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ABSTRACT 
 

Today, different positioning applications such as location-based 

services and autonomous navigation are requiring more and more 

precision. Especially fully autonomous navigation requires 

accurate positioning solution, not only for the vehicle but also for 

the surrounding objects. Thus, many new positioning techniques, 

algorithms and fusion schemes have been developed. One essential 

technique is visual positioning. Thanks to intensive research in 

neural networks and deep learning, Convolutional Neural 

Network-based (CNN) object detectors have evolved greatly in 

recent years. This paper proposes a widely deployable scheme of 

fixed camera-based (e.g. surveillance camera) object positioning 

utilizing the CNN-detector. The accuracy of the implemented 

positioning solution is evaluated with precise Real-Time 

Kinematic (RTK) satellite positioning receiver. The implemented 

system can be used in indoors and outdoors, and it can estimate 

simultaneously positions from multiple camera views for multiple 

objects in real-time. When positioning a person, the measured 

mean positioning error was 10.7–15.6 cm with a simple bias 

correction and a standard deviation was 6.7-8.7 cm. Thus, the 

accuracy is excellent and would be sufficient to wide variety of 

applications.  
 

Index Terms — Camera-based positioning, visual 

localization, convolutional neural networks (CNN), object 

detection, RTK GNSS 

 

1. INTRODUCTION 
 

Nowadays vast amount of positioning applications exists, such as 

several types of Location Based Services (LBS) [1] and 

autonomous navigation. Especially, position-based automation has 

recently rapidly increased in the form of autonomously navigating 

vehicles. The position information can be important for the object 

itself in such applications as social networking, personal 

navigation, robot navigation, and Autonomous Vehicle (AV) 

navigation, but also third parties can utilize the object's position 

for, e.g. automated entrance and surveillance control, emergency 

applications, and vehicle remote control. In addition, the position 

information can be shared between the object and external side, for 

example to enable fusion or assisted navigation.  

 Global Navigation Satellite System (GNSS) [2] is the primary 

positioning system that allows to determine a user's position on 

Earth. However, GNSS performance in many areas is 

compromised. Especially indoors GNSS signals can be totally 

blocked. Also, outdoors GNSS signals can be weak or absent in 

many areas such as tunnels, multi-story parking lots, urban 

canyons, and any other areas covered by a roof or blocked by 

structures. In good conditions low-cost GNSS positioning solution 

may achieve average position errors of less than 10 meters, which 

is usually sufficient for personal navigation, but e.g. for AV the 

accuracy even in the ideal conditions may be insufficient. Multiple 

positioning algorithms and techniques have been developed to 

assist GNSS outdoors or replace GNSS indoors (see e.g. [3]) to 

improve the position accuracy. For outdoors the most commonly 

used technique is a fusion of GNSS and Inertial Navigation System 

(INS) [4],[5]. The INS is also widely used indoors since most 

smartphones nowadays include an Inertial Measurement Unit 

(IMU). However, the IMUs used in smartphones have, in general, 

low accuracy, wherefore errors accumulate quickly [6]. Together 

with the need for an initial position this leads to unreliable 

solutions. Therefore, INS usually has to be fused with other 

techniques. 

Positioning systems can be categorized as active (object 

mounted) systems, passive (external) systems or a fusion of both. 

Examples of active systems include INS, ultrasound, Ultra-

Wideband (UWB), LIDAR, Wi-Fi, Bluetooth, RFID, and visual 

positioning with mobile camera [3]. Several of the above 

techniques are based also on external infrastructures in addition to 

an object mounted device. An example of passive systems is fixed 

camera-based positioning [7], which can be implemented on 

surveillance cameras. Thus, it is also infrastructure-based. A major 

drawback of infrastructure systems is the additional cost associated 

to building the infrastructure. However, in the case of a 

surveillance camera system, such infrastructures are very common 

and utilizing an existing system for positioning can be potentially 

implemented with zero additional infrastructure cost. All the 

mentioned systems can be used also outdoors, but the range 

(distance between infrastructure and object) is usually limited to 1-

50 m [8].    

