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Abstract Cyber-physical-human systems naturally arise from interdependent in-
frastructure systems and smart connected communities. Such applications require
ubiquitous information sensing and processing, intelligent machine-to-machine com-
munication for a seamless coordination, as well as intelligent interactions between
humans and machines. This chapter presents a control-theoretical framework to
model heterogeneous physical dynamic systems, information and communication,
as well as cooperative controls and/or distributed optimization of such intercon-
nected systems. It is shown that efficient analytical and computational algorithms
can be modularly designed and hierarchically implemented to operate and opti-
mize cyber-physical-human systems, first to quantify individually the input-output
relationship of nonlinear dynamic behaviors of every physical subsystems, then to
coordinate locally both cyber-physical interactions of neighboring agents as well
as physical-human interactions, and finally to dynamically model and optimize the
overall networked system. The hierarchical structure makes the overall optimization
and control problem scalable and solvable. Moreover, the three levels integrate indi-
vidual designs and optimization, distributed cooperative optimization, and decision
making through real-time, data-driven, model-based learning and control. Specifi-
cally, one of the contributions of the chapter is to demonstrate how the combination
of dissipativity theory and cooperative control serves as a natural framework and
promising tools to analyze, optimize, and control such large scale system. Applica-
tion to digital grid is investigated as an illustrative example.
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1 Introduction

Cyber-physical-systems (CPSs) refer to the integrations of cyber core consisting of
communication network, computation and physical processes (engineered systems)
which are normally large scale and complex, as illustrated in Fig. 1. These two com-
ponents are tightly coupled: embedded computers and networks monitor and control
the physical processes, usually with feedback loops where physical processes affect
computations and vice versa. In addition, CPSs will also interact with humans re-
sulting in cyber-physical-human systems. Cyber-physical-human systems naturally
arise from interdependent infrastructure systems and smart connected communities.
Examples include smart grid [1], intelligent transportation systems [2], and smart
city [3]. Such applications require ubiquitous information sensing and processing,
intelligent machine-to-machine communication, a seamless coordination of physi-
cal systems, and intelligent interactions between humans and machines. While tech-
nological advances and the development of relatively inexpensive yet powerful com-
munication, computation and sensing devices make the realization of such complex
system become feasible, fundamental technical challenges centered on real-time big
data processing, optimization and control of the spatially distributed complex sys-
tems remain to be solved. A major and fundamental challenge is to develop a control
design theory that does not consider the physical and cyber components separately,
but as two facets of the same system [4]. Another major challenge is the choice of
control architecture which allows the designer to control the complex system effi-
ciently and in real time. Traditional centralized control architecture, where all the
data from ubiquitous sensors are gathered in a centralized processing center, which
optimizes and computes the control input for the overall system is not appropriate
to optimize and control such large scale interconnected system since it may suffer
from explosion of data and and may also harm data privacy [5]. This calls for a
scalable and modular system theoretic tools to analyze, optimize, and control the
cyber-physical-human systems. In particular, distributed optimization and control
algorithms are highly desirable for dealing with such complex systems due to its
scalability and robustness against component faults and cyber-attacks [6].

The chapter presents a control-theoretical framework to model heterogeneous
physical dynamic systems, information and communication, as well as cooperative
controls and/or distributed optimization through which human operator or users can
interact effectively with physical systems in a multi-agent setting to achieve various
control and optimization objectives. It is shown that efficient computational algo-
rithms can be applied hierarchically to operate and optimize cyber-physical-human
systems, first individually to quantify the dynamic behavior of every agent, then
locally to describe the local interactions of neighboring agents, and finally to the
overall system. All the three control levels deal with real-time big data, and the
hierarchical structure makes the overall optimization and control problem scalable
and solvable. In particular, one of the contributions is to demonstrate how the con-
cept of dissipativity theory and cooperative control serve as a natural framework
and promising tools to analyze, optimize, and control such large scale systems in a
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scalable and modular manner. Application to digital power grid is investigated as an
illustrative example.

The chapter is organized as follows. We begin with dynamic modeling of cyber-
physical-human systems together with its optimization and control objectives in
Section 2. A brief summary of the basic concepts of dissipativity theory and co-
operative control as the main analytical and design tools are presented in Section 3.
Section 4 provides an example of applying the dissipativity theory and coopera-
tive control to design hierarchical control of power system. Modeling and analy-
sis of human-machine interaction with focus on electricity market is presented in
Section 5. The role of real-time big data and decision making in controlling cyber-
physical-human systems is discussed in Section 6. Finally, we conclude in Section 7.

