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Abstract—Requirements and technological advancements to-
wards 6th generation (6G) wireless networks lead to enabling
and development of massive low Earth orbit (LEO) satellite con-
stellations to provide ubiquitous and high-capacity connectivity,
particularly for maritime and airborne platforms. Consequently,
new methodologies to study the performance of LEO networks
are of great importance. In this paper, we derive both downlink
and uplink analytical expressions for coverage probability and
data rate of a massive inclined LEO constellation under general
shadowing and fading. We model the LEO satellite network as
a nonhomogeneous Poisson point process with general intensity
in order to take into account uneven distribution of satellites
along the latitudes. The results provided in this study facilitate
the stochastic evaluation and design of the future massive LEO
networks, regardless of satellites’ exact trajectories in orbits.

I. INTRODUCTION

As 5th generation (5G) cellular networks are becoming fully

commercial all around the globe, characterizing 6G challenges

and requirements has recently attracted significant attention

[1]–[3]. Providing ubiquitous and high-capacity connectivity,

as promised in 6G, requires enabling and development of non-

terrestrial networks. Among non-terrestrial networks low Earth

orbit (LEO) satellite systems have gained increasing popularity

due to providing seamless connectivity with lower round-trip

delay—compared to geostationary satellites—especially for

remote regions where the deployment of terrestrial networks

is not economically reasonable [4], [5].

Despite the commercial promotion of massive LEO net-

works (e.g., Starlink, Kuiper, Telesat), there are still many

unanswered questions regarding the performance and design

of these networks. Literature around LEO systems’ analysis

is mostly limited to the analysis of few satellites with de-

terministic locations and coverage areas. The uplink outage

probability in the presence of interference was evaluated for

two LEO constellations through time-domain simulations in

[6]. The effect of traffic non-uniformity was studied in [7] by

assuming hexagonal service areas for satellites.

A general expression for a single LEO satellite’s visibility

time was provided in [8], but it is incapable of concluding

the general distribution of visibility periods for any arbitrarily

positioned user. The deterministic model in [8] was then

developed via statistical analysis of coverage time in mobile

LEO during a satellite visit [9]. In [10], the Doppler shift

magnitude of a LEO network is characterized for a single

spotbeam by using tools from stochastic geometry. Resource

control of a hybrid satellite–terrestrial network was performed

in [11] with two objectives of maximizing the delay-limited

capacity and minimizing the outage probability. A hybrid

satellite–terrestrial network to assist 5G infrastructure has been

analyzed by considering only one spotbeam [12], [13]. In

[14], the outage probability of a satellite-based IoT network,

in which the LEO satellites relay the data to the ground

stations, is derived in closed form by assuming a low number

of satellites at the known locations.

Only recently, more research based on stochastic geometry

of LEO networks has started emerging. In our seminal study

[15], generic performance of satellite networking without

resorting to explicit orbit simulations and the actual geometry

of any specific constellation has been formulated by assuming

uniform distribution for satellites. Due to the fact that satel-

lites in practical constellations are distributed unevenly along

different latitudes [16], i.e., the number of satellites on the

inclination limits is greater than on equatorial regions, the

density of practical deterministic constellations is typically

not uniform. In [15], [16], we compensated for this mismatch

by derivation of a new parameter called effective number of

satellites. In [17], stochastic geometry is utilized to derive

the coverage probability of a LEO network, where satellite

gateways act as relays between the satellites and users. Unlike

in [15], the satellites are assumed to be placed at different

altitudes. The uplink communication scenario is characterized

by considering interfering terrestrial transmitters in [18].

In this paper, downlink and uplink coverage probability

and data rate of inclined LEO constellations are analyzed

under a general shadowing and fading propagation model.

Unlike in [15]–[17], the satellites’ positions are assumed to

be distributed as a nonhomogeneous Poisson point process

(NPPP), which models the actual distribution of satellites

along different latitudes more precisely by selecting the proper

intensity. Finally, the mathematical expressions are verified

through simulations and the main findings of this paper are

demonstrated for different network parameters, e.g., altitude,

inclination angle, user’s latitude, and minimum elevation angle

required for a satellite to be visible to the user.

The organization of the remainder of this paper is as

follows. Section II describes the system model as well as the

mathematical preliminaries for modeling a LEO network as

an NPPP. Performance analysis of a LEO network in terms

of coverage probability and average data rate is provided

in Section III. This is followed by the numerical results in

Section IV. Finally, the paper is concluded in Section V.



II. SYSTEM MODEL

The studied network model in this paper is a massive LEO

communication satellite constellation, as shown in Fig. 1, that

consists of N satellites distributed uniformly on low circular

orbits with inclination angle, ι, and altitude denoted by rmin.

