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Abstract—Improperly turned off sink and shower faucets,
leaking toilets, and faults in pipes can cause significant expenses
in increased water bills, and cause even more serious problems
if water finds its way inside building structures. Today, many
kinds of sensor systems can be used to send data to the internet
from a multitude of environments, and the collected data can be
processed with algorithms to find anomalies. This paper presents
a prototype for measuring ambient room temperature and water
pipe temperatures. As an example case, this paper shows how
the wireless temperature measurement prototype can be used
to detect water flow within the pipes. The flow detection could
be used, for example, for finding faults in water applications
and devices. This papers describes the basic operating principle
for the prototype, the initial findings, challenges and future
directions, and introduces a technical solution for executing the
prototype software within an NB-IoT module without the need
to utilize a separate microcontroller or small computer.

Index Terms—NB-IoT, water usage, sensors, prototypes

I. INTRODUCTION

Today, different kinds of sensor systems send data to the
internet from various environments. The collected data could
be processed using algorithms to find anomalies. This study
presents one way to collect, process, and visualize simple data
to help real property control and maintenance.

The main idea of the research is to collect data from the
surface of water pipes by measuring the temperature changes
within a certain timeline. The collected data is sent to the
cloud service without modification or processing. In the cloud
service the data are processed with the main purpose of finding
water leaks. Further, the gathered data are visualized for testing
purposes.

This study belongs to Internet of Things (IoT) related re-
search, carried out by the Software Engineering and Intelligent
Systems (SEIntS) group at Tampere University (TAU), Pori.
In our earlier study [1], we focused on rapid prototyping with
off-the-shelf devices and open source software. [oT prototypes
with wireless sensor networks (WSN) have been built for
testing the prototypes and collecting the data.

The Internet of Things (IoT) is the expansion of Internet ser-
vices, which connects everyday physical objects to a network.
The areas of IoT have been clarified in a survey [2]. A crucial
part of IoT is the sensor networks and especially Wireless
Sensor Networks, whose basic features have been collected
in a study [3]. WSN and conventional sensor networks use
several possible technologies for data transfer. The low bit
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rate environmental data (Temperature, humidity e.g.) can use
the Low Power Wide Area Network (LPWAN) technologies
[4], such as LoRa [5] or NB-IoT [6].

This research project uses cost-effective off-the-shelf de-
vices to build data gathering prototypes. The devices for the
prototype are selected with low power features - the sensor
nodes are designed to work with batteries. This feature has
also affected the software which has been developed for data
gathering and transfer. The data transfer from the sensors uses
Narrowband Internet of Things (NB-IoT) Low Power Wide
Area Network (LPWAN) radio technology. The research study
uses new loT technology for testing with the aim of gathering
data. In addition, data processing and the visualization aspect
are addressed.

The rest of the paper is structured as follows: Section II
discusses the basic operating principle of the prototype system
and the collected data. Section III describes the developed
data gathering prototype system and its hardware and software
components. Section I'V discusses the findings made during the
research. The testing environment is also described. Finally,
section V summarizes the main conclusions of the research.

II. DATA

Improperly turned off sink and shower faucets, leaking
toilets, and faults in pipes can cause significant expenses
in increased water bills, and can even cause more serious
problems if water finds its way inside building structures.
In our use case, the goal was to detect water usage in the
campus of Satakunta University of Applied Sciences located
in Rauma, Finland. Nowadays, water leak detectors that can be
installed in the main water meters are available from various
commercial companies, but these can, in general, only detect
overall leaks, and cannot pinpoint the location of the leak -
as was the case with the main campus building. Especially
in larger building complexes, even a rough estimate of the
location of the leak can be helpful. Thus, we started to design
a prototype system that would require as few modifications
as possible to the existing water systems, and which could be
used to estimate where in the building the water consumption
(or leak) was taking place. To the best of our knowledge, the
building did not have any leaks per se, but these could be
simulated through test setups.