2 Dynamic modeling of cyber-physical systems and its
optimization/control objectives

System modeling is an important step in designing control algorithms. Briefly
speaking, a model is a mathematical representation of physical system which al-
lows us to reason and predict how the system will behave. In this chapter, we are
mainly interested in models of dynamical system describing the input/output behav-
ior of systems. To this end, let us consider cyber-physical-human systems consisting
of n heterogeneous physical systems whose individual dynamics can be modeled by
differential equations in the form of

ẋi = fi(xi,ui,ri), yi = hi(xi,ri), (1)

with i = {1, · · · ,n}. The model in (1) is known as state space models where vari-
ables xi ∈ ℜni denotes the state which encodes what needs to be known about the
past history, ui ∈ ℜm is the control signals to be designed, and yi ∈ ℜm denotes
the output (measurement) signals of the i-th system. In addition, ri ∈ ℜm in (1) is
the operational decision as a result of the intelligent interaction between humans
and the physical systems which may take place in a slower time-scale. In general,
the physical systems may also be interconnected through a physical network whose
characteristic could be described by the following algebraic equation

κi(y1, · · · ,yn,x1, · · · ,xn) = 0. (2)

As an example, consider a power system where the individual physical system refers
to the synchronous generator as shown in Fig. 1. For the sake of simplicity, the
dynamics of synchronous generator is given by the following swing equation

Miδ̈i = Pm,i−Pe,i−Diω0δ̇i, (3)

where Mi > 0 denotes its inertia, Di > 0 is its damping constant, Pm,i denotes its
mechanical power while Pe,i is its active power output, and δi denotes its rotor an-
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Fig. 1 An illustrative diagram of cyber-physical systems as exemplified by power system

gle measured with respect to a rotating frame with speed ω0. The generators are
physically interconnected with each other which can be characterized through the
following nonlinear power flow equation

Pe,i = E2
i Gii +∑

k 6=i
EiEk(Gik cosδik +Bik sinδik), (4)

where δik = δi− δk, Ei is the voltage of the generator bus, and Yik = Gik + jBik is
the transfer admittance between generators i and k. Defining respectively the states,
input and output of the i-th generator as xi = [δi−δ ∗i ,ωi]

T , ui = Pm,i and yi = xi with
δ ∗i denotes the final angle, we can recast swing equation (3) together with power
flow equation (4) with respect to their equilibrium in the form of (1) as [7]

ẋi = Ai(xi)xi +Bi(xi)ui + ∑
k∈Ni

Hik(yi,yk)(yk− yi), yi =Cixi (5)

where Ni denotes the neighboring set of generator i, matrices Ai,Bi and coupling
matrix Hik are state/output-dependent. Note that generators with higher (e.g., 5th
or 6th) order dynamics can also be represented by state-space model (5). In ad-
dition to the physical network, there is also a cyber-layer representing informa-
tion/communication network for the system operator/local controller of physical
systems to obtain/exchange measurements in order to monitor and control the over-
all system. The structure of communication network (information flow) in general
is modeled using a graph as illustrated in Fig. 1. Let N c

i denote the communication
neighboring set of the i-th subsystem. In other words, subsystem j ∈N c

i if infor-
mation on measurement y j is available to the i-th subsystem. The communication
network topology can also be represented by the following communication matrix

Sc = [Sc
i j] ∈ℜ

n×n, Sc
ii = 1 (6)
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ẋi = fi(xi, ui, ri, t)

yi = hi(xi, ri, t)

ẋj = fj(xj , uj , rj , t)
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Fig. 2 Three-level data driven controls of cyber-physical-human systems. The dashed lines repre-
sent information flow between different levels

where Sc
i j = 1 if j ∈N c

i and Sc
i j = 0 otherwise.

Optimizing and controlling the above cyber-physical human systems calls for
computationally efficient and scalable algorithms to deal with its large scale nature
and complexity (in terms of heterogeneous individual nonlinear dynamics and their
physical interconnections). To this end, we divide the control objective of cyber-
physical-human systems into three levels as illustrated in Fig. 2. Specifically, the
control input ui in (1) is decomposed into the following hierarchical form

ui = usi(xi)+uli(yi,y j)+ vi︸ ︷︷ ︸
ui

, (7)

each layer with the following control design objective:

1. the lowest level control usi aims to stabilize each individual physical system
2. the mid-level control input uli is to achieve a local coordination for a group of

physical systems
3. the highest level control vi aims at ensuring stability of the overall intercon-

nected system.

For the example of power system whose dynamics is represented by (5), the goal
of low-level (self-feedback) control usi is to ensure (input-output) stability of the
individual generator. The mid-level control uli can be designed as a distributed opti-
mization algorithm (by taking advantage of the communication network) to achieve
a uniform voltage profile for a group of generators or minimize power loss. Finally,
the high-level control vi acts as a wide area control with the goal of ensuring stability
and/or improving performance of the power system.
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In what follows, we will present a control theoretic framework based on dissipa-
tivity theory and cooperative control for systematically optimizing and controlling
cyber-physical-human systems and further demonstrate its effectiveness using the
power system example described previously.

