
Henrik Toivakka

Integration of EU medical device
regulatory requirements into a

CI/CD pipeline

Faculty of Information Technology and Communication Sciences (ITC)
Master’s thesis

September 2021

Abstract
Henrik Toivakka: Integration of EU medical device regulatory requirements into a
CI/CD pipeline
Master’s thesis
Tampere University
Master’s Degree Programme in Computer Sciences
September 2021

Manufacture of medical device software is strictly controlled by the law in European
Union region. The medical device regulations could be seen as cumbersome and dif-
ficult to incorporate into the manufacturing process of a software. The regulations
introduce a rigid product life cycle process to medical device software products,
which could be seen as counter-intuitive by the software industry. Meanwhile, the
software industry has found DevOps culture and practices, such as process automa-
tion and delivery pipelines, which are utilized to improve the competitiveness and
reliability of the software business.

This thesis tries to find a common ground between the European Union medical
device regulatory requirements and modern software development practices. The
European Union medical device regulatory framework is introduced, followed by
a systematic document analysis of the standards IEC 62304 and IEC 82304-1 to
identify applicable requirements for a CI/CD pipeline. As a result, a reference
model for regulated CI/CD pipeline is introduced.

For practitioners, tools and activities were found, that could help to overcome
some of the burdensome activities, required by the medical device regulations. Ad-
ditionally, the benefits of integrating CI/CD pipeline into the medical device man-
ufacturing process is examined, such as the possibility for early customer feedback.

For researchers, a document analysis based on the standards IEC 62304 and IEC
82304-1 is provided. Moreover, the proposed regulated CI/CD pipeline model can
be expanded to cover more regulatory requirements. Finally, research topics related
to medical device software manufacturing are discussed.

Keywords: regulatory compliance, medical device software, medical device reg-
ulation, in vitro diagnostic regulation, CI/CD pipeline, DevOps, IEC 62304, IEC
82304-1.

The originality of this thesis has been checked using the Turnitin Originality Check
service.

Contents

1 Introduction . 1
1.1 Regulations and medical device standards 1
1.2 DevOps and pipelines . 2
1.3 Research objectives and methods . 2

2 Regulation of medical devices in EU region 4
2.1 Medical Device Regulation . 5
2.2 In Vitro Diagnostics Regulation . 6
2.3 Product safety and clinical effectiveness 7
2.4 Product placement on the market . 8
2.5 Overview of medical device standards 9

2.5.1 IEC 82304-1: Health software — Part 1: General requirements
for product safety . 10

2.5.2 IEC 62304: Medical device software — Software life cycle processes 11
2.5.3 Other relevant standards . 13

2.6 Agile software development in regulated environment 14

3 Key characteristics of CI/CD pipelines . 17
3.1 Continuous Integration . 17
3.2 Continuous Delivery . 18
3.3 Pull-based development . 19
3.4 *-as-Code . 19
3.5 Blue-green deployment . 20
3.6 Reference CI/CD pipeline . 21

4 Identifying requirements for CI/CD pipelines in the regulated environment 23
4.1 Issues arising from the regulatory requirements 23

4.1.1 Rigidness of the manufacturing process 24
4.1.2 Burdensome testing and verification requirements 24
4.1.3 Software of Unknown Provenance 25

4.2 Fully implemented regulatory requirements 26
4.3 Partially implemented regulatory requirements 27
4.4 Not implemented regulatory requirements 29

5 Integration of the identified regulatory requirements into a CI/CD pipeline 33
5.1 Stages of the pipeline . 35

5.1.1 Software integration . 35
5.1.2 Review and verification . 36
5.1.3 Deployment pipeline . 37

5.1.4 Integration verification . 38
5.1.5 Release activities and approval 39
5.1.6 Implicitly implemented regulatory requirements 40

5.2 Regulatory compliance by design . 40
5.2.1 Version control and traceability 41
5.2.2 Behavior-Driven Development 41
5.2.3 Segregation of medical device software components 42

5.3 Software risk management . 43
5.4 Software problem resolution process 43
5.5 Software maintenance . 43

6 Conclusions . 45
6.1 Limitations and applicability of the research 46
6.2 Discussion and further research . 47

7 Acknowledgements . 49

References . 53

1

1 Introduction
Medical device is a device that is used for medical purposes, introducing benefits and
potential risks to a person’s health. The patient’s health is a great concern for the
regulators, resulting in heavy regulations on the healthcare sector. Traditionally,
a medical device is seen as a physical device or equipment. As the technology has
evolved, and software has become mainstream, even a medical device may contain
software or be a standalone software, leading to the identification of Medical Device
Software (MDSW) separately in the EU regulation. The same rules apply to the
manufacturers of medical device software, as the manufacturers of traditional med-
ical device equipment. As a result, if the intended use of the software is for medical
purposes, the manufacturing must be done under the European Union Regulatory
Framework. If the software fulfills the criteria of a medical device, but does not
conform to the regulations, it may not be used or sold for medical purposes, even
free of a charge.

1.1 Regulations and medical device standards

For a long period, EU legislation consisted of the following directives; Active Im-
plantable Medical Device Directive (AIMDD) [European Commission, 1990], Med-
ical Device Directive (MDD) [European Commission, 1993] and In Vitro Diagnos-
tic Directive (IVDD) [European Commission, 1998]. However, the aforementioned
directives are repealed and replaced with Medical Device Regulation (MDR) [Eu-
ropean Commission, 2017] and In Vitro Diagnostic Regulation (IVDR) [European
Commission, 2017]. After the MDR and the IVDR are fully applicable, the MDD
and the IVDD are repealed. The regulations introduce new requirements for med-
ical device software manufacturers, which the medical device manufacturers must
implement into their manufacturing processes. MDR came fully into effect 26th of
May in 2017 and had a transition phase until 26th of May in 2020. However, the
transition phase was prolonged until 26th of May in 2021, because of the pandemic
caused by COVID-19 [Fimea, 2020]. The In Vitro Diagnostics Regulation (IVDR)
[European Commission, 2017] came into effect 26th of May in 2017, and has a tran-
sition phase until 26th of May in 2022. After the transition phase, medical device
manufacturers must conform to the regulations, to continue selling medical device
products in the EU region. The manufacturer of medical devices in the European
Union (EU) region must follow different directives, regulations, national legislation
and standards regarding medical devices, to ensure that the device is safe to use for
medical purposes. The regulations and standards introduce regulatory activities for

2

manufacturing a medical device.
For software manufacturers, it could be seen difficult, or even counter-intuitive,

to integrate the regulatory requirements into the modern software development prac-
tices. The regulatory requirements introduce rigid and burdensome activities, when
compared to the unregulated software development. In this thesis, it is assumed
that the software already qualifies as a medical device, and the EU regulation is
applied to the manufacturing process.

1.2 DevOps and pipelines

DevOps is an operational model for manufacturing digital services, which tries to
build a bridge between software development and IT operations. DevOps-influenced
software industry has adopted tools and processes to supercharge the development,
delivery and maintenance processes of software. Instead of building large mono-
lithic systems, the current industry mainstream is focusing on modular software
built on cloud architecture. Additionally, the software is developed rapidly with ag-
ile software development models such as Extreme Programming, Kanban or Scrum
[Stellman et al., 2014]. Recent trend of DevOps has brought the culture of au-
tomation into the processes, which has enabled software verification, delivery and
even deployment into the production automatically [Laster, 2020]. The automated
verification and deployment activities in DevOps are performed in pipelines, which
can perform any predefined tasks repeatedly. In this thesis, the definition of De-
vOps leans towards automation and pipelines, although it is not the only definitive
characteristic of DevOps.

1.3 Research objectives and methods

The purpose of the research is to find ways for manufacture of medical device soft-
ware to gain more agility and competitiveness, while maintaining compliance with
the medical device regulations.

The research questions are following:

1. Is it possible to integrate CI/CD pipeline into the medical device software
development process?

2. Is it possible to utilize Continuous Deployment in medical device software
delivery process?

3. What advantages could a CI/CD pipeline introduce to a medical device man-
ufacturer?

In this thesis, a systematic document analysis of IEC 62304 [IEC, 2015] and
IEC 82304-1 [IEC, 2007] is performed, and the applicable regulatory requirements

3

to a CI/CD pipeline are identified. IEC 62304 and IEC 82304-1 were chosen as
the main standards for this study, as they introduce requirements for software life
cycle and product safety, and impact a CI/CD pipeline the most. The regulatory
requirements are integrated into a CI/CD pipeline model, and as a result, a regulated
CI/CD pipeline model is established. The model is further analysed and reviewed,
and the possible follow-up studies, based on the model are discussed.

The study does not include every possible regulatory requirements, and activi-
ties, such as interaction with Notified Bodies (NB), risk management, configuration
management, clinical evaluation, performance evaluation, product validation, us-
ability validation and details on Quality Management Systems, are excluded out of
the scope. The activities are mentioned while discussing the main topic, but not
included in the pipeline model. Also, there could be other applicable standards for
a medical device software product, depending on the intended use of the product,
which are not mentioned in this thesis.

The rest of this thesis is organized as follows. In Chapter 2, the medical device
regulations and related international standards are introduced. In Chapter 3, the
key characteristics of DevOps and CI/CD pipelines are introduced. In Chapter
4, the requirements from medical device standards are identified and collected for
further analysis. In the Chapter 5, the identified requirements from Chapter 4 are
integrated into a CI/CD pipeline. Finally, in Chapter 6 the conclusions and further
research topics of this thesis are discussed.

4

2 Regulation of medical devices in EU region
In this chapter, the EU medical device legislation, and the related medical device
standards are introduced. The European Union Regulatory Framework for medical
devices may be interpreted to consist of four layers, illustrated in Figure 1. The lay-
ers are EU legislation, national legislation, guidance documents and international
standards [Granlund et al., 2021]. In reality, the EU legislation consists of directives
and regulations, and the difference between regulation and directive is significant.
Directives are optional, and must be adopted into the national legislation. Accord-
ing to European Commission [European Commission, 2021], an EU regulation is
a directly applicable set of legal acts, that EU member countries must conform
to, without a national interpretation in their legislation. Furthermore, compliance
with the regulations is mandatory. Essentially, the regulatory framework sets the
baseline rules for every member country, but leaves room for national legislation.

However, MDR and IVDR introduce even more requirements than MDD and
IVDD, which already make medical software development slightly different from
non-medical software development. Additionally, some of the requirements from
MDR and IVDR are completely new for the software industry. The major changes
are following; software manufacturers need to perform global impact assessment,
and rationalize the product portfolios. Most legacy devices are addressed with new
rules, and existing products need to be re-certified with a CE mark. Devices, that
were previously not considered medical devices, could now fulfill the criteria of a
medical device, and the existing medical devices could be re-classified into another
product class of the MDR. Furthermore, in vitro devices are classified into four
different product classes. Finally, the requirements such as clinical evaluation and
clinical investigation for MDR, performance evaluation for IVDR, and assessment
with a Notified Body (NB) still apply.

5

EU legislation

National legislation

Guidance documents
(MDCG)

International standards
(ISO, IEC)

Figure 1 Different layers of EU regulatory framework [Granlund et al., 2021].

The EU regulations, as they are, are difficult to bring into the practice, leading to
implementation of guidance documents, which clarify the intentions behind the reg-
ulatory aspect regarding general safety, performance and standardisation [European
Commission, 2017]. Currently, the guidance documents are released by the Medical
Device Coordination Group (MDCG), and help with effective and harmonised im-
plementation of the regulations. However, the most practical and convenient way to
understand the regulatory aspect, is to follow the applicable set of standards, estab-
lished by the International Electrotechnical Commission (IEC) and International
Organization for Standardization (ISO), and to use a development process which
implements the standards IEC 62304 [IEC, 2015], ISO 14971 [ISO, 2007], ISO 13485
[ISO, 2018], IEC 62366-1 [IEC, 2015] and IEC 82304-1 [IEC, 2016].

To meet all the safety and performance requirements of the EU Regulatory
Framework, the medical device must implement the regulatory requirements cor-
rectly and the manufacturer must implement a Quality Management System (QMS)
[Pitkänen et al., 2020].

2.1 Medical Device Regulation

The European Medical Device Regulation (MDR) [European Commission, 2017]
aims to harmonize the EU region’s legislation, and to remove the national interpre-
tation from the law, when manufacturing any kind of medical device. Moreover,
MDR covers the clinical investigation and sale of medical devices for human use.
The objective of MDR is to improve the quality, safety and reliability of medical
devices, applying to every member country of the European Union.

6

A medical device implies any instrument, apparatus, appliance, software, im-
plant, reagent, material or other article intended by the manufacturer to be used,
alone or in combination for medical purposes [European Commission, 2017]. A med-
ical device software is software that has intended use, either alone or in combination
for medical or in vitro purposes [European Commission, 2017].

