differentiated based on the beta diversity in PCoA 
plots (Fig. 1E,F,G) revealed an overlap among the granular and biofilm 

Fig. 1. Diversity in the microbiomes of the inoculum and granular (from DSC), biofilm (from FF) and planktonic (from effluent) assemblages sampled at the different 
HRTs (72, 42.5, 24, 18 and 12 h). Alpha diversity box plot of the (A) rarefied richness and (B) Pielou’s evenness. Environmental filtering box plot of the (C) Net 
Relatedness Index (NRI) and (D) Nearest Taxa Index (NTI). Beta diversity: PCoA plot calculated using (E) Bray-Curtis distances; (F) unweighted UniFrac distances; 
and (G) weighted UniFrac distances. Assemblage groups are differentiated by colour, and the ellipses are drawn for each sample group at standard error of ordination 
points, where arrows mark the direction of change in the community structure between HRTs within assemblage groups that were found to be significant by beta 
dispersion. PERMANOVA explains significant variability in microbial community structure from different bioreactor compartments and at different HRTs. Lines for 
panels A, B, C and D connect two sample groups at statistically significant levels indicated by asterisks as * (p < 0.05), **(p < 0.01) or ***(p < 0.001). 
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microbiomes at all the HRTs, whereas the planktonic microbiomes 
clustered distinctly apart. While a majority of the variations between 
categories was explained by the assemblages (18.7–41.8%) (p = 0.001); 
the HRT further explained 3–4% of the variations between categories 
(Fig. 1E,F,G). 

3.2. Core and dynamic taxa in the granular, biofilm and planktonic 
assemblages 

Ten classes represented 90% of the inoculum community as well as 
the three assemblages (Fig. 2A), among which 24 genera were highly 
(>75%) represented (Fig. 2B). These 24 genera were also present in the 
core microbiome (Fig. 3) of the three assemblages, including the ubiq
uitous prevalence of Lactococcus and uncultured Syntrophaceae (preva
lence > 90% at reads > 1000). Additionally, Methanosaeta and 
uncultured bacterium Cloacimonadaceae were prevalent in the granules 
and biofilms (Fig. 3), whereas Pseudomonas and Acinetobacter were more 
prevalent in the planktonic community (Fig. 3) – demonstrating that 
differentiation in the core microbiomes was assemblage-specific. 

Subset analysis was performed to identify the minimum set of dy
namic non-core taxa, namely the representative taxa that statistically 
explain the observed variances in the community (Table 1). Only five, 
six and nine taxa represented the variabilities in the beta-diversity of 
granular, biofilm and planktonic assemblages, respectively (Table 1). 
This means a small fraction of the sequenced dataset explained 
44.8–55.3%, 70–75.8% and 31.3–57.9% of the variation in, respec
tively, the granules, biofilms, and planktonic microbial community dy
namics at the decreasing HRTs in this study. Many of the core taxa 

(Fig. 3), such as Methanosaeta, Methanobacterium, uncultured Syntro
phaceae, Syntrophus, Syntrophobacter and Desulfobulbus, have been pre
viously found to be abundant during LCFA methanization at low 
ambient temperatures of 10–20 ◦C (Grabowski et al., 2005; Singh et al., 
2019a, 2019b). It is likely that these taxa played an active role at 
different trophic levels during the successive carbon flow during 
anaerobic LCFA methanization. During anaerobic treatment, fermenta
tive, and acetogenic, bacteria and the methanogenic archaea are syn
trophic partners. The β-oxidizing bacteria require low hydrogen 
concentrations and form syntrophic partnerships with methanogenic 
archaea, which scavenge, and maintain low concentrations of, 
hydrogen. In this study, LCFA methanization was driven by the syner
gistic relationship wherein acetate and hydrogen produced by the 
β-oxidizers – Syntrophus and uncultured Syntrophaceae – were metabo
lized by the archaea – Methanobacterium (hydrogenotrophic metha
nogen) and Methanosaeta (acetoclastic methanogen). 