3 Main analytical and design tools: dissipativity theory and
cooperative control

Dissipativity is an energy-like concept which describes input-output properties (e.g.
stability) of a dynamical system. Input-output mapping becomes a useful way of
quantifying input-output properties of the system when the dynamical model of the
system is not available. Briefly speaking, dissipative system is a system that absorbs
more energy from the external world than it supplies [8]. Passivity is a special class
of dissipativity and is originated in circuit analysis. Passive systems are always de-
creasing in energy with respect to input energy. For example, an electrical circuit
consisting of resistor, inductor and capacitor can dissipate energy by turning it into
heat and also store energy, but it cannot supply more energy than what has been
put into it. Another class of dissipative systems is what so-called passitivity-short
systems. Compared to passive systems, passivity-short systems may increase or re-
main the same in energy from input to output during transience. One example is
a generator that is not decreasing in energy at all times simply because it is pro-
ducing some amount of energy. Dissipativity based approaches becomes attractive
in analyzing and controlling CPS since its properties are preserved over system in-
terconnections which makes the approach computationally scalable. For example,
with individual output negative feedback, the passivity-short systems can be inter-
connected either in parallel or in series or in a positive feedback loop or a negative
feedback loop while maintaining the same passivity-short property [9]. This compo-
sitional property makes dissipativity a powerful and promising tool to analyze and
control large-scale system such as CPS [4].

The concept of dissipativity is captured by introducing two energy-like func-
tions, namely, supply rate and storage functions. Depending on the choice of partic-
ular supply rate function, dissipativity can imply several important behaviors such
as stability of dynamical systems and their interconnections. Consider system (1)
with ri = 0 and without physical interconnection. The i-th system with supply
rate Φi(ui(t),yi(t)) is said to be dissipative if there exists a nonnegative real stor-
age function Vi(xi) such that the following inequality holds [10]

Vi(xi(t))−Vi(xi(0))≤
∫ t

0
Φi(ui(τ),yi(τ))dτ. (8)

Choosing the supply rate function in a quadratic form, the i-th system is said to be
input passivity-short with respect to a differentiable storage function Vi(xi) if the
inequality
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Fig. 3 Input-output diagram (shaded region) [7] of: (a) Passive; (b) Input passivity-short; (c) Out-
put passivity-short

V̇i ≤ uT
i yi +

εii

2
‖ui‖2− ρi

2
‖yi‖2 (9)

holds for some εii > 0,ρi ≥ 0 and it is said to be output passivity-short if (9) holds
for some εii≤ 0,ρ < 0. In addition, the system is said to be L2 stable if inequality (9)
holds for some ρi > 0 and a positive definite Vi resulting in

‖yi‖L2 ≤
(

2εii

ρi
+

4
ρ2

i

)
‖ui‖L2 + constant. (10)

Finally, the system is passive if inequality (9) holds for some εii = 0 (and ρi = 0).
Fig. 3 illustrates a static input-output mapping of passivity and passivity-short sys-
tems. Note that passivity is quite restricted as it excludes most of linear dynamic sys-
tems such as nonminimum-phase systems and minimum-phase systems with relative
degree 2 or higher. It is shown in [11] that most linear systems are passivity-short
and that all linear Lyapunov-stable dynamic systems are either passivity-short or can
be made passivity-short under an output-feedback control. The parameters εii and ρi
are important for analysis, control design, and stability of networked passivity-short
systems and it is desirable to maximize the value of ρi and minimize εii. In partic-
ular, εii is also called impact coefficient and it quantifies the impact of individual
passivity-short system on the network-level cooperative control as will be discussed
later. Let us show now that a synchronous generator connected to infinite bus is
passivity-short. Dynamics of the generator is given by the following swing equation

Miδ̈i = biui−Hii(δi−δ
∗
i )−Diω0δ̇i (11)

and its output is defined as yi , δi−δ ∗i . Taking the following positive definite stor-
age function

Vi =

(
kd

2k
√

kp
+

√
kp

kkd

)
y2

i +
1

kkd
√

kp
ẏ2

i +
1

k
√

kp
yiẏi
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with k = bi/Mi, kp = Hii/Mi, and kd = Diω0/Mi and computing its derivative yields

V̇i ≤ uT
i yi + k

(
(1−

√
kp)

2

2kp
√

kp
+

1
k2

d

√
kp

)
u2

i −
√

kp

2k
y2

i , uT
i yi +

εi

2
‖ui‖2− ρi

2
‖yi‖2

which shows that the generator is passivity-short and L2 stable. Furthermore, we
can also obtain the physical meanings of εi and ρi. To this end, the transfer function
of (11) can be written as

G(s) =
k

s2 + kds+ kp
. (12)

By writing kd = 2ξ ωn, kp = ω2
n , and k≈ kp where ωn is the natural frequency and ξ

denotes the damping ratio, it can be shown that

εi ≈ ωn

(
1− 1

ωn

)2

+
1

2ξ 2ωn
, ρi ≈

1
ωn

.

