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Abstract—Clock offset predictions along with satellite orbit
predictions are used in self-assisted GNSS to reduce the Time-
to-First-Fix of a satellite positioning device. This paper compares
three methods for predicting GNSS satellite clock offsets: poly-
nomial regression, Kalman filtering and support vector machines
(SVM). The regression polynomial and support vector machine
model are trained from past offsets. The Kalman filter uses
past offsets to estimate the clock offset coefficients. In tests
with GPS and GLONASS data, it is found that all three
methods significantly improve the clock predictions relative to
extrapolation with the basic clock model of the last obtained
broadcast ephemeris (BE). In particular, the 68% quantile of
7 day clock offset errors of GPS satellites was reduced by 66%
with polynomial regression, 69% with Kalman filtering and 56%
with SVM on average.

I. INTRODUCTION

A satellite positioning device needs the data of the broadcast
navigation message from at least four satellites to compute the
first position fix [1]. However receiving these messages can
take at least 30 seconds, and much more in nonideal signal
propagation conditions. In very harsh radio environment, it
may happen that due to the signal attenuation or severe
multipath, the receiver cannot demodulate the orbital and clock
data at all. In addition, some low-energy IoT devices are not
designed to perform the energy consuming data demodulation
from GNSS signals. Assistance methods are used to reduce
this Time-to-First-Fix (TTFF) or to recover from the inability
to receive navigation data directly from the satellite signals[2].
With these methods, the device only needs to receive satellites’
ranging signal; the orbital parameters and clock parameters it
obtains some other way. One option is to download the param-
eters from a server. Then, methods such as real-time precise
point positioning (PPP) [3] or assistance data from a provider
of Secure User Plane Location (SUPL) services [4] can be
used. Assistance provided over a network connection may
however not be feasible, for example if Internet connection
is unavailable or too expensive. Here we study the problem
where we assume that no Internet connection is available or the
user doesn’t want to use it and the broadcast ephemeris (BE) is
only occasionally available. In this case, the alternative is self-
assisted ephemeris extension, where the broadcast parameters
are computed on the device using prediction models applied to
previously received broadcast data. This requires the prediction
of both orbital and clock parameters over longer periods than
the lifetime of the broadcast message. For applications like

PPP, whose goal is accurate positioning, prediction is done
over relatively short-term ranging from a few minutes up to
24 hours [5], [6], [7]. For improving the TTFF, accuracy
requirements are less stringent but prediction is needed over
much longer terms: typically up to two weeks for orbital
parameters and four weeks for clock offsets. This study is
concerned with the latter problem.

Both orbit and clock parameters need to be predicted,
but this work will focus on clock offset predictions. In [8],
methods for predicting GNSS satellites’ orbit and clock offset
are presented. The satellite’s orbit is predicted by numerically
integrating its equation of motion. In [9], Kalman filtering
is used to estimate and predict the clock offset behaviour.
In [10] and [11] more advanced methods for orbit prediction
were presented, which motivates the study of more advanced
models for clock offset prediction. These methods improve
the orbit prediction enough for the error in clock prediction
to be the dominating error in the user position estimate.
This motivates further study of clock prediction methods for
ephemeris extension. Increasing the time span over which
clock prediction error is acceptably small also reduces the
computational cost of the ephemeris extension system, because
clock parameters won’t need to be updated as often as the
orbital parameters.

Atomic clocks aboard the satellite have synchronization
errors with respect to the GNSS time scale, known as clock
offsets. Some of the error in the clock offset is caused by the
discretization of the data for bit allocation. Despite the accu-
racy of the atomic clocks aboard GNSS satellites, the clocks
drift from GNSS time. The clocks aboard GNSS satellites are
also affected by relativistic effects and by the age of the clocks.
The navigation messages broadcast by satellites include the
coefficients of polynomial models of the clock offset as a
function of time [12]. Because the navigational messages are
valid for only a few hours, a single set of coefficients is not
accurate enough to be used for ephemeris extension, which
needs predictions valid for days or even weeks. Thus different
approaches for predicting the clock offsets are presented in
this paper.