3.3. Quantifying mechanisms structuring the spatial development of 
assemblages 

3.3.1. Assembly mechanisms: Stochastic or deterministic? 
We used a suite of null modelling approaches and quantified NST, 

βNTI, βMNTD and βRCBray to determine the processes structuring mi
crobial community assembly. The NST indices revealed significant dif
ferences in ecological stochasticity amongst the assemblages (p < 0.001, 
PANOVA), irrespective of an evaluation through incidence-based or 
abundance-based distance matrices, or the constraints imposed on the 
taxa occurrence frequency and sample richness (Fig. 4A). NST indices 

Fig. 2. Barplots of the relative abundance of (A) the 25 most abundant classes, and (B) taxa identified to genus level, found in in the inoculum and the granular 
(obtained from the DSC), biofilm (obtained from FF), and planktonic (obtained from effluent) assemblages of the triplicate bioreactors R1, R2 and R3, at the HRTs of 
72, 42.5, 24, 18 and 12 h. ‘Others’ are the taxa not included in the 25 most abundant. 
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were highest for the biofilm and lowest for the effluent (stochasticity 
trend: biofilm > granules > effluent) (Fig. 4A). QPE analysis revealed 
that the deterministic processes (55–61%) were higher than the sto
chastic processes (39–45%) in the assemblages. Trends in total sto
chasticity (‘dispersal limitation’, ‘homogenizing dispersal’, as well as the 
‘undominated stochastic processes’) (Fig. 4B) found using QPE were 
similar to those found by the NST approach (Fig. 4), i.e, stochasticity 
followed the trend: biofilm > granules > effluent; and vice-versa for the 
deterministic causes. These results delineate that granular, biofilm and 
effluent assemblages have unique signatures, and stochastic and deter
ministic processes had combined roles in spatially structuring the 
community assembly in the distinct compartments of DSC-FF 
bioreactors. 

Amongst the deterministic causes, variable selection accounted for 
the largest proportion of the quantitative process (53–59%) (Fig. 4B), 
suggesting multiple niches for the selection of species which relied on 
the prevailing variability in environmental gradients. Dispersal limita
tion was the highest in the granules (15%), suggesting that among the 

sludge retention mechanisms (granulation and biofilm formation) in the 
DSC-FF reactors, granulation constrained dispersal more than biofilm 
formation. Overall, biofilm had the highest proportion of undominated 
stochastic processes (36%), and also occupied the highest proportion of 
all stochastic processes (45%) amongst the assemblages. 

We used a comprehensive set of bioinformatics tools and null 
modelling approaches to quantify the diversity and assembly patterns in 
the AD assemblages to avoid possible analytical biases. The NST indices 
showed that both stochastic and deterministic processes shaped the 
granular, biofilm and planktonic assemblages under ‘challenging growth 
conditions’ in the triplicate bioreactors (Fig. 4A). NST is a relatively new 
measure that estimates stochasticity based on beta diversity measures, 
employing both incidence-based and abundance-based representations 
(Ning et al., 2019). Some of the null models also consider phylogenetic 
clustering as a proxy for the environmental drivers of community as
sembly. Therefore, looking at the community data with different null 
models using incidence and abundance matrices and phylogenetic data, 
our results show consistent assembly patterns (Fig. 4). Moreover, even 

Fig. 3. Highly prevalent taxa in the core microbiomes of (A) granular (from DSC), (B) biofilm (from FF), and (C) planktonic (from effluent) assemblages. Detection 
thresholds up to 10,000 reads are shown. 
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the observed significant values of phylogenetic alpha diversity measured 
through NTI at 12 h HRT suggested the dominance of deterministic 
processes following the trend: effluent > granules > biofilm (Fig. 1D), 
which was consistent with the trends obtained from the NST and QPE 
estimations (Fig. 4). 

Although conventional evaluations of microbial community assem
bly provided differentiation between deterministic and stochastic pro
cesses (Braz et al., 2019; Lucas et al., 2015), and null modelling 
approaches have been applied fairly recently for engineered bioreactors 
(Liébana et al., 2019; Xu et al., 2020; Yuan et al., 2019), we were able for 
the first time to comprehensively explore microbial community struc
ture and assembly from high-rate, anaerobic LCFA-treating bioreactors 
using multiple null models. 

