
Transpiling Python to Rust for Optimized
Performance

� Henri Lunnikivi[0000−0003−4817−2939], Kai Jylkkä[0000−0002−8412−5825], and
Timo Hämäläinen[0000−0002−7867−0800]

Tampere University, Tampere, Finland tau@tuni.fi

http://tuni.fi
{henri.lunnikivi,kai.jylkka,timo.hamalainen}@tuni.fi

Abstract. Python has become the de facto programming language in
machine learning and scientific computing, but high performance imple-
mentations are challenging to create especially for embedded systems
with limited resources. We address the challenge of compiling and opti-
mizing Python source code for a low-level target by introducing Rust
as an intermediate source code step. We show that pre-existing Python
implementations that depend on optimized libraries, such as NumPy, can
be transpiled to Rust semi-automatically, with potential for further au-
tomation. We use two representative test cases, Black–Scholes for finan-
cial options pricing and robot trajectory optimization. The results show
up to 12× speedup and 1.5× less memory use on PC, and the same per-
formance but 4× less memory use on an ARM processor on PYNQ SoC
FPGA. We also present a comprehensive list of factors for the process,
to show the potential for fully automated transpilation. Our findings are
generally applicable and can improve the performance of many Python
applications while keeping their easy programmability.

Keywords: Python · Rust · embedded computing · transpilation.

1 Introduction

Python is the most popular language in Machine Learning (ML) and is rapidly
replacing others in signal processing and scientific computing. Yet, its execu-
tion time and memory consumption are not workable in constrained systems.
Additionally, energy awareness in ML computing in general is becoming a big
concern. Because of the wide adoption of Python, an improvement in process
will have multiplied effects in the large scale, which makes the issue important.
This paper addresses the challenge of how a pre-existing Python implemen-
tation could be automatically compiled to a high performance and low energy
implementation while retaining easy programmability.

In a typical use case, a high-level language like Python is used to write
domain-specific steering code that then relies on optimized libraries. Key chal-
lenges of optimizing to a target are cross-library memory optimization, platform
specific optimization, and parallelization. Cross-library optimization is required



because there is a risk of needless data movement at function and library bound-
aries of which a typical user is not aware. Platform specific optimization is re-
quired to take advantage of the particular capabilities of the platform, and for
many platforms, extracting parallelism out of the programming model is a nec-
essary part of that.

Many of the approaches towards compiling Python into low-level machine
code work better for cloud-like computer infrastructure. However, large runtime
systems and current end-to-end optimization technologies do not work as well for
embedded devices. Runtime systems are computationally unaffordable and end-
to-end optimization technologies create additional challenges for understanding
application performance[14] or require changes to used libraries (eg. [3, 5, 9, 10,
15–17]).

Our proposal is based on Rust1 as an intermediate source code step. Python
and Rust are both high-level languages that allow problems to be modelled us-
ing domain-specific idioms. Expressions of idioms in Python can be converted
to expressions in Rust at least semi-automatically, and at least one open-source
implementation[8] exists. The benefit is that source-to-source transpiled code
retains readability, which allows for further changes, experimentation, and opti-
mization.

To our best knowledge, this is the first publicly available, reproducible, and
systematic study on translation and transpilation of Python to Rust for opti-
mized implementations. We have two research questions: 1) How much speedup
can be gained by transpiling? 2) How automatable is the process? Our contri-
butions are as follows:

1. A workflow for quick optimization of a high-level description of an algorithm
for a low-end target with support for parallel execution

2. A measurement on how functionally equivalent high-level implementations
in Python and Rust might perform with respect to each other

3. Evaluation of feasibility of pyrs[8] for transpilation
4. Propositions for further automation of transpilation
5. Two use cases for performance analysis: Financial data analytics and motion

trajectory optimization for robots

This paper is organized as follows. We will introduce related work in Sec-
tion 2, and our approach in Section 3. We will describe the two use cases in
Section 4 and results in Section 5. We will give our conclusions and future work
in Section 6.