Computer vision has been intensively researched in recent 

years. Developments in neural networks and deep learning 

approaches have greatly advanced the performance of the visual 

recognition systems [9]. A very popular and effective architecture 

for computer vision is the Convolutional Neural Network (CNN) 

[10]. It is nowadays used for computer vision tasks such as image 

classification, object detection, object localization, object tracking, 

and semantic segmentation. Object detection and object 

localization can be utilized also for a camera-based positioning 

system. Pre-defined objects are searched from image or video 

(object detection) and the spatial object coordinates in the image 

are extracted (object localization). CNN-based detector can be 

trained to detect almost any object type, like a person, animal, 

robot, vehicle etc. Camera based positioning may be used for many 

similar applications as other positioning systems, for example for 

context aware location-based marketing [11],[12], in health service 

to localize patients and medical staff, in disaster management and 

recovery to find objects, for AV positioning aiding, and especially 

for security and surveillance purposes. It is also possible to fuse 

camera positioning with other positioning technologies, for 

example with INS [13],[14] or GNSS. 

This work studies fixed camera-based visual positioning 

systems, which are underrepresented in previous papers related to 

indoor or outdoor positioning [3],[8],[15]-[20]. We review several 

previous works and implement our own solution. Instead of 

previously common background subtraction [21] method to detect 

moving objects, we use deep learning in the form of CNN-based 



detector to detect and localize the objects in video frames. Unlike 

background subtraction, CNN will also detect non-moving objects 

and reliability in dynamic conditions is expected to be better. By 

using a planar homography [22] the discovered object coordinates 

are mapped from camera image coordinates to local area 

coordinates and further to geographic coordinates. The 

implemented visual positioning system is tested outdoors to 

examine the absolute positioning accuracy while a Real-time 

Kinematic (RTK) GNSS receiver is used as ground truth.  

The purpose of this study is to describe how to implement real-

time surveillance camera-based object positioning system using 

CNN detector and what exactly is the expected positioning 

accuracy. To the best of our knowledge, this is the first work that 

employs precise RTK GNSS to determine the accuracy of CNN-

employed surveillance camera-based positioning system. The 

present paper is organized as follows. Section 2 represents the 

previous works and compares the methods used in this study. 

Section 3 describes the adopted methods used in this work. Section 

4 introduces the implemented system and test setup. Section 5 

presents the results and analysis. Section 6 concludes this work and 

results. 

 

2. RELATED WORK 

 

Extensive literature on visual object detection and tracking 

algorithms with fixed cameras exist, but only few papers transform 

the image coordinates to real world coordinates and analyse the 

position accuracy in relation to distance between camera and 

object. Also, almost all the papers that reported accuracies, lack 

accurate ground truths. 

Object detection and object localization are the most 

fundamental components of video-based positioning. Before the 

recent rapid development in deep learning, background subtraction 

[21] has been a very popular method for object detection and 

tracking. However, it has several problems, especially in dynamic 

conditions. Its reliability decreases e.g. with lighting effects, partly 

overlapping objects, slow-moving objects, shadows, and effects 

from a moving scene such as swaying trees. There has been 

intensive work to diminish these drawbacks, e.g. adaptive 

Gaussian mixture models in [23] and a multi camera approach in 

[24], but deep learning is still more promising for object detection 

and tracking. For example, deep learning-based object detection 

can perform well in very dynamic conditions, thus it is commonly 

used with mounted camera applications (see [25] for an extensive 

review on the topic). 

Next, we introduce papers which are only closely related to our 

work: In [24] authors presented a people tracking scheme using 

multiple cameras. They used a combination of multiple cameras 

and a planar homography constraint idea to tackle the drawbacks 

of the used foreground segmentation method and to improve the 

tracking challenges caused by occlusions. Their outdoor tests 

showed that by increasing camera views for the same scene and 

applying the homography constraint the detection yields 

significantly less false positives. While we localize objects using 

their root position on ground plane, in [24] locations of people on 

the ground plane are detected but no information on the 

localization is given. 

