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Abstract

Explicit expressions for the estimated mean ỹk = Xβ̃k = Hky and

effective degrees of freedom νk = tr(Hk) by penalized least squares, with

penalty k||Dβ||2, can be found readily when X ′X + D′D is nonsingular.

We establish them here in general under only the condition that X be a

non-zero matrix, and we show that the monotonicity properties that are

known when X ′X is nonsingular also hold in general, but that they are

affected by estimability of Dβ. We establish the relation between these

penalized least squares estimators and least squares under the restriction

that Dβ = 0.
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1 Introduction

For an n-vector response y with mean vector µ, variance-covariance matrix σ2In,

and a model Xβ, the least-squares (OLS) estimate of µ is

ŷ = Xβ̂ = X(X ′X)−X ′y = PXy = H0y. (1)

X is a fixed, known n× p matrix, β is a p-vector of unknown parameters, and β̂

satisfies Xβ̂ = H0y. The dimension of the column space of X is ν0 = rank(X) =

tr(H0): that is, the model provides ν0 degrees of freedom to fit µ to y. To state

the link directly, the dimension of the model space R(X) = R(H0) is its degrees

of freedom.

The term degrees of freedom (used here as a singular noun) has been in use

since the beginnings of applied statistics. It has also been used in linear algebra

for the dimension of the solution set for a system of linear equations. Thus

SS =
∑n

i=1(yi − ȳ)2 has n − 1 degrees of freedom because the n terms squared,

yi − ȳ, which satisfy the single equation
∑n

i=1(yi − ȳ) = 0, can be represented

linearly in terms of n− 1 independent linear functions of y1, . . . , yn.

Degrees of freedom shows up wherever a chi-squared random variable is in-

volved, where it is the number of independent normal random variables squared

and summed. Consequently it shows up in Student’s t and F statistics. In all

these uses, it can be directly defined as the dimension of a linear subspace, and

hence also as the trace of an orthogonal projection matrix, that is, of a symmetric

idempotent matrix.

Given a matrix D and constant k ≥ 0, penalties for departures of Dβ from

0 can be introduced by regressing

(
y

0

)
on

(
X√
kD

)
(see Allen (1974)). The

penalized least squares estimate of µ is then

ỹk = Xβ̃k = X(X ′X + kD′D)−X ′y = Hky. (2)

Increasing the smoothing parameter k increases the penalty kβ′D′Dβ and so

pushes Dβ̃k toward zero. Other possibilities include replacing
√
kD with

√
KD,
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with diagonal matrix
√
K = Diag(

√
ki ≥ 0), permitting separate controls in

multiple dimensions.

Often νk = tr(Hk) is called the effective degrees of freedom of the penalized

model: see Hastie et al. (2009), p.153, for example. It is supposed to index,

somehow, the complexity and flexibility of the model. Ruppert et al. (2003) say

that it “has the rough interpretation as the equivalent number of parameters and

can be calibrated with polynomial fits.” These authors, and others, have noted

that νk

Estimates like (2) have been called shrinkage estimates, because ||Hky||2 ≤

||H0y||2. The notion of shrinkage dates back at least to Stein’s seminal paper,

Stein (1956). A later version, ridge regression, received widespread attention

(see Alldredge and Gilb (1976)). It is (2) with D = I. In that case, X ′X + kI is

nonsingular when k > 0, and its shrinkage property is apparent. It can be shown

that ridge regression shrinkage is monotone: for k2 > k1, both Hk1 − Hk2 and

H2
k1
− H2

k2
are nnd, and hence νk2 < νk1 and ||ỹk2||2 < ||ỹk1||2. In the limit as

k →∞, ỹk → 0.

Extant accounts (Hastie et al. (2009), Ruppert et al. (2003), for example)

implicitly assume that X ′X + kD′D is nonsingular in order to establish these

properties of Hk, H2
k , and νk, and their limits. Models widely used in practice

entail X and D matrices such that X ′X + D′D is singular. Models that in-

clude effects of one or more treatment factors often are formulated with dummy,

or indicator, variables, in which case the columns of the X matrix are linearly

dependent. Further, main effects and interaction effects are formulated corre-

spondingly, and imposing conditions like “no AB interaction effects” takes the

form Dβ = 0 with non-full-column-rank D. Similarly, differences (first order,

second order) can also take the form Dβ with linearly dependent columns of D.