2 Related Work

Most software is built from layers upon layers of other software. An application
is described in an expressive, high-level language, using domain-specific idioms
and libraries relevant to the problem being solved. The application and its li-
braries must then be translated to a hardware-specific stream of instructions by

1 Rust. https://www.rust-lang.org/



compilers, interpreters, or both. A popular workflow involves writing domain-
specific steering code in Python and then relying on one of a myriad of tech-
niques to ensure that the program performs at the required level on the target
platform. Techniques include use of optimized libraries[1, 12, 13, 21], optimizing
compilers[2–5, 9, 10, 15–17], and runtimes with just-in-time (JIT) compilation[3,
5, 9–11, 15–18].

Our approach is based on compiled Rust, which allows optimization of the
code as a whole including the libraries. Rust is a recent, high-level alternative
for performance-oriented programming, which allows a path from a high level of
abstraction to optimized machine code. The approach is similar to that taken
by the developers of Cython2 and MicroPython3. Cython allows an improve-
ment in performance by using a static compiler via C, while MicroPython is a
Python runtime, optimized for microcontrollers. Our approach differs in that the
transpiled code is compiled to a runtimeless, fully optimizable native executable
without reliance on an interpreter. Our method also resembles that of the C2Rust
tool4, which translates C into semantically matching Rust. Our approach differs
in both the source language and the fact that C2Rust generates Rust code using
the unsafe subset of the Rust language, while our approach is focused on safe
Rust, preserving the memory safety of the Python implementation. We use
an experimental open-source Python tool called pyrs[8] to convert Python
syntax into Rust.

Compared to optimized Python, Rust offers similar capabilities but with
a smaller degree of separation between high-level development processes and
native tooling. Rust seems to allow combining optimization processes, such as
use of domain specific, optimized, native libraries and cross-platform algorithm
development, with low-level native tooling such as standard Linux tools perf5,
valgrind6, and the LLVM debugger7. As an LLVM-compiled language, Rust
allows similar performance enhancements as an end-to-end optimizer, a staple
in deployment of Python. This similar optimization is achieved with compiler
enforced pointer aliasing rules8. Additionally, Rust allows extended utilities for
embedded development, such as the no std9 feature that allows the compiler to
not assume the existence of heap memory, networking support or threads.

3 Methods

We summarize first the environment for conducting this work. The tools used in
transpilation are pyrs[8], MonkeyType[6], and IntelliJ IDEA[7]. Rust 1.31 is

2 Cython. https://github.com/cython/cython
3 MicroPython. https://github.com/micropython/micropython
4 C2Rust. https://github.com/immunant/c2rust
5 perf. https://perf.wiki.kernel.org/
6 valgrind. https://valgrind.org/
7 The LLDB Debugger. https://lldb.llvm.org/
8 Aliasing in Rust. https://doc.rust-lang.org/nomicon/aliasing.html
9 Rust: No stdlib. https://doc.rust-lang.org/1.7.0/book/no-stdlib.html



used to compile the resultant Rust program using the package manager cargo10

and the rustc compiler. The two chosen use cases are a simple Black–Scholes
model and an advanced algorithm for trajectory optimization[20] abbreviated
as Motion Planning. The performance was tested on a Windows PC with an
AMD Ryzen 7 3700X processor and PYNQ Z1 All Programmable System-on-
Chip (APSoC)11. Additionally, as proof-of-concept, the transpiled programs were
cross-compiled to Snapdragon 835 mobile Hardware Development Kit12, which
to our best knowledge does not natively support Python.

The PYNQ processing system includes a 650 MHz dual-core Cortex-A9 pro-
cessor and 512 MB DDR3 memory. The device was running a Ubuntu 18.04
PYNQ Linux OS including a Python 3.6 interpreter. We installed the Rust
toolchain13 on the device and compiled the source code used for the tests on
the device. We also successfully verified our transpiling method on Snapdragon
835 development kit running with Android 7.1.2 OS. We cross-compiled Rust
source code on Ubuntu 16.04 host PC and used Android Debug Bridge to run
compiled binaries on the device.