In [26], authors studied a similar concept as in [24], but 

extended the ground plane detection to multiple layers. In addition, 

they used Scale Invariant Feature Transform (SHIFT) to identify 

people and also applied Kalman Filter [27] to predict an object's 

position in the next video frame. The authors reported an average 

localization error of 13 cm for indoor dataset PETS2007 [28], 

which have ground truth positions manually labeled from video 

images. Thus, there is obviously some discrepancy and the real 

accuracy of the proposed system remains uncertain. 

Einsiedler et al. in [29] developed a surveillance camera-based 

positioning system to detect and localize vehicles and pedestrians 

in a parking garage. The authors used a cascade of boosted Haar-

like feature classifiers [30] for the vehicle detection and Histogram 

of Oriented Gradients (HOG) features to detect pedestrians [31]. 

They applied the GrabCut algorithm [32] to separate an object from 

the background to determine the object's root point. The root point 

was mapped to real world using a homography transform. 

Detection error was estimated by manually annotating the correct 

root points and comparing with detector results after transforming 

the points to real world floor plane. They report that on single 

camera view with 20m coverage and in 95 percentile the overall 

positioning error was below 0.9m.   

Authors in [33] also developed a surveillance camera-based 

positioning system for parking garage. Their system uses multi-

camera for the same scene to handle occlusions and to improve the 

localization accuracy. They used background subtraction method 

with several additional image processing steps to detect and 

segment moving objects. In addition, object tracking was 

implemented and the Alpha-beta-filter [34] was utilized to 

smoothen the movement trajectory. In the experiments they used 

LIDAR system [35] for reference positions. The LIDAR system 

has been determined to produce 0.19m mean Euclidean distance 

compared to Differential-GPS. The authors report 0.24m mean 

position error for the developed system. 

In [36], authors introduced a camera-based pedestrian tracking 

system with IMU fusion. IMU was utilized to assist vision-based 

localization during visual occlusions. They implemented a scene-

specific trained Support Vector Machine (SVM) and HOG 

pedestrian detector. The system was tested outdoors and the ground 

truths were created by hand annotating from each video frame. The 

average localization error when only visual tracking was used was 

about 0.9m. The distance from camera to object was not defined, 

but based on screenshots, the distance could be approximately up 

to 50m. 

In [14] and [37] Yan et al. introduced an IMU-based indoor 

positioning system aided by camera positioning. In camera 

positioning they utilized Faster R-CNN [38] deep learning 

architecture for object detection and object localization. Authors 

used the middle point of the bottom boundary of extracted 

bounding box as the object root point. This is a similar principle to 

the one used in this paper. However, authors used a simple pinhole 

model to calculate a distance and exploited the camera positioning 

only to estimate distances between camera and object, and tested 

their setup only in narrow corridors. In contrast, we use CNN for 

2D positioning. Authors reported in [37] average accuracy of 

0.16m with fused positioning, but did not define the used reference 

position system. 

 

 

 

 

Figure 1. Example of planar homography transforms. 



3. PROPOSED METHODS 

 

In this paper, we propose several methods to be used for 

implementing a surveillance camera-based positioning system. 

The first part is the object detector, which detects the objects and 

locations in the camera image. Next, by using a homography 

transform the objects image coordinates are transformed to UTM-

coordinates and further to more generally used geodetic latitude 

and longitude coordinates. 

 

3.1 CNN detector 

 

As discussed earlier, significant progress has recently been made 

for deep learning-based detectors, but those architectures have also 

become large and expensive because of the deep network structure. 