Clock offset prediction is basically a time series forecasting
problem. In this paper, we propose three methods. One is an
extension of the Kalman filter approach [9]; the others are
polynomial regression and a support vector machine algorithm.
Similar methods have been researched for real-time PPP.
Polynomial fitting is used for the short-term prediction of the
satellite clock offset for example in [5]. In [13] a Kalman978-1-7281-2445-2/19/$31.00 c©2019 IEEE



filtering solution for short-term predictions is studied. Least-
squares support vector machine (LSSVM) approaches are
studied in [6], [7]. The first paper uses LSSVM to predict
clock bias up to 6 hours and the other uses a combination of
polynomial fitting and LSSVM for predictions up to 24 hours.
Both of the LSSVM methods use precise clock solutions
as initial data. Methods are tested for GPS and GLONASS
satellites, which cover different satellite generations, ages and
clock types.

In the recent paper [14] various long-term prediction meth-
ods are presented. Their methods use precise clock products as
the input data whereas we use broadcast data. We will compare
the results of our methods with the results of their methods.

This article is structured as follows. In Section II the
clock offset models and prediction methods are presented. In
Section III the empirical testing setup and performance of the
prediction methods are presented. In Section IV, we conclude
the article.

II. CLOCK MODELS AND PREDICTION

In this section, we present the mathematical models we use
in the extended prediction of the satellite clock offset.

A. BE clock correction model

The GPS broadcast ephemeris message, updated every 2
hours, includes three coefficients for calculating clock offset.
In Figure 1 are two examples of clock offset data behaviour.
The clock offset τ at a time t is described by a second order
polynomial

τ(t) = a0 + a1(t− ttoe) + a2(t− ttoe)
2, (1)

where ttoe is the time of ephemeris, i.e. the midpoint of the
4-hour validity interval of the BE. The coefficients a0, a1 and
a2 are called the offset, the frequency bias and frequency drift,
respectively [12].

Broadcast messages of GLONASS satellites are updated
every half hour, and include only two clock offset coefficients,
−a0 and a1. The clock model is

τ(t) = a0 + a1(t− ttoe). (2)

Although it is not recommended, it is possible to use the
polynomial (1) or (2) with the coefficients from the last
obtained BE message to predict clock offsets beyond the time
interval of validity. In the following, we refer to this practice
as the basic clock model.

B. Polynomial regression

If a set of n BE messages collected over several days is
available, a function can be fitted to them and used to predict
future offsets. For GPS, we fit a second order polynomial of
the form (1) with ttoe = tn, which is the last collected BE.
The linear regression model for fitting the polynomial model
to the BE offsets is then
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Fig. 1: Examples of clock offset behaviour as a function of
time. In the upper figure we see regular behaviour and in the
lower we see an example of a 50 ms jump in the data. A
clock offset of 50 ms corresponds to 15 km offset in satellite
position.

τ(t1)
...

τ(tn)

 =


1 t1 − tn (t1 − tn)2

...
...

...
1 tn−1 − tn (tn−1 − tn)2

1 0 0


a0

a1

a2

+

ε1

...
εn

,
(3)

where ti is the ttoe of the ith BE message and εi is random
error.

Equation (3) can be expressed as

τ = Xa + ε. (4)

The least squares solution [15, p. 121-122] of (4) is

â = (XTX)−1XT τ . (5)

For fitting we use BE messages that are 12 hours apart. For
GLONASS, a first-order polynomial is fitted, because it fits the
data about as well as a second-order polynomial. The fitting
equation is obtained by omitting a2 and the third column of
X in (4).

C. Kalman filter

A Kalman filter [15] can be used to reduce the noisiness
of the broadcast clock parameters time series, as follows.
The evolution of clock parameters is assumed to follow the
polynomial models presented in section A. For GPS, the
dynamic clock model has a state vector xk that consists of
clock offset τk, frequency bias bk and frequency drift dk. The
state evolution is written as
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where wk is process noise, which is assumed to be white and
normally distributed with zero mean and covariance matrix
Qk [16]. ∆tk is the time between k + 1 and kth broadcast
message updates. Similarly for GLONASS satellites the state
evolution without frequency drift is

xk+1 =

[
τk+1

bk+1

]
=

[
1 ∆tk
0 1

] [
τk
bk

]
+ wk. (7)

Covariance matrix Qk is obtained by the discretization of
the stochastic differential equation of the clock evolution. We
have simplified the model presented in [16] by assuming that
all of the error in the state is caused by clock drift. This allows
the model to have only one process noise parameter instead
of three. Covariance matrix Qk for GPS satellites is

Qk = q
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where q > 0 is the process noise parameter. For GLONASS
satellites the covariance matrix is

Qk = q

[
∆t3k

3
∆t2k

2
∆t2k

2 ∆tk

]
. (9)

Details of the derivation of (9) are given in [16]; the
derivation of (8) is similar.