Hence, we can see that the value of εi increases as ξ becomes smaller and the opti-
mal value of εi is obtained for ωn = 1.

Cooperative control is another control design tool that has shown a great promise
in optimizing and controlling large-scale system and has been successfully utilized
to develop network-level control of a group of mobile robots [12, 13], power sys-
tem [1], charging scheduling of electric vehicles [2], and complex network [14]. The
goal of cooperative control is to achieve non-trivial concensus using only local in-
formation (and thus scalable) obtained via the communication network as illustrated
in Fig. 1, that is for all individual systems i we have [15]

lim
t→∞
‖yi(t)− y j(t)‖= 0, or lim

t→∞
yi(t) = c. (13)

Consider again physically decoupled CPS with individual dynamics (1). As shown
in [16], the concept of passivity-short simplifies the design of cooperative control
by modularizing the lower-level and network-level control designs. Specifically, a
self-feedback control usi is first designed so that individual system becomes passiv-
ity short. The cooperative control can then be designed by simply considering the
following fictitious integrator dynamics

ẏi = uli (14)

where uli is specified as
uli = kyi ∑

j∈N c
i

Sc
i j(y j− yi). (15)

The closed-loop dynamics of (14) and (15) can be compactly written as

ẏ =−diag{ky1 , · · · ,kyn}Ly, (16)
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with y = [y1, · · · ,yn]
T and L = diag{Sc1}−Sc. Consensus (13) is ensured if there is

at least one node from which every other node can be reached and the gains kyi > 0
are chosen to be smaller than k∗. Moreover, if every node can be reached from any
other nodes, k∗ can then be computed according to [16]

k∗ =
λ2(Γ L+LT Γ )

2(maxi εii)λmax(LT Γ L)
, (17)

where λ2(·),λmax(·) denote the smallest non-zero and largest eigenvalues respec-
tively, and matrix Γ = diag{η1} with ηT

1 L = 0. It is worth to note that k∗ in (17) can
be computed in a distributed manner without requiring global information of L [17].
The communication topology embedded in matrix L can also be optimized to in-
crease the convergence speed of (15), see e.g. [18–20]. As can be seen from (15)
and (17), the design of cooperative control of networked passivity-short system does
not require any explicit knowledge about the heterogenous physical systems other
than their impact coefficients. Moreover, quantity maxi εii in (17) can be viewed as
the ”worst” value of impact coefficients of all the passivity-short systems. Adding or
removing subsystems into or from the networked systems result in different impact
on the overall system operation. However, the performance of the overall system can
still be guaranteed given that the control gains are appropriately upper-bounded to
limit such impact. Hence, the operation of the networked system can be performed
in a plug-and-play manner while its stability is guaranteed.

4 Hierarchical control design for cyber-physical-human systems

In this section, we utilize the concept of passivity-short and cooperative control
presented in the previous section to design hierarchical control law (7) for power
system whose dynamics is given by (5).

4.1 Low-level control design: ensuring input-output stability

Let us now consider the nominal subsystem in (5) by excluding its physical in-
terconnections, i.e., assuming Hik = 0 for all i 6= k. The first step is to design a
self-feedback control usi for individual physical system given by

usi =−Kixi

such that: (i) the individual physical system is passivity-short and L2 stable for input-
output pair {ui,yi}; (ii) its impact on the overall system, that is, the values εii and
−ρi in (9) are minimized. To this end, taking the storage function V = 1

2 xT
i Pixi with

Pi is a positive definite matrix, a self-feedback control can be designed by solving
the following optimization problem
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minimize
Ki,εii,ρi

[αiiεii− (1−αiiρi)]

subject to Pi > 0,
Mi(xi)≤ 0,
εii,ρi ≥ 0,

(18)

where αii ∈ (0,1) is a design parameter and matrix Mi(xi) is defined as

Mi(xi), (Ai(xi)−BiKi)
T Pi +Pi(Ai(xi)−BiKi)+ρiCT

i Ci +
1
εii
‖PiBi−CT

i ‖2 < 0.

The second constraint in (18) guarantees that inequality (9) holds, i.e. the individ-
ual system is passivity-short and L2 stable. Note that at any instant of time t, the
state xi(t) becomes known from the Phasor Measurement Units (PMU) and so is
matrix Ai(xi), and hence Ki can be designed adaptively by using available Lyapunov
function Pi > 0.