3.3.2. Environmental variables affecting microbial community assembly 
The three assemblages harbouring distinct regional microbial pools 

were linked hydraulically inside each of the respective bioreactors, and 
formed a metacommunity in each of the three separate bioreactors. 
Under short HRTs, microbes with low growth rates will ordinarily be 
washed out from suspended systems (i.e. those systems without reten
tion on surfaces or in aggregates), leaving rapidly growing microbes as 
dominant populations (Yuan et al., 2019). Such effects are expected to 
be even more pronounced at low temperatures because the AD micro
biome is considered optimally mesophilic (Pommerville, 2014), yielding 
diminished growth rates at reduced temperatures (Petropoulos et al., 
2019). Moreover, substrate characteristics strongly affect the microbial 
community structure. For example, LCFAs have a surfactant effect that 
leads to biofilm thinning and disaggregation of granular sludge (Niko
laeva et al., 2013) and inhibit microbial activity (Astals et al., 2014). 
Thus, microbes less adept at adhering to biofilm or granular assemblages 
may be selectively washed-out mobilizing microbes hydraulically within 

Table 1 
Correlation of representative taxa (obtained from subset analysis) to the full 
operational taxonomic unit (OTU) table.  

No Granular assemblage (DSC) Correlation 
with full OTU 
table 

PERMANOVA 

1 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + uncultured 
bacterium WCHB1-41 + uncultured 
Syntrophobacterales bacterium 
Delta_03 

0.951 R2 = 0.553;p =
0.004 

2 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + uncultured 
Syntrophobacterales bacterium 
Delta_03 

0.943 R2 = 0.551;p =
0.003 

3 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Syntrophobacterales bacterium 
Delta_03 

0.9301 R2 = 0.551; p =
0.004 

4 Rivicola + uncultured 
Syntrophobacterales bacterium 
Delta_03 

0.914 R2 = 0.448; p =
0.067  

Biofilm assemblage (FF) Correlation 
with full OTU 
table 

PERMANOVA 

1 Methanolinea + uncultured 
bacterium SJA-29 + Geobacter +
Christensenellaceae R-7 group +
uncultured Veillonellaceae 

0.833 R2 = 0.75639; p 
= 0.003 

2 Methanolinea + Methanoregula +
uncultured bacterium SJA-29 +
Geobacter + Christensenellaceae R-7 
group + uncultured Veillonellaceae 

0.828 R2 = 0.701; p =
0.008 

3 Methanolinea + Geobacter +
Christensenellaceae R-7 group +
uncultured Veillonellaceae 

0.82 R2 = 0.758; p =
0.002 

4 Methanolinea + Geobacter +
Christensenellaceae R-7 group 

0.809 R2 = 0.758; p =
0.001 

5 Methanolinea + Christensenellaceae 
R-7 group 

0.799 R2 = 0.758; p =
0.002 

No Planktonic assemblage (effluent) Correlation 
with full OTU 
table 

PERMANOVA 

1 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + Methanolinea +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 +
Syner-01 uncultured bacterium +
uncultured Syntrophobacterales 
bacterium Delta_03 + Azospirillum 

0.951 R2 = 0.57803; p 
= 0.001 

2 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + Methanolinea +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 +
Syner-01 uncultured bacterium +
uncultured Syntrophobacterales 
bacterium Delta_03 

0.938 R2 = 0.57854; p 
= 0.001 

3 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + Methanolinea +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 +
Syner-01 uncultured bacterium 

0.927 R2 = 0.57928; p 
= 0.001 

4 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + Methanolinea +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 

0.903 R2 = 0.485; p =
0.021 

5 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + Aminicenantales 
metagenome + uncultured bacterium 

0.889 R2 = 0.584; p =
0.001  

Table 1 (continued ) 

No Granular assemblage (DSC) Correlation 
with full OTU 
table 

PERMANOVA 

WCHB1-32 + Syner-01 uncultured 
bacterium 

6 Rivicola + uncultured bacterium 
Cloacimonadaceae + uncultured 
Burkholderiaceae + Aminicenantales 
metagenome + uncultured bacterium 
WCHB1-32 

0.867 R2 = 0.494; p =
0.017 

7 Rivicola + uncultured bacterium 
Cloacimonadaceae +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 +
Syner-01 uncultured bacterium 

0.856 R2 = 0.584; p =
0.004 

8 Rivicola + uncultured bacterium 
Cloacimonadaceae +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 

0.827 R2 = 0.479; p =
0.012 

9 uncultured bacterium 
Cloacimonadaceae +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 +
Syner-01 uncultured bacterium 

0.807 R2 = 0.521; p =
0.029 

10 uncultured bacterium 
Cloacimonadaceae +
Aminicenantales metagenome +
uncultured bacterium WCHB1-32 