The clock offsets from the broadcasts are treated as mea-
surements. It is assumed that the BE clock offset values are
not completely accurate. The measurement model for GPS is
assumed to have the form

yk = a0,k =
[

1 0 0
]
xk + vk, (10)

where vk is the measurement noise, which is assumed to be
white and normally distributed with zero mean and variance
R. For GLONASS the measurement model is assumed to be

yk = −a0,k =
[

1 0
]
xk + vk. (11)

A Kalman filter based on these dynamic and measurement
models is used to compute the posterior distribution of the
clock parameters. The Kalman filter algorithm is described
for example in [15, p. 217]. The initialization of the Kalman
filter is done with the information filter [15, p. 239] for the
first three steps, since initial covariance and frequency drift
are not known.

Parameters R and q are chosen using historical broadcast
ephemeris data and grid search. Parameters are optimized by
predicting the clock using different combinations of parame-
ters. Parameters with minimum prediction error are chosen
for tests. These parameters can be different depending on
the satellite, because of the different stability and age of the
clocks. Two combinations of parameters were found the best
for prediction with GPS satellites. For all of the satellites
process noise parameter is q = 10−47. Measurement noise
variance is R = 10−17 for about half of the satellites
and R = 10−18 for the rest. For all GLONASS satellites
measurement noise variance is R = 10−17 and process noise
parameter q varies from 10−38 to 10−31.

D. Least squares support vector machine

Least squares support vector machines (LSSVM) are least
squares solutions of the optimization problems in support
vector machines. In LSSVM the solution to the optimization
problem is found by solving a set of linear equations instead
of solving a quadratic programming problem, as in standard
SVMs. [17]

The input t of LSSVM is a set of N reference ephemeris
epoch times associated with clock offset parameter a0 obtained
from broadcast ephemeris data and the output set is the a0

parameters. The time inputs are standardized with mean and
standard deviation of the input values to make computation
numerically stable. Clock offset is predicted with

â0(t) =

N∑
i=1

αiKσ(t, ti) + b, (12)

where â0 is estimate of clock offset at time t, ti is the ith input
time and estimated parameters α and b are from the LSSVM.
Kσ(t, ti) is the Gaussian kernel with scalar inputs defined as

Kσ(ti, tj) = exp

(
− (ti − tj)2

2σ2

)
, (13)

where ti and tj are standardized time stamps and σ is a free
parameter.

The training of the LSSVM is done as follows. Let the train-
ing set be {ti, a0(i)}N , i = 1, 2, . . . , N , where N is number
of training points, ti ∈ R is input time and a0(i) ∈ R is the
BE clock offset at this time. The least squares formulation of
the support vector machine problem is presented in [18]. The
solution of the problem is given by[

b
α

]
=

[
0 1TN

1N Kσ + c−1I

]−1 [
0
a0

]
, (14)

where a0 is reference clock offset values and Kσ ∈ RN×N

is a kernel matrix with estimated σ and elements (Kσ)i,j =
Kσ(ti, tj) given by (13). This expression can be further
simplified using matrix inversion formulas and algebra:

b = (1TN (Kσ + c−1I)−11N )−11TN (Kσ + c−1I)−1a0 (15)

α = (Kσ + c−1I)−1(a0 − b1N ). (16)

Parameters c and σ are chosen in a similar way as with
Kalman filter parameters. Search for both parameters is done
with powers of ten. Parameters are constellation and satellite
specific.

III. TEST SETUP AND RESULTS

In this chapter, we explain the setup we used for our
simulations and present the results of the presented methods
for different GNSS constellations.



