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Abstract: A vertical external-cavity surface-emitting laser (VECSEL) with a twisted-mode 
configuration is demonstrated. This architecture is particularly advantageous for power 
scaling of single-frequency VECSELs employing multiple gain mirrors in folded cavities. In 
such a configuration, some of the gain mirrors are inherently at the fold, and the lasing 
spectrum becomes unstable. This is caused by four waves interfering, destabilizing the 
standing wave pattern at the quantum wells. We show that the lasing spectrum can be 
narrowed by employing a twisted-mode configuration, which stabilizes the standing-wave 
pattern at the gain mirror. Furthermore, single-frequency output of more than 10 W at 1178 
nm is demonstrated for a VECSEL employing two gain mirrors in a standing-wave cavity. In 
comparison, the output power for operation with one gain mirror only was 7.4 W when 
operating in single frequency. The choice of wavelength for the work reported in this paper is 
motivated by the opportunity to demonstrate compact VECSEL-based guide star lasers for 
adaptive optics via frequency doubling to the sodium D2 resonance at 589 nm. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 

Vertical external cavity surface emitting lasers (VECSELs) operating at 1178 nm are 
attractive solutions for the development of laser guide star technology because of their 
simplicity [1,2] compared to alternate guide star technologies; a solid-state-laser approach [3] 
(sum-mixing between Nd:YAG lasers at 1064 nm and 1319 nm) has shown scalability but 
requires two separate lasers to be controlled. The fiber amplifier approach [4-6] yields 
substantial power at 1178 nm, which can be directly doubled to 589 nm, but requires an 
amplifier design that suppresses the stimulated Brillouin scattering that limits the output 
power in single frequency. 

Target specifications for laser guide stars require the wavelength to match the sodium D2a 
line, which translates to a wavelength of 589 nm at a linewidth less than 1 GHz. Desired 
power levels exceed 20 W [5,6]. To date VECSELs have demonstrated the ability to meet 
these targets yet they are still far from being adopted as guide star technology. Some of the 
most relevant experiments towards this goal are the demonstration of single-frequency 
operation with >20 W of output power at 1013 nm [7], demonstration of 20 W emission at 
590 nm wavelength range using intra-cavity SHG [8], and the recent power record of 72 W 
for emission at 1180 nm [9] using an intracavity diamond heatsink; although this last result 
concerns multimode operation, it demonstrates the maturity of the gain-mirror technology for 
this wavelength range. 

In general, the output power of VECSELs can be scaled to multiple tens of watts and 
beyond by enlarging the spot size, so called “lateral scaling” [10], or then by using multiple 
gain mirrors in one cavity, so called “longitudinal scaling” [11]. Longitudinal scaling 
distributes the heat dissipation over multiple devices, reducing the requirement for heat 
removal for the individual devices. In the case of longitudinal scaling, at least one VECSEL 
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approximately 10 degrees, and has a nominal spot size of 150 μm in radius. Because of the 
fairly small angle of incidence, the pump spot is only slightly elliptic (longer in the horizontal 
direction). 

For wavelength filtering, we inserted a 3 mm thick uncoated quartz birefringent filter and 
a 0.5 mm thick uncoated fused silica etalon inside the cavity. We added an uncoated silica 
plate as an adjustable Brewster’s window to use as a variable output coupler. With up to 30 W 
of pump power at 808 nm, we observed 3.7 W of single-ended output, resulting in 7.4 W total 
single frequency output in two beams. The output coupling was estimated to be about 3%. 

 

Fig. 3. Schematic of the folded VECSEL cavity with twisted-mode configuration. Letters in 
gray indicate the nominal dimensions. 

Figure 4 illustrates the effectiveness of the technique. The mode structure is shown as 
observed with a scanning confocal Fabry-Perot interferometer (THORLABS SA210-8B, FSR 
= 10 GHz, finesse >150) in the twisted-mode configuration (Fig. 4a), with the QWP rotated 
so that the mode is not twisted (Fig. 4b), and QWPs taken out of the cavity (Fig. 4c). These 
screenshots were taken without averaging on the oscilloscope. With no QWPs, the mode 
structure is uncontrolled. With the incorrectly oriented QWPs, the structure is not improved, 
but output is greatly reduced. By contrast, in the twisted-mode configuration, the linewidth is 
below the resolution of the interferometer, which is 67 MHz. 

 

Fig. 4. Longitudinal mode observation on a scanning Fabry-Perot interferometer with 10 GHz 
FSR and 67 MHz resolution. (a) twisted-mode cavity, (b) QWP rotated, (c) no QWP in cavity. 

In the longitudinal scaling experiment, the flat end mirror was replaced with another 
VECSEL device. This second device experiences only two-wave interference so the standing 
wave pattern is that of a normal VECSEL with a single device at the end. The longitudinal 
mode behavior is therefore unaffected. With two gain mirrors in the cavity, pumped at the 
same power 30 W at 808 nm, we have observed a total output power of 10.1 W in single 
frequency at 1178 nm. The lasing spectrum of the two-device VECSEL is shown in Fig. 5. 
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The laser operates in single frequency, and the spectral linewidth in Fig. 5 is again limited by 
the resolution of the spectrum analyzer. 

 

Fig. 5. Lasing spectrum of 2-devices VECSEL at 1178 nm. 

4. Summary 

We have presented longitudinal power scaling of a VECSEL with twisted-mode 
configuration, and demonstrated 10.1 W single frequency output at 1178 nm with a two-gain 
mirror VECSEL. One gain mirror was placed at the fold and the other at the end of the cavity. 
By contrast, the output power from a cavity with only one device at the fold was measured as 
7.4 W in single frequency. The effectiveness of mode-twisting combined with longitudinal 
scaling was clearly demonstrated by rotating the QWP and observing the single-mode 
behavior with a scanning Fabry-Perot interferometer. 
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