After making the individual system passivity short and L2 stable, next we con-
sider the interconnected system to quantify the impact of nonlinear interconnections
on subsystem (5) in a way parallel to that of εii‖ui‖2. Specifically, the goal is to min-
imize the transient impacts of the inter-area oscillations encoded in εi j by solving
the following optimization problem

minimize
εi j

∑
j∈Ni

αi jεi j

subject to Pi > 0,
M′i(xi,y j)≤ 0,
εi j,αi j ≥ 0,

∑
j∈Ni

αi j = 1,

(19)

where

M′i , Mi− ∑
j∈Ni

(
PiHi jCi +CT

i HT
i j Pi−

1
εi jPiHi jHT

i j Pi

)
.

The second constraint in (19) guarantees that the following property holds

V̇i ≤ ui
T yi +

εii

2
‖ui‖2− ρi

2
‖yi‖2 +

1
2 ∑

j∈Ni

εi j‖y j‖2

where the terms εi j‖y j‖2 quantify the impact of nonlinear interconnections on the
subsystem. Standard techniques to solve Linear or Bilinear Matrix Inequality [21]
can be readily used to compute the solutions to both optimization problems (18)
and (19).
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4.2 Mid-level control design: local coordination through
cyber-physical interconnection

Next, we design local coordination (cooperative) control uli in (7) to improve the
voltage profile of the power system. As a scenario, we consider a distribution net-
work divided into several clusters as illustrated in Fig. 5. The goal is for the dis-
tributed generators (DGs) to cooperatively control their reactive power injection
such that the sum of quadratic voltage errors of the DGs in each cluster is mini-
mized. The problem can be formulated as the following optimization problem

min
ϑi

∑
i

fi, fi =
1
2
(1−Ei)

2 (20)

where the control variable are DGs reactive power fair utilization ratios ϑi defined
as ϑi = Qei/Qei with Qei denotes the maximum reactive power available to the i-th
DG. The reactive power and voltage are coupled through the following power flow
equation

Qei =−E2
i Bii +∑

k 6=i
EiEk(Gik sinδik−Bik cosδik).

In addition, it is also desirable for the DGs in each cluster to contribute equally (i.e.,
the values ϑi reach a consensus for all DGs) in minimizing (20). To this end, the
communication network is assumed to be bidirectional whose topology is similar to
that of the distribution network as shown in Fig. 4. Cooperative control algorithm
can then be designed to solve (20) as described in Section 3. Specifically, each DG
adjusts its reactive power fair utilization ratio according to

ϑ̇i = uli = ∑
j∈N c

i

(ϑ j−ϑi)−βi
∂ fi

∂ϑi
, (21)

where βi > 0 [22]. The first term of update rule (21) is a consensus protocol which
facilitates the equal contribution of DGs into the reactive power generation while
the second term corresponds to a (sub)gradient algorithm which minimizes the ob-
jective function in (20). Note that a similar strategy can also be applied to distributed
frequency control with DGs as presented in [1].

We evaluate the performance of the cooperative control (21) using IEEE 123-
bus test system divided into six clusters as shown in Fig. 5. The objective is to
regulate the bus voltages in cluster 4 with two photovoltaics installed at buses 76
and 83 respectively. The voltage regulation using cooperative control (21) is com-
pared with the one using droop control where the droop control gain is manually
tuned to achieve the best performance. Fig. 6 shows the simulation results under
both droop control and cooperative control strategies. As can be observed from the
figure, droop control strategy results in voltage violations, that is the voltage of the
buses located far away from the substation exceed the voltage limit of 1.05 p.u.
On the other hand, using cooperative control (21) the voltage level can be success-
fully driven close to unity and thus the over-voltage problem can be eliminated. In
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Fig. 4 Architecture of cooperative voltage control for distribution network as proposed in [22]
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Fig. 5 A diagram of IEEE 123 bus system divided into six clusters

addition, the cooperative control strategy also yields an equal reactive power fair
utilization ratio for the DGs as shown in Fig. 7.

4.3 High-level control design: wide-area coordination

The final step is to design network-level control vi in (7) to ensure the overall sys-
tem stability and hence to effectively damp out potential inter-area oscillations. As
discussed in Section 3, the design of network-level control depends only on proper-
ties of individual subsystems, in particular their impact coefficient and L2 parameter
quantified by {εii, · · · ,εi j, · · ·} and ρi respectively. Similar to (15), the wide-area
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control vi is given by
vi = kw

yi ∑
j∈N w

i

Sw
i j(y j− yi) (22)

where matrix Sw = [Sw
i j] represents the communication network of wide-area control.

By choosing control gain kw
yi
≈ kw and considering storage function V w = ∑i

γi
kw

Vi,
it can be shown by following similar steps as in [16] that system (5) exponentially
converges to the desired output consensus provided that control gain kw satisfies
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Fig. 8 A 3-area power system

−kwLT
wΛLw +(ΓwLT

w +LwΓw)+
Φ

kw
≥ 0

where

Lw = diag{Sw1}−Sw, Λ = diag{εii}, Γw = diag{γi}, Φ = diag{φi},
φi = γiρi−∑

j
γ jε ji.