The altitude parameter rmin has the peculiar subscript because

it specifies also the minimum possible distance between a

satellite and a user on Earth (that is realized when it is at the

zenith). The satellites’ coordinates in terms of their latitude

and longitude are denoted by (φs, λs).
User terminals are located on a specific latitude, denoted by

φu, on the surface of Earth with radius r⊕ ≈ 6371 km. The

wireless transmissions propagate to/from a user from/to all and

only the satellites that are elevated above the horizon to an

angle of θs ≥ θmin. Smaller values for θmin result in a more

drastic path loss due to the greater distance between a user

and a satellite. Correspondingly, rmax denotes the maximum

possible distance at which a satellite and a user may be able to

communicate without terrain blockage (that is realized when

θs = θmin):

rmax

r⊕
=

√

rmin

r⊕

(

rmin

r⊕
+ 2

)

+ sin2(θmin)− sin(θmin). (1)

We assume an association policy where the user commu-

nicates with its nearest satellite that is referred to as the

serving satellite in what follows. The network performance can

be considered as noise-limited due to implementing resource

scheduling and co-channel interference mitigation properly.

The distances from the user to the serving satellite and the

other satellites are denoted by r0 and rn, n = 1, 2, . . . , N − 1,

respectively, while G0 and Gn represent the corresponding

channel gains. Shadowing effect is modeled by the random

variable Xn, where n = 0, 1, . . . , N − 1. Obviously, Xn =
Gn = 0 if rn > rmax for some n = 0, 1, . . . , N − 1.

Based on the described system model, the signal-to-noise

ratio (SNR) at the receiver can be expressed as

SNR =







psG0X0r
−α
0

σ2
, r0 ≤ rmax,

0, otherwise,
(2)

where ps is the transmission power of the serving satellite.

We assume that the user’s receiver is subject to additive white

Gaussian noise with constant power σ2, and the parameter α

is a path loss exponent.

In the satellite constellation described earlier, the satellites

are distributed unevenly along different latitudes which means

that there are more visible satellites for a user located close to

inclination limits than for a user on equatorial region. In order

to model the latitude-dependent distribution of satellites, we

assume that N satellites are distributed according to an NPPP,

ξ, on a sphere with radius r⊕ + rmin. The void probability on

some bounded surface area A on the sphere is given by

P(ξ(A) = 0) (3)

= exp

(

−
∫∫

A
δ(φs, λs) (rmin + r⊕)

2 cos(φs) dφsdλs

)

,

User

Satellite

User

Satellite

Fig. 1. System model for N satellites distributed uniformly over inclined
orbits (polar orbits with ι = 90

◦ inclination in this example).

where δ(φs, λs) is the intensity function of the NPPP at latitude

φs and longitude λs.

Lemma 1. When satellites are distributed uniformly on low

circular orbits with the same inclination angle, ι, and altitude,

rmin, the intensity function of the NPPP is given by

δ(φs) =
N√

2π2(rmin + r⊕)2
· 1
√

cos(2φs)− cos(2ι)
, (4)

and we can denote δ(φs, λs) = δ(φs) since it does not depend

on λs, for φs ∈ [−ι, ι].

Proof. For any longitude λs, the intensity function is equiva-

lent to the actual density of the satellites on a sphere surface

element at latitude φs that can be written as

δ(φs) =
NfΦs

(φs) dφs

2π(rmin + r⊕)2 cos(φs) dφs
, (5)

where the nominator and denominator represent the number of

satellites resided in the surface element and its surface area,

respectively. Substituting the probability density fΦs
(φs) of

random latitude Φs [16, Lemma 2] completes the proof.

III. PERFORMANCE ANALYSIS

In order to contribute expressions for coverage probability

and average achievable rate, we model the satellite network as

a nonhomogeneous Poisson point process with intensity given

in Lemma 1. Towards this, we need first to characterize some

basic distance distributions that stem from the geometry of the

considered system model.

A. Distance to the Serving Satellite

We express the probability density function (PDF) of the

distance to the nearest satellite in the following lemma. The



functions are required for the derivation of the studied perfor-

mance metrics in the following subsections.

Lemma 2. The PDF of the random serving distance R0 when

the satellites are distributed according to a nonhomogeneous

PPP with intensity δ(φs, λs), is given by

fR0
(r0) = 2r0

(

rmin

r⊕
+ 1

)
∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

δ(φs) cos(φs)

× 1
√

cos2(φs − φu)− cos2(θ0)
dφs

× exp

(

− 2(rmin + r⊕)
2

∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

δ(φs) cos(φs)

× cos−1

(

cos(θ0)

cos(φs − φu)

)

dφs

)

(6)

for r0 ∈ [rmin, 2r⊕+ rmin] while fR0
(r0) = 0 otherwise. The

polar angle difference between the serving satellite and the

user is θ0 = cos−1
(

1− r2
0
−r2

min

2(rmin+r⊕)r⊕

)

.