Questions of estimability and effects arise when X has less than full column rank.

For example, increasing penalties on Dβ in some directions may have no effect

at all, as if D or k were zero.
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Our objective here is to assess these same properties in general, when X ′X +

D′D is not necessarily positive definite. We will show that νk and Hk are mono-

tone decreasing functions of k, and we will show that ỹk shrinks toward the

least-squares estimate under the restriction that Dβ̃ = 0. Furthermore, we will

show that the dimension of the space over which ỹk ranges is the same for all k,

and hence that νk has no relation to the dimension of the model space.

2 Propositions

Assume throughout that matrices (all real here) are conformable for the opera-

tions and expressions in which they appear. For matrices A and B, matrix sum,

product, transpose, trace, generalized inverse, Moore-Penrose pseudoinverse, and

inverse are denoted by A+B, AB, A′, tr(A), A−, A+, and A−1, respectively. For

a symmetric, non-negative definite (nnd) matrix A, A1/2 denotes a symmetric

matrix such that A1/2A1/2 = A. Diag(αi) denotes an r × r diagonal matrix with

diagonal entries αi, i = 1, . . . , r. The orthogonal complement of a set S of vectors

in <n is denoted S⊥. Denote the column space of M by R(M) = {Mx : x ∈ <c}

and the null space of M by N(M) = {x ∈ <c : Mx = 0} = R(M ′)⊥. PA denotes

the orthogonal projection matrix onto the column space of A.

Let X and D be matrices, both with p ≥ 1 columns. We shall use D without
√
k to simplify notation in the following propositions. As the results hold for any

D, they hold for
√
kD, too.

Proposition 1. H = X(X ′X+D′D)−X ′ is invariant to the choice of generalized

inverse, and R(H) = R(X).

Proof. Clearly R(X ′) ⊂ R(X ′, D′) = R(X ′X + D′D), so there exists a matrix

M such that X ′ = (X ′X + D′D)M . Then, with (X ′X + D′D)† an arbitrary
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generalized inverse of (X ′X +D′D),

H = X(X ′X +D′D)−X ′

= M ′(X ′X +D′D)(X ′X +D′D)−(X ′X +D′D)M

= M ′(X ′X +D′D)M

= M ′(X ′X +D′D)(X ′X +D′D)†(X ′X +D′D)M

= X(X ′X +D′D)†X ′, hence the invariance.

It is clear that R(H) ⊂ R(X). Because H = M ′(X ′X +D′D)M is nnd, Hz = 0

=⇒ (X ′X + D′D)Mz = X ′z = 0, and so it follows that R(H)⊥ ⊂ R(X)⊥, and

hence R(X) ⊂ R(H). �

Proposition 8 in Section 4 is a re-statement of Theorem 6.2.3, p. 122, in Rao

and Mitra (1971). Here, with both A = X ′X and B = D′D nnd, the condition

that R(N ′A) ⊂ R(N ′AN) is satisfied. Then there exists a nonsingular matrix T

such that T ′X ′XT = ∆1 = Diag(δ1i) and T ′D′DT = ∆2 = Diag(δ2i). Note that

the diagonal entries of both ∆1 and ∆2 are nonnegative. Let ∆ = ∆1 + ∆2. Note

that T∆+T ′ is a generalized inverse of T ′−1∆T−1 = X ′X +D′D. It follows that

H = X(T ′
−1

∆T−1)−X ′

= XT∆+T ′X ′

= XT (∆1 + ∆2)
+T ′X ′.

Keep in mind that when we replace D by
√
kD, only ∆2 is affected, and it is

replaced by k∆2.