Classification for medical devices is introduced by MDR, reflecting the potential
harm, that could be caused by a medical device, in a scenario where the risk is
realized. The product classification is determined by the intended use of the medical
device, rather than the composition of the medical device. Moreover, the same
product classification is present, regardless, if the device is a software, a physical
device, a chemistry product or something else [Ståhlberg, 2015]. For instance, a
blood sugar monitoring software and a physical item, such as a syringe, are classified
by the same rules. The same product classification rules apply for all medical devices
under MDR, and even if the software only controls or influences a medical device
somehow, it falls into the same classification as the medical device in the question.

Class I is the lowest risk-level class. All other software, that is not classified
as II or III, is classified into class I. Additionally, medical devices classified into
Class I, have lesser requirements for the Notified Body (NB) assessment [European
Commission, 2017]. Class II is divided into two sub-classes, IIa and IIb, with IIb
being the higher risk-level class. Software intended to provide information for diag-
nosis, therapeutic purposes, or monitoring physiological processes, is classified as a
class IIa device. However, if the software could cause harm or danger to a person’s
health, the device is classified as a class IIb device instead. The distinction between
the classes of IIb and III is following; devices which could cause serious, but not
irreversible injury to a person’s health are classified into class IIb, instead of Class
III. Class III is the highest risk-level class for medical devices. A device that could
cause a death, or irreversible injury to a person’s health is classified into Class III.

To summarise, the MDR introduces regulatory requirements for manufacturing
medical devices in the European Union. Moreover, compliance with the regulatory
requirements is necessary. Otherwise, the manufactured medical devices can not be
sold or distributed in the EU region, even free of a charge.

2.2 In Vitro Diagnostics Regulation

The European In Vitro Diagnostics Regulation (IVDR) [European Commission,
1998] is the medical device regulation for in vitro diagnostic devices, repealing the
IVDD [European Commission, 1998], which was not detailed enough for high-risk
devices, leading to problems with interpretation and practical application of the
directive. The objective of IVDR is to improve quality, safety and reliability of in
vitro devices (IVD).

7

In vitro medical device is any kind of medical device, which is a reagent, reagent
product, calibration, control material, kit, instrument, apparatus, piece of equip-
ment, software or a system intended to be used in vitro for examination of speci-
mens, including blood and tissue, derived from human body [European Commission,
2017]. The device may be used alone, or in combination with other devices. IVDR
covers monitoring devices and diagnostics, that are specifically designed or used for
monitoring human functions. Regulation applies to every device, chemical product,
or a software, if the product qualifies for the regulation by the intended purpose of
the product. However, because the healthcare software industry is rapidly evolving,
only a non-exhaustive list of examples can be made. Systems, that are included
by the regulation, support the process from the patient sample to the test result
in healthcare, and contain either pre-analytical, analytical or post-analytical func-
tionality, related sample processing. However, the guidance explicitly states that
some systems are not medical devices by themselves, but they may be used with
additional modules, which can be considered medical devices [Medical Device Coor-
dination Group, 2019].

The different classifications of IVDR are following; Class A is the lowest risk-
level class, which contains general purpose equipment and instruments intended
to be used in vitro diagnostics. Class B contains devices for self-testing of preg-
nancy, fertility and cholesterol level. Devices, that do not fit other classifications
are classified as class B. Class C contains devices for self-testing glucose, erythro-
cytes, leukocytes or bacteria in urine. Class D contains devices that detect human
organic materials, such as blood, tissues, and agents, that cause life-threatening
diseases [European Commission, 2017].

To summarise, IVDR introduces regulatory requirements for manufacturing in
vitro devices in EU region, and exactly like in MDR, the manufactured in vitro
devices can not be sold or distributed in the EU region, even for free, unless the
regulatory requirements are conformed.

2.3 Product safety and clinical effectiveness

Before the medical device software product can be placed on the market, the device
must be evaluated and validated properly [Pitkänen et al., 2020]. The evaluation is
done in the planning phase of the development life cycle, and should be demonstrated
and documented before the product can be released. The validation activities are
performed after the development, and before the product can enter the market.

MDR requires a clinical evaluation, which is a systematic and planned process
to continuously generate, analyse, collect and assess the clinical data and verify
the safety and performance, including clinical benefits, when the device is used as
intended [Pitkänen et al., 2020]. It is mandatory for all medical devices under MDR,

8

regardless of the product class.
On the other hand, IVDR requires a performance evaluation. The conclusion of

performance evaluation demonstrates scientific evidence, that the intended clinical
benefits are achieved, and that the device is safe to use. The evidence is used to
prove, that general safety and performance requirements of the MDR are fulfilled
under normal use [European Commission, 2017].

The purpose behind clinical evaluation and performance evaluation is to provide
evidence, that the medical device product performs as intended, and it can be safely
used for patient treatment.

2.4 Product placement on the market

To be able to sell medical device products in the EU market, the manufacturer must
prove that the product complies with the regulatory requirements. The CE mark is
European Union’s mandatory marking for regulating goods sold in the EU countries
[European Commission, 2021]. The CE marking is a proof from the manufacturer,
that the medical device product meets the mandatory regulatory requirements. Fur-
thermore, the declaration of conformity is obtained from a Notified Body (NB),
which is an organization responsible for verifying the conformity of the product.
After the conformity has been verified, the manufacturer can label the product with
the CE mark, which is mandatory when selling medical devices in the EU region
[European Commission, 2017].

Besides of the CE marking, there are other activities for the medical device man-
ufacturer, before the product can be placed on the market. All applicable regulatory
requirements must have been identified, and applied to the device. Moreover, all
required technical documentation, and the medical device technical files are verified
to exist and properly implemented [Granlund et al., 2020]. Additionally, the man-
ufacturer must have a Quality Management System (QMS) established [Pitkänen
et al., 2020]. The manufacturer must ensure, that intended use of the device is
defined, and prove that the device fulfills the definition. Finally, the device should
be identifiable with Unique Device Identifier (UDI).

The product classification must be done correctly, and the correct conformity
assessment procedure must be selected for the device. The NB should be involved
in the assessment procedure, depending on the applicable regulatory requirements.
Before the release, the device should be registered for the national authority, or
the EUDAMED database [European Commission, 2021] in case of MDR, and a
declaration of conformity should be signed [Granlund et al., 2020].

9

2.5 Overview of medical device standards

A medical device software manufacturer must implement the regulatory framework
requirements in the software development process correctly, to conform with the
regulations. The standards guide the manufacturer to use the best practises in
the industry, but do not require any specific product development model. The
relationship of the medical device standards and implementation of the medical
device software, is illustrated in Figure 2. However, as a reminder, depending on
the nature of the medical device software, there could be other standards that apply.

Medical devices manufacturers, that follow harmonised standards, are presumed
to conform to the regulation [European Commission, 2016]. Essentially, harmon-
isation means that the European Union has incorporated the standard into the
European Union legislation. By following the harmonised standards, it is easier to
implement the mandatory activities to achieve regulatory compliance. However, the
legislation is evolving over time. Therefore, it is suggested to apply the current state
of the art of the medical device standards, meaning the latest development of the
standardisation industry, regarding the development life cycle, risk management,
including information security, risk control measures, verification and validation
[European Commission, 2017]. The application of the medical device standards into
software manufacturing process is optional, but highly recommended.

Currently, there are harmonised standards against MDD and IVDD, but the
harmonisation process with MDR and IVDR is being delayed. Pitkänen and others
[Pitkänen et al., 2020] suggest using standards that are currently harmonised against
MDD, IVDD and AIMDD, until there are harmonised standards for MDR and
IVDR. Newer versions of the standards that have been harmonised, exist already.
However, European Commission has adopted a new request for harmonisation of
medical device standards against MDR and IVDR [European Commission, 2021].
Hence, the request represents the upcoming state of standardisation of MDR and
IVDR, and gives an idea of what standards should be followed in the future.

IEC 62304 and IEC 82304-1 were chosen to be the main standards under dis-
cussion for this thesis, as they introduce requirements for the software life cycle
processes and the product safety, and impact the software development and deliv-
ery the most. IEC 82304-1 applies to medical device software and software with
other health uses, while IEC 62304 includes standalone medical device software and
software as part of a medical device. However, the standards overlap at software-
only medical device, as illustrated in Figure 3, presenting the relationship between
IEC 62304 and IEC 82304-1.

10

Figure 2 Relationship of medical device software and the related standards.

2.5.1 IEC 82304-1: Health software — Part 1: General re-
quirements for product safety

The international standard IEC 82304-1 applies to safety and security of health
software products. A health software is independent of dedicated hardware and
may be run on a general computing platform [IEC, 2017]. The primary purpose of
the standard, is to introduce product safety-related requirements to medical device
software manufacturers [IEC, 2016]. The standard contains direct reference to use
software life cycle processes from IEC 62304, but it introduces more safety-related
requirements for the manufactured product, which are not covered by IEC 62304.

The standard introduces additional layer of software requirements, the health
software use requirements, which are transformed into system requirements, and
can be utilized by the development process, which follows IEC 62304. The health
software use requirements are used as an input for the development process, and
are the implementation of the requirements is validated after the product develop-
ment has been finished and before the product can be delivered to the customer.
Validation of the health software is introduced in the standard as an independent
activity. Essentially the standard requires the medical device software manufacturer
to establish a validation plan and validate the product accordingly.

Product identification and accompanying documents are required by the stan-

11

Figure 3 Application of the standards IEC 82304-1 and IEC 62304 to the health software
domain [IEC, 2016].

dard. Essentially, the product identification means marking the device with a
Unique Device Identifier (UDI) in European Union region. The accompanying doc-
uments introduce general documentation of the product, instructions for use, and
a technical description. Finally, the standards covers activities which apply to the
product, after is has been deployed into real world use. The post-market activ-
ities include maintenance and re-validation of the product, decommissioning and
disposal, and post-market communication.

2.5.2 IEC 62304: Medical device software — Software life
cycle processes

IEC 62304 is an international standard, defining the requirements for the whole life
cycle of a medical device software [IEC, 2015]. The standard introduces regula-
tory activities for requirements management, design, development, testing, releas-

12

ing, documentation and maintenance of the software. However, the standard only
defines the processes and activities, but does not state exactly how to implement
them, leaving the responsibility for the manufacturer, to apply the standards into
the manufacturing process correctly. The manufacturer is responsible for selecting a
development model, which can be integrated into the regulatory activities. However,
this allows the integration of the standards, and the modern software development
practices, as long as the activities and tasks from the standard are implemented.

5.1
Development

Planning

5.2
Requirements

Analysis

5.3
Architectural

Design

5.4
Detailed Design

5.5
Unit

Implementation
& Verification

5.6
Integration &

Integration Testing

5.7
System Testing

5.8
Release

7 Risk Management

8 Software Configuration Management

9 Software Problem Resolution

5 Software Development

Change Request

Released product

Figure 4 Sequential order of the activities from the standard IEC 62304 [IEC, 2015].

The development process defined by IEC 62304, is illustrated in Figure 4. The
standard defines a set of software development activities, and tasks that are de-
scribed sequentially in the standard. Some of the activities use output of the pre-
vious step as an input, which must be noticed in the overall process. For example,
there can’t be a software detailed design document, before the software requirements
are composed for that specific scenario.

Table 1 Safety classes of IEC 62304 [IEC, 2015].

Class Risk severity qualification
Class A No injury or damage to health is possible
Class B Non-serious injury is possible
Class C Death or serious injury is possible

The manufacturer must classify the software into a software safety class, defined
by IEC 62304 [IEC, 2015], and listed in Table 1. The software safety classifica-
tion must be done to every software item/component separately, to segregate the
medical device components by the risk severity, enabling the implementation risk
management requirements for the system, and the risk control activities to prevent
any dangerous outcomes. Every part of the software system must be implemented

13

according to the safety class. The safety class is inherited from the top-level compo-
nent, when implementing new features into the software, unless the manufacturer
can rationalize the segregation of the software modules [Pitkänen et al., 2020].

However, the software safety classification of IEC 62304 does not directly map
into product classifications, introduced by MDR or IVDR [Pitkänen et al., 2020].
The intended purpose, as planned by the manufacturer, is one of the main factors
in the decision of the product classification [Pitkänen et al., 2020]. Additionally, the
interpretation is left for the manufacturer. The manufacturer holds full responsibility
of the product, and the compliance with the regulatory requirements.

Software risk management is introduced in the standard as a core activity for
software development. Essentially, the whole manufacturing process of the medi-
cal device, focuses on managing and mitigating risks. The standard requires the
manufacturer to analyse hazardous situations, that the software could contribute
into.

Software configuration management is identified in the standard as a process
for identifying the configuration items, and controlling the configuration changes of
the software. However, configuration in the perspective of the standard includes
any piece of information, that is created during the manufacturing process of the
software, including the product documentation.