Proof. For a nonhomogeneous PPP, the CDF of R0 can be

written as

FR0
(r0) = 1− P(R0 > r0) = 1− P(ξ(A) = 0) (7)

where P(ξ(A) = 0) is the void probability of PPP given in

(3) and A is the shaded cap above the user shown in Fig. 1.

According to (3), by integrating from the intensity over the

spherical cap above the user, we have

FR0
(r0)

=1− exp

(

−
∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

β(φs)δ(φs)(rmin + r⊕)
2
cos(φs)dφs

)

(a)
=1− exp

(

− 2 (rmin + r⊕)
2
∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

δ(φs) cos(φs)

× cos−1

(

cos(θ0)

cos(φs − φu)

)

dφs

)

, (8)

where β(φs) is the longitude range of the red surface element

in Fig. 1 and (a) follows from substitution of β(φs) using the

basic geometry. Taking the derivative of (8) with respect to r0
completes the proof of Lemma 2.

Lemma 3. The PDF of the serving distance R0 when the

satellites are distributed uniformly with constant intensity δ =
N

4π(rmin+r⊕)2 , is given by

fR0
(r0) =

Nr0

2r⊕(rmin + r⊕)
exp

(

−N

(

r20 − r2min

4r⊕(rmin + r⊕)

))

(9)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR0
(r0) = 0 otherwise.

Proof. The proof follows the same principles as the proof

of Lemma 2. However, the integration from a constant den-

sity over the cap will reduce to a simple expression. Thus,

FR0
(r0) = 1−exp

(

−N
(

r2
0
−r2

min

4r⊕(rmin+r⊕)

))

. Taking the deriva-

tive of the CDF with respect to r0 completes the proof.

B. Coverage Probability and Average Data Rate

The following performance analysis in terms of coverage

probability and average data rate holds for both downlink and

uplink communication directions. Furthermore, it is presented

under general shadowing and fading distributions so that any

specific scenario can be covered by appropriate choice of

fX0
(x0) and FG0

(g0), respectively, e.g., Rician fading with

lognormal shadowing in our numerical results.

Let us first derive the coverage probability of the LEO

satellite network for a user in an arbitrary location on Earth.

The performance measure of coverage probability is defined

as the probability of having at least the minimum SNR

required for successful data transmission. Thus, the coverage

probability is defined as

Pc (T ) , P (SNR > T ) = P

(

psG0R
−α
0

σ2
> T

)

, (10)

where σ2 is additive noise with constant power, and α repre-

sents exponent of path loss.

Proposition 1. The probability of coverage for an arbitrarily

located user under general shadowing and fading is

Pc (T ) , P (SNR > T )

=

∫ rmax

rmin

∫ ∞

0

fX0
(x0)fR0

(r0)

(

1− FG0

(

Trα0 σ
2

psx0

))

dx0dr0,

(11)

where fR0
(r0) is given in Lemma 2 or Lemma 3 and fX0

(x0)
is the PDF of X0.

Proof. To obtain (11), we start with the definition of coverage

probability:

Pc (T ) = ER0
[P (SNR > T |R0)]

=

∫ rmax

rmin

P (SNR > T |R0 = r0) fR0
(r0) dr0

=

∫ rmax

rmin

P

(

G0X0 >
Trα0 σ

2

ps

)

fR0
(r0) dr0. (12)

The upper limit for the integral is due to the fact that the

satellites with smaller than θmin elevation angle have no

visibility to the user. The proof is completed by substitution of

the product distribution of two independent random variables

in (12).

The average achievable data rate (in bit/s/Hz) of an arbitrary

user over generalized fading channels and shadowing can be

derived in the following proposition.

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily

located user and its serving satellite under general shadowing

and fading assumption is

C̄ , E [log2 (1 + SNR)]

=
1

ln(2)

∫ rmax

rmin

∫ ∞

0

∫ ∞

0

fX0
(x0)

(

1− FG0

(

rα0 σ
2

ps

(

et − 1
)

))

× fR0
(r0) dx0dtdr0. (13)



TABLE I
SIMULATION PARAMETERS

Parameters Values

Path loss exponent, α 2

Rician factor, K 100

Transmission power, ps (W) 10

Noise power, σ2 (dBm) -103

User’s latitude, φu (degrees) 61.5

Mean and standard deviation of lognormal 0, 9
distribution: µs (dB), σs (dB)

Proof. Taking the expectation over serving distance and chan-

nel gain, we have

C̄ = EG0,X0,R0
[log2 (1 + SNR)]