3.1 Transpilation Workflow

Python source code is transpiled to Rust. The general outline of the transpi-
lation process is depicted in Figure 1.

Python Source Code
Record Runtime
Types (Optional)

Review
Runtime Types

Apply Syntax
Conversion

Rewrite &
Refactor

Compile

Validate Rust Source Code

fail

passfail

pass

Fig. 1. Transpiling Python to Rust.

10 cargo the Rust package manager. https://doc.rust-lang.org/cargo/
11 PYNQ Z1.

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/start
12 Snapdragon 835 HDK. https://developer.qualcomm.com/hardware/snapdragon-

835-hdk
13 rustup the Rust toolchain installer. https://github.com/rust-lang/rustup



Transpilation comprises the following phases: optional application of runtime
types, syntax conversion, manual refactoring, and validation testing. Before syn-
tax conversion, the Python program can be run against a tool14 to obtain in-
formation about the concrete types used by the application. Types recorded this
way allow for more information to be available in the later steps of transpilation,
but may be unnecessarily constraining.

Next, the syntax conversion is applied using a publicly available automatic
syntax converter that creates a Python Abstract Syntax Tree (AST) from the
Python source code. The Python AST is automatically made into Rust source
code by visiting each AST node using the visitor pattern15 and outputting the
equivalent Rust code. Syntax conversion allows for rough, automatic transfor-
mation of Python syntax to almost equivalent Rust. After syntax conversion,
the program is unlikely to immediately compile using the Rust compiler and
must be manually edited with help from the Rust compiler. Once the compiler
accepts the source code, it must be further tested to validate that the code is
functionally equivalent to the original. Once the program is validated, the pro-
gram source code can be further edited, optimized, and compiled as a Rust
program.

The performance of the compiled Rust code can be measured either by
native Rust benchmarks or by dispatching library functions via its C foreign
function interface (CFFI) via a Python 3.8.1 interpreter. Execution on PC is
measured using the CFFI and the Python interpreter for a fair comparison
against the original SciPy and BLAS optimized Python code. Deployability on
embedded targets is verified by natively compiling the program on PYNQ and by
cross-compiling to Snapdragon using the cross-compilation framework cross16.

4 Use Cases

Two distinct use cases were chosen for examining the difficulty and outcomes
of transpiling and its feasibility for embedded implementations. The first use
case is a simple Black–Scholes model for options pricing in financial markets.
The second is a recent, complex algorithm for motion planning in robotics[20].
Black–Scholes is a collection of established small benchmark methods that can
each be represented in around 5 lines of Python with SciPy. Motion Planning,
on the other hand, is a novel and experimental algorithm in robotics, spanning
437 lines of Python with NumPy as formatted by autopep8, omitting blank lines
and comments. We transpiled it as is from the developers during development
of the algorithm.

4.1 Black–Scholes Model

Black–Scholes is a well-known model for the dynamics of financial markets. It
was selected for its readability, compact source code size and good coverage of

14 MonkeyType. https://github.com/Instagram/MonkeyType
15 Visitor Pattern. https://en.wikipedia.org/wiki/Visitor pattern
16 cross. https://github.com/rust-embedded/cross



results in other studies[9, 15, 16, 18]. We implemented17 the model in Python
using NumPy based on an online source[19], and added validation tests. A notable
feature of the implementation is that because of NumPy, it works the same for
both scalar and array inputs. Our transpiled sources are publicly available18.

The transpilation was conducted as explained earlier in Section 3. After auto-
matic syntax conversion, compiler-assisted library mapping was straightforward.
NumPy functions generally mapped to Rust standard library functions of similar
names and signatures. The more complex SciPy-call to a cumulative distribu-
tion function required a manual implementation using statrs, though a direct
expression-to-expression mapping was found to exist. Automatic syntax con-
version introduced an incorrect calculation order issue that was captured by
validation tests and corrected. Potential, automatic solutions to the described
issues are discussed in Section 5.