Finally, any modifications to a released version should use a maintenance process,
and developing a new version should use the software development process. The
maintenance process may use lighter processes to fix any defects found from the
released product.

2.5.3 Other relevant standards

Other relevant standards to the development of medical device software are ISO
14971, ISO 13485 and IEC 62366-1. However, these standards are ignored in the
identification of the requirements for a CI/CD pipeline, because they do not directly
introduce activities for the software development/delivery. It should be mentioned,
that the standards introduced in this chapter are still recommended for implement-
ing a medical device software, if not necessary.

ISO 14971 is a standard for medical device risk management [ISO, 2007]. A
medical device software manufacturer must conform to ISO 14971 as stated in IEC
62304. The manufacturer must have an active risk management process, and the
residual risk of the medical device must be reduced to an acceptable level, before the
product can enter the market. The standard assumes, anything that can impact the
medical device, could be a risk, while every identified risk should be reduced to an
acceptable risk-level to prevent damage to person’s health. Requirement manage-
ment is associated with risk management, as the identified risks might alter existing

14

requirements, or introduce completely new requirements for the system. Finally,
mitigating a risk could also introduce new risks.

ISO 13485 introduces requirements of quality management systems for medical
device manufacturers [ISO, 2018]. Essentially, a medical device manufacturer is
required to have a Quality Management System (QMS) [Pitkänen et al., 2020].
Implementing a QMS suggests, that the manufacturer has established processes,
that conform to the regulatory requirements. It is presumed by the regulators, that
the medical device manufacturer has a QMS, that complies with the requirements
of ISO 13485 [Pitkänen et al., 2020].

IEC 62366-1 introduces requirements for usability engineering for medical de-
vices. The purpose of the standard is to negate use-related risks from the product
by applying risk management procedures to the user interface of the medical de-
vice. The manufacturer must address the unpredictable use scenarios and minimize
any use errors that could occur [IEC, 2015]. Additionally, the primary operation
functions of the software must be usability tested properly.

2.6 Agile software development in regulated environment

There is no direct instruction to use any specific software development model in
IVDR, MDR or any of the medical device software standards, or guidance docu-
ments. IEC 62304’s requirements for software development can be confused with
the waterfall-oriented model, and it can be relatively difficult to implement in a
modern software development environment. Moreover, IEC 62304 recognizes the
existence of waterfall, incremental and evolutionary development strategies and the
manufacturer is encouraged to choose the appropriate strategy for the project, as
long as the following core principles of the standard are satisfied [AAMI, 2012], [IEC,
2015]:

• All the process outputs should be maintained in consistent state, meaning
every document and software item should be updated, when a related item
changes.

• All process outputs should be available as input when needed, meaning that
some parts of the process can’t be started before others are finished.

• Before the release, every process output should be consistent with each other
and all dependencies, explicitly or implicitly, stated by the standard should
be observed.

In the document AAMI:TIR45 [AAMI, 2012], agile practices for software devel-
opment are utilized, while maintaining compliance with the standard, as illustrated

15

in the Figure 5. Medical device software standards require extensive planning and
technical documentation of the implementation, whereas in agile-oriented develop-
ment the planning is done in an iterative manner, and there is no requirement for
extensive documentation. However, the requirement for extensive technical docu-
mentation suits for mindset of high-quality software products, as it makes main-
tenance and further customization of the software less complicated. The medical
device standards consider the documentation as a part of the product.

IEC 62304’s activities and tasks are mapped into an iterative software devel-
opment process, as illustrated in the Figure 5. In this particular scenario, most of
the activities are done for every task, such as requirements analysis, architectural
design, detailed design, unit implementation and verification, software integration,
integration testing and system testing. For each increment and release following ac-
tivities are performed; software integration, integration testing, system testing and
regression testing. Moreover, for each release, the release procedures are performed
as well. On the project level, there are emerging documents such as software devel-
opment plan, requirement analysis document, architectural design document. The
documents evolve through iterations, and should be versioned for each release.

In this thesis, the agile workflow is not the main focus, but idea of the the agile
workflow in the regulated environment, illustrated in Figure 5, has been used as one
of the sources, for incubating ideas.

16

Figure 5 Mapping 62304’s activities into Agile’s incremental / evolutionary life cycle
[AAMI, 2012].

17

3 Key characteristics of CI/CD pipelines
In this chapter, the key characteristics related to DevOps and CI/CD pipelines are
discussed. While there is not an exact definition for DevOps, the purpose of DevOps
has been described as in ”bridging the gap between development and operations”
[Wettinger et al., 2014]. This essentially means a set of practices that software
developers and IT operators have agreed upon, to reduce the complexity in soft-
ware delivery. Another aspect of DevOps is defined as ”practices that reduce and
join repetitive tasks with automation in development, integration and deployment”
[Laukkarinen et al., 2018]. It is enabled by three main characteristics; capabilities,
cultural enablers and technological enablers [Smeds et al., 2015]. DevOps could
be described as a mindset of systems thinking, process automation, agile principles,
open communication, data-driven decision making, continuous iteration and people-
first culture. The main promise of DevOps is to enable fast and efficient releases.
By releasing often, it is possible to create a feedback loop, which can be utilized to
quickly adapt into changing customer requirements. This can be crucial to establish
a business advantage for a software company, when the customer requirements are
a moving target [Wettinger et al., 2014].

DevOps helps software teams by automating tasks, that are performed repeat-
edly during the development cycle, through a combination of different tools/prac-
tices. The automated activities are performed in so-called pipelines, which are trig-
gered on-demand. In this thesis, process automation and software delivery aspects
of DevOps are studied more closely.

3.1 Continuous Integration

The definition of Continuous Integration (CI) is the practice of integrating new code
frequently, preferably as soon as possible [Duvall et al., 2007]. The integration is
done by running automated build and automated tests on the software, verifying
the changed software in the pipeline. The purpose of the CI is to prevent the code
from diverting too much between the developers and to keep the code constantly
intact, ready for release.

Continuous Integration is enabled by having the code in a code repository, which
can be offered by any modern distributed version control system (VCS), such as Git
[Git, 2021] or Mercurial [Mercurial, 2021]. The build process of the software should
be automated into a point, where a single command can build the whole software,
which enables triggering a build for every change in the software [Duvall et al., 2007].

Continuous Integration pipeline performs automated tests and other verification

18

methods to new and already existing code [Duvall et al., 2007]. The automated
verification process is run for every committed change in the software. If the software
has high unit test coverage, the test automation can find defects that would otherwise
be left unnoticed [Spinellis, 2017]. This leads to CI acting as a guard for developers
for maintaining code quality and integrity. If the build fails, the developer must
either fix the defect or revert the changes to fix the build.

The software integration should be done in a normalised environment, preferably
a clone of the production environment to ensure the software will work in production
as intended [Duvall et al., 2007]. There are often nuances to the integration environ-
ment, depending on the complexity of the overall system. In an optimal scenario,
correct implementation of CI reduces software risks by early discovery of defects,
improving project visibility, improving code quality and testing the software in an
environment equivalent to production [Duvall et al., 2007]. The application of CI
into the development process of a software has been found to increase the focus on
the quality of the product and the test applications [Amrit et al., 2018].

3.2 Continuous Delivery

In this study, the definition of Continuous Delivery (CD) is the automation of the
software release to a point where the software could be released at any given moment.
The purpose of the Continuous Delivery is to ensure that new features of the software
can be delivered to the point of use on-demand. To clarify terminology, in this
study, Continuous Deployment means the automated deployment of software into a
computational production environment, while making it instantly available to end-
users [Laster, 2020], without human intervention, in contrast to Continuous Delivery,
where the release to the end users requires a human approval.

Before Continuous Delivery can be applied effectively into the software develop-
ment and delivery, the software must meet set of architecturally significant require-
ments such as testability, deployability and modifiability [Rossberg, 2014]. These
requirements can be difficult to achieve for certain systems. Also, it is necessary to
implement a deployment pipeline, which enables the automated deployment of the
software into a target software environment [Humble et al., 2011]. The deployment
pipeline utilizes packaged software binaries, software artifacts, which are installed
along with the version-specific software configuration. This whole process can be
automated into the point, where a single command can execute the whole software
deployment, and even verify, that the software is started after the deployment.

Benefits of the automated deployment of changes are significant for the devel-
opment teams, as there is no personnel needed to deploy the software. While the
pipeline handles the deployment, thus the development environment is constantly
updated with fresh features, the quality assurance personnel may verify the changes

19

constantly, without waiting for the deployment to happen.
Additionally, when the whole deployment process is automated, and documented

in the code, it is transparent for everyone, including every detail to get the whole
software system up and running. This can help the whole manufacturing organi-
sation to understand, what is happening within the product, and can reduce time
needed for the product delivery [Humble et al., 2011]. Moreover, removing human
from the deployment process also removes the possibility of the human-made error,
which could be a reason for a failure in the software deployment [Humble et al.,
2011].

Finally, if the product can be delivered to the point of use more efficiently, the
customer’s feature wishes could be implemented and delivered much more frequently,
which could increase the customer satisfaction, making the software more valuable
for the end users.

3.3 Pull-based development

Pull-based development has become popular in the open-source communities of soft-
ware development, after the introduction of distributed version control systems.
Essentially, when multiple developers work with same project, they fork the main
repository and push their changes into the original repository, where the developers
responsible of the project may decide whether the changes are integrated [Gousios
et al., 2016]. The developers, responsible of the feature integration, are notified with
the means of pull requests [GitHub, 2021] or merge requests [GitLab, 2021], which
are essentially the platform-specific terms of a notification for a integration-ready
feature in the software.

The software change is assessed in the pull request, and it offers a solid basis for
distributed collaboration. Results of any verification tasks, whether automated or
manual, can be incorporated into pull request with additional tooling, making the
pull request a valuable tool for software developers. Ideally, a pull request can be
merged automatically, after all verification activities have been completed, and the
change is approved.

3.4 *-as-Code

In this section, the Infrastructure-as-Code (IaC) and Configuration-as-Code (CoC)
are introduced. Essentially, anything related to software product could be treated as
code. Ideally, to enable reliable ways to construct software environments, not only
the software source code is treated as code, but also the whole infrastructure of the
computational environment where the software is executed, including the software
configuration for different environments, and the product documentation. Storing

20

software, and it’s whole infrastructure as code could be seen as a prerequisite for
CI/CD pipelines [Humble et al., 2011]. By treating the whole software infrastructure
as code, it is possible to automate more tasks, and remove the possibility of human-
error from the process.

Infrastructure-as-Code is the practice of storing the software infrastructure re-
lated items into the VCS [Morris et al., 2016]. Essentially, the software infrastruc-
ture is treated as code, and the infrastructure is always built from the same scripts.
Meanwhile, the scripts also documents how the system is created.

Configuration-as-Code is the software configuration stored in a version control
system. Configuration files are stored in a version control system, and changes can
be revisited from commit history. Even if the configuration is stored into the version
control system, there should still be a document describing what configuration op-
tions are available and how to configure the system. The practice offers possibility
for easier maintenance of the configuration, as the software configuration is in one
place, and the manual documentation needs are less significant.

When the whole software product is treated as code, it enables version control for
any change in the product, as well as the automation possibilities for any repeatable
part of the software life cycle processes [Humble et al., 2011]. Essentially, if the
whole software product is within the same VCS, it can be developed, reviewed and
verified more efficiently.

3.5 Blue-green deployment

Blue-green deployment is the practice of establishing two identical copies of the
computational production environment for the software. One of the environments
acts as the production slot and the other one is the staging slot. The software can
be deployed into the staging slot at any given time, but the software release is
performed by swapping the production and the staging slot over. The swapping
could be done by directing the traffic through a router component, which handles
the traffic forwarding to the correct environment [Humble et al., 2011].

The advantages of Blue-green deployment are zero-downtime deployments and
the ability to rollback the software update, if anything goes wrong. In the ideal
situation, a software deployment for the customer does not disturb the production
or cause serious downtime, making the update seamless.

Managing databases, while utilizing Blue-green deployment, can be difficult,
as the production database might require data migrations, or the database needs
to be switched between the environment. However, this can be accounted in the
architectural design of the software system and deployment practices.