The deep learning-based detector is potentially more suitable for 

dynamic environment surveillance, but it comes with increased 

computational demand. Although, the surveillance camera-based 

positioning system could run on a dedicated computer, increasing 

the number of camera views will increase the computing power 

demand proportionally. Thus, to employ a deep learning-based 

detector for multi-view, one must carefully select the convenient 

architecture, with possible hardware acceleration (GPU) support, 

for the available computing power.   

Detectors are mainly divided into one-stage and two-stage 

implementations. Two-stage detectors have generally more 

advantages in accuracy and precision, but in detection speed, the 

one-stage detectors have better performance. An example of one-

stage detectors is YOLO architecture series [39]. In this work, we 

employed the recent YOLOv4 architecture [40]. YOLOv4 is 

mainly designed for fast operating speed, but still can provide good 

accuracy, and it is reported to outperform prior deep learning 

models in terms of its real-time performance [40]. YOLOv4 

network model includes three main parts: backbone, neck, and 

head. The backbone is taking the input images and extracts feature 

maps. In the neck part, the extracted features are specifically 

enhanced to improve robustness and discriminatory aspects. 

Finally, the head is used to predict object classes and bounding box 

coordinates based on the enhanced features. In our implementation 

the middle point of the bottom boundary of the extracted bounding 

box is defined as the object root point (ground surface position) in 

the camera image.  

 

3.2 Homography transform 

 

Homography is a planar projective transformation, which is a 

linear transformation into homogeneous coordinates [41]. Planar 

homography maps points from one plane to another. The 

transformation is represented by a non-singular 3 x 3 matrix and 

the point projection from plane to another can be defined by 
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where w is a scaling factor. H is usually called homography matrix 

or projective matrix. The matrix, has 8 degrees of freedom as it is 

generally normalized by ℎ

� � ℎ
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� � ℎ��� � ℎ��� � 1. To obtain the homography matrix, only four 

point pairs are needed from the two planes (total of eight points). 

Then a Direct Linear Transformation (DLT) algorithm can be used 

for solving the H [41]. Examples of planar homography transforms 

are given in Fig. 1, where image plane 1 and image plane 2 can be 

considered as camera views, O1 and O2 are camera centers and 

world plane is a ground surface. Point (x',y') in image plane 1 is 

transformed to a point (x,y) in world plane by using homography 

matrix H. Similarly, image plane 2 point (x'',y'') is transformed to 

the same world plane point (x,y) by using a homography matrix G. 

Homography transforms are reversable (e.g. H-1) and can be 

concatenated (e.g. the HG-1 in figure). 

Thus, a point in the camera image can be projected to real 

world coordinates by the homography. Generally, in planar 

homography, the target coordinate system can be any planar and 

linear coordinate system. For example, local area coordinates, map 

image coordinates or projected coordinate system. 

 

3.3 Geographic coordinate conversion 

 

Nowadays, in most GNSS applications and with common digital 

maps the position is defined by geodetic coordinates, latitude and 

longitude (and sometimes altitude) [42]. Latitude and longitude are 

angular coordinates measured in degrees, which is not suitable as 

target coordinates in the planar homography. In order to transform 

image coordinates to global coordinates using the homography, a 

Projected Coordinate System (PCS) can be used [43]. The PCS is 

generally based on some Geographic Coordinates System (GCS), 

but instead of sphere or spheroid the PCS is defined on a flat two-

dimensional surface, i.e. a plane.  

One example of PCS is Universal Transverse Mercator (UTM) 

[43], which is an implementation of transverse mercator projection. 

UTM is one of the most common conformal mappings in geodesy 

today. It is a multiple map projection in which the Earth is divided 

into 60 zones (numbered 1-60) in the north-south direction. Each 

zone is 6 degrees wide (in longitude) segment of the earth. The 

central meridian is in the middle of each zone and is used as a 

northing coordinate-axis and as zero for easting coordinates. 

Coordinates conversion between UTM and geodetic coordinates 

can be accurately defined [44]. The accuracy depends on algorithm 

 

Figure 2. Components of the implementation. 