The basic operating principle is quite simple, and the
technical details for the prototype are described in more
detail in section III. The water systems in buildings consist
of hot and cold water pipes, which in general run in close
proximity to each other. When water flows within the pipes,
the temperature of the external surface of the pipe is close to
the actual temperature of the water flowing inside the pipe.
When the flow stops, the temperature of the pipe will start
to rise (in cold water pipes) or drop (in hot water pipes)
and will eventually reach the ambient temperature (e.g., room
temperature). Thus, by collecting temperature data from both
the cold and the hot pipes, and combining it with ambient
temperature measurements, it is possible to estimate whether
water is flowing inside the pipe. Or, as in this case, to detect
water leaks. Accurate temperature sensors are relatively cheap
by today’s standards, making it possible to install sensors
in multiple locations (or on multiple pipes). This would in
turn allow splitting larger buildings (or building complexes)
into smaller sections, which would help to locate possible
leaks - or sensors could be installed in locations that have
known water usage problems. Based on discussions with the
campus management personnel, the most common problems
in the campus were sink faucets in public restrooms that had
been only partly turned off. The second most common issues
were leaking showers in the gymnasium. Thus, our tests were
concentrated in the parts of the building complex where the
restrooms were located and in the gymnasium. Unfortunately,
because of the ongoing COVID-19 situation, the premises
were in minimum use hindering actual usage tests, but on
the other hand it allowed for easier implementation of the
simulated scenarios.
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Fig. 1. Visualization of water flow.

Fig. 1 illustrates the water temperature changes within a
one-week period. The blue line (bottom) shows the cold water
temperature variances (as measured from the surface of the
pipe), the yellow line (middle) shows the ambient temperature,
and the red line (top) shows the hot water pipe temperature.
In the example shown in the figure, the ambient temperature
sensor is close to the cold water pipe (within 2 cm), causing
the ambient temperature to follow the cold water temperature
more closely. The minor changes in the water flow can also be
seen in the smaller dips and peaks in the hot and cold water
temperature lines (for example, between 2. Feb and 3. Feb).
The Flow and NoFlow confirmed markers show automatically
detected changes, and in the current implementation they are
configurable temperature threshold values.

Parts of the campus building use continuous hot water
circulation. In this case, the temperature changes can also be
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Fig. 2. Visualization of water flow in a system with continuous hot water
circulation.

seen, but the changes are much smaller, and require more
tweaking of the threshold values. Also, the size (volume)
of the pipe could have a bigger impact on the detection
accuracy, as larger pipes and smaller flows make detection
more challenging. Depending on the case, it could also be
possible to measure the cold water pipe temperatures only, as
in practice cold water is mixed in the faucet when hot water
is used. In other words, the hot water usage could be detected
from the cold water usage, and this relation can also be seen
in Fig. 2. Of course, this kind of approach would not allow
the detection of leaks in the hot water pipes.

Based on our tests, it takes approximately 15 to 60 minutes
for the pipe temperature to reach the maximum change after
the flow has started (tested with 1 dl/min, 1 1/min, and 3 1/min),
and a fast change in the temperature gradient is detectable
within the first five to 20 minutes after turning the flow on.
The difference in flow volume causes changes in both the time
to reach the maximum temperature change and in the final
temperature maximum/minimum. For example, the cold water
temperature dropped from the stagnant water temperature of
21 degrees to a minimum of 13 to 15 degrees (with a larger
flow causing more significant temperature change maxima).
After turning the flow off the gradient was much smoother,
but still detectable within five to 20 minutes. The water
temperature returned to within two degrees of the ambient
temperature in about two hours and fully reached the ambient
temperature in four to six hours if no further flow was induced.
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Fig. 3. Visualization of cold water temperature change.

The change in cold water temperature is visualized in more
detail in Fig. 3. In the example case shown in the figure, the
flow was started at 7:00 and stopped at 10:00. The flow was
approximately one liter/min (or 0.951/min as reported by the
main water meter) and the temperature was measured every
five minutes from the external surface of the 20 mm diameter
copper pipe.

