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Abstract—This paper proposes a new performance evaluation
process for time-frequency distributions (TFD) by designing a
reference optimal TFD and novel accuracy and resolution mea-
sures. The motivation comes from the need for a TFD performance
evaluation method that is objective, capable of quantifying the TFD
accuracy and resolution, can determine the performance difference
among different TFDs, and suitable for signals with an arbitrary
number of components, instantaneous frequency and amplitude.
We formulate the proposed optimal TFD, namely the piece-wise
spline Wigner-Ville distribution (PW-WVD), by decomposing a
standard non-stationary signal model using piece-wise linear fre-
quency modulated (LFM) basis and by exploiting the Wigner-Ville
distribution optimality for LFM signals. We compare the designed
PW-WVD to conventional optimal TFDs and show that the former
is more suitable to serve as a reference for TFD performance evalu-
ation. Using the PW-WVD we derive TFD accuracy and resolution
measures, compare them to conventional approaches, and analyze
their sensitivity to form a TFD selection criteria. We evaluate
the accuracy and resolution of twelve different TFDs and develop
precise TFD selection strategies with or without prior information
on the signal parameters. Results indicate that the compact kernel
distribution is the best performing TFD given no prior information
on the signal parameters and different TFDs must be selected upon
the availability of prior information.

Index Terms—Multi-component signals, performance
evaluation, piece-wise LFM signals, time-frequency distribution,
time-frequency measures, time-frequency representation.

I. INTRODUCTION

A TIME-FREQUENCY representation (TFR), obtained by a
time-frequency distribution (TFD), describes the spectral

contents of a signal through time [1]. It is an adequate repre-
sentation to analyze and process non-stationary signals where
their spectral information varies with time [1]. Time-frequency
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(TF) signal processing techniques have shown superior results,
when compared to time only or frequency only methods, in
various applications such as anomaly detection and classifica-
tion [2]–[5], localization [6], [7], frequency estimation [8]–[10],
signal modelling and synthesis [11], [12], and parameter esti-
mation [13]–[15]. The accuracy and resolution of a TFD define
its performance [1]. High accuracy ensures minimal artifacts
(cross-terms), while high resolution enhances the ability to re-
solve closely spaced components [1]. Visual assessment and TF
measures are viable tools to evaluate the TFD performance [16].
Nonetheless, visual assessment is subjective and TF measures
cannot define the performance difference among different TFDs.
Therefore, we propose a new TFD performance evaluation pro-
cess by designing a reference optimal TFD and new accuracy
and resolution measures.

The objectives of this paper are: (1) designing an optimal TFD
for multi-component non-stationary signals with non-linear in-
stantaneous frequency (IF) and amplitude (IA); (2) and adopting
the proposed distribution as a reference to compare and evaluate
the performance of TFDs.

The main contributions of the paper are as follows: (1) de-
signing an optimal piece-wise spline Wigner-Ville distribution
(PW-WVD); (2) deriving TFD accuracy and resolution measures
using the proposed distribution; (3) evaluating the performance
of various TFDs using the proposed measures; (4) and providing
TFD selection strategies with or without prior information on the
signal parameters.

The Wigner-Ville distribution (WVD) yields an optimal TFR
for mono-component linear frequency modulated (LFM) sig-
nals [1]. However, it is known to suffer from cross-terms when
analyzing multi-component or non-linear frequency modulated
signals [17]. High performing TFDs are attained by filtering
the WVD using a TF kernel that achieves the best trade-off
between accuracy and resolution [1]. Various studies adopt TFDs
to improve the performance of conventional signal processing
methods in different areas such as biomedicine [18], [19],
radar [20], [21] and telecommunication [22], [23]. Currently,
the TFD performance is optimized and evaluated using TF
measures such as ratio of norms [24], energy concentration [25],
entropy [26], and application-specific criterion [27]. Energy
concentration is used in [28] to optimize the Spectrogram based
on the short-time fractional Fourier transform. The window
parameters and the fractional angle are adjusted to maximize
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concentration. Moreover, a normalized version of this measure
is used in [25] to automatically optimize the performance of
various TFDs. Rényi entropy is also used to optimize the perfor-
mance of TFDs by minimizing their complexity [29]. In [24],
various Rényi entropy and energy concentration measures are
used to analyze and quantify performance. In the same way,
application-specific criterion such as classification accuracy and
estimation error are common to evaluate the performance of
TFDs [30], [31].

A TF measure is a proxy that is correlated with the perfor-
mance of a TFD. It is useful to compare the performance of
different TFDs, but it cannot define the performance difference
among those TFDs. The normalized instantaneous resolution
(NIR) aims to mitigate the TF measures pitfalls [32], [33]. How-
ever, it demands accurate detection for the signal components
and a maximum of two components at any time instant with
approximately equal amplitudes [34]. The Reinhold measure ex-
tends the NIR by relaxing the equal amplitudes restriction [34].
It employs an adaptive detection algorithm to identify the signal
components regardless of their IF complexity and amplitude
differences. Nonetheless, it is still limited to signals with maxi-
mum of two components at any time instant. Consequently, the
NIR and Reinhold measures are not suitable when analyzing
signals with arbitrary number of components. The utility of
optimal distributions as reference for comparison, allows direct
evaluation of the TFD accuracy and resolution without relying on
proxy measures. Besides, reference distributions are suited to de-
termine the performance difference among different TFDs even
when analyzing different signals. Currently, reference TFDs
are derived using ideal distributions [28], [35], WVD-based
approaches [36], parameterized TFDs [37], or by a Matching
Pursuit distribution (MPD) [38], [39]. Ideal TFDs are comprised
of knife edges along the signal IF law. Despite that, they are
not suitable as a reference because their TF tiling approach
results in discontinuities. Moreover, the WVD-based reference
distributions are created by summing the WVD of each signal
component; hence, their utility is limited to multi-component
LFM signals due to the rise of cross-terms. On the other hand,
parameterized TFDs are optimal for a specific class of sig-
nals. Therefore, they do not generalize to signals with arbitrary
number of components and IF/IA complexities. In contrast, the
MPD can theoretically serve as a reference distribution, given a
dictionary with sufficient diversity [40]. However, its capability
is hindered by computational complexity and by the input signal
variability [41]. As a result, the MPD is not suitable to serve as
a reference distribution when analyzing signals with arbitrary
number of components and IF/IA complexities [42]. Driven by
the WVD optimality for mono-component LFM signals [1], the
theory of linear B-splines [43], [44], and the piece-wise signal
model in [45], we design an optimal TFD for multi-component
non-stationary signals with non-linear IF/IA laws. Furthermore,
we utilize the proposed distribution as a reference to compare
and evaluate the performance of various TFDs. We derive novel
TFD accuracy and resolution measures and develop precise TFD
selection strategies.