=
1

ln(2)

∫ rmax

rmin

E

[

ln

(

1 +
psG0X0r

−α
0

σ2

)]

fR0
(r0) dr0

(a)
=

1

ln(2)

∫ rmax

rmin

∫ ∞

0

P

[

ln

(

1 +
psG0X0r

−α
0

σ2

)

>t

]

fR0
(r0) dtdr0

=
1

ln(2)

∫ rmax

rmin

∫ ∞

0

P

[

G0X0 >
rα0 σ

2

ps

(

et − 1
)

]

fR0
(r0) dtdr0,

(14)

where (a) follows from the fact that for a positive random

variable X , E [X] =
∫

t>0
P (X > t) dt.

IV. NUMERICAL RESULTS

In this section, we corroborate our analytical findings

through Monte Carlo simulations. The propagation model

takes into account the large-scale attenuation with path loss

exponent α = 2, the small-scale Rician fading with param-

eter K = 100, and lognormal shadowing. As a result, the

corresponding channel gains, Gn, (being the square of the

Rice random variable) have a noncentral chi-squared distri-

bution, χ2, with two degrees of freedom and non-centrality

parameter 2K. Therefore, the CDF in Propositions 1 and 2 is

FG0
(g0) = 1 − Q1

(√
2K,

√
g0

)

, where Q1(·, ·) denotes the

Marcum Q-function. The lognormal shadowing is represented

as X0 = 10X0/10 such that X0 ∼ N (µs, σs), where N is a

normal distribution with µs and σs being its mean and standard

deviation in decibels. Thus, the PDF of lognormal shadow-

ing is fX0
(x0) =

10
ln(10)

√
2πσsx0

exp

(

− 1
2

(

10 log
10

(x0)−µs

σs

)2
)

.

The simulation parameters are given in Table I.

Figure 2 verifies the coverage expression given in Propo-

sition 1, considering different altitudes for N = 648 and

ι = 90◦. The user is assumed to be at Tampere, Finland

(φu = 61.5◦). As shown in Fig. 2, the simulation results

(markers) are perfectly matched with the analytical expression

(lines) given in Proposition 1. With increasing the altitude,

coverage decreases accordingly due to more drastic path loss

for larger distances. The effect of shadowing on coverage

probability is ambiguous. As it is shown in the figure, as the

chance of the user being in outage increases, shadowing affects

the coverage probability more positively, the reason being that

shadowing randomness increases the chance of a user with

poor SNR to be in coverage. It can be also interpreted that
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Fig. 2. Verification of Proposition 1 with simulations when K = 100, ι =
90

◦, rmin ∈ {500, 1000, 1500} km, φu = 61.5◦, and θmin = 10
◦.

user association techniques based on maximum received signal

are able to considerably improve the coverage probability.

Validation of data rate given by Proposition 2 is shown in

Fig. 3 for different minimum elevation angles. The data rate

decreases with increasing the minimum elevation angle due to

a reduction in the chance of satellite visibility to the user. For

smaller values of θmin, the data rate increases by decreasing

the altitude due to the reduction in path loss. However, as θmin

increases, the higher altitudes result in a higher data rate since

the visibility probability increases by rising the altitude.

Coverage probability and data rate versus altitude for

different users’ latitudes, satellites’ inclination angles, and

minimum required elevation angles are depicted in Figs. 4

and 5, respectively. Starting from very low altitudes, coverage

probability and data rate improve with increasing the altitude

since a better chance of line-of-sight is attained for the serving

satellite which is then followed by a decline caused by more

severe path loss in higher altitudes. In both plots, the optimum

altitude increases with rising the minimum elevation angle

while the maximum achieved coverage and rate decrease

accordingly. Moreover, smaller inclination angles result in a

superior performance due to the higher density of satellites

and, therefore, the existence of a stronger serving channel.

V. CONCLUSIONS

In this paper, we studied the performance of low Earth orbit

satellite networks in a more generic form comparing with

the existing literature on this topic. The satellite network is

modeled as a nonhomogeneous Poisson point process which

models the uneven distribution of satellites along different

latitudes with its intensity being a function of satellites’ actual

distributions. Utilizing such a model for satellites’ locations

facilitates derivation of the coverage probability and data rate

of an arbitrary user under general fading and shadowing. The

proposed analysis paves the way for a more reliable integration

of the LEO networks and the existing cellular network in 6G.
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Fig. 3. Verification of Proposition 2 with simulations when K = 100, ι =
90

◦, rmin ∈ {500, 1000, 1500} km, φu = 61.5◦, and θmin = 10
◦.
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Fig. 4. Coverage probability for different altitudes when K = 100, T =

10 dB, and ι = {90◦, 70◦}.
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