Thus, assuming that the start of a water flow can be detected
within 20 minutes and the end of the flow within two hours, it
should be possible to detect leaks by observing the temperature
changes during the time of day when there should not be any



water usage (outside office/work hours, nighttime, weekends,
etc.). Theoretically, normal usage could be separated from the
measurements, for example, by utilizing a learning algorithm;
however, in our case, we had knowledge of the times of day
when there should not have been any water usage in the
building.

III. PROTOTYPE

The only purpose of the prototype device was to gather
sensor readings at predetermined intervals and to upload
the measurements to a cloud service. In our use case, only
temperature sensors were required. We had previously utilized
Raspberry Pi and Arduino for similar measurements [7], [8]
and also had a working prototype that used the Microchip
AVR ATtiny. For this prototype we decided to attempt an
implementation that does not use a separate microcontroller,
but where the application code is executed entirely within the
NB-IoT modem. This would allow for a smaller device size
and theoretically lower power consumption. In our current use
cases, mains power was available, but the possibility to run
the device entirely on battery power for several years, and
the generally lower power consumption were both deemed
worthwhile goals.

Fig. 4. The 3D-printed cases for the prototype on the left and the inside of
the case on the right.

The final prototype can be seen in Fig. 4. The device is
approximately 39 x 65 x 50 mm in size (including the pipe
connector clip, but not the antenna). The cases are 3D printed.
The NB-IoT module is located inside the case, which has the
antenna. The clips are used to attach the cases onto water
pipes (hot and cold water) and the temperature sensors are
located inside the clips and thus, are pressed against the outer
surface of the pipes. If the pipes are insulated, this could
affect the temperature measurements, so preferably the sensors
should be installed onto a part of the pipe where heat can be
transferred between the pipe and the surrounding air. The cases

are connected to each other by wire. The ambient temperature
sensor is located inside the same case that contains the NB-IoT
module. The ambient sensor could also be placed in a separate
location, but in practice the temperature inside the case is close
to the outside temperature. The case is not airtight or insulated,
and the temperature produced by running the NB-IoT module
is negligible. The close proximity to the water pipe affects the
ambient sensor readings, but in practice the effect is only a
minor one.

A. Hardware

The hardware inside the casing consists of an NB-IoT
DevKit manufactured by Olimex [9]. The DevKit includes
connecters commonly found in Raspberry Pi and Arduino
(e.g., GPIO, I2C, SPI, UART, USB power) and the embedded
multi-band NB-IoT module is a Quectel LTE BC66. The mod-
ule is controlled either directly by AT commands or by using
the Quectel OpenCPU API. The DevKit costs approximately
20 euros, making it very cost-effective even when compared to
Arduino. The hardware requires an NB-IoT compatible SIM
card. Network operator fees vary between countries, but in
terms of total operating costs an NB-IoT can be cheaper than
the competing LPWAN (Low Power Wide Area Network)
technologies such as SigFox and LoRa. Another advantage
of NB-IoT is the direct access to TCP/IP networks (i.e., the
internet) without proprietary or licensed middleware. In our
area the coverage for NB-IoT was also measured and found to
be excellent, with decent transfer rates achieved in all piloting
locations (inside and outside buildings).

For temperature measurements we used three DS18B20
sensors. The sensors were connected to the UART (Universal
Asynchronous Receiver-Transmitter) pins on the DevKit, and
the communication was performed over the 1-Wire protocol.
Our original plan was to use the GPIO connectors directly, but
after trial and error and lengthy discussions on the Quectel
forum we discovered that the OpenCPU’s GPIO API per-
formance was too slow to communicate properly with the
DS18B20 sensors, requiring re-implementation of the com-
munication protocols [10]. The specifications for DS18B20
promise +0.5°C accuracy from temperatures from -10°C to
+85°C, which was sufficient for our use. Naturally, other
comparable temperature sensors could be used as well. The
advantage of DS18B20 would be the 1-wire protocol, which
in theory allows the use of only a single data wire (and voltage
and ground wires) for communication, but unfortunately the
issues with GPIO API forced us to implement a more complex
setup.