Fig. 1. Flowchart of the proposed TFD performance evaluation process using
the optimal PW-WVD. The process steps are summarized as follows: (1) given
a set of parameters, generate a multi-component non-stationary signal z(t), (2)
compute the optimal PW-WVD Lz(t, f), (3) compute the WVD Wz(t, f),
(4) optimize the kernel γ(t, f), (5) evaluate the TFD performance in terms of
accuracy and resolution, (6) repeat steps 4-5 for different TFDs, (7) repeat the
entire process for different signal parameters, and (8) develop TFD selection
strategies based on the performance evaluations.

The rest of the paper is organized as follows: Section II for-
mulates the proposed PW-WVD and presents the methodology
to evaluate the TFD accuracy and resolution. Afterwards, we
present the TFD performance evaluation results and the devel-
oped TFD selection strategies in Section III. Finally, Section IV
concludes the work.

II. METHODOLOGY

The proposed TFD performance evaluation process using the
optimal PW-WVD is depicted in Fig. 1 and summarized as
follows:

1) Given a set of parameters (number of components, IF, IA,
and time support), generate a multi-component signal z(t)
using a standard non-stationary signal model.

2) Decompose z(t) using piece-wise LFMs (PW-LFM) and
compute its optimal PW-WVD Lz(t, f).

3) Compute the signal WVD Wz(t, f).
4) Given a kernel γ(t, f), optimize its parameters by mini-

mizing the difference between Lz(t, f) and the TFD.
5) Using the optimized TFD kernel γopt(t, f), Wz(t, f) and

Lz(t, f), evaluate the TFD performance using the pro-
posed accuracy ξa and resolution ξr measures.

6) Repeat steps 4-5 for different TFD kernels and aggregate
the performance evaluations.
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7) Repeat steps 1-6 for different signal parameters and ag-
gregate all performance evaluations.

8) Develop TFD selection strategies when prior information
on the signal parameters is available and when it is not.

The remaining subsections detail each step in the proposed
TFD performance evaluation process.

A. Signal Model

Multi-component non-stationary signals are comprised of
several mono-components and form the general case. A multi-
component finite non-stationary signal z(t) is defined as:

z(t) =

P∑
p=1

ap(t) exp

(
j2π

∫ ∞

−∞
fp(t) dt

)
Πp(t) , (1)

Πp(t) =

{
1 : tp,i ≤ t ≤ tp,f
0 : otherwise

, (2)

whereP is the number of components in z(t),ap(t) and fp(t) are
the IA and IF of the pth component, respectively, j =

√−1, and
Πp(t) is a rectangular window that defines the pth component
time support from tp,i to tp,f .

B. Piece-Wise LFM Decomposition

A continuous function h ∈ C [0, 1] can be approximated,
given a cardinal finite set of points in {tk} ⊂ [0, 1] and the
values {h(tk)}∀tk ∈ {tk}, without explicitly knowing its true
parametric form [46]. One can formulate a linear B-spline
approximation for h by joining the adjacent points (tk, h(tk))
and (tk+1, h(tk+1)) with lines. This approximation becomes a
decomposition for h when {tk} is the infinite cardinal set of
points between 0 and 1 [46].

The IF of the signal pth component, described in Eq. (1), can
be decomposed using linear B-splines as follows [44]:

fp(t) =

∞∑
q=1

Bp,q(t) , (3)

Bp,q(t) =

{
λp,q t+ εp,q : tp,q ≤ t < tp,q+1

0 : otherwise
, (4)

where Bp,q(t) is the qth linear B-spline for fp(t), tp,i = tp,1 <
tp,2 < · · · < tp,∞ = tp,f is the infinite cardinal knot sequence,
Tp = tp,q+1 − tp,q is the infinitesimal support ofBp,q(t),λp,q =
(fp(tp,q+1)− fp(tp,q))/Tp is the slope of Bp,q(t), and εp,q =
fp(tp,q)− λp,q tp,q is its intercept.

Using Eq. (3), the signal definition in Eq. (1) becomes:

z(t) =

P∑
p=1

ap(t) exp

(
j2π

∫ ∞

−∞

∞∑
q=1

Bp,q(t) dt

)
Πp(t) . (5)

Since [tp,q, tp,q+1) ∩ [tp,q+1, tp,q+2) = ∅ and Bp,q(t) 	= 0 if
and only if t ∈ [tp,q, tp,q+1), Eq. (5) can be expressed in the

following alternative form:

z(t) =
P∑
p=1

ap(t)

( ∞∑
q=1

ψp,q(t)

)
︸ ︷︷ ︸

PW-LFM decomposition

Πp(t) . (6)

ψp,q(t) =

{
e(j2π

∫ ∞
−∞ λp,q t+εp,q dt) : tp,q ≤ t < tp,q+1

0 : otherwise
. (7)

By comparing Eq. (1) to Eq. (6), one observes that the term∑∞
q=1 ψp,q(t) is a PW-LFM decomposition of the pth complex

exponential in Eq. (1). This decomposition allows us to exploit
the WVD optimality for LFM signals to design the proposed
optimal PW-WVD.

C. The Piece-Wise Spline Wigner-Ville Distribution

Given an analytic signal z(t), the WVD is defined as [1]:

Wz(t, f) = F
τ→f
{Kz(t, τ)} , (8)

Kz(t, τ) = z
(
t+

τ

2

)
z∗

(
t− τ

2

)
, (9)

where Kz(t, τ) is the instantaneous autocorrelation function
(IAF) of z(t),Wz(t, f) is the WVD, z∗(t) is the complex conju-
gate of z(t), and F

τ→f
denotes the Fourier transform from lag τ

to frequency f . The WVD is known to suffer from cross-terms1.
Nonetheless, it is optimal for mono-component LFM signals.
This optimality allows us to formulate the PW-WVD using the
signal PW-LFM decomposed model.