21

3.6 Reference CI/CD pipeline

Together, CI and CD enables the composition of CI/CD pipelines, which can per-
form automated verification activities on the software, and deploy the software into
a specific computational environment. A reference model for a CI/CD pipeline is
illustrated in Figure 6 [Khan, 2020]. The idea behind the pipeline is to enable rapid
software delivery to development, quality assurance (QA) and production environ-
ments, while performing series of verification tasks in the form of approvals and
gates. A software developer checks the software change into the upstream of the
version control system, triggering the CI pipeline, which performs the automated
verification activities against the check-in and verifies the software integrity. After
the CI pipeline has passed successfully, the CD pipeline deploys the software into a
computational software environment. However, the deployment is gated by a human
approval. At first, the new version is deployed into the development environment,
where the software developer can test the changed code in a production-like environ-
ment. After the development is finished, and the change is approved, the software is
deployed into QA the environment to test and verify the new functionality. Essen-
tially, the software is tested in more details with either automated or manual tests.
After software is tested and verified, it can be staged into production environment’s
staging slot. The production environment has two slots; one for staging and one for
production. The code is always first staged into the production’s staging slot. After
a release approval, the software can be put into possession of the end-user by swap-
ping the staging slot with the production slot, making the software available to the
end users. Additionally, if any problems are noticed after the swap, the production
environment can be restored by swapping the staging and the production slots over
again.

22

Work Items
Backlog

Developer

Development

Trigger
BuildVersion Control

System

Trigger
ReleaseContinuous

Integration
Pipeline

Continuous Delivery
Pipeline

Software
Artifacts

Development
Environment

QA
Environment

Production Environment
Staging Slot

Production Environment
Production Slot

Development Stage

QA Stage

Production Stage

Build Job

Publish Artifacts Pull Artifacts

Deploy to
Development

Deploy to QA

Deploy to
Staging Slot

Swap Staging
and Production

Slot

Approval & Gates

Approval & Gates

Get Source

Install Tools

Build

Run Tests

Package
Artifacts

Publish
Artifacts

swap

Figure 6 A reference illustration of a CI/CD pipeline, performing the automated verifi-
cation, and delivery of the software into real world use [Khan, 2020].

23

4 Identifying requirements for CI/CD pipelines
in the regulated environment
In this chapter, the requirements from the standards IEC 62304 and IEC 82304-1,
that can be applied to a CI/CD pipeline, such as the pipeline that was illustrated
in Figure 6, are identified and collected into tables. The aforementioned standards
were selected, because from all generally applicable medical device standards, IEC
62304 and IEC 82304-1 impact the software development and delivery process the
most. However, it should be mentioned, that these standards do not cover every
regulatory requirement, and depending of the product, other standards may apply.
The standards were analysed in an iterative process, with an objective to produce a
systematic analysis, to extract every regulatory requirement that could be applied
to a CI/CD pipeline. The identified requirements were divided into the following
categories;

1. The requirement can be fully implemented in a CI/CD pipeline.

2. The requirement can be partially implemented in a CI/CD pipeline.

3. The requirement can not be implemented in a CI/CD pipeline.

There were total of 108 requirements identified from the standards IEC 62304
and IEC 82304-1, and a total of 26 requirements could be fully implemented in a
CI/CD pipeline. Additionally, total of 20 requirements were identified, that could
be partially implemented in a CI/CD pipeline. Finally, total of 62 requirements
were scoped out of the pipeline, that can not be implemented in a CI/CD pipeline.

4.1 Issues arising from the regulatory requirements

In this section, the difficulties related to regulatory requirements are introduced.
From the regulatory compliance perspective, it is presumed that every applicable
requirement is implemented correctly. However, the application of the requirements
into the software development life cycle processes, creates an additional layer of
complexity for the software manufacturer. Furthermore, the software manufacturer
might not be able to adapt the best practices of the software development industry
into the medical device software development standards, leading to slower and more
burdensome software development and delivery.

24

4.1.1 Rigidness of the manufacturing process

The standard IEC 62304 [IEC, 2015] introduces many activities to software develop-
ment, which could make the manufacturing process of the software more challenging.
While the software industry has the mindset for rapid development, and delivery of a
software to maximize the customer value, the requirements from medical device reg-
ulations could slow down the manufacturing process significantly. For instance, to
meet with the regulatory compliance, the manufacturer must establish and maintain
comprehensive product documentation. For every software change, the documenta-
tion must be updated, leading to laborious and cumbersome tasks, if done manually.
By having more work with every individual change in the software, the process lead
time, essentially meaning the time from the start to finishing a process, could be
increased drastically. If on average, more time is needed to change the software, it
would take more time to deliver value to the customer.

Additionally, it is expected that all the relevant activities are performed during
the development process, of which most of are tasks, that would not be performed in
an unregulated software development process. However, some of these activities can
be automated, at least partially, to some extent. It is worth noting, that depending
on the software safety class, some of the regulatory activities can be ignored com-
pletely. However, if the software safety class of the software is adjusted to require
more rigid manufacturing process, for example a transition from Class B to Class
C, the missing documentation could be hard to produce afterwards.

4.1.2 Burdensome testing and verification requirements

In the regulated environment, the safety of the patient comes first. If a medical de-
vice software does not work as intended, it might introduce risks for the safety of the
patients. A medical device software manufacturer must possess evidence, that the
software system is working as intended, leading to various verification and testing
activities, performed against the system. As a result, a change in the software must
be tested comprehensively to ensure, that the change does not introduce unwanted
side-effects, that could inflict patient risks. If the verification is done manually, per-
forming a comprehensive set of tests against every software change can be laborious
and expensive. Furthermore, the tests must be planned and documented in the first
place, leading to more rigid manufacturing process.

As a solution, test automation can help to reduce the burdensome verification
activities from the development process, at least to some extent. However, the im-
plementation and maintenance of the test automation requires skilled personnel,
which increases the total cost of manufacturing a medical device software. Addi-
tionally, it might not be possible to automate every possible test scenario, and there

25

could still be a need for manual testing, leading to a situation, where the verification
and testing activities slow down the product delivery process.

4.1.3 Software of Unknown Provenance

Software of Unknown Provenance (SOUP) refers to a software, or part of a software,
that is not intended for medical use, but is incorporated into a medical device. It
is worth nothing, that SOUP includes parts of software, that have been developed
before the medical device development processes have been available, if the devel-
opment has started before the establishment of the medical device development
processes. The manufacturer of medical devices must evaluate every SOUP compo-
nent, incorporated into the medical device. In practice, the functional, performance,
software and hardware requirements, necessary for its intended purpose, are to be
identified and documented [IEC, 2015]. Any change to a SOUP component means,
that the SOUP analysis must be performed again, identifying the risks and haz-
ards, that the change could cause. Additionally, there must be a plan for software
configuration and change management for SOUP components [IEC, 2015].

SOUP is a troublesome area for medical device manufacturers, that have de-
veloped software systems, before MDR or IVDR were applicable into them. The
systems could be decades old, and the documentation of the software creation could
be missing, thus most of the system would be considered SOUP. Additionally, if
the documentation is missing, it is difficult to determine later, how the system is
supposed to work. As a result, from the regulatory perspective, any change on the
system could be laborious to perform.

Another challenge SOUP introduces, is that the modern software industry de-
pends on general-purpose libraries, usually developed outside the manufacturing
organization. It would be very time-consuming and hard for the manufacturer to
implement and sustain every generally used library themselves, and it would push
them outside of the best-practices of software development industry, utilized by
everyone else.

Running the software on general computing platforms introduces additional
layer(s) of complexity and difficulties to demonstrate the conformity of the product
[Granlund et al., 2020], leading to a scenario, where a major part of the software
could be considered SOUP. The responsibilities between the medical device software
manufacturer and computing platform provider should be clarified in the documen-
tation. However, to conform with the regulations, the utilization of general cloud
computing platforms could introduce more documentation work, making the man-
ufacturing of the medical devices more laborious.

The SOUP requirements could discourage the utilization of general-purpose li-
braries and cloud computing platforms, which makes the software development more

26

volatile and laborious, as most generally used solutions are already in a very mature
stage, and verified to be able to perform well in production. In the worst case sce-
nario, in the regulated environment, a medical device software manufacturer might
have to reinvent the wheel, to solve a problem.

4.2 Fully implemented regulatory requirements

In this section, the fully implemented requirements from the standards IEC 62304
and IEC 82304-1 are presented (see Table 2). There were total of 26 requirements
identified, that could be fully implemented in a CI/CD pipeline. The criteria for the
requirements were, that activity must be fulfilled after the code has been checked in
to the version control system, and before the software is released to the real world
use. The identified requirements contain activities, which can be performed in a
CI/CD pipeline, either automatically or manually. Some of the identified regula-
tory activities require manual inspection on the software product, thus must be done
manually. However, automation could be possible for some of the documentation,
verification or testing activities, with additional tools in the pipeline. Therefore,
the identified requirements are fully implementable, but could require specific tool-
ing or manual work in the pipeline. Further analysis of the fully implementable
requirements is in Chapter 5, where the identified requirements are integrated into
a CI/CD pipeline model.

27

Table 2 Requirements of the standard IEC 62304 and IEC 82304-1 that can be fully
implemented in a CI/CD pipeline.

Standard Item Safety
class

Title

IEC 62304 5.3.6 B, C Verify SW architecture
IEC 62304 5.4.4 C Verify detailed design
IEC 62304 5.5.5 B, C SW unit verification
IEC 62304 5.6.1 B, C Integrate SW units
IEC 62304 5.6.2 B, C Verify SW integration
IEC 62304 5.6.3 B, C Test integrated SW
IEC 62304 5.6.4 B, C Integration testing content
IEC 62304 5.6.5 B, C Verify integration test procedures
IEC 62304 5.6.6 B, C Conduct regression tests
IEC 62304 5.6.7 B, C Integration test record contents
IEC 62304 5.7.4 A, B, C Verify SW system testing
IEC 62304 5.7.5 A, B, C SW system test record contents
IEC 62304 5.8.1 A, B, C Ensure SW verification is complete
IEC 62304 5.8.3 B, C Evaluate known residual anomalies
IEC 62304 5.8.4 A, B, C Document released versions
IEC 62304 5.8.6 B, C Ensure activities and tasks are complete
IEC 62304 5.8.7 A, B, C Archive SW
IEC 62304 7.3.1 B, C Verify risk control measures
IEC 62304 7.3.3 B, C Document traceability
IEC 62304 8.1.2 A, B, C Identify SOUP
IEC 62304 8.1.3 A, B, C Identify system configuration documentation
IEC 62304 9.8 A, B, C Test documentation contents
IEC 82304-1 6.2 n/a Performing validation
IEC 82304-1 6.3 n/a Validation report
IEC 82304-1 7.1 n/a * Identification
IEC 82304-1 8.3 n/a Re-validation

4.3 Partially implemented regulatory requirements

In this section, the partially implemented requirements from the standards IEC
62304 and IEC 82304-1 are presented, illustrated in Table 3. The partially imple-
mented requirements are partially fulfilled either before or after the activities of the
CI/CD pipeline are performed. However, a CI/CD pipeline can support the imple-
mentation of the regulatory requirements, but not fulfill the requirement completely.
There were total of 20 requirements identified that could be partially implemented

28

in a CI/CD pipeline.
The planning activities for Identification and avoidance of common SW defects

(IEC 62304 clause 5.1.12) must be done before the software is developed, but a
CI/CD pipeline could support the requirement by running automated code analysis
tools for every new check-in [Wichmann et al., 1995].

Many of the regulatory requirements involve design activities, which are per-
formed before the pipeline is triggered. However, the pipeline the pipeline can
support the aforementioned activities by generating the resulting documentation.
For instance, the pipeline can generate documentation (IEC 62304 clauses 5.3.1,
5.3.2, 5.3.3, 5.3.3, 5.4.1) for software architecture, software units and SOUP items.
Additionally, the process for software unit verification process (IEC 62034 clause
5.5.2), and the software unit acceptance criteria (IEC 62034 clause 5.5.3) must be
established before the pipeline, but the pipeline can be utilized as a tool to verify the
software unit. Ultimately, the pipeline could compile all documentation, required
by the regulatory requirements, including accompanying documents (IEC 82304-1
clause 7.2).

The software use requirement management is mostly done outside of the pipeline,
but the requirements may need to be updated during the development (IEC 82304-1
clauses 4.4, 4.7). Moreover, tests for software requirements (IEC 62304 clause 5.7.1,
8.2.3) are established before the pipeline, but the testing activities are performed
within the pipeline, verifying the changes made into the software. Additionally,
the requirement to retest after changes (IEC 62304 clause 5.7.3) is partially im-
plemented, as the pipeline can be utilized for the testing activities, but the risk
management activities are performed outside of the pipeline. Finally, risk manage-
ment could be automated to certain degree, but the verification is done within the
pipeline (IEC 62304 clauses 5.8.2, 7.4.3).

Some of the requirements are implicitly built into a CI/CD pipeline, such as the
repeatability of software release (IEC 62304 clause 5.8.8), re-releasing of the modified
software system (IEC 62304 clause 6.3.2), and documenting how the software was
created (IEC 62304 clause 5.8.5). Furthermore, the pipeline could offer tools for
checking the existence of SOUP anomaly lists, and to provide a convenient way to
update the missing SOUP components (IEC 62304 clause 7.1.3).