The proposed wide-area control is evaluated using a 3-area power system as il-
lustrated in Fig. 8. The simulation time is set to 60s where at t = 0.0s, a speed
disturbance ∆ = 0.01 p.u. is added to the system. The wide-area control using coop-
erative control (22) is compared with the one using traditional control with typical
design (constant gain). The simulation results of power angle for generator 3 for
both control strategies are shown in Fig. 9. Even though the overall system is stable
under both control strategies, it can be observed from the simulation results that by
using the proposed cooperative control strategy, mitigation of the low frequency os-
cillation (i.e., inter-area oscillation) is considerably improved in comparison to the
oscillation under traditional control with constant gain. Note that similar results can
also be observed for the other two generators in the power system.

5 Analysis of human-machine interaction

Human interactions with the physical systems through the cyber components is a
central aspect of cyber-physical-human systems. During the interactions, human
may act as an operator such as in teleoperation [23] or semi-autonomous robot con-
trol systems [12] in general. On the other hand, human may also perform as play-
ers or agents in multi-agent systems as can be observed in electricity market [24].
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Fig. 9 Comparison of power angle for generator 3 under both cooperative wide-area control and
traditional control strategies

Therefore, it is important to formally and rigorously analyze the human-machine
interactions (i.e., human-in-the-loop control systems) in order to ensure the stability
of the interconnected systems.

Dissipativity theory has been used to model the human decision making and
action in human-machine interactions due to its effectiveness in dealing with the
largely unknown human dynamics and its modular design. For example, dissipativity-
based modeling is developed and validated in [23] to model human arm endpoint
characteristics in a human-teleoperated system. In addition, human-machine inter-
actions in semi-autonomous robotic swarm is modeled and analyzed in [12] using
the concept of passivity-short systems. In particular, it is theoretically shown and
experimentally validated that human-operator modeled in [25] can be assumed to
be a passivity-short system.

5.1 Human-machine interaction in electricity market

We focus on human as players or agents in multi-agent systems. As an example,
we consider an electricity market consisting of multiple areas. In the i-th area, there
are set of consumers, generators and an independent system operator (ISO) engaged
in electricity market trading. Specifically, the consumers and generators decide the
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Fig. 10 Electricity market consisting of multiple areas

amount of demand and power supply and the ISO uses the information to update
the electricity price in each area as illustrated in Fig. 10. The goal is to maximize
the profit of each market participant while balancing the supply and demand. The
problem can be formulated as the following social welfare maximization problem:

maximize
PL,PG

W (PL,PG)

subject to PL = PG,

linear equality & inequality constraints

(23)

where W is the social welfare function which depends on the utility function (i.e.,
financial satisfaction) of both the consumers and generators, PL,PG are stacks of
total electricity demand and supply in each area respectively. Note that the solution
to (23) may serve as the operational decision ri in (1), see Fig. 2. The inequality
constraints in (23) include upper and lower bounds on demand and supply. If the
utility function of consumer and generator are strictly concave and convex functions
respectively, then optimization (23) has a unique solution. The convergence analysis
of market trading to the solution of (23) can be viewed as stability analysis of the
interconnected system of consumers, generators, and ISO as illustrated in Fig. 11.
In particular, dynamics of consumer demand, generator supply decisions and ISO
price updating in Fig. 11 can be obtained by applying dual decomposition to the dual
problem of (23) where its Lagrange multiplier represents the (electricity) price [26].
When the power demand curve representing input-output static mapping between
(positive) price and demand in electricity market is given by Fig. 12a, it is shown
in [24] that each block’s dynamics in Fig. 11 is (strictly) passive and as a result the
interconnected system is also passive and hence stable. This means that the market
trading system will converge to the optimal solution of (23).

However, the price in electricity market is not always positive especially when
the number of renewable energy sources feeding into the power grid increases. For
example, when high and inflexible power generation simultaneously appears and
followed by low electricity demand, power prices may fall below zero (i.e., neg-
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Fig. 12 Power demand curve with (a) normal (positive) price; (b) negative price

ative price) as can be often observed in Germany during public holidays such as
Christmas. This means that power suppliers have to pay their customers to buy elec-
tric energy. The power demand curve when taking into account the negative price
can be illustrated in Fig. 12b. Comparing the figure with input-output diagram in
Fig. 3a, it is obvious that dynamics of consumer demand decision system in Fig. 11
is not passive. It is shown in [26] that under power demand curve given in Fig. 12b,
dynamics of consumer demand and generator supply decision systems in Fig. 11
are passivity-short as can be observed by comparing Figs. 3c and 12b. As a result,
stability of the electricity market, i.e., interconnected system can still be guaranteed.