1) Formulation: Using Eq. (6), the IAF of z(t) auto-terms is
expressed as:

Kz(t, τ) =
P∑
p=1

Kap(t, τ)Kψp
(t, τ)KΠp

(t, τ) . (10)

Kap(t, τ) = ap

(
t+

τ

2

)
ap

(
t− τ

2

)
. (11)

Kψp
(t, τ) =

∞∑
i=1

∞∑
j=1

ψp,i

(
t+

τ

2

)
ψ∗p,j

(
t− τ

2

)
. (12)

KΠp
(t, τ) = Πp

(
t+

τ

2

)
Πp

(
t− τ

2

)
. (13)

Since, by definition,ψp,i(t) ∩ ψp,j(t) = ∅ if i 	= j, the product
terms in Eq. (12) describe the signal auto-terms only when i = j.
Therefore, Kψp

(t, τ) reduces to:

Kψp
(t, τ) =

∞∑
q=1

ψp,q

(
t+

τ

2

)
ψ∗p,q

(
t− τ

2

)
. (14)

Using Eqs. (8) and (10), the PW-WVD is defined as:

Lz(t, f)=
P∑
p=1

Wap(t, f) ∗
f

( ∞∑
q=1

Wψp,q (t, f)

)
∗
f
WΠp(t, f) , (15)

1The WVD cross-terms are comprised of outer and inner-terms [1]. Outer-
terms emerge when z(t) is a multi-component signal, while inner-terms evolve
for non-linear frequency modulated signals [17]. Appendix A presents a formu-
lation for the WVD inner-terms using the binomial theorem.



3966 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

where Lz(t, f) is the PW-WVD of z(t), Wap(t, f) is the WVD
of ap(t), WΠp

(t, f) is the WVD of Πp(t), and Wψp,q
(t, f) is

the WVD of the PW-LFM in ψp,q(t), i.e.:

Wψp,q
(t, f)=

{
δ (f − λp,q t−εp,q) : tp,q≤ t<tp,q+1

0 : otherwise
. (16)

The PW-WVD is optimal given the signal parameters
(f(t), a(t),Π(t), P ). Besides, it provides an approach to
separate2 the WVD cross-terms Xz(t, f) from its auto-terms,
i.e.:

Xz(t, f) =Wz(t, f)− Lz(t, f) . (17)

Fig. 2 illustrates the PW-WVD, WVD, and the WVD separated
cross-terms for an example 2-component non-stationary signal.
In addition, Appendix B discusses the PW-WVD optimality and
its properties, while Appendix C presents the discrete PW-WVD
formulation.

In practice when analyzing measured signals, utilizing the
PW-WVD requires estimation of the signal parameters. There-
fore, the PW-WVD accuracy and resolution solely depend on the
estimation quality that is acceptable to the user. Nonetheless, in
this work, we compute the optimized PW-WVD using the input
signal true parameters to serve as a reference distribution in the
proposed TFD performance evaluation process.

2) Comparison With the Ideal and Matching Pursuit Dis-
tributions: The ideal TFD of a finite multi-component non-
stationary signal is defined as [1, Sec. 2.1.4.1]:

Iz(t, f) =
P∑
p=1

Wap(t, f) ∗
f
δ (f − fp(t)) ∗

f
WΠp

(t, f) . (18)

By comparing Eq. (18) to the proposed PW-WVD in Eq. (15),
one observes that the two approaches construct the signal TFR
differently. In Eq. (18), the signal is decomposed using in-
dependent sinusoid basis. This corresponds to tiling the TF
domain uniformly along the frequency axis; see Fig. 3(a). In
other words, the ideal TFD is thought of as an accumulation
of infinitely many independent frequency representations. In
contrast, the PW-WVD uses PW-LFM basis. Consequently, the
TF domain tiling adapts to the IF orientation at each time instant;
see Fig. 3(b). As a result, the designed PW-WVD is thought
of as the sum of infinitely many optimal WVDs. In practice,
when analyzing discrete signals, the number of independent
frequency representations in the ideal TFD and the number
of optimal WVDs in the PW-WVD are finite. This leads to a
major difference between the two distributions. On one hand, the
ideal TFD suffers from discontinuities because each frequency
representation (or time-slice) is independent from its neighbors.
As a result, the ideal TFD fails to link the transition between con-
secutive TF samples; see the outlined green region in Fig. 3(a).
On the other hand, the proposed PW-WVD eliminates such
discontinuities by linearizing all TF transitions; it links every
pair of samples with a PW-LFM that is aligned with the IF
orientation, see Fig. 3(b).

2The expression in Eq. (17) can be extended to separate the contribution of
inner and outer-terms using the formulation presented in Appendix A.

Fig. 2. The auto-terms and cross-terms of an example 2-component non-
stationary signal described by the signal model in Eq. (1). The signal IA,
IF, and time-support functions are demonstrated in (a-c), respectively. The
PW-WVD shows the signal auto-terms in (d). The signal WVD and its sep-
arated cross-terms are shown in (e) and (f), respectively. The signal first
component is characterized by an exponentially decaying IA in the form:
exp(−0.008t), a 4th order polynomial IF that passes through the TF points
{(20, 0.4), (80, 0.2), (130, 0.35), (180, 0.15), (230, 0.3)}, and a time sup-
port between 20 and 230 seconds. The signal second component is characterized
by a sinusoidal IA in the form: 0.4 + 0.3 cos(0.01πt), a linear IF that passes
through {(100, 0.05), (220, 0.4)}, and a time support between 100 and 220
seconds. The simulation parameters are: N = 256 samples, fs = 1 Hz and
M = 256 samples.

The MPD is an iterative cross-terms free TFD [38], [39].
Nonetheless, its performance is hindered by computational com-
plexity and is influenced by the signal variability [42]. The
MPD requires a dictionary with diverse TF atoms to match a
wide range of signal patterns. In this work, we utilize a chirplet
dictionary that holds approximately 6 million different atoms;
see Appendix D for more details. By comparing the MPD in
Fig. 3(c) to the PW-WVD in Fig. 3(b), one notes that the
two TFDs perform similarly across local structures that are
members of the chirplet dictionary, e.g. the LFM region outlined
in blue. However, in regions with non-linear structure, as the
one outlined in green, the MPD fails to concentrate the signal
energy around its IF because the pattern is not included in
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Fig. 3. Comparison between the ideal TFD, MPD, and the proposed optimal PW-WVD using an example 2-component non-stationary signal. The signal first
component is characterized by a unit constant IA, a sinusoidal IF in the form: 0.3− 0.1 sin(0.03π t), and a time support between 0 and 255 seconds. The signal
second component is characterized by a decaying IA in the form: exp(−0.0037 t), a linear IF in the form: 0.025 + (0.1/255) t, and a time support between 0
and 255 seconds. Two example regions of interest, outlined by blue and green rectangles in all subfigures, are enlarged for better visualization and interpretation.
The first region in blue (on the left) shows a local linear pattern, while the second region in green (on the right) depicts a local non-linear structure. The TF domain
tiling of each TFD is demonstrated on the regions of interest by solid lines. Note that the number of tiling lines is adjusted to ease visualization. The simulation
parameters are: N = 256 samples, fs = 1 Hz and M = 256 samples.

its dictionary. Increasing the MPD dictionary size to account
for the signal variability boosts its performance, but it also
escalates the complexity, i.e. an exact decomposition becomes
an NP-hard problem [41]. Besides, according to the uncertainty
principle, using many short-time atoms to match the signal
temporal shape lowers the TFD resolution [47]. In conclusion,
the designed PW-WVD is more suitable to serve as a reference
distribution to compare and evaluate the TFDs accuracy and
resolution.