Rearrange the columns of T as T = (T++, T+0, T0+, T00) to correspond to

column numbers J++ = {j : δ1j > 0 and δ2j > 0} , J+0 = {j : δ1j > 0 and δ2j =

0}, J0+ = {j : δ1j = 0 and δ2j > 0}, and J00 = {j : δ1j = 0 and δ2j = 0},

respectively. With X 6= 0, not both J++ and J+0 are empty; if D 6= 0, not

6



both J++ and J0+ are empty. All other configurations are possible. With these

conventions,

T ′X ′XT =


T ′++X

′XT++ T ′++X
′XT+0 T ′++X

′XT0+ T ′++X
′XT00

T ′+0X
′XT++ T ′+0X

′XT+0 T ′+0X
′XT0+ T ′+0X

′XT00

T ′0+X
′XT++ T ′0+X

′XT+0 T ′0+X
′XT0+ T ′0+X

′XT00

T ′00X
′XT++ T ′00X

′XT+0 T ′00X
′XT0+ T ′00X

′XT00



=


∆1++ 0 0 0

0 ∆1+0 0 0

0 0 0 0

0 0 0 0

 . (3)

Similar notation will be applied to submatrices of ∆2, that is,

T ′D′DT = ∆2 =


∆2++ 0 0 0

0 0 0 0

0 0 ∆20+ 0

0 0 0 0

 . (4)

From (3) we get immediately that XT0+ = 0 and XT00 = 0. Analogously,

DT+0 = 0 and DT00 = 0.

Proposition 2.

X(X ′X +D′D)−X ′ = XT (∆1 + ∆2)
+T ′X ′

= XT


(∆1++ + ∆2++)−1 0 0 0

0 ∆−11+0 0 0

0 0 ∆−120+ 0

0 0 0 0

T ′X ′

= XT++(∆1++ + ∆2++)−1T ′++X
′

+XT+0∆
−1
1+0T

′
+0X

′. (5)
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Proposition 3. N(D′D) = R(T+0, T00).

Proof. Note that (T+0, T00)
′D′D(T+0, T00) = 0 =⇒ D′D(T+0, T00) = 0 =⇒

R(T+0, T00) ⊂ N(D′D).

Let u ∈ N(D′D). Since T is nonsingular, u = Tv, with v = T−1u; and

D′Du = D′DTv = 0 =⇒ v′T ′D′DTv = v′∆2v = v′++∆2++v+++v′0+∆20+v0+ =

0 =⇒ v++ = 0 and v0+ = 0. Therefore u = Tv = T (0′,v′+0,0
′,v′00)

′ = T+0v+0 +

T00v00 ∈ R(T+0, T00). �

The linear subspace {Xβ : β ∈ <p and Dβ = 0} is the restricted model Xβ

under the condition that Dβ = 0. The following proposition establishes that it

is the same as R(XT+0).

Proposition 4. {Xβ : β ∈ <p and Dβ = 0} = R(XT+0).

Proof. If µ = Xβ0 and Dβ0 = 0 then β0 ∈ N(D′D), and so there exist v+0

and v00 such that β0 = T+0v+0 + T00v00, and hence Xβ0 = XT+0v+0 because

XT00 = 0.

If µ ∈ R(XT+0) then ∃ v+0 such that µ = XT+0v+0; and DT+0 = 0, so

µ ∈ {Xβ : β ∈ <p and Dβ = 0}. �

Now replace D by
√
kD, k ≥ 0, so that

Hk = XT++(∆1++ + k∆2++)−1T ′++X
′

+XT+0∆
−1
1+0T

′
+0X

′, (6)

and

νk = tr(Hk) = p+0 + tr[(∆1++ + k∆2++)−1∆1++], (7)

where p+0 is the column dimension of T+0.

Proposition 5.

lim
k→∞

Hk = XT+0∆
−1
1+0T

′
+0X

′ = PXT+0 and

lim
k→∞

νk = p+0.
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Proposition 6.

d

dk
Hk = −XT++(∆1++ + k∆2++)−2∆2++T

′
++X

′,

and

dνk
dk

=
d

dk
tr(Hk) = −tr[(∆1++ + k∆2++)−2∆1++∆2++].

Proposition 7. If ∆2++ 6= 0, then for any k2 > k1 ≥ 0, both Hk1 − Hk2 and

H2
k1
−H2

k2
are non-zero and nnd.

3 Discussion

Some parts of the partition of T can be absent, depending on X andD. If columns

of X are linearly independent, then both J0+ and J00 are void, and so T =

(T++, T+0). If D′D is pd, then both J+0 and J00 are void, and T = (T++, T0+).