0.784 R2 = 0.327; p =
0.297 

11 uncultured bacterium 
Cloacimonadaceae +
Aminicenantales metagenome +
Syner-01 uncultured bacterium 

0.762 R2 = 0.525; p =
0.031 

12 uncultured bacterium 
Cloacimonadaceae +
Aminicenantales metagenome 

0.722 R2 = 0.313; p =
0.291 

13 uncultured bacterium 
Cloacimonadaceae + Syner-01 
uncultured bacterium 

0.722 R2 = 0.523; p =
0.022  
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the metacommunity, particularly under short HRTs. 
In this study, the stochastic processes could play a role either by 

immigration of taxa (e.g., from the granules in the DSC to the FF bio
film), or dispersal (washout) of taxa (e.g., from granules and the FF 
biofilm), or undominated stochastic processes leading to random 
changes in community composition in the assemblages. Concurrently, 
deterministic processes could play a role due to inter-species in
teractions (e.g., syntrophic interactions), or environmental variables (e. 
g., LCFA concentrations, HRT). While the relative contribution of each 
process has remained controversial (Stegen et al., 2012), we found that 
deterministic and stochastic mechanisms had combined roles in the 
microbial community assembly, wherein, biofilm had the highest sto
chasticity among the assemblages (Fig. 4). The bioreactors were 
designed as retained-biomass systems in this study so as to minimize the 
washout of slow-growing species. Moreover, the biofilm compartment 
was designed to compensate for washout from the preceding sludge 
chamber (DSC). Microbes were washed upward from the variably per
forming DSC chamber (granules) to the FF chamber (biofilm), and on
wards to the effluent. We hypothesize that within the metacommunity, 
fluctuating metabolite (substrate and intermediates) concentrations and 
microbial populations reached the biofilm from DSC, which resulted in a 
higher randomness in the biofilm than in the granules or effluent 
microbiomes. 

As a variable selection accounted for the largest proportion (>50%) 
of the assembly processes, we considered it interesting to identify the 
environmental variables significantly linked to the variability in the 
observed communities. RDA with forward selection was employed (Vass 
et al., 2020), which showed that the stearate loading rate (p < 0.001), 
palmitate loading rate (p < 0.01), palmitate removal rate (p < 0.05) and 

caproate concentrations (p < 0.01) had a bearing on the variation in 
microbial community composition (Table 2). Specifically, this study 
could associate microbial community assembly with operational pa
rameters (HRTs, and LCFA loading (stearate and palmitate)) (Table 2). 
These findings have transferrable implications to reactor operation 
strategies and could be employed to modulate microbial community 
assembly in anaerobic bioreactors operated at conditions similar to this 
study. For example, higher dispersal limitation was observed in granules 
than biofilms (Fig. 4), reflecting the utility of granulation in microbial 
retention under challenging operational conditions. 

3.4. Environmental effects on microbial community dynamics 

3.4.1. Environmental variables affecting microbial community composition 
and dynamics 

Given that the microbial community diversity, composition, and 
assembly were differentiated in the assemblages and demonstrated 
predominant environmental filtering, we investigated the environ
mental variables that delineated the microbial community dynamics by 
applying correlation analysis. The concentrations of total and soluble 
COD, caproate (C6), palmitate (C16) and total LCFAs were strongly 
correlated (p < 0.05) to the taxa abundance (Fig. 5). The strength of 
association between the representative taxa and environmental vari
ables was measured using Kendall correlation. Palmitate removal rate 
positively correlated to the representative taxa, Geobacter, uncultured 
bacterium Syner-01, uncultured bacterium SJA-29 (family Veillonellaceae) 
and Syntrophobacterales bacterium Delta 03. Of these, uncultured bacte
rium Syner-01, and uncultured bacterium SJA-29 (family Veillonellaceae) 
were negatively correlated to the concentrations of even-chained VFAs, 

Fig. 4. Estimates of microbial community assembly mechanisms structuring the spatial succession of granular (from DSC), biofilm (from FF) and planktonic (from 
effluent) assemblages grown from a single microbial community reservoir (inoculum). Spatial variation in (A) normalized stochasticity ratio (NST) indices, calculated 
as incidence-metrics (Jaccard and Kulczynski distance metrics) and as abundance-metrices (Ruzicka and Kulczynski distance metrices), with PF and PP null models 
among the granular, biofilm and planktonic assemblages; (B) the proportion of assembly processes by species-sorting (variable or homogeneous selection), dispersal 
limitation, homogenizing dispersal or undominated stochastic processes among the granular, biofilm and planktonic assemblages. Statistically significant levels are 
indicated by asterisks as *(p < 0.05), **(p < 0.01) or ***(p < 0.001). 