D. TFD Performance Optimization and Evaluation

High performing TFDs are attained by filtering the WVD
using a TF kernel γ(t, f) as follows:

ρz(t, f) = γ(t, f) ∗∗
(t,f)

Wz(t, f) , (19)

where ρz(t, f) is a smoothed TFD and ∗∗
(t,f)

denotes the con-

volution operation in time and frequency [1]. The TF kernel
γ(t, f) suppresses the WVD cross-terms, but it also smears the
signal auto-terms. Hence, γ(t, f)must achieve the best trade-off
between accuracy and resolution.

1) Optimization: Using the proposed PW-WVD, we opti-
mize the TFD performance by minimizing the sum square error
(SSE) between ρz(t, f) and Lz(t, f), i.e.:

min
γ(t,f)

{∫∫
[Lz(t, f)− ρz(t, f)]2 dt df

}
. (20)
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Fig. 4. One dimensional visual interpretation for the TFD resolution measure
ξr in Eq. (23). Lz(f) and �z(f) are the original and smeared auto-terms,
respectively, and ξr = 0.7080 in this example.

Minimizing the SSE maximizes the TFD accuracy and resolu-
tion and yields an optimal TF kernel γopt(t, f), i.e.:

γopt(t, f)=argmin
γ(t,f)

{∫∫
[Lz(t, f)−ρz(t, f)]2 dt df

}
. (21)

In this work, we use the Bayesian optimization algorithm in
MATLAB to optimize the performance of the TFDs listed in
Table II. The optimization is executed with random initial kernel
parameters, for 200 iterations, and by using the expected im-
provement plus acquisition function [48]. Note that optimization
of the SPWVD kernel uses the PWVD optimal parameters as
initial solution.

2) Evaluation: Using Eqs. (17) and (21), we quantify the
TFD accuracy by measuring the relative amount of unfiltered
cross-terms, i.e.:

ξa = 1−
∫∫ ∣∣∣∣∣γopt(t, f) ∗∗

(t,f)

Xz(t, f)∫∫ |Xz(t, f)| dt df

∣∣∣∣∣ dt df , (22)

where ξa is the TFD accuracy which is 0 when cross-terms are
not altered and 1 when they are completely removed. Likewise,
we quantify the TFD resolution by measuring the relative in-
tersection area between the PW-WVD original auto-terms and
their smeared counterparts, i.e.:

ξr=

∫∫
min

{∣∣∣∣ Lz(t, f)∫∫ ∣∣Lz(t, f)∣∣dt df

∣∣∣∣, ∣∣�z(t, f)∣∣
}

dt df , (23)

�z(t, f) = γopt(t, f) ∗∗
(t,f)

Lz(t, f)∫∫ ∣∣Lz(t, f)∣∣dt df
, (24)

where ξr is the TFD resolution which is 0 when auto-terms
are completely smeared and 1 when they are not altered. Fig. 4
presents a one-dimensional interpretation for ξr.

In this work, we use ξa, ξr, and their average ξ to evaluate
the performance of the 12 TFDs formulated in Appendix D.
Apart from the proposed measures, we have considered the error,
divergence, and correlation between the PW-WVD and the TFD
under analysis. We found that the proposed measures are more
suitable because they yield values that are: bounded between 0
and 1, have physical meaning and interpretation, measure actual
correspondence not similarity, aligned with the definitions of
TFD accuracy and resolution, and finally, they decouple the
TFD performance into accuracy and resolution measures. In
spite of that, performance evaluation is application dependent;
therefore, alternative measures are relevant in other applications.

Fig. 5. Comparison between the proposed average TFD performance measure
ξ and the NIR and Reinhold measures using the CKD of the example signal
shown in Fig. 3. The four increasing performance levels are illustrated by filled
circles and their corresponding CKDs are plotting in Fig. 6.

For instance, error is suitable to evaluate component separation
algorithms when tested using the designed PW-WVD.

3) Comparison With the NIR and Reinhold Measures: The
proposed average TFD performance measure ξ is compared
with the NIR and Reinhold measures using the example signal
in Fig. 3 and the CKD. First, we optimize the CKD kernel
parameters (c,D,E) using the Bayesian optimization algorithm
to minimize the cost function in Eq. (20). After that, we fix the
CKD shape parameter to its optimal value, i.e. c = 2.995, and
compute the performance measures for a range of (D,E) values
starting from (1,1) and ending at the global optimal solution,
i.e. (0.3951,0.424); see Fig. 5. In addition, we visualize the
TFD performance progression by computing the CKD at four
increasing performance levels; see Fig. 6.

By examining Fig. 5, one observes that ξ shows a similar but
more robust trend when compared to the NIR and Reinhold mea-
sures. For instance, the NIR overestimates the TFD performance
such that it yields high values even for TFDs that are abundant
in cross-terms; see Fig. 6(a). On the other hand, the Reinhold
measure extends the NIR and reduces its overestimation error.
However, as its predecessor, it is still limited to signals with
maximum of two components at any time instant. In contrast, ξ is
independent of the signal number of components and generates
bounded values that correspond to the actual TFD performance;
it does not overestimate. Consequently, the proposed average
measure ξ is more appropriate to quantify the TFD accuracy
and resolution.

4) TFD Selection Criteria: By inspecting the CKDs in
Fig. 6(c) and Fig. 6(d), one deduces that a 0.01 drop in ξ re-
sults in slightly noticeable accuracy and resolution degradation.
Therefore, in this work, we select a set of best performing
TFDs according to the following criteria; if two TFDs exhibit a
performance difference less/more than 0.01, they are considered
equivalent/different in terms of performance.
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Fig. 6. The CKD at four increasing performance levels are shown in (a)-
(d) in ascending order along with their (D,E) kernel parameters. Note that
the CKD shape parameter c is fixed to its optimal value, i.e. c = 2.995. The
TFD performance measures in each sub-figure are as follows: (a) ξ = 0.556,
NIR = 0.835, Reinhold = 0.635, (b) ξ = 0.588, NIR = 0.868, Reinhold =
0.681, (c) ξ = 0.63, NIR = 0.872, Reinhold = 0.778, and lastly, (d) ξ = 0.64,
NIR = 0.894, Reinhold = 0.805. The simulation parameters are: N = 256
samples, fs = 1 Hz and M = 256 samples.