The transpiled Rust source code and its dependencies were compiled natively
on PC and PYNQ, and cross-compiled to Qualcomm Snapdragon using cross.
Fixed inputs produce same results on all platforms.

4.2 Motion Planning

Multi-convex path constrained trajectory optimization for mobile manipula-
tors[20], or Motion Planning, is a recent proposition for an algorithm in robotics,
written in Python and NumPy. Motion Planning allows a robot, such as a mobile
manipulator, to find a path through space while respecting kinematic constraints
and avoiding collisions [20]. Key qualities of the algorithm are its parallel na-
ture and the suitability for experimentation in the physical world. The physical
aspect makes it a good candidate for optimizing and deploying on an embedded
target. Singh et al. note that prototyping the algorithm in a low-level language
might improve computation time[20].

The original Motion Planning implementation uses Basic Linear Algebra
Subprograms (BLAS) specification to prescribe optimizations via NumPy. Our
transpiled implementation maps NumPy functions to Rust community library
ndarray19. In our experiments, the BLAS optimizations are implemented by link-
ing to Intel MKL on PC and to OpenBLAS20 on PYNQ. The total runtime of the
original implementation is a couple of seconds on a multicore desktop PC when
allowed to run for 100 iterations. In the experiments, the parameters to the al-
gorithm are built-into the library, which reduces reliability of the measurements
for both the Python and the transpiled Rust implementations. Measurements
were taken with careful examination of allocations and verification of produced
outputs.

After automatic syntax conversion, we used regular expressions extensively
to fix remaining errors and library references. Multiple manual implementations

17 Black–Scholes based on [19]. https://github.com/hegza/black-scholes-py
18 Transpiled Black–Scholes. https://github.com/hegza/black-scholes-transpiled-rs
19 ndarray. https://github.com/rust-ndarray/ndarray
20 OpenBLAS. https://www.openblas.net/



of expressions (< 1 % of all expressions) were required though each was straight-
forward with output from the Rust compiler. Validation tests revealed that the
original Python implementation converged slightly faster than the Rust im-
plementation. This is possibly due to different linear algebra implementations
in the respective libraries. Slower convergence was not taken into account in
performance measurements.

The transpiled Rust source code and its dependencies were compiled natively
on PC and PYNQ, and cross-compiled to Qualcomm Snapdragon using cross.
Results converge on the same values with fixed inputs on all platforms.

5 Results and Analysis

We consider the results of transpilation in wall clock time, memory consump-
tion, and complexity in terms of issues encountered and regularity for potential
automation. We also consider what processes transpiled sources now allow. Lines
of code is not considered a feasible measure because the number of lines is almost
the same, with differences being due to the differing formatters of each language.

5.1 Performance

The performance of Python implementations on PC is measured with timeit

library, which avoids the overhead from Python garbage collection. Rust im-
plementations are measured with criterion.rs21, a community library for
Rust benchmarks. Memory use is measured with valgrind --tool=massif.
Intel MKL and OpenBLAS are dynamically linked to the runtimes where applica-
ble. The Black–Scholes model was calculated for 72 million put options22, which
were loaded from a file for the Rust implementation to prevent excessive LLVM
optimizations. Motion Planning was run for 100 iterations. The performance of
the Black–Scholes model is as follows:

Table 1. Execution profile of Black–Scholes on PC (allocations included).

Black–Scholes Python (MKL) Rust (native)

Execution time 27.29 s 11.70 s
Peak memory consumption 9.372 GB 3.456 GB

Table 1 shows that the native Rust implementation uses less memory and
runs faster. Output from Valgrind’s massif seems to suggest that the Python
implementation reserves the input and output arrays arrays 2–3 times. Memory
use of both measurements seems realistic, as the theoretical memory consump-
tion of the Black–Scholes algorithm for this use case is

21 criterion.rs. https://github.com/bheisler/criterion.rs
22 https://en.wikipedia.org/wiki/Put option



floating point width × number of options

× (number of inputs + number of outputs)

= 8 bytes × 72 million × (5 + 1)

= 3.456 GB (decimal).