BE Polynomial regression KF LS
PRN Criterion (ns) 3 days 15 days 30 days 3 days 15 days 30 days 3 days 15 days 30 days 3 days 15 days 30 days

2 RMS 6.19 18.82 26.27 8.14 22.93 50.08 2.3 1.81 5.22 7.81 20.15 38.01
Range 9.78 30.79 34.26 7.81 38.03 89.13 3.73 5.98 17.81 7.49 31.89 59.55

5 RMS 9.58 85.53 266.2 4.97 19.29 43.75 1.92 6.87 11.79 1.24 7.85 37.59
Range 17.57 173.4 537.79 5.12 31.66 101.94 2.59 11.66 38.11 0.73 17.63 68.88

10 RMS 29.84 128.77 231.98 9.74 20.27 41.61 25.62 119.41 241.79 9.7 21.79 41.96
Range 51.78 218.72 353.76 27.56 51.3 161.48 45.51 211.01 406.0 27.91 52.61 164.05

27 RMS 6.06 30.02 67.45 5.79 22.94 48.18 5.08 22.49 49.11 5.54 20.3 36.33
Range 10.08 55.3 124.1 7.83 40.3 84.61 7.73 40.88 88.56 7.50 34.48 54.93

TABLE I: Table with results of individual predictions for four GPS satellites. Results are presented with RMS and range of
predictions in nanoseconds for different prediction lengths and methods.
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Fig. 2: Boxplots of quantiles of absolute error as a function of prediction length for GPS PRN 7 in meters with polynomial
fit, Kalman filter and LSSVM. Prediction lengths are split in two figures to better present the mid-term separately from the
long-term prediction. The upper and lower edges of the box show 68% and 32% quantiles respectively and the upper and
lower whiskers show 95% and 5% quantiles respectively. The median error is shown by the line inside the box. Extrapolated
last BE is not presented, to show the performance of other methods better. Extrapolated last BE has, for example 20.6 meter
68% quantile for 14 day prediction.

A. Testing setup
We predict the satellite clock offset using broadcast

ephemerides acquired from IGS products [19]. 28-day pre-
dictions are done with the basic clock model, regression
polynomial, the clock model with Kalman filtered coefficients
and the LSSVM. The latter three methods use data from 30
previous broadcasts 12 hours apart. Jumps in clock data, which
cause large errors in prediction accuracy are omitted. If a jump
in the clock data from BE is detected, the Kalman filter and
the LSSVM are reset and predictions are not made until at
least 30 new broadcasts are received. Because jumps are rare
and easily detected, they can similarly be omitted in practical
ephemeris extension system; there are almost always enough
other satellites for successful TTFF reduction.

Predictions are made during GPS weeks 1940 to 2000 with
equally spaced sampling instances, to match broadcast times.
The Kalman filter is updated with every available broadcast
while the regression polynomial and the LSSVM model are
updated every sixth broadcast for convergence on a larger
time interval. Non-equally spaced sampling instances would
be better to simulate the real usage of a positioning device
that in normal conditions doesn’t receive new information
every two hours. However having unequally spaced instances

makes LSSVM parameter estimation more unstable. LSSVM
and polynomial fitting are updated with the same ephemerides.
Different fitting periods, the number of inputs and kernel
functions can be an interesting research topic, but it is left
for future work.

The accuracy of the clock predictions is assessed by com-
paring the predictions with broadcast ephemerides related to
the predictions. Results are then presented as absolute error
in meters instead of seconds to allow easy comparison with
orbit prediction. For example, a two-week orbit prediction has
about 25 meters of signal-in-space range error [11]. We also
use 68% and 95% quantiles to show the results of the whole
constellation.

Method Time (ms)
Polynomial fit 0.095
Kalman filter 0.084
LSSVM 0.179

TABLE II: Average computation times of single prediction
step for different methods.

In Table II we present average computation times of predic-
tion steps for each method. Simulations were run with 64-bit
Matlab (R2018a) on MacBook Pro version 10.12.6. From the



table we can see that the LSSVM takes about twice the time
for prediction compared with other methods.