III. RESULTS AND DISCUSSION

A. Database

The proposed TFD performance evaluation process, depicted
in Fig. 1, requires a set of test signals that are capable of exploring
the TFDs advantages and limitations. In this work, we gen-
erate 1000 multi-component non-stationary signals following
the model in Eq. (1). The test signals are sampled at 1 Hz and
characterized by random number of components between 1 and
4, polynomial IF laws with random orders3 between 1 and 3,
random constant IA between 0.5 and 1, and random time support
within 0 and 255. The signal random time support is constrained
with minimum and maximum IF curve lengths to produce signals
with realistic durations.

B. Performance Evaluation

The performance of each utilized TFD is optimized for each
test signal and evaluated using the proposed measures. The
performance evaluation results for each TFD are averaged across
all test signals and summarized in Fig. 7. According to the
TFD selection criteria in Section II-D4, the averaged perfor-
mance trend ξ in Fig. 7 indicates that the CKD and SPWVD
form the set of best performing TFDs. Closer inspection of
the averaged accuracy and resolution show that the CKD and
SPWVD jointly maximize their TFD accuracy and resolution.

3An IF polynomial of order R is generated such that when regressed by a
polynomial of order R− 1, the adjusted r-square value is below 0.95. This is
done to validate the generated IF complexity.

Fig. 7. The TFD performance evaluation results using the proposed accuracy
and resolution measures. ξa is the TFD accuracy, ξr is the TFD resolution, and
ξ is their average. Error bars indicate the 1-sigma confidence interval. TFDs on
the x-axis are sorted according to their averaged performance.

Fig. 8. The TFD computational complexity measured in terms of averaged
processing time. Error bars indicate the 2-sigma confidence interval. TFDs on
the x-axis are sorted according to their averaged processing time.

Therefore, their utility is preferred when the TFD accuracy and
resolution are equally important. Additionally, by examining
the averaged accuracy, one observes that the MDD and DGF
are highly accurate but with low resolution. By investigating
the MDD and DGF kernel formulations in Table II, we suspect
that their low resolution is due to the MDD constant minor axis
support and the DGF excessive directional filtering. As a result,
these limitations prevent them from achieving highest overall
performance. Moreover, the MPD with chirplet dictionary shows
the lowest averaged performance, because according to the
uncertainty principle, selecting many short-time atoms to match
the IF non-linearity leads to low resolution.
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TABLE I
THE TFD PERFORMANCE EVALUATION RESULTS WITH RESPECT TO THE NUMBER OF SIGNAL COMPONENTS P AND THE IF POLYNOMIAL ORDERS R. RESULTS

ARE SUMMARIZED USING THE PROPOSED AVERAGED PERFORMANCE MEASURE ξ AND ROUNDED TO THREE DECIMAL PLACES TO ACCOUNT FOR SENSITIVITY.
FOLLOWING THE TFD SELECTION CRITERIA IN SECTION II-D4, BEST PERFORMING TFDS ARE IN BOLD AND SHADED IN GRAY

C. Computational Complexity

The complexity of each optimized TFD is measured in terms
of processing time. The assessment is conducted on a work-
station equipped with 2 Intel©R Xeon©R E5-2697V2 x64-based
processors, 192 GB of memory, and MATLAB R2020b. The
TFD computational complexity is estimated by Monte-Carlo
simulations where the processing time of each optimized TFD
is judged by generating the TFR of the 1000 test signals and
repeating the process for 10 times. Fig. 8 demonstrates the
averaged processing time of each optimized TFD. The results
indicate that the MPD has the highest computational complexity
followed by the DGF. In addition, it shows that the RGD and
MDD share similar complexity and that the rest of TFDs are
comparable in terms of processing time. From the TFD perfor-
mance evaluations in Fig. 7, it becomes apparent that by far
the greatest complexity goes to the TFDs that perform worst.
These findings highlight a demand to take into account both the

TFD accuracy and resolution when designing computationally
expensive TFDs.

D. TFD Selection Strategies

The performance evaluation results presented in Fig. 7 assume
no prior information on the signal parameters. Nevertheless,
some TFDs are designed to perform best given a set of signal
parameters. For this reason, we extend the former evaluations
to introduce precise TFD selection strategies when some prior
information on the signal parameters is available. Table I sum-
marizes the averaged performance measure ξ for each TFD
according to the number of signal components P and the IF
polynomial orders R. Following the TFD selection criteria in
Section II-D4, the set of best performing TFDs are identified by
a gray shading. By analyzing the set consistency with respect to
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the signal parameters, one can draw the following TFD selection
strategies:

1) CKD for non-stationary signals with one or two com-
ponents: the CKD kernel has the ability to reduce to
an impulse when no filtering is needed, e.g. in case of
mono-component LFM signals. Besides, it offers flexibil-
ity in terms of shape adaptation, directionality, and support
compactness to suppress cross-terms with minimum effect
on the auto-terms. Therefore, we recommend selecting the
CKD when analyzing signals with one or two components
regardless of their IF complexities.

2) RGD for multi-component LFM signals: the RGD and
MDD kernels are directional filters that are suited for LFM
signals. Nonetheless, the constant minor axis support of
the MDD kernel leads to low resolution. Similarly, the up-
per limit on the RGD kernel parameter ψ prevents it from
reducing to an impulse when analyzing mono-component
LFM signals. Nevertheless, closer inspection of the results
in Table I reveal that the RGD drawback becomes insignifi-
cant whenP > 1. Consequently, we recommend selecting
the RGD when analyzing multi-component LFM signals.
It is worth noting that the MDD outperforms the RGD
when we relax the restriction on its minor axis support.
However, in this work, we confine our scope to evaluate
the conventional MDD.

3) CKD for non-stationary signals with three components
and non-linear IF laws: the CKD high performance
extends to include signals with three components and
non-linear IF laws. By analyzing the results in Table I for
P = 3, we observe that the CKD yields the most consistent
high performance when compared to other TFDs. As a
result, we recommend selecting the CKD when analyzing
signals with three components and non-linear IF laws.

4) CKD, SPWVD, or EMBD for non-stationary signals
with high number of components and non-linear IF
laws: the CKD, SPWVD, and EMBD kernels become
equivalent, in terms of TFD accuracy and resolution, when
analyzing signals with high number of components and
IF complexities. Note that results in Fig. 7 identified
the SPWVD as one of the best performing TFDs and
disregarded the EMBD utility when no information on
the signal parameters is available. However, it is apparent
from Table I that the SPWVD and EMBD are equivalent
and their utility is only justified when P > 3. Hence, we
recommend selecting the CKD, SPWVD, or EMBD when
analyzing signals with high number of components and
non-linear IF laws.