The result presented in Table 1 shows that a naively transpiled Python /
NumPy implementation may perform equally well as – or better than – the orig-
inal implementation in memory limited scenarios. Further investigation reveals
that the Rust implementation links statically into matrixmultiply23, which is
a native Rust implementation of matrix multiplication. This enables full mem-
ory optimization via LLVM. Static linking of Intel MKL is possible for both
implementations, but this is not the default behavior of either of the toolchains
and requires manual work that is not portable across implementations on our
chosen devices.

The performance results for Motion Planning are presented in Tables 2, 3,
and 4.

Table 2. Execution profile of Motion Planning on PC using Intel MKL.

Motion Planning Python Rust (CFFI) Rust

Execution time 6.44 s 0.671 s 0.532 s
Peak memory consumption 9.40 MB 8.45 MB 6.47 MB

Table 3. Execution profile of Motion Planning on PC using OpenBLAS.

Motion Planning Python Rust

Execution time 4.10 s 2.80 s
Peak memory consumption 8.85 MB 1.93 MB

Table 2 shows that the transpiled version of the Intel MKL accelerated im-
plementation speeds up 12.1×. All Intel MKL implementations are parallel and
speedup is likely to be mainly gained by LLVM optimizations, which are better
at considering all of the code compared to Python steered calls to functions.
Dispatching the transpiled Motion Planning algorithm from a Python inter-
preter via CFFI shows increased memory use due to the interpreter but runs
faster than accelerated Python. Memory use improves by a factor of 1.45×.
Table 3 shows that the transpiled version speeds up 1.46 × when linked against
OpenBLAS, with a 4.2× improvement in memory consumption. Further investi-
gation with Python tooling24 reveals that most of the memory used by the

23 matrixmultiply. https://github.com/bluss/matrixmultiply
24 tracemalloc. https://docs.python.org/3/library/tracemalloc.html



Python implementations is due to the loaded Python runtime and libraries,
while runtime workload allocates 1.99 MB of memory. The Rust implementation
slightly improves in peak memory consumption for runtime data with 1.93 MB
allocated.

Table 4. Execution profile of Motion Planning on PYNQ using OpenBLAS.

Motion Planning Python Rust (CFFI) Rust

Execution time 70.5 s 70.3 s 69.0 s
Peak memory consumption 6.9 MB 2.7 MB 1.7 MB

Table 4 shows that the OpenBLAS accelerated implementation runs equally
fast on PYNQ when executed via either language. The higher memory consump-
tion of the Python implementation is partially explained by the included inter-
preter. The transpiled native Rust implementations can also be cross-compiled
to Qualcomm Snapdragon. All implementations use more memory than what is
necessary due to the benefits caching can provide in some circumstances. How-
ever, the right trade-off between execution time and memory consumption is im-
portant. Rust implementations generally both run as fast or faster as Python
implementations and consume less memory.

5.2 Transpilation Regularity and Automation

The introduced method was applicable as-is and numerous automatable conver-
sions were identified. The used automatic syntax conversion tool (pyrs) intro-
duced a calculation order error in the Black–Scholes use case. The calculation
order could be more accurately traced between the languages by introducing a
step for converting the Python AST to a Rust AST, as shown in Figure 2.

Python
Source Code

Tokenization,
Lexical Analysis,
Syntax Analysis

Python AST AST-to-AST Rust AST

Rust Code
Generation

Rust Source Code

Fig. 2. Proposed AST-to-AST transpilation step (dashed arrows).



Creating such an AST-to-AST transpiler would require an implementation
of a transformation from each source AST node to each target AST node.
A Python AST implementation in Rust is available via community library
RustPython25 and a Rust AST implementation in Rust is available via com-
munity library syn26.