The discussions above focus on consumer demand decision dynamics derived
from the (static) optimization problem (23). Another important issue is the analysis
of human decision making dynamics, that is how the human responds (in term of
electricity demand) to the price change with main application to demand response
(e.g., dynamic electricity pricing). There has been some efforts in dynamic model-
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ing of price responsive demand in electricity market using real data. For example,
empirical study in [27] using data acquired at ERCOT suggests that (i) demand
response during normal and peak price periods may have qualitatively different be-
havior; and (ii) there is a demand response delay on a high price surge. From the
empirical study, we can initially observe that the dynamics of price responsive de-
mand is not a passive system due to the delay of the response. Further analysis is
still required to investigate whether the dynamics exhibit passivity-short properties.

5.2 Transactive control

The above example on electricity (competitive) market is a special case of transac-
tive control. Transactive control is a new type of framework to coordinate a large
number of distributed generations/loads by combining concepts from microeco-
nomic theory and control theory [28]. Transactive control extends the concept of
demand response to both the demand and supply sides whose objective is to bal-
ance via incentives (pricing) the supply and demand autonomously, in real-time and
a decentralized manner [29]. In comparison to demand response such as price re-
sponsive control and direct load control, transactive control preserves customer pri-
vacy and has more predictable and reliable aggregated load response. The potential
of transactive control framework, in particular transactive energy system, has been
demonstrated through several demonstration projects such as the Olympic Peninsula
Demonstration [30] and AEP gridSMART demonstration [31]. Moreover, transac-
tive control framework has been applied to manage distributed energy resources for
different purposes such as congestion and voltage management [32, 33], providing
spinning reserves [34], and residential energy management [35].

Broadly speaking, transactive control framework can be modeled using four key
elements as proposed in [28]: payoff functions, control decisions, information, and
solution concept. Consider a system consisting of (n+ 1) agents, that is one coor-
dinator (agent 0) and n distributed energy resources (DERs) where each DER can
communicate with each other and also with the coordinator to perform local de-
cision making. Local objective of both coordinator and DERs is represented by a
payoff function Ui which depends on price µi and energy consumption pi. Each
DER aims at maximizing its own payoff function formulated as

maximize Ui(µi, pi;θi)

subject to hi(pi;θi)≤ 0,

where θi denotes private information of the agent such as preference and local con-
straints. Similarly, the coordinator aims to solve the following optimization problem

maximize U0(µ, p;θ)

subject to g(p,µ;θ)≤ 0; hi(pi;θi)≤ 0
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where p = [p1, · · · , pn]
T ,µ = [µ1, · · · ,µn]

T and θ = [θ1, · · · ,θn]
T . Note that the pay-

off function of coordinator depends on prices and consumption of all DERs. More-
over, the coordinator also has a global constraint such as power flow constraint in
the whole network. Next, to optimize the payoff functions, control decision are de-
fined for each agent denoted by πi ∈ Πi where Πi is the feasible control decision
of agent i. For example, by taking π0 = µ and πi = pi the payoff functions become
Ui(πi,π0;θi) and U0(π0,π1, · · · ,πn;θ) which yields a coupling between decisions of
DERs and coordinator. Another important element in transactive control is informa-
tion set available to each agent, denoted by Γi. Information set Γi consists of private
information and information of control decision of each agent. Finally, information
on control decisions provides a sequence of decision for the agents resulting in a
multilevel decision problem. Within each layer, if the payoff function of each agent
does not depend on decisions of other players then the solution is simply equal to
the optimal solution to the standard optimization problem. On the other hand, if the
payoff functions of each agent depends on the other agents, then we have a game
problem whose solution corresponds to the game equilibrium. Two basic solution
concepts to a game problem are Nash equilibrium (that is a collection of decisions
from which no agent wants to deviate given that others stick to the equilibrium
decision) and dominant strategy equilibrium (that is each agent will stick to the
equilibrium strategy no matter what decisions other players make).

The four elements described above dictate the class of transactive problems (type
of games) under consideration. For example, if the agent’s payoff function is quasi-
linear w.r.t. price and the coordinator’s objective is to minimize the overall opera-
tional cost while satisfying some constraints, then we have a social maximization
problem described in the previous subsection. On the other hand, if the payoff func-
tion is not quasi-linear and the coordinator’s objective is different from maximizing
the social welfare, we then have a Stackelberg game whose equilibrium computation
is very challenging [36–39].

Research challenges in transactive control include investigating price-reponse ba-
havior of DERs and ensuring convergence of transaction control. For example, it is
shown in [40] that a simple price strategy may stabilize the power system operation.
Dissipativity theory provides a framework to systematically analyze this complex
system as demonstrated in the previous subsection. Further research need to be per-
formed to investigate the application of dissipativity theory for analyzing different
transactive control problems.