 

 
Figure 3. Test site with walking paths and reference points. 



and number of used terms in calculations, and even nanometer-

level accuracy can be achieved [45],[46]. 

 

4. IMPLEMENTATION 

 

4.1 Implemented positioning system 

 

The implemented surveillance camera-based object positioning 

system supports video files or alternatively live IP-camera streams 

as inputs; thus, the system can run online or offline. The 

implementation was coded with Python programming language. 

The architecture of the implementation is shown in Fig. 2. The 

main component of the system is the object detection that supports 

multiple camera views and can detect multiple objects from each 

view. Core of the object detection is the object detector. A publicly 

available pretrained realization of YOLOv4 detector was used for 

this implementation [40]. The object detector provides detected 

object’s camera image coordinates for the homography transform 

component and simultaneously forwards camera images with 

bounding boxes (if requested) to the image editing component. For 

homography transform, a map image is given as an input and when 

initializing the system, four corresponding points are defined 

between the map image and each camera view. In addition, latitude 

and longitude coordinates are given for all the four defined camera 

image reference points. Internally, the given geodetic coordinates 

are then converted to UTM coordinates to allow homography 

transform. The homography matrices are solved between each 

camera view and the UTM coordinate system, and between the 

views and the map image. The homography transform component 

transforms each received camera image coordinate to map image 

coordinates and to UTM coordinates. The resulting UTM 

coordinates are then converted to latitude and longitude for 

visualization and recording. The image editing component 

combines camera views and the map image into one image and 

draws detected object’s position markers with corresponding 

geodetic coordinates on to the map image to visualize the positions. 

Finally, the edited images are shown for the user as a video stream.  

 Lenovo Thinkpad P1 Gen2 laptop equipped with Intel i7-

9750H and low-end Nvidia Quadro T1000 3GB GPU was able to 

run the implemented one camera test system with a frame rate of 

about 10 fps. 

 

4.2 Experimental setup 

 

The implemented positioning system was tested also indoors, but 

to determine the positioning accuracy unambiguously, the main 

experiments were carried out in outdoors to enable RTK GNSS 

ground truth positions. A multi-frequency U-blox ZED-F9P RTK 

GNSS receiver [48] was utilized to provide very accurate ground 

truth positions. ANN-MB-00 active GNSS antenna was used, 

which allows centimeter-level accuracy with the ZED-F9P module 

[49]. Top floor of a parking garage was selected as the test site to 

allow open sky for the GNSS receiver and a planar ground surface. 

A mobile phone was used to feed RTCM correction data stream to 

the RTK receiver, in addition the phone also recorded the geodetic 

positions from the RTK receiver via Bluetooth connection using 

10 Hz sample rate. Xiaomi Redmi Note 8T mobile phone with an 

IP-camera application was imitating the IP-surveillance camera. 

Only one camera was used to evaluate the positioning accuracy of 

a single camera. Recorded video resolution was 1280×720, 

however the image size for the object detector was resized to 

512×512. The camera was attached at 3.5 meters above floor level. 

The test site is shown in Fig. 3. A person was acting as the target 

object to be positioned and the GNSS antenna was placed on the 

top of the person’s head. The person walked back and forth at four 

different distances across the camera view. The perpendicular 

distances between camera and walking paths were: 5m, 8m, 11m, 

and 15m. The walking paths are visualized as (green) dashed lines 

in Fig. 3. The four reference geodetic coordinates for homography 

are marked with (red) dots. The object’s position in the camera 

image is defined by the center coordinate of the bottom horizontal 

line of a bounding box. 

 
5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Accuracy results of the implemented positioning system are shown 

in Table 1, where position error is the Euclidean distance between 

the ground truth (RTK GNSS) geodetic position and the position 

estimation by proposed system. Results show that mean 

positioning error was only 14.5-18.9 cm and standard deviation of 

the error was 6.7-8.7 cm. Thus, the accuracy is significantly better 

than e.g. in general GNSS solution. The position error was 

systematically biased towards the camera. This is expressed in 

Table 1 by mean error direction in relation to camera direction. The 

camera direction is the direction from the center coordinate of the 

walking path towards to camera, this is visualized also in Fig. 4. 