Table 2 
Redundancy analysis (RDA) with forward selection using ADONIS to select the environmental variables most strongly associated with the variance of the observed 
communities.  

Environmental variables Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Significance 

Stearate (C18:0) loading rate 1  0.6644 0.66441  6.1819  0.14982  0.0001 *** 
Methane yield (COD added) 1  0.3466 0.34657  3.2246  0.07815  0.0039 ** 
Caproate (C6) concentrations 1  0.3683 0.36828  3.4266  0.08305  0.004 ** 
Valerate (C5) concentrations 1  0.2945 0.29448  2.74  0.06641  0.0141 * 
Palmitate (C16:0) loading rate 1  0.3405 0.34051  3.1683  0.07679  0.0046 ** 
Palmitate (C16:0) removal rate 1  0.2708 0.27084  2.52  0.06108  0.0201 * 
Residuals 20  2.1495 0.10748  0.48471    
Total 26  4.4346 1     

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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specifically acetate (C2) or butyrate (C4). Whilst the uncultured bacterium 
WCHB1-32 (family Prolixibacteraceae) positively correlated to tCOD, 
sCOD and caproate (C6) concentrations, the uncultured bacterium from 
order WCHB1-41 (class Kiritimatiellae) negatively correlated with the 
loading rates of palmitate (C16) and stearate (C18), thereby delineating 
the roles of different fatty acids in structuring the dynamic non-core taxa 
in the assemblages. 

3.4.2. Anaerobic LCFA degradation by assemblages: Methanogenesis and 
syntrophic β-oxidation 

HRTs and LCFA loading rates influenced the representative taxa 
driving community dynamics in the granular, biofilm and planktonic 
assemblages (Fig. 5, Table 1). With decreasing HRTs and LCFA loading, 
equivalently increasing active populations of fermenters, β-oxidizers, 
and hydrogenotrophic and acetoclastic methanogens were required for 
degradation of the LCFAs at 20 ◦C. Methanogenesis is a conserved 
function mediated through methylotrophic, acetoclastic or hydro
genotrophic pathways. Among the archaeal taxa found in the granular 
sludge microbiome in this study, Methanosaeta was the only acetoclastic 
genus, and had the highest relative abundances as well as high preva
lence in core microbiomes (Fig. 2,3). Earlier, Methanosaeta was found in 
high relative abundances in LCFA-degrading anaerobic consortia in both 
batch assays and continuous high-rate reactors at low temperatures 
(Paulo et al., 2020; Singh et al., 2019a, 2019b). In the current study, by 
analyzing 16S rRNA (cDNA) we could demonstrate the persistence and 
active role of Methanosaeta in granules and biofilm in the acetoclastic 
methanogenesis at 20 ◦C even at low HRTs and high LCFA loading. The 
retention times of cells within the granules and the biofilm are much 
longer than the applied HRTs, and presumably enabled maintainenance 
of slow-growing acetoclastic methanogens. 

β-oxidation of LCFAs is a narrowly conserved function, wherein only 
few known species belonging to the genera Syntrophus (family Syntro
phaceae, class Deltaproteobacteria); Syntrophomonas, and Thermosyn
tropha (family Syntrophomonadaceae, class Clostridia), and uncultured 
taxa (family Clostridiaceae, class Clostridia) (Baserba et al., 2012; Sousa 
et al., 2009). Thus, an examination of taxa belonging to the families 
Syntrophomonadaceae (class Clostridia) and Syntrophaceae (class Deltap
roteobacteria) in this study was considered of interest to find taxa 