29

Table 3 Requirements of the standard IEC 62304 and IEC 82304-1 that can be partially
implemented in a CI/CD pipeline.

Standard Item Safety
class

Title

IEC 62304 5.1.12 B, C Identification and avoidance of common SW defects
IEC 62304 5.3.1 B, C Transform SW requirements into an architecture
IEC 62304 5.3.2 B, C Develop an architecture for the interfaces of SW items

IEC 62304 5.3.3 B, C Specify system functional and performance required
by SOUP items

IEC 62304 5.3.4 B, C Specify system hardware and SW required
by SOUP items

IEC 62304 5.4.1 B, C Refine SW architecture into SW units
IEC 62304 5.5.2 B, C Establish SW unit verification process
IEC 62304 5.5.3 B, C SW unit acceptance criteria
IEC 62304 5.7.1 A, B, C Establish tests for SW requirements
IEC 62304 5.7.3 A, B, C Retest after changes
IEC 62304 5.8.2 A, B, C Document known residual anomalies
IEC 62304 5.8.5 B, C Document how released SW was created
IEC 62304 5.8.8 A, B, C Assure repeatability of SW release
IEC 62304 6.3.2 A, B, C Re-release modified SW system
IEC 62304 7.1.3 B, C Evaluate published SOUP anomaly lists
IEC 62304 7.4.3 B, C Perform risk management activities based on analyses
IEC 62304 8.2.3 A, B, C Verify changes
IEC 82304-1 4.4 n/a Updating health SW product use requirements
IEC 82304-1 4.7 n/a Updating health SW product system requirements
IEC 82304-1 7.2 n/a Accompanying documents

4.4 Not implemented regulatory requirements

In this section, the scoped out requirements from the standards IEC 62304 and
IEC 82304-1 are presented, illustrated in Table 4. The requirements in this section
are fulfilled either before or after the pipeline activities. There were total of 62
requirements scoped out of the pipeline.

The standards contain clauses, which are not activities, but more of presumptions
of things, which can’t be formed into a repeatable task. For example, a quality
management system (IEC 62304 clause 4.1) and risk management (IEC 62304 clause
4.2) affect the whole manufacturing organization and all it’s functions. The general
requirements and initial risk assessment (IEC 82304-1 clause 4.1) affects the product
documentation, but not directly the pipeline. Software safety classification is decided

30

outside of the pipeline, but it affects the manufacturing process rigidity (IEC 62304
clause 4.3), and quantity of the regulatory requirements from the IEC 62304, which
apply to the pipeline. A CI/CD pipeline could support legacy software, but it does
not directly affect the implementation of the pipeline (IEC 62304 clause 4.4).

The scoped out requirements are mostly planning or design activities. Ulti-
mately, all planning activities were scoped out, such as software development plan,
requirements management, technical design and validation planning activities (IEC
62304 clauses 5.1.1 - 5.1.9, 5.1.11, 6.1, 8.1.1, 5.2.1 - 5.2.6, 5.4, 5.3.5, 5.4.2, 5.4.3,
5.5.4, 7.1.1, 7.1.2, 7.1.4, 7.2.1, 7.2.2, 7.4.1, 7.4.2. 8.2.1, 8.2.2) (IEC 82304-1 clauses
4.2, 4.3, 4.5, 4.6, 6.1). Also, the pipeline needs to be addressed in the supporting
items management (IEC 62304 clause 5.1.10), but not vice versa.

The software implementation activities were also scoped out, as a CI/CD pipeline
is triggered after the implementation of the software, including the associated doc-
umentation, has been performed (IEC 62304 clauses 5.5.1, 6.3.1). Moreover, the
software problems resolution process is managed outside of the CI/CD pipeline,
but may feed input into the pipeline (IEC 62304 clauses 9.1, 9.2, 9.3, 9.4, 9.5, 9.6,
9.7). Furthermore, the problem and modification analyses are performed before the
pipeline (IEC 62304 clauses 6.2.1, 6.2.2, 6.2.3. 6.2.4, 6.2.5, 6.2.6), thus scoped out.

The responsibility of the manufacturer does not end after the software has been
delivered into the point of use. For instance, the change requests, associated ap-
provals, and problems reports are managed outside of the pipeline (IEC 62304 clause
8.2.4). Finally, the post-market activities are performed after the pipeline (IEC
62304 clause 8.4, 8.5).

Even if all of the regulatory requirements can not implemented within the CI/CD
pipeline, the medical device software manufacturer must apply the requirements into
the overall software development process.

31

Table 4 Requirements of the standard IEC 62304 that can not be implemented in a CI/CD
pipeline.

Standard Item(s) Title
IEC 62304 4.1 Quality Management System
IEC 62304 4.2 Risk management
IEC 62304 4.3 SW safety classification
IEC 62304 4.4 Legacy software
IEC 62304 5.1.1 - 5.1.11 SW development plan
IEC 62304 5.2.1 - 5.2.6 SW requirements analysis
IEC 62304 5.3.5 Identity segregation necessary for risk control
IEC 62304 5.4.2 Develop detailed design for each SW unit
IEC 62304 5.4.3 Develop detailed design for interfaces
IEC 62304 5.5.3 Additional SW acceptance criteria
IEC 62304 5.5.1 Implement each SW unit
IEC 62304 6.1 Establish SW maintenance plan
IEC 62304 6.3.1 Use established process to implement modification

IEC 62304
7.1.1
7.1.2
7.1.4

SW risk management process

IEC 62304 7.2.1
7.2.2

Risk control measures

IEC 62304 7.4.1 Analyse changes to medical device SW
with respect to safety

IEC 62304 7.4.2 Analyse impact of software changes on
existing risk control measures

IEC 62304 8.1.1 Establish means to identify configuration items
IEC 62304 8.2.1 Approve change requests

IEC 62304 5.6.8
5.7.2

Use SW problem resolution process

IEC 62304 6.2.1 - 6.2.6 Problem and modification analysis
IEC 62304 8.2.2 Implement changes
IEC 62304 8.2.4 Provide means for traceability of change
IEC 62304 8.3 Configuration status accounting
IEC 62304 9.1 - 9.7 SW problem resolution process
IEC 82304-1 4.1 General requirements and initial risk assessment
IEC 82304-1 4.2 Health SW product use requirements
IEC 82304-1 4.3 Verification of health SW product use requirements
IEC 82304-1 4.5 Updating health SW product use requirements
IEC 82304-1 4.6 Verification of system requirements
IEC 82304-1 6.1 Validation plan
IEC 82304-1 8.4 Post-market communication on the health SW product
IEC 82304-1 8.5 Decommissioning and disposal of the health SW product

32

Not implemented (62)
57,4%

Fully implemented (26)
24,1%

Partially implemented (20)
18,5%

Figure 7 Chart of the regulatory requirements. Out of 108 identified regulatory require-
ments, 26 can be fully implemented in a CI/CD pipeline, 20 can be partially implemented
in a CI/CD pipeline, and 62 must be implemented outside of a CI/CD pipeline.

33

5 Integration of the identified regulatory
requirements into a CI/CD pipeline
There are both gaps and similarities between mindsets of regulators and software
developers. Both groups desire high-quality software, but the approach is different.
The DevOps culture tries to maximize customer value by delivering new features,
as quickly as possible. On the other hand, the regulators value product safety
and performance. In an ideal situation, the product achieves goals of both parties.
However, modern software development and medical software development could
be challenging to integrate. Pitkänen and others [Pitkänen et al., 2020] consider,
that the winning medical device software manufacturers will apply regulations and
standards efficiently into their processes. While it may not be completely appar-
ent, the regulations and standards act as enablers for more safe, secure and better
performing software. Process traceability and transparency are core principles in
DevOps-culture, which is also an essential requirement for compliance with the
medical device regulations.

In this Chapter, the regulatory requirements, identified in Chapter 4, are inte-
grated into a CI/CD pipeline, introduced in Section 3.2. As a result, a regulated
CI/CD Pipeline, illustrated in Figure 8, is established. The illustrated pipeline can
be applied to any software, that falls into the IEC 62304’s software safety classifi-
cation Class C. However, any medical device software with less rigid manufacturing
process can also be applied, as the Class C is the most rigid of the software safety
classifications, and includes the requirements of the Class A and Class B.

There are specific infrastructure-related assumptions in the model. The pipeline
utilizes a modern CI/CD pipeline toolkit, which enables creation of hardware and
software environments directly from code. The whole infrastructure is specified in
code, and can be built with scripts, that are stored in VCS, and accessed from the
pipeline, to launch the script at demand. This is extended by customized tools,
to implement activities required by regulatory compliance. It is assumed, that the
manufacturer manages product-related user requirements, software requirements,
risks, anomalies, and change requests. Moreover, it is assumed, that the resulting
documentation is stored in such a way, that the result can be integrated with modern
version control systems, and can be utilized in the pipeline for different purposes,
such as generation of documentation. Additionally, the development process, nor
the activities, are not included in the regulated CI/CD pipeline model. However,
the agile development model that was introduced in Chapter 2, and illustrated in
Figure 5, could be applied to the model as a substitute.

34

 Production Deployment

Development
Staging

Environment

Check-in
triggers

Software Integration

Production Environment
Staging Slot

Publish

Pulls

Production Environment
Production Slot

Staging Deployment

Production Configuration

Swap Staging and
Production Slots

Integration
Verification

Quality
Assurance

Environment

Release activities
and approval

Integration
testing

Publish artifacts

Static code
analysis

Review and Approval

Generation of
documentation

Review and
verification

Merge approval

SOUP review

Pull artifacts
Deploy

software
artifacts

Merge

Deploy
documentation

Manual
integration

testing

Capacity testing

Manual system
testing

System testing
evaluation and

verification

Release
approval

Archive
software
product

Validation

Build

SOUP analysis

Integration
approval

Vulnerability
analysis

Verify
installation

System testing

Used by Used by

D
ep

lo
ys

D
ep

lo
ys

Triggers
Development Staging
deployment

Triggers
Quality Assurance
deployment

Triggers
production
deployment

Deployment Pipeline

Version
Control
System

Artifact
Repository

Ready for
review

Approve/
Merge Approve

Flow of software lifecycle

Flow of pipeline activities

Environmental dependency

Notation

Residual risk
analysis

Development
Environment

(optional)

Used by

Figure 8 Regulated CI/CD pipeline. The stages of the pipeline are illustrated from left to
right. A new check-in into the VCS triggers the pipeline. The software change is reviewed
and approved by human in the pipeline stages, which deploy the software into different
environment, and finally into real world use.

35

5.1 Stages of the pipeline

In this section, the stages of the regulated CI/CD pipeline are presented in more
detail. The pipeline consists of five different stages, which are following; software
integration, review and verification, deployment pipeline, integration verification
and release activities and approval. A change made into the software must pass all
the stages, before the change can be deployed into the real world use. Moreover, the
software must also meet with the medical device regulations, rendering the activities
in the pipeline mandatory.

5.1.1 Software integration

In the software integration stage, a Continuous Integration pipeline is triggered by
a new check-in, pushed to the upstream of the version control system. The check-
in contains changes to either software, documentation or associated items stored
in the VCS. After the CI pipeline has been triggered, the code is tested against
automated unit and integration tests (IEC 62304 clauses 5.6.3, 5.6.5, 5.6.7, 5.7.1).
A comprehensive set of unit tests can be used to find any defects from the software
during the development, as early as possible. Fixing bugs early in the development
stage, has been found to reduce the software development costs [Vitharana, 2017].

In the next step, the static code analysis, the code is verified against formal rules
and coding conventions (IEC 62304 clause 5.1.12). In the same stage, the SOUP
components of the software may be checked, performing a SOUP analysis to find
any components that need to be listed to fulfill the regulatory requirements (IEC
62304 clause 8.1.2). The results of the SOUP analysis are reviewed later in the
pipeline. The IEC 62304 requires the manufacturer to divide the software into soft-
ware units by the standard (IEC 62304 clause 5.4.1). The division of the software
into the software units can be done programmatically, by using the augmented C4
architecture model [Stirbu et al., 2020]. The software components are annotated in
the code package structure, and can be generated into diagram of software units in
the pipeline. The architecture diagram is associated as the part of the product doc-
umentation, fulfilling the architectural documentation requirements (clauses 5.3.1,
5.3.2), software unit division requirement (clause 5.4.1) and documenting traceabil-
ity requirement (clause 7.3.3) of IEC 62304.

After the static code analysis, a vulnerability analysis is performed against the
software, to find any vulnerabilities from the software dependencies. If the software
contains many SOUP components, it is possible, that the external components ex-
pose vulnerabilities in the software, which could be exploited to gain unprivileged
access to the software. The vulnerability analysis can be performed with tools such
as OWASP Dependency Check tool [OWASP, 2021].