B. Software

The software is executed directly on the NB-IoT module
and programmed using the OpenCPU SDK created by Quectel.
The code is written in C, although the supported core libraries
are slightly more limited than those commonly available
with standard C language. The OpenCPU is available for all
modules manufactured by Quectel so at least in theory the
same code could be run on multiple devices, although testing



this was beyond the scope of our current research focus. The
OpenCPU is basically a wrapper for the lower level functions
and in many cases a knowledge of AT commands is required
even when using the higher level API. The maximum user
application size (about 200kB ROM) and RAM (100kB) are
quite limited on the BC66 module, and the program code
is executed as a single-threaded application. This requires a
fairly straightforward application procedure. In our case, the
operation is run in eight simple steps:

1) The device wakes up from deep sleep (or starts up for
the first time).

2) The device is registered on the NB-IoT network. This
may sometimes take a while (up to 20 minutes for
the first registration), but in general it takes from three
to 20 seconds. The platform has limited support for
timers, but as the platform cannot truly run multiple
threads, interrupting network registration may cause
unforeseeable issues. In practice, this means that if deep
sleep is used, real-time measuring can be problematic. In
our case, the temperature measurements are read at five-
minute intervals, and thus, the minor delay in network
registration is not an issue.

3) The IMEI (International Mobile Equipment Identity) and
signal quality are read. IMEI is used to identify the
devices in the cloud service.

4) The temperature measurements are read from each of
the three sensors.

5) The voltage is read.

6) The TCP/IP socket is opened to the cloud service.
Temperature, IMEI, voltage, and signal quality are sent
to the service. The TCP/IP socket is closed. The data
is transferred using a simple HTTP POST with data
encoded as URI parameters.

7) The RTC (real-time clock) timer is set up to wake up
the device after a predefined interval.

8) The device enters deep sleep (power save) state to
conserve power.

In our case, voltage measurements and deep sleep states are
not necessarily required as mains power is available (and the
power consumption is relatively low even without deep sleep).
However, in the future the plan is to support a battery-based
approach, and thus, we wanted to test the functionalities in our
prototype. A simple skeleton of the application code is also
available as open source [10].

IV. DISCUSSION

In our use cases, the primary goal was to detect leaking
toilets, and showers and sink faucets that had been improperly
turned off, as these were the most common problems in the
target buildings. The building complex also had a water leak
detector installed in the main water meter, which could detect
leaks happening within the entire complex, but could not
pinpoint the leaking locations within the complex. Based on
our tests, the prototype is able to detect water leaks of about
two liters per hour - as tested with polyethylene (PEX-Ax, EN
ISO 15875) and (20 mm and 35 mm) and copper pipes. It was

found that the system could detect the problem cases we were
aiming to resolve, but the accuracy did not enable the reliable
detection of minor leaks (very slowly dripping faucets, small
leaks in pipes, etc.). In practice, it is challenging to create
a leak smaller than two liters per hour by using a properly
working faucet, so the system should, at least in theory,
detect improper use, but not necessarily minor problems within
pipes and applications. The pipes (by size/volume) in our test
scenarios were those commonly found in Finnish households
and building complexes, so the detection should work in
most Finnish buildings, but we did not perform extensive
studies on the relation of pipe size to detection accuracy. The
detection accuracy could be improved by using more accurate
temperature sensors, lowering the measurement interval, and
tweaking the temperature thresholds. Also, small leaks may
or may not be detected by observing the main water meter,
depending on the volume of the pipes, the size of the building
complex, and the general consumption of water in the building.
In general, the smaller the flow and the larger the pipes, the
more difficult the detection, whether our prototype or the main
water meter observation is utilized. In our case, the building
complex had fairly regular usage, and normally the building
would be closed during nighttime - i.e., there should not be
significant water usage outside operating hours, making leak
detection easier. In buildings that have a constant (changing)
water consumption around the clock, detecting leaks can be
a fairly complex problem, and utilizing simple temperature
detection may not be adequate.