responsible for LCFA degradation. In our study, the relative abundance 
of genus Syntrophomonas was low (<0.5%), whereas taxa assigned to the 
family Syntrophaceae were highly abundant, consisting of Syntrophus and 
an uncultured Syntrophaceae taxon (Fig. 2). In previous studies, Syntro
phomonadaceae-related taxa have been reported frequently from meso
philic or thermophilic anaerobic bioreactors treating fats, oils and grease 
(FOG)-rich wastes at relative abundances, that is, at 0.2–25% in sludges 
treating lipid-rich wastes (Hansen et al., 1999; Menes and Travers, 2006; 
Ziels et al., 2017). Concurrently, Syntrophus-affiliated taxa have been 
reported from diverse environments, including not only the mesophilic 
and thermophilic digesters treating palm-oil mill effluent (POME) and 
LCFAs (Hatamoto et al., 2007; Yoochatchaval et al., 2011), and meso
philic reactors treating cafeteria wastewater (Fujihira et al., 2018); but 
also the psychrophilic digesters treating food waste (Choudhary et al., 
2020) and LCFA-rich wastewater (Singh et al., 2019a), low-temperature 
reactors treating LCFA-rich wastewater (Singh et al., 2019b), and psy
chrophilic digesters degrading stearate and alkanes (Grabowski et al., 
2005). Meanwhile, abundant populations of both Syntrophus and Syn
trophomonas have also been reported, e.g., from batch incubations 
digesting lipid-rich scum at 30 ◦C wherein the relative abundances 
increased for Syntrophus (3-fold) as well as Syntrophomonas (1.1-fold) 
(Fujihira et al., 2018). Thus, linking the prevalence of the β-oxidizing 
genera to the operational conditions has been confounding based on 
substrate (FOG, LCFA) and operational conditions (temperature, HRTs). 

In our study, uncultured Syntrophaceae was the only putative 
β-oxidizer present at high relative abundances (Fig. 2) as well as in the 
core microbiomes (Fig. 3). Hence, an active role for Syntrophaceae- 
affiliated taxa (Syntrophus and uncultured) is implied in treating LCFA- 
rich wastewaters at low HRTs at 20 ◦C; supported by their psychroto
lerant growth in granules as well as in biofilms (Fig. 2,3). Syntrophs are 
fastidious and despite playing a crucial role in global carbon cycling, 
their characterization has remained relatively obscure (Narihiro and 
Kamagata, 2017). Although taxonomic resolution of uncultured syn
trophic bacteria below family level may still be challenging despite the 
use of high-end molecular methods (Hatamoto et al., 2007), we show 
that the use of new bioinformatics (i.e. data analytics) approaches offers 
alternative ways to link process performance with population dynamics 
in microbial communities. This may provide useful insights when low 

Fig. 5. The correlation heatmap of the 
representative taxa from granular (from 
DSC), biofilm (from FF) and planktonic (from 
effluent) assemblages with the environ
mental variables (metabolite concentrations 
and process performance parameters) pre
vailing in the different bioreactor compart
ments (DSC, FF, effluent). Kendall 
correlations between the representative taxa 
and the environmental variables were 
calculated. Significance levels are indicated 
by asterisks as *(p < 0.05), **(p < 0.01) or 
***(p < 0.001).   

S. Singh et al.                                                                                                                                                                                                                                    



Bioresource Technology 343 (2022) 126098

10

microbial growth rates, or an abundance of uncultured taxa, confound 
analyses using conventional molecular approaches. The large proportion 
of unassigned and uncultured taxa in our study suggests that novel un
cultured microbes may have a role in methanization of LCFAs in the 
granular and biofilm assemblages at low ambient temperatures. Future 
advancements should leverage genome-centric tools to connect the 
abundance of β-oxidizing bacteria to LCFA metabolism in response to 
diverse external stimuli, while simultaneously comprehending the 
functional expressions of Syntrophus and Syntrophomonas under those 
stimulus (James et al., 2019; Treu et al., 2016). 

4. Conclusions 

Multiple null modelling approaches systematically confirmed that 
combined deterministic and stochastic mechanisms influenced the mi
crobial community assembly in high-rate bioreactors treating LCFA-rich 
wastewater at 20 ◦C. Variable selection (deterministic) accounted for the 
largest proportion (>50%) of the assembly processes, while undomi
nated processes (26–36%) constituted the most important stochastic 
process. Abundant Methanosaeta and Syntrophaceae (Syntrophus and 
uncultured taxa) were prevalent in the core microbiomes, suggesting 
these taxa were critical in syntrophic LCFA-degradation. This study 
expands our understanding of the microbial community dynamics and 
assembly in complex metacommunities comprising granular, biofilm 
and planktonic assemblages mediating dairy waste bioconversion in 
innovative DSC-FF bioreactors. 
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