36

The software artifacts are created after the automated testing and other verifica-
tion activities have been performed. The software artifact is essentially a binary file
of the software, which can be used later to install the software into different compu-
tational environments. It is recommended to build the software artifacts only once
during the pipeline [Humble et al., 2011]. Moreover, the associated software docu-
mentation is generated in the pipeline. The software documentation is either pulled
from an external source, or stored in the VCS, and generated from source files. This
step generates the system configuration documentation (IEC 62304 clause 8.1.3),
software system testing verification (IEC 62304 clause 5.7.4) and test documenta-
tion (IEC 62304 clause 9.8). Finally, the software and the associated documentation
can be stored in a dedicated location, to be accessed later in the pipeline.

If any defects or problems are found during the software integration stage, the
software developer is notified immediately to fix the problem and build will not
proceed. However, if the build is successful and the feature is ready, it may move
forward in the pipeline. Additionally, the software is not deployed into a dedicated
computational software environment in this stage, but the changes can be tested in
a development environment, if needed.

5.1.2 Review and verification

The regulatory requirements define a need for verification of various tasks and ac-
tivities, which can be considered mostly manual task in the pipeline, as most of the
verification activities require human-made inspections and decision-making.

When the software change is ready to be reviewed, the pipeline has created
automatically a review request for the change. For instance, a review request could
be a pull request [GitHub, 2021] or a merge request [GitLab, 2021], depending of
the platform. A review request is a way for the software developer to acknowledge
other parties, such as reviewers and testers, that their feature has been finished and
is ready for further actions.

In the review, the software change is reviewed by one or more competent de-
velopers, or other qualified personnel. A code review is performed to verify that
the new code is implemented correctly. The software units are verified (IEC 62304
clause 5.5.5) against the software unit acceptance criteria (IEC 62304 clause 5.5.3),
defined in the software unit verification process (IEC 62304 clause 5.5.2). Moreover,
the generated product documentation is verified to be up-to-date, and to match
the implementation of the software, such as detailed design documents (IEC 62304
clause 5.4.4) and architecture verification (IEC 62304 clause 5.3.6). Furthermore,
the result of the SOUP analysis, performed in the CI pipeline, is also inspected by
a human. Any unlisted SOUP items are documented in this stage, at the latest. It

37

is also required to document functional, performance, hardware and system require-
ments for every SOUP item in the software (IEC 62304 clause 5.3.3, 5.3.4), and to
evaluate the published SOUP lists (IEC 62304 clause 7.1.3).

After the software change is completed, verified and reviewed, a merge approval
is performed and the change may be merged into the mainline of the product in
the VCS. The mainline of the product is merged into the new code change, before
the review is performed. However, if any merge conflicts happen, the developer is
notified to fix the problems and the merge will not proceed.

5.1.3 Deployment pipeline

A check-in to the mainline of the version control system triggers the deployment
pipeline, which happens after a new change has been merged. When the deploy-
ment is triggered, the pipeline pulls the artifacts, generated by the CI pipeline. The
software artifacts are installed into the target environment, and the associated docu-
mentation is made available. Finally, the installation is verified by a running smoke
tests into the deployed environment. With smoke tests, it is possible to quickly
verify that the installation was successful and the software is working as intended
[Memon et al., 2005]. Additionally, the installation can be verified with secure hash
check [Hamilton, 1995], to prevent any unauthorized binaries from being installed.

Continuous Deployment, when defined as a process, which deploys and makes
the software available to the end-users, is problematic in the context of medical
device software. Many of the regulatory activities, introduced by EU Regulatory
Framework, require a human-made decision, before the software can be placed in
the possession of the end-user. For instance, Design Change Approval could act
as a barrier to Continuous Deployment [Granlund et al., 2020]. Any substantial
changes, such as new features that require clinical or performance evaluation must
be approved by a Notified Body before deployment. Only small scale changes such
as bugs with negligible risk could be applied into this model. The risk level of
the change is an important factor. A high-risk change in the system or a change
in critical system component requires more attention and careful planning before
production deployment. As a result, fully automated deployment without human
approval is not possible. Leading to the fact, there must be a human-decision
factor deciding when the software is deployed, although it could only be a single
confirmation step in the process. Thus, it is difficult to incorporate Continuous
Deployment pipeline into the delivery process of the medical device software. It
can be even argued if the customers want DevOps-style frequent updates [Smeds
et al., 2015]. The nature of the medical device software system could be critical
and any possible maintenance break must be planned in advance to prevent patient
risks. The manufacturer could be ready to deploy the software into the end-user

38

environment anytime, but the customer can’t approve the update, because of the
involved risks, if any problems occur in the production.

In the regulated CI/CD pipeline model, the stages require a human-made ap-
proval, before any deployment is made. Any regulatory requirements that directly
affect the deployment pipeline were not identified during the analysis of the stan-
dards. However, the deployment pipeline is a part of the pipeline, and the software
can not be reliably installed without it. The same deployment pipeline handles
every deployment of the software into different environments, including the final
end user’s environment. The deployment process is repeatable and deterministic by
nature. Furthermore, installing the software with the same scripts multiple times
before the final installation into the production environment, can make the instal-
lation process more likely to succeed [Humble et al., 2011].

5.1.4 Integration verification

After the review request has been approved, and the new version of the software has
been deployed into the development staging environment, the software change can
further verified. In an ideal situation, the development staging environment is a copy
of the real world customer environment, as close as possible. In the development
staging environment, the software may be tested in a full context. Ultimately, every
test case can not be automated, thus leading to need for manual testing in real
environment. Any remaining manual integration tests are performed in the staging
environment, which fulfills the requirement to verify software integration (IEC 62304
clauses 5.6.2, 5.6.3, 5.6.4, 5.6.5, 5.6.6, 5.6.7).

Moreover, automated system tests are also performed against the software in the
staging environment (IEC 62304 clauses 5.7.1, 5.7.3, 5.7.5, 7.3.3, 8.2.3, 9.8). The
system testing ensures that the system’s functionality remains as it is required, as
well as, to verify the functionality of the new features or other changes in the system.
The system must meet it’s intended requirements, and perform as designed, to be
able to be released for the end-users. The system testing process is repeated for
every iteration of the software, delivered to the real use. However, performing the
full system testing manually can be burdensome. Hence, a high level of automation
for the system testing tasks could reduce the burden, caused by the comprehensive
testing. However, even while automated, running the system test automation could
take a considerable amount of time, which is the reason it is performed in the staging
environment, and not the integration pipeline.

The performance of the system is tested by running a set of relevant tests in
the Capacity testing step. The capacity testing provides a way for the manufacturer
to analyze the behavior of the system under stress. For example, any change in
the software could introduce performance issues, which can be detected early, by

39

running performance tests against the system.
Integration approval can be made, after all automated and manual tests have

passed successfully, completing the software integration (IEC 62304 clause 5.6.1).
A deployment to the quality assurance environment is triggered by the approval.
The quality assurance environment is the final destination for software testing and
verification, before the software is deployed into the real world use.

5.1.5 Release activities and approval

Before the software can be released to the use, it must be system tested according
to the system testing plan. Furthermore, the system testing must be evaluated and
verified, and the software must be validated to fulfill it’s purpose.

First of all, the system testing must be completed by running all test scenarios
that could not be automated (IEC 62304 clauses 5.6.6, 5.7.5, 7.3.3, 9.8). This
also includes the regression testing for the system, which essentially requires the
manufacturer to produce evidence, that the changes in the software did not cause
any unwanted side-effects. The testing is done in a separate QA environment, which
contains an unreleased version of the software, called a release candidate. However,
depending of the test automation coverage and the magnitude of the overall system
context, this process could require significant amount of resources. As a side note,
even with comprehensive test coverage, exploratory testing is still recommended, to
find any defects that could be undetected by test cases [Shah et al., 2014].

The system testing activities must be evaluated and verified by formal practices
after completion of system testing. In practice, the system test results are evaluated
and verified as stated in IEC 62304 (clauses 5.7.4, 5.8.1) to be performed properly.
Furthermore, anomalies found from the product must be documented and evaluated
(clause 5.8.2, 5.8.3).

In the next step, the risk control measures are to be verified (IEC 62304 clause
7.3.1) and the residual risk level of the medical device product must be either reduced
to or remain at an acceptable level before the software is ready for release. Any
unmitigated risks, that could possible cause risk to person’s health, act as barriers
for the final release.

Finally, before the final release, the manufacturer must ensure that all activities
mentioned in the software development plan are completed (IEC 62304 clause 5.8.6).
The software and documentation artifacts created by the CI are labeled with a
release version tag (IEC 62304 clause 5.8.4), and a Unique Device Identifier, required
by IEC 82304-1 (IEC 82304-1 clause 7.2). The software artifacts and the associated
documentation are permanently archived (IEC 62304 clause 5.8.7) for later access.
At this point, the software is ready for release in the technical perspective, but
regulatory compliance requires the manufacturer to perform a validation according

40

to the validation plan (IEC 82304-1 clauses 6.2, 6.3, 8.3). Essentially, validation is
the process for obtaining reliable evidence, that proves in formal way, the software
fulfills its intended purpose as defined.

When the software is technically ready for release, and the regulatory compliance
activities have been performed properly, the manufacturer can perform a formal
release approval, and the software can be deployed to the customer environment.
However, deployment is not equivalent to releasing the software into real world use
in this scenario. The model utilizes Blue-green deployment model, which enables the
manufacturer to release the system on demand to the customer’s use. Essentially,
the software can be released by switching the current customer environment with the
secondary environment with a new version deployed, making the software available
to the end users instantly.

5.1.6 Implicitly implemented regulatory requirements

Not all of the regulatory requirements are activities/tasks, that can be performed
directly in the pipeline. Instead, the pipeline implements some of the regulatory
requirements implicitly as in-built features, such as documenting how the release
was made, the repeatability of the release, and re-releasing the modified system
(IEC 62304 clauses 5.8.5, 5.8.8, 6.3.2).

The pipeline itself stores information of every built software version and software
artifact (clause 5.8.5). Additionally, the scripts and configurations used to build the
software, are stored in the VCS. In fact, every build should be reproducible from
the version control [Humble et al., 2011]. By having the possibility to return to an
old version at any point, the releases are always repeatable (clause 5.8.8). Moreover,
every version of the system, that ends up in to real world use, must be deployed
through the CI/CD pipeline (clause 6.3.2).

The regulated CI/CD pipeline enforces the medical device manufacturer to incor-
porate quality aspects into the software development processes, while performing the
most burdensome tasks and activities automatically. However, the amount of the
process automation is crucial, because the requirements for regulatory compliance
are burdensome and strict. Finally, not all of the activities can be fully automated,
while some of the activities require a human approval to proceed.

5.2 Regulatory compliance by design

In this section, practices which could help with designing a system with regulatory
compliance in mind, are discussed. A medical device software can meet the regu-
latory requirements with much less effort, when the system is designed to comply
with the regulations from the beginning of the software life cycle. If the support

41

for regulatory compliance is ignored in the beginning of the development phase, it
requires lots of effort to change the system to support the regulatory requirements.

5.2.1 Version control and traceability

Version control could be seen as enabler for CI/CD pipelines [Humble et al., 2011].
To take this viewpoint slightly further, a modern VCS, such as Git, could be seen
as a enabler for reliable and deterministic way for regulatory compliance, in the
technical perspective. Ultimately, if every item of the technical product and the
associated documentation are stored in VCS, and a specific version of the product
can be retrieved at any point from the history, the traceability requirements of
the regulatory compliance are much easier to implement. However, it might not
be sensible to store every piece of documentation into VCS, such as verification
reports, which are generated every time, when the CI/CD pipeline runs automated
verification activities. However, the manufacturer should be able to generate the
documents from the specific revision of the product, at any time. Therefore, if
the whole software product, including the system infrastructure and the product
documentation are reproducible from the version control system, problems related
to the comprehensive documentation and traceability requirements, introduced by
the medical device standards, could be solved.

5.2.2 Behavior-Driven Development

Behaviour-Driven Development (BDD) is a software development method [Smart,
2014], which encourages collaboration between requirements analysts, software de-
velopers and software quality assurance specialists. In BDD, the business goals of
the software are analysed, turned into software requirements, and further defined
into acceptance criteria/tests for the software. As a result, when the software has
been changed, the verification can be done against the resulting acceptance crite-
ria. Basic principles of BDD include defining tests first, making the tests fail, then
implementing the unit, and finally verifying the unit with the passing tests. This
could support the manufacture of medical devices, as the manufacturing process is
reminiscent with the behavior-driven development process.