In our use cases, Python library references could be converted to Rust li-
brary references in a highly regular fashion using a regex. A more sophisticated
approach would be to use an AST aware transpiler to correctly map the method
calls from source to target. Method calls can be mapped from a function body
expression in Python into a Rust path segment, and the parameters can be
mapped expression-by-expression. In developed domain-specific libraries, a sin-
gle declarative mapping for functions in source language to functions in target
language may exist, and could be maintained via tooling to create a persistent
mapping if desirable.

Issues arising from syntactic differences between the languages were all found
to be automated, or automatable. However, in addition to syntax translation,
conversion from Python to Rust requires accounting for semantic differences.
Rust ownership semantics can be at least partially accounted for by preferring
use-by-reference for read-only bindings and by rebinding variable data for each
use, trusting the compiler to optimize. Python and Rust variable scopes do
not match 1:1 and need to be corrected by hand, though these issues were found
to be rare in our use cases with one semantic scope issue in Black–Scholes and
none in Motion Planning. All found issues were detectable at compile-time with
associated error messages, apart from the singular incorrect calculation order
error in Black–Scholes. All problems were solvable via human intervention, as
demonstrated by the use cases. The vast majority of issues were automated via
pyrs, or could have been automatable.

5.3 Implications of Transpiled Source

The transpiled source code is easily programmable and compiles down to a high
performance implementation that matches the native execution model of the
platform, provided that an LLVM backend exists for the platform. The tran-
spiled code adheres to Rust semantics and the language’s type system. A no-
table example is Rust semantics regarding pointer aliasing, which allows LLVM
optimizations such as loop vectorization and constant propagation. The type
system guarantees the absence of race conditions in parallel execution, which
allows additional paths for multicore optimization.

As the Rust source code compiles directly to target assembly without a man-
aging runtime, its source code can be easily annotated with assembly or LLVM-
IR at function level with tooling such as cargo-asm27. This is useful for com-
paring implementations for optimization. Profiling on target is enabled by tools

25 RustPython. https://github.com/RustPython/RustPython
26 syn. https://docs.rs/syn/1.0.16/syn/
27 cargo-asm. https://github.com/gnzlbg/cargo-asm



such as perf, that allows the programmer to determine where in the code the
processor spends most time. For instance, in combination with FlameGraph28,
profiling information generated and annotated with perf can be used to deter-
mine if the main workload spends time allocating heap memory that could be
pre-allocated, or if the time is spent in an optimized library like Intel MKL.
Direct access to profiling information like this allows the programmer to identify
bottlenecks and make informed decisions about what to optimize next.

In addition to hardware oriented tooling, use of Rust allows the programmer
to rely on type system guarantees when producing parallel implementations. In
fact, the inner loop of Motion Planning is trivially convertible to a data-parallel
implementation by rewriting the loop expression in terms of a parallel iterator
as provided by the community library rayon29, though this seems to provide no
significant advantage over Intel MKL enabled data-parallelism in this workload.

6 Conclusions

Transpiled implementations are generally faster than accelerated Python im-
plementations up to an order of magnitude for the more complex use case. Tran-
spilation seems automatable and generally applicable. An almost 1:1 syntac-
tic mapping from expression to expression exists between Python and Rust,
and could be applied with an AST-to-AST transpiler. Library references can be
mapped out and applied in a highly regular fashion. Issues arising from differing
type systems and borrow checking semantics cannot be solved at the level of
syntax conversion and another approach is required.

Transpiled implementations can be further developed and optimized. The
implementation of the Black–Scholes model can be further accelerated by linking
to Intel MKL statically, and bottlenecks in the motion planning algorithm can be
investigated. The motion planning algorithm could also be made more portable
and lighter on memory by using native Rust matrix solvers in place of BLAS, or
faster by linking statically to Intel MKL.