6 Role of real-time big data and decision making

The hierarchical control/optimization architecture presented in the previous subsec-
tions relies on real-time big data. Rapid development of sensor, wireless transmis-
sion, network communication technologies, smart devices, and cloud computing
makes it possible to collect large amounts of data in real-time. To illustrate fur-
ther this point, let us take a smart grid as an example. The main data source in smart
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grid is the advanced metering infrastructure (AMI) which deploys a large number of
smart meters at the end-user side and collects, e.g., customers’s electricity consump-
tion data every 15 mins [41, 42]. It is estimated that the amount of data collected by
AMI will increase from 24 million a year to 220 million per day for a large utility
company [42]. Moreover, the volume of data collected every 15 mins in a distri-
bution network using 1 million devices will surge up to 2920 Tb [43]. In addition
to AMI, PMUs are able to produce direct time-stamped voltage/current magnitudes
and phase angle with sampling rate 30-60 samples per second, which is much faster
than the data collection in Supervisory Control and Data Acquisition (SCADA) sys-
tem [44]. As an illustration, the amount of data per day generated by100 PMUs with
20 measurements and at the sampling rate of 60Hz is equal to 100 GB [45]. Other
sources of big data in smart grid include weather data, mobile data, thermal sensing
data, energy database, electric vehicle data, transmission line sensor and dynamic
pricing [42].

The increase of uncertainty (e.g., due to the high renewable energy penetration)
and tight interconnection between and within the layers calls for real-time pro-
cessing and decision making. To this end, big data can be utilized for developing
novel real-time learning, optimization, and decision making (control) algorithms
for cyber-physical-human systems as illustrated in the previous sections. For exam-
ple, big data has many applications in the operation of smart grid [46]. A new algo-
rithms using PMU data is proposed in [47] to accelerate the state estimation process.
Moreover, a PMU based robust estimation method is presented in [48] to eliminate
unwanted perturbed data and thus increases the robustness of state estimation algo-
rithm. Big data can also be used for fault detection and classification in micro-grid
leading to a much better performance compared to model-based approach [49]. AMI
and other sensors provide opportunity to realize line impedance calibration (i.e., pa-
rameters) for distribution power system which was not possible previously [50].
Weather data can also be used for predicting the power generation of renewable en-
ergy sources such as wind turbines which further can be utilized for voltage control
and demand response [51]. Furthermore, with the exponentially increasing number
of PMUs deployed, and the resulting explosion in data volume, wide-area measure-
ment systems (WAMS) technology as the key to guaranteeing stability, reliability,
situational awareness, state estimation, and control of next-generation power sys-
tems is bound to transcend from centralized to a distributed architecture within the
next few years. Motivated by this fact, a distributed optimization based learning
algorithm is proposed in [52] for one of the most critical wide-area monitoring ap-
plications − namely, estimation of mode shapes for inter-area oscillation modes.

The exposure to external network such as internet comes at a price of data se-
curity and privacy [53, 54]. Cyber incidents or network intrusion may cause phys-
ical damage to the physical system due to the tight coupling between the physical
system and the cyber layer. Unfortunately, traditional security solutions in the ICT
(information and communications technology) domain are not sufficient to ensure
security and resilience of the network since they do not take into account the physi-
cal attacks through direct interaction with the components in physical systems. For
example, by placing a shunt around a meter the integrity of a meter can be violated
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without the need of breaking the cyber-security countermeasure. They may also in-
troduce adverse effects on the operation of CPS. For example, while cryptography
can enhance the confidentiality of data flows, it may result in unacceptable time
latency and degrade the performance of time-critical functionalities in CPS. More-
over, coordinated network attacks by sophisticated adversaries undermine standard
residual based detection schemes. It is discussed in [55, 56] that control theoretic
framework together with recent advancement in cloud computing and network man-
agement (e.g., software defined networking) show promises in ensuring the resilient
operation of CPS against (coordinated and intelligent) cyber-attacks.

7 Conclusion

The chapter presents a scalable and modular control-theoretical framework to
model, analyze, optimize and control cyber-physical-human systems. It is shown
that efficient computational algorithms can be applied hierarchically to operate and
optimize cyber-physical-human systems, first individually to quantify the dynamic
behavior of every agent, then locally to describe the local interactions of neighbor-
ing agents, and finally to the overall system. All the three control levels deal with
real-time big data, and the hierarchical structure makes the overall optimization and
control problem scalable and solvable. In particular, we present and highlight two
main tools whose combination shows a great promise to optimize and control such
tightly interconnected system. The first tool is the concept of dissipativity theory
which is a useful way of quantifying input-output properties of dynamical systems
and whose compositional property makes it a powerful tool to analyze and control
CPS. The second tool is cooperative control which allows the designer to develop
a scalable and robust optimization and control algorithms. Application to power
system is investigated as an illustrative example.
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