B. Results for GPS

For GPS, 31 of 32 satellites are available and only two of
these satellites have Cesium clocks and the rest have Rubidium
clocks [20]. The type of the clock affects the shape of the clock
offset. Offsets of Cesium clocks have linear behaviour and the
offset of Rubidium clocks have quadratic behaviour subject to
time. Some of the satellites with Rubidium clocks have linear
behaviour and will not be included in results. The broadcast
data is received from the IGS [19].

Jumps, that were over 1 µs, in clock data were detected in
some of the satellites. During these jumps a Notice Advisory
to Navstar Users (NANU) warning is issued, but NANU
messages are issued only a few days before the maintenance
itself. Thus the message doesn’t help if prediction is made
before the warning is issued. A jump of 1 µs in clock data
corresponds to about 3 kilometers of error in satellite orbit
prediction.

In the broadcast message of GPS satellites a2 coefficient
is usually set to zero which is sufficient for the 2 hour
prediction window it’s intended for. However, when predicting
for a longer time period, the 2nd order polynomial coefficients
computed by the Kalman filter are a better approximation
of the frequency drift. Thus Kalman filter gives significantly
better results than the basic clock model.

Generally, the performance of LSSVM is not good in
comparison with simpler methods such as polynomial fit and
Kalman filter. Kalman filter works well for most satellites,
since rubidium clocks show a quadratic behaviour on the clock
offset data, and thus the estimate of frequency drift is helpful.
This estimate is also useful for detecting changes in clock
data more accurately. Figure 2 shows the general results of
the clock predictions with the presented methods. In general,
the Kalman filter performed the best of the tested methods,
with polynomial fit somewhat worse than the Kalman filter
and LSSVM the worst.

In [14] Jigang et al. present and compare 7 methods for
mid and long-term prediction. They presented results for four
satellites with root mean square (RMS) error and range of
individual predictions made at the start of the year 2015,
for the prediction lengths of 1, 3, 15, 30 and 60 days. For
comparison purposes we show results for prediction lengths
3, 15 and 30 days for the same time of ephemeris in Table
I. Note that they use precise clock products for prediction
and we use broadcast clock products which explains some
of the difference between our and their methods. Results for
our methods are in the same scope of error as their methods
with the exception of PRN 10 with Kalman filter, which is in
bold in the Table. With these individual predictions, LSSVM
performs better than polynomial regression, but worse than
KF. The results presented earlier in Figure 2 and in Table III
include more satellites with more comprehensive tests. Testing
with more satellites and initial time of ephemerides give better
view of relative accuracies.

The parameter optimization of LSSVM is sensitive to
changes which causes some of the errors of the model. The
same parameter values won’t last for long and should be
updated biannually or after a jump is detected.

C. Results for GLONASS

GLONASS has 24 available satellites from the same testing
period as for GPS. Most GLONASS satellites have Cesium
clocks, which have approximately linear behaviour of clock
offset data. Despite having Cesium clocks, some of the clock
offsets have quadratic behaviour. Again, jumps in clock data
have been removed from the results to show general perfor-
mance.

For some GLONASS satellites, the frequency bias coef-
ficient has been set to zero, which causes high errors with
the basic model for longer prediction intervals. The frequency
bias given in broadcast message is sufficient for thirty minute
intervals, but the Kalman filter again gets better results than the
basic clock model for longer prediction lengths. The general
results of GLONASS clock prediction can be seen in Figure
3 and Table III.

All of the methods improve the prediction accuracy almost
the same amount on average. Kalman filter performs the best
of the tested methods. Most of the GLONASS satellites have
linear trend in clock offset data, thus the nonlinear model
of LSSVM was expected to perform worse, but surpassed
expectations by getting similar results as other methods.

IV. CONCLUSIONS

In this paper, we presented three methods of predicting the
clock offset of GPS and GLONASS satellites. Our results show
that the basic clock model can be improved on with different
methods. Kalman filter is computationally efficient and for
an update requires the newest BE and state of the previous
step. LSSVM is more inefficient in computation time and
requires 30 previously received BEs for an estimate. LSSVM
also gets worse results than a polynomial fit of the same input
points for GPS satellites. LSSVM could possibly be better for
interpolation tasks, instead of extrapolation. All three methods
improve accuracy from the basic clock model for most GPS
and GLONASS satellites. Further research is needed for the
inclusion of other GNSS constellations.
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