Here direction is defined as 0° is to North, 90° to East, 180° to 

South and 270° to West. 

In Fig. 4, ground truth and estimated position trajectories of 

one-way walk at 8m distance are presented as an example. In the 

bottom diagram of the Fig. 4 the absolute error of the estimated 

positions is shown. In the top diagram the positions are normalized 

from UTM-coordinates so that ground truth starting point is the 

origin. From the trajectories it is clearly visible that position 

estimates are biased to camera direction. The position bias is 

caused by the fact that the bottom bounding box limit (vertical 

coordinate) from the object detector is not the correct horizontal 

 
Figure 4. Positioning trajectories, and absolute positioning 

error. 

Table 1. Mean positioning error of the proposed system and a 

standard deviation of the error. 

 

Camera

distance

Mean 

position 

error

Standard 

deviation

Mean 

error

direction

[0,360°]

Camera

direction

[0,360°]

Corrected mean 

position error

(vertical camera 

pixel offset)

5m 0.162m 0.067m 117° 117° 0.109m (-14)

8m 0.145m 0.072m 113° 118° 0.107m (-5)

11m 0.160m 0.069m 114° 117° 0.109m (-3)

15m 0.189m 0.087m 101° 118° 0.156m (-2)



root or center point of the person at ground level. The horizontal 

center point should be the middle point between person’s feet, but 

the CNN detector extracts the lower bounding box limit from the 

bottom edge of the foot whichever is closer to camera. This error 

is intrinsically 15-20cm. If the person is walking towards or away 

from the camera, the bias error is expected to be quite similar. To 

correct that bias, we iteratively searched the best integer pixel 

offset for object's vertical camera coordinate to minimize the mean 

error; the results are shown in the last column of Table 1, mean 

position error was reduced to 10.7-15.6 cm, which is less than any 

related work. The pixel offset is in parenthesis, where minus values 

implies that coordinate of some higher pixel in the image is used 

in homography instead of the original provided by the object 

detector (in a camera image the origin is at top-left).  

In the absolute error diagram at the bottom of Fig 4, a 

periodicity can be detected. The periodicity is caused by person’s 

gait. The upwards and downwards moving feet causes fluctuation 

on the bottom bounding box limit. This fluctuation could be 

smoothened if some filter, e.g. Kalman filter, is employed for the 

trajectory. Another observation is that the position error is greatest 

in the path ends. The object detector can detect also partial objects 

correctly at camera image edges, which causes the object’s root 

point to be detected with some error if the object is only partially 

visible. A simple solution would be to discard the detections that 

are close to image edges. Alternatively, some position error 

correction functionality for image edge areas could be 

implemented. 
 

6. CONCLUSIONS 

 

This paper presented an implementation of surveillance camera-

based positioning system employing CNN-detector. The 

implemented system can provide geodetic coordinates 

simultaneously for all the visible predefined object types in 

multiple camera views. The absolute accuracy of CNN-based fixed 

camera positioning has remained unclear; thus, we tested the 

accuracy precisely using a RTK GNSS receiver to provide 

unambiguous ground truth positions. The tests were repeated in 

several distances, while a person was used as a target object. The 

mean positioning error was in range of 14.5-18.9 cm and a standard 

deviation of the error was 6.7-8.7 cm. It was determined that the 

mean error was systematically biased towards the camera. To 

correct the bias, we added offset to the detected vertical camera 

coordinate, which reduced the mean positioning error to 10.7-15.6 

cm. The evaluated positioning error is less than any related work 

we found. Other error sources were also discussed and some 

suggestions for error reduction were given. In the future, we aim to 

extend this scheme to moving platforms. 
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