Specifically, the IEC 82304-1 requires the medical device manufacturer to estab-
lish the use requirements for a health software product, which are used to verify and
validate the product, before the software can enter the market. The use require-
ments of the software could be used as an input for the BDD process, which could
provide practical evidence, that the software implementation is verified. In both,
BDD and IEC 82034-1 activities, the requirements of the software are first collected

42

and analysed. The software requirements are used as an input for the software im-
plementation and testing/verification. Moreover, in BDD, the information related
to the test cases is documented in the process. Furthermore, the test cases could
be automated in the process, as far as possible, to improve the test coverage, which
can be performed in a CI/CD pipeline.

The application of BDD into the manufacturing of medical device software could
help the medical device software manufacturers to implement regulatory require-
ments into their software life cycle processes with an industry best-practice solution
[Giorgi et al., 2019]. Additionally, BDD could assist the software manufacturer
with the composition of test documentation, and to provide better evidence for the
software verification, while establishing more comprehensive test automation. As a
result, better performing and more reliable software could be manufactured.

5.2.3 Segregation of medical device software components

Sometimes, medical device software may contain some components that are not
considered as medical devices. Nevertheless, medical device components must meet
with the medical device regulations, while the non-medical device components are
not subject to the regulatory requirements [Pitkänen et al., 2020]. The medical
device components are identified by their intended purpose, and are classified by the
software safety classification, introduced by IEC 62304 and the applicable product
classification from MDR/IVDR.

The software architecture must be implemented in a way, that enables risk con-
trol for safety critical components. The risk control could be possible by applying
a modular software architecture, to isolate the medical device components from the
software. Moreover, the manufacturer is required to explain how risk control is en-
sured, and to rationalize the effectiveness of the segregation. Therefore, by utilizing
software component segregation, it could be possible to use a less rigid development
process on some parts of the system, while maintaining the more rigid process on
higher risk level components. This could help to reduce the laborious activities,
introduced by the regulatory requirements. However, if the regulatory landscape
around the software product changes for some reason, and the software safety clas-
sification is replaced with more rigid class, it could be beneficial to have the software
developed with the most rigid development process from the beginning, as producing
the missing product documentation could be burdensome afterwards. Additionally,
in some cases, the additional efforts in the more rigid development process could be
useful. For instance, in large software systems, the complexity could grow over time,
and the additional documentation could help with the maintenance of the system.

It could be possible to divide the system into appropriate pieces, and to segregate
the high-risk medical components by utilizing Service-Oriented Architecture (SOA)

43

[Sprott et al., 2004], as it allows establishment of independent services for different
business functionalities. The idea behind SOA, is to segregate the functionalities
of the software into independent software components, which could be utilized to
adjust the software into the regulated environment by incorporating software safety
classifications, software units, or other regulatory requirements into the software
architecture.

5.3 Software risk management

Ultimately, the manufacture of medical devices is culminated into risk management
and mitigation. Therefore, the purpose of the rigid process requirements is to reduce
the risks related to a person’s health that could be caused by a medical device.
The risk management follows the whole life cycle process, and the residual risk
should always be mitigated into an acceptable level, before the medical device can
be deployed into use.

By applying reliable and deterministic practices to software verification and de-
livery, the regulated CI/CD pipeline could reduce software risks by mitigating the
factor of human-made error from the process. In practice, by removing manual work
and activities that may depend on human memory from the verification and delivery
process, the risk of human-made error could be reduced significantly [Humble et al.,
2011]. The process is implicitly documents itself, as every activity on the verification
and delivery process is scripted and automated.

5.4 Software problem resolution process

The regulated CI/CD pipeline model does not include software problem resolution
process. Nevertheless, the pipeline could feed input to the problem resolution pro-
cess, such as bugs or problem reports. As a result, a fixed problem could appear as
an input for the CI/CD pipeline, as it could change the software. Software problems
resolution process applies to the whole software life cycle process, and it must be
possible to fix a problem at any point of the process. However, the form of the
problem report can be different depending on the process part the problem was
identified.

5.5 Software maintenance

The software life cycle does not end after production deployment, and the release
of the product into the real-world use. The manufacturer must establish a software
maintenance process, which is used to modify an existing software [IEC, 2015]. The
software maintenance plan is utilized after the initial development has ended, and
the software needs upgrades or any problems are detected. The manufacturer is

44

permitted to use a lighter process for maintenance, to fix problem reports related
to a released product, or to implement rapid changes in response to urgent prob-
lems [IEC, 2015]. The process might correspond to the development process with
some modifications. Finally, the manufacturer is responsible for the product and
it’s safety, until it is removed from use and disposed properly, which is when the
responsibility ends.

45

6 Conclusions
The purpose of this thesis was to find ways to integrate regulatory activities, intro-
duced by EU regulations, such as MDR and IVDR into CI/CD pipelines. The most
practical and convenient way to implement the regulatory requirements, is to follow
medical device standards. IEC 62304 and IEC 82304-1 were chosen as the main
standards for this study because they introduce requirements for software life cy-
cle and product safety, which mostly affect the implementation of CI/CD pipeline.
DevOps practices were studied by studying the literature and adopting a reference
model for the study. Total of 108 requirements were identified from the standards
IEC 62304 and IEC 82304-1, of which 26 were identified as fully implementable in
a CI/CD pipeline, 20 were identified as partially implementable requirements in a
CI/CD pipeline, and 62 requirements were identified to be excluded from a CI/CD
pipeline. As a result of this research, a model for regulated CI/CD pipeline was
created, and the implemented regulatory requirements were rationalized.

The objective of this thesis was to produce practical ideas for the medical device
software industry to establish a software development process that utilizes DevOps,
while maintaining compliance with the medical device regulations. In the real world,
software development can sometimes resemble a chaos, but even then it is important
to assure the safety and performance of the end product. A change in the software
could be iterated multiple times, which could cause a great amount of additional
verification work and refactoring of documentation.

The answer to Research Question 1. Is it possible to integrate CI/CD pipeline
into the medical device software development process? Yes. As long as the required
activities and tasks can be automated, there is no problem in the utilization of
Continuous Integration or Continuous Delivery. It is highly recommended to utilize
Continuous Integration. It is also possible to utilize Continuous Delivery, while
maintaining conformity with the requirements from IEC 62304, keeping the software
in release-ready state all the time. However, any change that has not completed
the development process, should not be deployed to real world use, and the final
deployment should be gated by a human-decision.

The answer to the Research Question 2. Is it possible to utilize Continuous
Deployment in medical device software delivery process? is No. Even if the sys-
tem architecture supports Continuous Deployment, risk control measures must be
applied to the deployment process, as only features that do not impact clinical
and/or performance evaluation can be deployed without a permission. The pipeline
can otherwise be utilized, but there must be a human-made decision incorporated,
which limits the applicability of Continuous Deployment. However, the Continuous

46

Deployment process could be applied to other environments outside of customer pro-
duction environment, because there is no patient risk involved and only production
environments should be used for patient treatment. A testing environment identical
to the production environment could exist for testing purposes, and the changed
software could be deployed continuously into the testing environment.

The answer to the Research Question 3. What advantages could a CI/CD pipeline
introduce to a medical device manufacturer? The automated pipeline reduces the
amount of manual work needed for the verification, release and installation activities.
The deployment process is normalized, reducing the possible user errors from the
software deployment [Humble et al., 2011]. The software changes could be deployed
into a testing environment rapidly, after the development and verification of the
new feature. The customer organisation could try and experiment the changes
in the testing environment, and provide feedback based on the testing, creating a
feedback loop for the manufacturer. The manufacturer receives feedback from the
customer, and any possible flaws or defects in the software can be detected, before
the changed software product is put into real world use, reducing the possibility
of discovering unknown risks in the production. Downside to this solution could
be the cost-efficiency, because it requires more resources, such as server capability,
to maintain. Upsides would be the possibility to inspect the technical integrity of
the product even during development phases, and to take an instant action when a
problem/defect is identified. However, using a testing environment on real patient
treatment is prohibited, and the risk of doing that should be mitigated before any
testing or validation activities can happen.

6.1 Limitations and applicability of the research

The regulated CI/CD pipeline does not include every regulatory requirement that
could apply to a medical device software. The set of applicable regulatory require-
ments can differ, depending on the intended purpose and the type of the software
system. However, in general, NB assessment, CE marking, clinical and performance
evaluation, most of the software risk management and software configuration man-
agement, software usability validation, and some other medical device standards
were excluded from the scope intentionally. Some regulatory requirements, left out-
side of the scope of this study, such as the Notified Body assessment and usability
validation could cause some delays for the actual release to the end users. More work
is needed to implement a fully comprehensive medical device software development
model, to include every generally applicable regulatory requirement.

The applicability of the proposed pipeline model itself depends on many factors,
such as the architecture of the system, size and scope of the project, coverage of
test automation, the development tools and technologies used. The model is more

47

suitable for new projects, as legacy software may contain issues with many of the
aforementioned factors. In the beginning of new project, it is possible to choose
the correct tools for the implementation, and establish the development and deliv-
ery processes from the scratch, whereas for legacy projects it might require lots of
resources to alter the software and the surrounding infrastructure. Additionally, it
could be difficult to utilize DevOps practices on a large software systems with a
monolithic architecture as the time needed for build and execution of automated
tests might take a significant time. A comprehensive test automation coverage is
difficult to attain, if it has been neglected in the early stages of the software project,
as the catching up with the development could take considerable amount of work.
Moreover, without the comprehensive test automation, the manufacturer must resort
to manual testing, which can become a burdensome, slow and expensive task, when
the system reaches maturity. Furthermore, it is required to perform verification of
the product on demand, when it is needed. Test automation does not necessarily
find new defects in the product, but it can be utilized for regression testing, to ensure
that existent features do not break, when the software is changed. Test automation
reduces the amount of manual testing needed by a substantial amount, making the
software changes easier to implement.

6.2 Discussion and further research

The research found some key aspects and proposed a model to implement a regu-
lated CI/CD pipeline. To further validate the idea behind the proposed model, a
reference implementation is needed, followed by a case study, which validates the
model in practice. The model could also be further developed to include regulatory
requirements/activities that are currently scoped out, such as development planning,
design and implementation process of the software, interaction with the NB, con-
figuration management, risk management, software usability validation and quality
management systems. As a suggestion, the agile development model from AAMI
TIR:45 [AAMI, 2012], illustrated in Figure 5, could be integrated into the proposed
regulated CI/CD pipeline model, to implement more of the regulatory requirements
related to the planning, design and development activities.

Additionally, the medical device software industry could use standard tooling set
and shared industry best practices to implement the automation of the the activities,
required by the regulations, more efficiently. The regulatory requirements introduce
activities, such as the comprehensive and traceable documentation requirements,
which are rare outside of regulated industry sectors, creating a specific need for
additional tooling to implement efficiency into the manufacturing processes.

From the business perspective, the medical device software manufacturers, that

48

successfully adopt and integrate the regulatory requirements into their manufactur-
ing processes, could gain significant business advantage in the industry. It could
be difficult for smaller companies, such as start-ups, to integrate the regulatory
requirements into the manufacturing process, while developing new products ef-
ficiently. This could lead to a difficult situation for smaller software companies,
where it is hard or impossible to compete against large software vendors.

Finally, an industry paper, based on ideas presented in this thesis, was written,
and submitted into PROFES 2021 Conference [Toivakka et al., 2021].

49

7 Acknowledgements
The author would like to thank Mylab Oy, staff of Tampere University, Business
Finland and the members of AHMED (Agile and Holistic MEdical software Devel-
opment) consortium for supporting this work.

50

References
AAMI (2012). AAMI TIR45:2012 Technical Information Report Guidance on the

use of AGILE practices in the development of medical device software.
Amrit, Chintan and Yoni Meijberg (2018). “Effectiveness of Test-Driven Develop-

ment and Continuous Integration: A Case Study”. IT Professional 20.1, pp. 27–
35.

Duvall, Paul M., Andrew Glover, and Steve Matyas (2007). Continuous integration
: improving software quality and reducing risk. 1st ed. Addison Wesley.

European Commission (1990). COUNCIL DIRECTIVE of 20 June 1990 on the
approximation of the laws of the Member States relating to active implantable
medical devices.

European Commission (1993). COUNCIL DIRECTIVE 93/42/EEC of 14 June 1993
concerning medical devices.

European Commission (1998). DIRECTIVE 98/79/EC OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL of 27 October 1998 on in vitro
diagnostic medical devices.

European Commission (2016). The ‘Blue Guide’ on the implementation of EU
products rules. url: https : / / ec . europa . eu / growth / content / %E2 % 80 %
98blue-guide%E2%80%99-implementation-eu-product-rules_en (visited on
09/09/2021).

European Commission (2017a). REGULATION (EU) 2017/745 OF THE EURO-
PEAN PARLIAMENT AND OF THE COUNCIL of 5 April 2017 on medical
devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and
Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC
and 93/42/EEC. url: http://d-nb.info/1152290274/04.