5) ED, BJD, PWVD, BD, MBD, DGF, and MPD are
not recommended: the ED and BJD kernels are non-
directional filters; they smooth the WVD uniformly in all
directions. Moreover, the PWVD, BD, and MBD kernels
are mono-directional filters; they smooth the WVD along
the time or frequency axis. For these reasons, none of the
former kernels can maximize the TFD accuracy and reso-
lution due to their limited directionality. On the other hand,
the DGF is a time-dependent directional kernel that aims
to maximize the TFD energy concentration. Nevertheless,

its excessive filtering reduces resolution. Additionally, the
MPD with chirplet dictionary selects many short-time
atoms to match the IF non-linear regions; hence, it also
reduces resolution. For these reasons, in addition to their
computational complexities, the DGF and MPD are not
recommended.

IV. CONCLUSIONS

The performance of a TFD is defined by its accuracy and
resolution. High accuracy ensures minimal cross-terms, while
high resolution enhances the ability to resolve the auto-terms.
Conventionally, the TFD performance is assessed visually or
quantified using TF measures. Nevertheless, visual assessment
is subjective and TF measures cannot define the performance
difference among different TFDs. This study presented a TFD
performance evaluation process by designing a reference opti-
mal TFD and deriving accuracy and resolution measures. The
TFD design started by decomposing a standard non-stationary
signal model using PW-LFM basis. Afterwards, we exploited
the WVD optimality for LFM signals to formulate the proposed
optimal PW-WVD. We adopted the proposed distribution to de-
rive novel TFD accuracy and resolution measures and analyzed
their sensitivity to form a TFD selection criteria. In addition, we
compared the PW-WVD and the proposed measures to conven-
tional approaches. Moreover, we evaluated the performance of
12 different TFDs using these measures and developed precise
TFD selection strategies with or without prior information on the
signal parameters. In summary, the study findings indicated that
the CKD yields highest accuracy and resolution with minimum
computational complexity given no prior information on the
signal parameters. Additionally, we recommended the RGD for
multi-component LFM signals.

The implications of the findings of this paper are as follows:
(1) the designed optimal PW-WVD is a viable tool to evaluate
and compare the performance of various TF signal processing
techniques, e.g. source separation, IF estimation, TFD optimiza-
tion, denoising, filtering, and many others; (2) the proposed TFD
accuracy and resolution measures can be used as design criteria
to formulate new high-performing TFDs; (3) TFD selection is
no longer convoluted as one can follow the proposed strategies
to maximize accuracy and resolution; and finally (4) machine
learning techniques, e.g. neural networks, are suited to design
new TFDs due to the availability of the proposed optimal TFD as
true labels. The designed PW-WVD is limited to signals that can
be decomposed using PW-LFMs. The TFR of naturally disperse
functions, e.g. Gaussian signals, cannot be described using the
proposed TFD due to their inherent ambiguity. Future research
directions could involve (1) extending the PW-WVD by using
spread directional basis for the signal decomposition, (2) finding
an analytical solution of the Ambiguity function using the PW-
WVD, (3) investigating the feasibility of different cost functions
for TFD optimization using the proposed TFD accuracy and
resolution measures, (4) forming a matching pursuit distribution
with PW-LFM atoms, and (5) improving TFD design tech-
niques by incorporating the proposed optimal TFD with machine
learning tools.
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The software package that is needed to reproduce the results
of this paper along with the developed PW-WVD are provided
as supplementary material and can downloaded from [49].

APPENDIX A
FORMULATING THE WVD INNER-TERMS USING THE BINOMIAL

THEOREM

Using the signal model in Eq. (1), let us assume a mono-
component (P = 1) non-stationary signal z(t) with a polyno-
mial IF of order R, i.e.:

f(t) =

R∑
r=0

ηr t
r , (A.1)

where ηr is the IF rth polynomial coefficient. Using Eq. (9), the
signal IAF is expressed as follows:

Kz(t, τ) = Ka(t, τ) exp (j2π ϕ(t, τ))KΠ(t, τ) , (A.2)

ϕ(t, τ)=

R∑
r=0

(
ηr
r + 1

)[(
t+

τ

2

)r+1

−
(
t− τ

2

)r+1
]
, (A.3)

where Ka(t, τ) = a(t+ τ/2)a(t− τ/2) and KΠ(t, τ) =
Π(t+ τ/2)Π(t− τ/2).

According to the binomial theorem, one can expand any non-
negative power of a+ b into a sum of the form:

(a+ b)c = a c
c∑
i=0

(
c

i

)(
b

a

)i
. (A.4)

Using Eq. (A.4), one can express Eq. (A.3) as follows:

(
t+

τ

2

)r+1

= t r+1
r+1∑
i=0

(
r + 1

i

)( τ

2 t

)i
. (A.5)

(
t− τ

2

)r+1

= t r+1
r+1∑
i=0

(
r + 1

i

)(−τ
2 t

)i
. (A.6)

ϕ(t, τ) =

R∑
r=0

(
ηr t

r+1

r + 1

) r+1∑
i=0

(
r + 1

i

)( τ

2 t

)i
κi︸ ︷︷ ︸

B(t,τ)

. (A.7)

κi =

{
0 : i is even

2 : i is odd
. (A.8)

Let us expand the binomial sum B(t, τ) in Eq. (A.7) as:

B(t, τ) = (r + 1)
(τ
t

)
+

r+1∑
i=2

(
r + 1

i

)( τ

2 t

)i
κi . (A.9)

Substituting this expansion into Eq. (A.7) yields:

ϕ(t, τ) =

R∑
r=0

[
ηr t

rτ +

(
ηr t

r+1

r + 1

) r+1∑
i=2

(
r + 1

i

)( τ

2 t

)i
κi

]

Fig. 9. The WVD auto-terms and inner-terms for an example mono-
component non-stationary signal. The signal is characterized by a unit con-
stant IA, a 2nd order polynomial IF that passes through the TF points
{(0, 0.2), (127, 0.4), (255, 0.2)}, and a time support between 0 and 255 sec-
onds. (a) shows the signal IF, (b) illustrates the WVD auto-terms, (c) presents the
WVD inner-terms, and (d) shows the WVD of the signal computed by Eq. (A.13).
The simulation parameters are: N = 256 samples, fs = 1 Hz and M = 256
samples.