Our future work focuses on comparing transpiled implementations to end-to-
end optimized implementations, and improving the automation of transpilation.
Further advancements in the transpilation process for such applications are cer-
tainly available. AST-to-AST transpilation allows improved control over syntax
transformation. Library mappings can be defined declaratively and automated.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16). pp. 265–283 (2016)

28 FlameGraph. https://github.com/brendangregg/FlameGraph
29 rayon. https://github.com/rayon-rs/rayon



2. Behnel, S., Bradshaw, R., Seljebotn, D.S., Ewing, G., et al.: Cython: C-extensions
for python. published (2008)

3. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Wanderman-Milne, S.: JAX: Composable transformations of Python+NumPy pro-
grams (2018), http://github.com/google/jax

4. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang,
L., Hu, Y., Ceze, L., et al.: {TVM}: An automated end-to-end optimizing compiler
for deep learning. In: 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18). pp. 578–594 (2018)

5. Frostig, R., Johnson, M.J., Leary, C.: Compiling machine learning programs via
high-level tracing. Systems for Machine Learning (2018)

6. Instagram: (2020), https://github.com/Instagram/MonkeyType
7. JetBrains: (2020), https://www.jetbrains.com/idea/
8. Konchunas, J.: Python to rust transpiler (2020), github.com/konchunas/pyrs
9. Kristensen, M.R., Lund, S.A., Blum, T., Skovhede, K., Vinter, B.: Bohrium: un-

modified numpy code on cpu, gpu, and cluster. In: 4th Workshop on Python for
High Performance and Scientific Computing (PyHPC’13) (2013)

10. Kristensen, M.R., Lund, S.A., Blum, T., Skovhede, K., Vinter, B.: Bohrium: a vir-
tual machine approach to portable parallelism. In: 2014 IEEE International Parallel
& Distributed Processing Symposium Workshops. pp. 312–321. IEEE (2014)

11. Leary, C., Wang, T.: Xla: Tensorflow, compiled. TensorFlow Dev Summit (2017)
12. Maclaurin, D., Duvenaud, D., Adams, R.P.: Autograd: Effortless gradients in

numpy. In: ICML 2015 AutoML Workshop. vol. 238 (2015)
13. Oliphant, T., Peterson, P., Eric, J.: Scipy.org (2001), https://www.scipy.org/
14. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.G.: Making sense

of performance in data analytics frameworks. In: 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15). pp. 293–307 (2015)

15. Palkar, S., Thomas, J., Narayanan, D., Shanbhag, A., Palamuttam, R., Pirk, H.,
Schwarzkopf, M., Amarasinghe, S., Madden, S., Zaharia, M.: Weld: Rethinking
the interface between data-intensive applications. arXiv preprint arXiv:1709.06416
(2017)

16. Palkar, S., Thomas, J., Narayanan, D., Thaker, P., Palamuttam, R., Negi, P.,
Shanbhag, A., Schwarzkopf, M., Pirk, H., Amarasinghe, S., et al.: Evaluating end-
to-end optimization for data analytics applications in weld. Proceedings of the
VLDB Endowment 11(9), 1002–1015 (2018)

17. Palkar, S., Thomas, J.J., Shanbhag, A., Narayanan, D., Pirk, H., Schwarzkopf,
M., Amarasinghe, S., Zaharia, M., InfoLab, S.: Weld: A common runtime for high
performance data analytics. In: Conference on Innovative Data Systems Research
(CIDR) (2017)

18. Palkar, S., Zaharia, M.: Optimizing data-intensive computations in existing li-
braries with split annotations. In: Proceedings of the 27th ACM Symposium on
Operating Systems Principles. pp. 291–305 (2019)

19. Schlegel, A.: Black-scholes formula and python implementation (January 2018),
https://aaronschlegel.me/black-scholes-formula-python.html

20. Singh, A.K., Ahonen, A., Ghabcheloo, R., Muller, A.: Inducing multi-convexity in
path constrained trajectory optimization for mobile manipulators. arXiv preprint
arXiv:1904.09780 (2019)

21. Walt, S.v.d., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for ef-
ficient numerical computation. Computing in Science & Engineering 13(2), 22–30
(2011)