European Commission (2017b). REGULATION (EU) 2017/746 OF THE EURO-
PEAN PARLIAMENT AND OF THE COUNCIL of 5 April 2017 on in vitro
diagnostic medical devices and repealing Directive 98/79/EC and Commission
Decision 2010/227/EU.

European Commission (2021a). CE marking - obtaining the certificate, EU re-
quirements. url: https : / / europa . eu / youreurope / business / product -
requirements / labels - markings / ce - marking / index _ en . htm (visited on
09/09/2021).

European Commission (2021b). EUDAMED Database. url: https://ec.europa.
eu/tools/eudamed/#/screen/home (visited on 09/09/2021).

European Commission (2021c). Standardisation request to the European Committee
for Standardization and the European Committee for Electrotechnical Standard-
ization as regards medical devices in support of Regulation (EU) 2017/745 of the

https://ec.europa.eu/growth/content/%E2%80%98blue-guide%E2%80%99-implementation-eu-product-rules_en
https://ec.europa.eu/growth/content/%E2%80%98blue-guide%E2%80%99-implementation-eu-product-rules_en
http://d-nb.info/1152290274/04
https://europa.eu/youreurope/business/product-requirements/labels-markings/ce-marking/index_en.htm
https://europa.eu/youreurope/business/product-requirements/labels-markings/ce-marking/index_en.htm
https://ec.europa.eu/tools/eudamed/#/screen/home
https://ec.europa.eu/tools/eudamed/#/screen/home

51

European Parliament and of the Council and in vitro diagnostic medical devices
in support of Regulation (EU) 2017/746 of the European Parliament and of the
Council.

European Commission (2021d). Types of EU law. url: https://ec.europa.eu/
info/law/law-making-process/types-eu-law_en (visited on 09/09/2021).

Fimea (2020). Lääkinnällisten laitteiden asetuksen (MDR) siirtymäaika siir-
tyy vuodella eteenpäin Covid-19:n vuoksi. url: http : / / www . fimea . fi/ -
/laakinnallisten- laitteiden- asetuksen- mdr- siirtymaaika- siirtyy-
vuodella-eteenpain-covid-19-n-vuoksi (visited on 09/09/2021).

Giorgi, Fabio and Frances Paulisch (2019). Transition Towards Continuous Delivery
in the Healthcare Domain. doi: 10.1109/ICSE-SEIP.2019.00035.

GitHub (2021). About pull requests. url: https://docs.github.com/en/github/
collaborating-with-pull-requests/proposing-changes-to-your-work-
with-pull-requests/about-pull-requests (visited on 09/09/2021).

GitLab (2021). Merge requests. url: https : / / docs . gitlab . com / ee / user /
project/merge_requests/ (visited on 09/09/2021).

Gousios, Georgios, Margaret-Anne Storey, and Alberto Bacchelli (2016). “Work
practices and challenges in pull-based development”. In: ICSE ’16. ACM, pp. 285–
296. url: http://dl.acm.org/citation.cfm?id=2884826.

Granlund, Tuomas, Tommi Mikkonen, and Vlad Stirbu (2020). “On Medical De-
vice Software CE Compliance and Conformity Assessment”. In: 2020 IEEE In-
ternational Conference on Software Architecture Companion (ICSA-C). doi:
10.1109/ICSA-C50368.2020.00040. url: https://ieeexplore.ieee.org/
document/9095660.

Granlund, Tuomas, Vlad Stirbu, and Tommi Mikkonen (2021). The Need for Calm
Compliance. Unpublished manuscript.

Hamilton, Booz Allen (1995). SECURE HASH STANDARD.
Humble, Jez and David Farley (2011). Continuous delivery. Upper Saddle River

(N.J.): Addison-Wesley.
IEC (2015a). MEDICAL DEVICE SOFTWARE. SOFTWARE LIFE-CYCLE PRO-

CESSES (IEC 62304:2006/A1:2015).
IEC (2015b). MEDICAL DEVICES - PART 1: APPLICATION OF USABILITY

ENGINEERING TO MEDICAL DEVICES (IEC 62366-1:2015/A1:2020).
IEC (2016). IEC 82304-1:2016. HEALTH SOFTWARE — PART 1: GENERAL

REQUIREMENTS FOR PRODUCT SAFETY.
ISO (2007). ISO 14971:2007. APPLICATION OF RISK MANAGEMENT TO

MEDICAL DEVICES.
ISO (2018). ISO 13485:2003/2016—Medical Devices—Quality Management

Systems—Requirements for Regulatory Purposes.

https://ec.europa.eu/info/law/law-making-process/types-eu-law_en
https://ec.europa.eu/info/law/law-making-process/types-eu-law_en
http://www.fimea.fi/-/laakinnallisten-laitteiden-asetuksen-mdr-siirtymaaika-siirtyy-vuodella-eteenpain-covid-19-n-vuoksi
http://www.fimea.fi/-/laakinnallisten-laitteiden-asetuksen-mdr-siirtymaaika-siirtyy-vuodella-eteenpain-covid-19-n-vuoksi
http://www.fimea.fi/-/laakinnallisten-laitteiden-asetuksen-mdr-siirtymaaika-siirtyy-vuodella-eteenpain-covid-19-n-vuoksi
https://doi.org/10.1109/ICSE-SEIP.2019.00035
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/
http://dl.acm.org/citation.cfm?id=2884826
https://doi.org/10.1109/ICSA-C50368.2020.00040
https://ieeexplore.ieee.org/document/9095660
https://ieeexplore.ieee.org/document/9095660

52

Khan, Muhammad Owais (2020). “Fast Delivery, Continuously Build, Testing and
Deployment with DevOps Pipeline Techniques on Cloud”. Indian Journal of
Science and Technology 13.5, pp. 552–575.

Laster, Brent (2020). Continuous Integration vs. Continuous Delivery vs. Continuous
Deployment, 2nd Edition. 1st ed. O’Reilly Media, Inc.

Laukkarinen, Teemu, Kati Kuusinen, and Tommi Mikkonen (2018). “Regulated soft-
ware meets DevOps”. Information and Software Technology 97, pp. 176–178. doi:
10.1016/j.infsof.2018.01.011. url: https://search.datacite.org/
works/10.1016/j.infsof.2018.01.011.

Medical Device Coordination Group (2019). Guidance on Qualification and Classi-
fication of Software in Regulation (EU) 2017/745 – MDR and Regulation (EU)
2017/746 – IVDR.

Memon, Atif, Adithya Nagarajan, and Qing Xie (2005). “Automating regression test-
ing for evolving GUI software”. Journal of Software Maintenance and Evolution:
Research and Practice 12.1, pp. 27–64.

Morris, Kief, Brian Anderson, Jasmine Kwityn, Karen Montgomery, Rong Tang,
and Rebecca Demarest (2016). Infrastructure as code : managing servers in the
cloud. Sebastopol, California: O’Reilly.

OWASP (2021). OWASP Dependency-Check Project. url: https://owasp.org/
www-project-dependency-check/ (visited on 08/30/2021).

Pitkänen, Heikki, Leena Raunio, Santavaara Ilona, and Tom Ståhlberg (2020). A
Guide to Market. url: https://www.leanentries.com/wp-content/uploads/
european-medical-device-regulations-mdr-ivdr-a-guide-to-market.
pdf (visited on 09/09/2021).

Rossberg, Joachim (2014). Beginning Application Lifecycle Management. 1st ed.
Apress. isbn: 1-4302-5813-6. doi: 10.1007/978-1-4302-5813-1.

Shah, Syed Muhammad Ali, Cigdem Gencel, Usman Sattar Alvi, and Kai Pe-
tersen (2014). “Towards a hybrid testing process unifying exploratory testing
and scripted testing”. Journal of Software : Evolution and Process 26.2, pp. 220–
250. doi: 10.1002/smr.1621.

Smart, John (2014). BDD in Action: Behavior-Driven Development for the Whole
Software Lifecycle.

Smeds, Jens, Kristian Nybom, and Ivan Porres (2015). DevOps: A Definition and
Perceived Adoption Impediments. Cham: Springer International Publishing. doi:
10.1007/978-3-319-18612-2_14. url: https://search.datacite.org/
works/10.1007/978-3-319-18612-2_14.

Spinellis, Diomidis (2017). State-of-the-Art Software Testing.
Sprott, David and Lawrence Wilkes (2004). Understanding Service-Oriented Archi-

tecture.

https://doi.org/10.1016/j.infsof.2018.01.011
https://search.datacite.org/works/10.1016/j.infsof.2018.01.011
https://search.datacite.org/works/10.1016/j.infsof.2018.01.011
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://www.leanentries.com/wp-content/uploads/european-medical-device-regulations-mdr-ivdr-a-guide-to-market.pdf
https://www.leanentries.com/wp-content/uploads/european-medical-device-regulations-mdr-ivdr-a-guide-to-market.pdf
https://www.leanentries.com/wp-content/uploads/european-medical-device-regulations-mdr-ivdr-a-guide-to-market.pdf
https://doi.org/10.1007/978-1-4302-5813-1
https://doi.org/10.1002/smr.1621
https://doi.org/10.1007/978-3-319-18612-2_14
https://search.datacite.org/works/10.1007/978-3-319-18612-2_14
https://search.datacite.org/works/10.1007/978-3-319-18612-2_14

53

Ståhlberg, Tom (2015). Suomi ja EU fokuksessa.
Stellman, Andrew and Jennifer Greene (2014). Learning Agile: Understanding

Scrum, XP, Lean, and Kanban. O’Reilly Media, Incorporated.
Stirbu, Vlad and Tommi Mikkonen (2020). CompliancePal: A Tool for Supporting

Practical Agile and Regulatory-Compliant Development of Medical Software. doi:
10.1109/ICSA-C50368.2020.00035.

Toivakka, Henrik, Tuomas Granlund, Zheying Zhang, and Timo Poranen (2021).
“Towards RegOps: A DevOps Pipeline for Medical Device Software”. Unpub-
lished manuscript. 16 pages. Accepted for publication in International Confer-
ence on Product-Focused Software Process Improvement (PROFES 2021).

Vitharana, Padmal (2017). “Defect propagation at the project-level: results and a
post-hoc analysis on inspection efficiency”. Empirical Software Engineering 22.1,
pp. 57–79.

Wettinger, Johannes, Uwe Breitenbücher, and Frank Leymann (2014). “DevOpSlang
– Bridging the Gap between Development and Operations”. In: Lecture Notes
in Computer Science. Springer Berlin Heidelberg. doi: 10.1007/978-3-662-
44879-3_8. url: http://link.springer.com/10.1007/978-3-662-44879-
3_8.

Wichmann, B. A., A. A. Canning, D. W. R. Marsh, D. L. Clutterbuck, L. A. Wins-
borrow, and N. J. Ward (1995). “Industrial perspective on static analysis”. Soft-
ware Engineering Journal 10.2, p. 69.

https://doi.org/10.1109/ICSA-C50368.2020.00035
https://doi.org/10.1007/978-3-662-44879-3_8
https://doi.org/10.1007/978-3-662-44879-3_8
http://link.springer.com/10.1007/978-3-662-44879-3_8
http://link.springer.com/10.1007/978-3-662-44879-3_8

	Introduction
	Regulations and medical device standards
	DevOps and pipelines
	Research objectives and methods

	Regulation of medical devices in EU region
	Medical Device Regulation
	In Vitro Diagnostics Regulation
	Product safety and clinical effectiveness
	Product placement on the market
	Overview of medical device standards
	IEC 82304-1: Health software — Part 1: General requirements for product safety
	IEC 62304: Medical device software — Software life cycle processes
	Other relevant standards

	Agile software development in regulated environment

	Key characteristics of CI/CD pipelines
	Continuous Integration
	Continuous Delivery
	Pull-based development
	*-as-Code
	Blue-green deployment
	Reference CI/CD pipeline

	Identifying requirements for CI/CD pipelines in the regulated environment
	Issues arising from the regulatory requirements
	Rigidness of the manufacturing process
	Burdensome testing and verification requirements
	Software of Unknown Provenance

	Fully implemented regulatory requirements
	Partially implemented regulatory requirements
	Not implemented regulatory requirements

	Integration of the identified regulatory requirements into a CI/CD pipeline
	Stages of the pipeline
	Software integration
	Review and verification
	Deployment pipeline
	Integration verification
	Release activities and approval
	Implicitly implemented regulatory requirements

	Regulatory compliance by design
	Version control and traceability
	Behavior-Driven Development
	Segregation of medical device software components

	Software risk management
	Software problem resolution process
	Software maintenance

	Conclusions
	Limitations and applicability of the research
	Discussion and further research

	Acknowledgements
	References