= τ

R∑
r=0

ηr t
r

︸ ︷︷ ︸
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+

R∑
r=2

r+1∑
i=2

(
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)(
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r+1

r + 1

)( τ
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)i
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ζR(t,τ)

= τf(t) + ζR(t, τ), (A.10)

where f(t) is the signal IF and ζR(t, τ) is a recursive residual
term coming from the bilinear nature of the IAF operator, i.e.:

ζR(t, τ) = ζR−1(t, τ)

+
R+1∑
i=2

(
R+ 1

i

)(
ηR t

R+1

R+ 1

)( τ

2 t

)i
κi . (A.11)

Using the expression in Eq. (A.10), Eq. (A.2) becomes:

Kz(t, τ) = Ka(t, τ) e
j2πτf(t)ej2πζR(t,τ)KΠ(t, τ) . (A.12)

Finally, applying the WVD definition in Eq. (8) yields:

Wz(t,f)=Wa(t,f) ∗
f
δ (f−f(t)) ∗

f
WζR(t,f) ∗

f
WΠ(t,f) ,

(A.13)
where δ(f − f(t)) holds the WVD auto-terms,WζR(t, f) holds
the WVD inner-terms,Wa(t, f) = F

τ→f
{Ka(t, τ)},WΠ(t, f) =

F
τ→f
{KΠ(t, τ)}, and ∗

f
denotes the convolution operation in

frequency.
By examining Eq. (A.13), one observes that the WVD is

optimal if and only if WζR(t, f) = δ(f) which corresponds
to ζR(t, τ) = 0. Using Eq. (A.11), we see that this is only
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possible when R = 0 or R = 1; z(t) is an LFM signal. Hence,
the WVD shows no inner-terms for LFM signals. Additionally,
the recursive non-linear definition of ζR(t, τ) indicates that the
complexity of WζR(t, f) escalates for higher IF polynomial
orders. Fig. 9 demonstrates a numerical verification for Eq.
(A.13) by presenting the WVD auto-terms and inner-terms for
a non-stationary signal with quadratic IF law.

APPENDIX B
THE PW-WVD OPTIMALITY AND PROPERTIES

The PW-WVD definition in Eq. (15) is optimal if and only if∑∞
q=1Wψp,q

(t, f) = δ(f − fp(t)) holds ∀p ∈ [1, 2, . . . , P ]. In
the following we prove this statement.

Let us express the qth PW-LFM frequency rate λp,q , starting
frequency εp,q , and time support when Tp → 0:

λp,q = lim
Tp→0

(
fp (tp,q + Tp)− fp (tp,q)

Tp

)
= f ′p (tp,q) ,

εp,q = lim
Tp→0

(fp (tp,q)− λp,q tp,q) = fp(tp,q)− f ′p(tp,q) tp,q ,

lim
Tp→0

(tp,q ≤ t < tp,q + Tp)→ t = tp,q ,

where f ′p(tp,q) =
dfp(t)

dt
|t=tp,q . Using these expressions, the

definition of Wψp,q
(t, f) in Eq. (16) becomes:

Wψp,q
(t, f)

=

{
δ
(
f − f ′p(tp,q) t− fp(tp,q) + f ′p(tp,q) tp,q

)
: t = tp,q

0 : otherwise

= δ
(
f −������f ′p(tp,q) tp,q − fp(tp,q) +������f ′p(tp,q) tp,q

)
= δ (f − fp(tp,q)) .

This allows us to express the infinite sum in Eq. (15) as:
∞∑
q=1

Wψp,q
(t, f) = δ (f − fp(tp,q)) ∀tp,q ∈ [tp,i, tp,f ] .

Sincefp(t) is only defined within its temporal support [tp,i, tp,f ],
fp(tp,q) ∀tp,q ∈ [tp,i, tp,f ] ≡ fp(t); hence:

∞∑
q=1

Wψp,q
(t, f) = δ (f − fp(t)) .

This proves the PW-WVD optimality for each signal com-
ponent p separately. Nevertheless, since the multi-component
PW-WVD is constructed through a linear sum, it is also optimal
by linearity, i.e.:

∞∑
q=1

Wψp,q
(t, f) = δ (f − fp(t)) ∀p ∈ [1, 2, . . . , P ] .

Apart from its optimality, the PW-WVD inherent the follow-
ing set of WVD properties: realness, time covariance, frequency
covariance, (time marginal)∗, (frequency marginal)∗, (global
energy)∗, (instantaneous frequency)∗, (spectral delay)∗, time

support, frequency support, convolution invariance, modulation
invariance, (invertibility)∗, (Moyal’s formula)∗, and Ambiguity
function. Note that properties marked with ∗ are only valid for
mono-component signals, because the PW-WVD is cross-terms
free. The supplementary material includes proofs for these prop-
erties.

APPENDIX C
THE DISCRETE PW-WVD

Let z[n] be a discrete multi-component non-stationary signal
sampled at fs such that z[n] � z((n− 1)/fs) where n ∈ [1, N ]
is the time sample index and N is the total number of time
samples in z[n]. The discrete PW-LFM decomposed model is
expressed as follows:

z[n] =

P∑
p=1

ap[n]

⎛
⎝Qp∑
q=1

ψp,q[n]

⎞
⎠Πp[n] , (C.1)

Πp[n] =

{
1 : n ∈ [

np,i, np,f
]

0 : otherwise
, (C.2)

ψp,q[n]=

⎧⎪⎨
⎪⎩e

j2π

⎛
⎝λp,q

2
n2+εp,q n+c

⎞
⎠
: n∈[

np,q−1, np,q
]

0 : otherwise

, (C.3)

where ap[n], fp[n] and Πp[n] are the pth component discrete
IA, IF and sample support window, respectively, ψp,q[n] is
the qth discrete PW-LFM for fp[n], Qp = np,f − np,i, np,i ≥
1, np,f ≤ N , np,q = np,i + q, λp,q = fp[np,q]− fp[np,q−1],
εp,q = fp[np,q−1]− λp,qnp,q , and c is an integration constant
that ensures continuity.

The discrete PW-WVD is defined as follows:

Lz[n,m]=

P∑
p=1

Wap [n,m] ∗
m

Qp∑
q=1

Wψp,q [n,m] ∗
m
WΠp [n,m] ,

(C.4)
where m ∈ [1,M ] is the frequency sample index, M is the
total number of frequency samples, Lz[n,m] is the discrete
PW-WVD of z[n], Wap [n,m] and WΠp

[n,m] are the WVDs
of ap[n] and Πp[n], respectively, and Wψp,q

[n,m] is the WVD
of the qth PW-LFM ψp,q[n], i.e.:

Wψp,q
[n,m] =

{
δ (m− λp,q n− εp,q) : n ∈ [np,q−1, np,q]

0 : otherwise
.