We used a fairly simple algorithm based on pre-configured
temperature thresholds discovered by case-specific experimen-
tation. Our target building had air conditioning, which kept the
room temperature (and the ambient temperature within the
pipe ducts) fairly stable. A more complex algorithm might
be required if there are large fluctuations in the ambient
temperature, or if the ambient temperature rises close to
the temperature of the hot water or drops close to the cold
water temperature. Furthermore, in our use case, we were
only interested in whether leaks were present, and not in the
size of the leak. Whether the precise water flow (I/h) could
be detected in practice by measuring the variances in the
three temperatures (ambient, hot pipe, cold pipe) is doubtful
even if theoretically possible. Nevertheless, sensors installed
on pipes could also help to track the water temperature in
cases where certain minimum or maximum temperatures are
required within the water system, for example, to prevent
unwanted bacterial growth in drinking water. However, in our
case, we were only interested in detecting water flow.

The NB-IoT module was found to perform sufficiently
well to run a simple application code that gathers sensor
readings and submits them to a cloud service. Unfortunately,
most of the existing wireless modules devices do not include
easy-to-use libraries or SDKs for implementing applications
directly on the hardware level, requiring the use of a separate
microcontroller (e.g., Arduino) or external computer unit (e.g.,
Raspberry Pi). The OpenCPU APIs are similar to Arduino
APIs, but not necessarily identical. There is also a certain



lack of documentation (e.g., error codes) and examples, which
can make application design, implementation, debugging, and
testing a challenge. Directly using code examples and libraries
designed for Arduino may or may not work. Similarly, circuit
examples should be carefully studied if adapting from existing
Arduino and Raspberry Pi material. For example, after a
round of oscilloscope debugging, interference was found in
the NB-IoT Devkit’s serial data lines, requiring additional
resistor filters, even though an identical circuit had worked
fine on Raspberry Pi. Furthermore, reading the temperatures
occasionally caused the NB-IoT module to become stuck in
the wake-up state and refuse to enter the deep sleep state,
requiring a module reset to restore normal operation.

Ultimately, all of the issues with reading the temperatures
were resolved, but some minor issues still remain with the
1-wire implementation. Namely, as the sensor order in the 1-
wire interface can vary (for example, after power outages),
it is crucial to identify which sensor is which. Unfortunately,
reading the internal identifiers of the dallas sensors does not
work reliably - the identifiers occasionally change slightly,
perhaps because of unresolved timing issues or other unknown
interference in the data lines. Fortunately, detecting the sensors
through data analysis is simple - the lowest temperatures
are in the cold water pipe sensors, the hottest in the hot
water pipe, and the third one is the ambient temperature
sensor. Nevertheless, this creates unnecessary complexity for
the analysis algorithms. Regardless of the issues, implementing
the application directly on the NB-IoT module level seemed
like an interesting option. This is especially true if the modules
become more powerful in the future and the availability of
interfaces that support the writing of code in standard C/C++
or Arduino-C become more common.

V. SUMMARY

This paper presented a cost-effective temperature measure-
ment prototype, which was implemented as a code running
directly in an NB-IoT module without an external microcon-
troller. The prototype was used to detect fluctuations in the
temperatures of hot and cold water. The pipe temperatures
were compared with the ambient temperature to detect wa-
ter flow within the pipes. The basic operating principle, an
example of data visualization, and a simple program flow for
the application were presented. Despite certain technical issues
and limitations, the approach was found to be able to detect
common water leakage problems - sink and shower faucets
that were improperly turned off and leaking toilets.
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