(C.5)

APPENDIX D
FORMULATION FOR SELECTED TIME-FREQUENCY

DISTRIBUTIONS

This study evaluates the accuracy and resolution of the follow-
ing TFDs: Matching Pursuit distribution (MPD), Born-Jordan
distribution (BJD), exponential distribution (ED), pseudo WVD
(PWVD), smoothed-pseudo WVD (SPWVD), B-distribution
(BD), modified BD (MBD), extended MBD (EMBD), com-
pact kernel distribution (CKD), multi-directional distribution
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TABLE II
TFD KERNEL FORMULATIONS AND CONTROL PARAMETERS [1]. Lw AND Lh ARE THE LENGTHS OF THE WINDOWS w(τ) AND h(ν) RESPECTIVELY,
Ω = {RECTANGULAR, HANNING, HAMMING, BARTLETT} IS THE SET OF WINDOW FUNCTIONS, AND N IS THE TOTAL NUMBER OF TIME SAMPLES

(MDD), radial Gaussian distribution (RGD), and directional
Gaussian filter (DGF).

A. The Matching Pursuit Distribution

The MP approach decomposes an input signal z(t) via a
dictionary that contains a set of elementary TF atoms [38]. It
projects z(t) over the TF atoms and then selects those that match
its local structure in an adaptive greedy fashion [39]. The MP
decomposition is expressed as follows [38]:

z(t) =
K−1∑
k=0

ck GΛk
(t) + εKz(t) , (D.1)

where GΛk
(t) is the TF atom that belongs to the dictionary,Λk is

the set of atom parameters, ck =
∫
εkz(t)G∗Λk

(t) dt is the atom
coefficient,K is the total number of decompositions (or atoms),
and εKz(t) is the MP residual after K decompositions where
ε0z(t) = z(t).

The MPD is computed by applying the WVD definition in
Eq. (8) to the selected atoms, i.e. [39]:

Mz(t, f) =
K−1∑
k=0

|ck|2WGΛk
(t, f) , (D.2)

where Mz(t, f) is the MPD and WGΛk
(t, f) is the WVD of

GΛk
(t). In this work, we populate the MP dictionary with chirplet

atoms which are expressed as [50], [51]:

GΛk
(t) =

1√
sk
G

(
t− μk
sk

)
e(jω

s
k(t−μk)+jω

r
k(t−μk)

2) , (D.3)

where G(t) = 21/4 e−πt
2

is a Gaussian function, sk ∈
[210, 29, . . . , 20] controls the temporal width of the atom, μk ∈
[0, 1, . . . , 127]× T/127 is the time shift,T is the input signal du-
ration,ωsk ∈ [0, 1, . . . , 63]× πfs/63 is the chirp start frequency,
fs is the signal sampling frequency, and ωrk ∈ [0× 2− 63, 1×
2− 63, . . . , 63× 2− 63]× πfs/3150 is the chirp rate. Note
that Gaussian atoms are special case of this expression when
ωrk = 0.

Using the signal parameters summarized in Section III-A, the
MP dictionary holds approximately 6 million atoms. Moreover,
the signal decomposition in Eq. (D.1) is performed using the
Orthogonal Matching Pursuit algorithm in MATLAB [52]. The
decomposition is terminated when reaching a 1% minimum L2

relative error or when K = T .

B. Quadratic TFDs

The TFD definition in Eq. (19) can be expressed by means of
multiplication in an alternative domain, called ambiguity domain
or Doppler-lag domain, as follows [1]:

ρz(t, f) = F
t←ν

−1
{
F
τ→f
{g(ν, τ)Az(ν, τ)}

}
, (D.4)

where F
t←ν

−1 denotes the inverse Fourier transform from Doppler

to time, g(ν, τ) is the Doppler-lag kernel, and Az(ν, τ) is the
ambiguity function. Table II lists the Doppler-lag kernel formu-
lations for the quadratic TFDs used in this study alongside their
control parameters.
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processing of time-frequency representations in instantaneous frequency
estimation based on ant colony optimization,” Signal Process., vol. 138,
pp. 195–210, 2017.

[10] V. S. Amin, Y. D. Zhang, and B. Himed, “Improved instantaneous fre-
quency estimation of multi-component FM signals,” in Proc. IEEE Radar
Conf., Apr. 2019, pp. 1–6.

[11] R. Anderson and M. Sandsten, “Stochastic modelling and optimal spectral
estimation of EEG signals,” in Proc. EMBEC & NBC 2017, H. Eskola,
O. Väisänen, J. Viik, and J. Hyttinen, Eds. Singapore: Springer, 2018,
pp. 908–911.

[12] M. F. Al-Sa’d and B. Boashash, “Design and implementation of a
multi-sensor newborn EEG seizure and background model with inter-
channel field characterization,” Digit. Signal Process., vol. 90, pp. 71–99,
2019.

[13] D. Fourer, F. Auger, and G. Peeters, “Local AM/FM parameters estimation:
Application to sinusoidal modeling and blind audio source separation,”
IEEE Signal Process. Lett., vol. 25, no. 10, pp. 1600–1604, Oct. 2018.

[14] P. Wang, P. V. Orlik, K. Sadamoto, W. Tsujita, and F. Gini, “Parameter
estimation of hybrid sinusoidal FM-Polynomial phase signal,” IEEE Signal
Process. Lett., vol. 24, no. 1, pp. 66–70, Jan. 2017.

[15] A. Serbes, “On the estimation of LFM signal parameters: Analytical for-
mulation,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 2, pp. 848–860,
Apr. 2018.

[16] B. Boashash and S. Ouelha, “Automatic signal abnormality detection using
time-frequency features and machine learning: A newborn EEG seizure
case study,” Knowl.-Based Syst., vol. 106, pp. 38–50, 2016.

[17] R. B. Pachori and A. Nishad, “Cross-terms reduction in the wigner-ville
distribution using tunable-q wavelet transform,” Signal Process., vol. 120,
pp. 288–304, 2016.

[18] R. Alazrai, R. Homoud, H. Alwanni, and M. I. Daoud, “EEG-Based emo-
tion recognition using quadratic time-frequency distribution,” Sensors,
vol. 18, no. 8, 2018, Art no. 2739.

[19] J. Escrivá Muñoz, Y. Pan, S. Ge, E. W. Jensen, and M. Vallverdú,
“Novel characterization method of impedance cardiography signals using
time-frequency distributions,” Med. Biol. Eng. Comput., vol. 56, no. 10,
pp. 1757–1770, Oct. 2018.

[20] S. Shao, A. Liu, C. Yu, H. Yang, Y. Li, and B. Li, “Spatial time-frequency
distribution of cross term-based direction-of-arrival estimation for weak
non-stationary signal,” EURASIP J. Wireless Commun. Netw., vol. 2019,
no. 1, pp. 1–12, Oct. 2019.
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