In general, whether or not X has full column rank, if R(D′) ⊂ R(X ′), it can be

seen that δ1j = 0 =⇒ δ2j = 0, and so J0+ is empty, and T = (T++, T+0, T00).

Then positive entries in ∆2 occur only with positive entries of ∆1. On the other

hand, if none of Dβ is estimable, so that R(D′)∩R(X ′) = {0}, it can be shown

that Hk = PX and ỹk = ŷ for all k ≥ 0; positive entries in ∆2 occur only with

0 entries in ∆1. More generally, it can be shown that Hk is affected only by the

estimable part of D, the part of R(D′) that is contained in R(X ′).

Proposition 1 establishes that, for any k ≥ 0, R(Hk) = R(X), and hence

the set of possibilities for the shrinkage estimator ỹk is the same as the set of

possibilities for the ordinary least squares estimator. The dimension of R(Hk)

is ν0 = rank(X) for all k. Only at k = 0, when νk = ν0 = rank(X), is νk the

dimension of any linear subspace that appears in this setting.

The partitioning of T provides a full-column-rank reparametrization of the

model Xβ that provides restricted model and full model estimates and sums of
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squares for the restriction Dβ = 0. This follows from the fact that X(T++, T+0)

has full column rank, R(X) = R[X(T++, T+0)] is the orthogonal sum of R(XT++)

and R(XT+0), and that the latter is the restricted model {Xβ : β ∈ <p and Dβ =

0}. It follows that y′PXT++y is the numerator sum of squares, with p++ degrees

of freedom, for the F -statistic that tests the testable part of H0 : Dβ = 0.

The expression (6) and Propositions 5 and 7 establish that ỹk shrinks mono-

tonically toward PXT+0y, which is the least-squares estimate of Xβ under the

restriction Dβ = 0, by Proposition 4.

Both propositions 6 and 7 establish that νk is a strictly decreasing function of

k if ∆2++ 6= 0. At k = 0 it is ν0 = rank(X), and it decreases with k to approach its

limit from above, which is p+0. Proposition 7 establishes the shrinkage property,

that the squared norm of the estimate ỹk is also strictly decreasing in k if ∆2++ 6=

0.

It has been suggested in some settings (e.g., Hastie et al. (2009), p.158) that

the value of k be chosen so that νk is some chosen value, say p∗. The expression

for the derivative of νk with respect to k in Proposition 6 can be used in Newton’s

method to solve the nonlinear equation νk = p∗.

The limiting behavior of Hk may seem abrupt: for all k ≥ 0, R(Hk) = R(X)

and its rank stays undiminished as ν0, but it approaches PXT+0 , which has rank

p+0. However, this reflects a fundamental property of closed convex cones of

nnd matrices: in the relative interior (as here with finite k) of such a cone, all

matrices have the same rank, and the rank can decrease only at the relative

boundary. (See Lemma 2 in LaMotte (1977)).) Here, Hk follows a path within

the relative interior, and it approaches a matrix on the relative boundary that

has lesser rank.
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4 Construction of T

Proposition 8 is a slight re-statement of Theorem 6.2.3 in Rao and Mitra (1971),

p.122). The proof we have included shows in detail how to construct T .

Proposition 8. Let A and B be symmetric n × n matrices, B nnd, and let

columns of N comprise an orthonormal basis of R(N) = R(B)⊥ = {x ∈ <n :

Bx = 0}. Let r denote the rank of B.

(a) If R(N ′A) = R(N ′AN) then there exists a nonsingular matrix T such

that T ′AT = ∆1 = Diag(δ1i) and T ′BT = ∆2 = Diag(δ2i).

(b) If there exists a nonsingular matrix T such that T ′AT and T ′BT are both

diagonal, then R(N ′A) = R(N ′AN).

Proof of (a)

By spectral decomposition of B, there exists a matrix L such that L′BL = Ir.

(With B = PΛP ′ = (P+, P0)

 Λ+ 0

0 0

P ′ = P+Λ+P
′
+, with P ′P = PP ′ = I,

let L = P+Λ
−1/2
+ . P+ has r columns and P0 has n− r columns.) Let N = P0.

Let S = ((I − N(N ′AN)−N ′A)L,N). Then, with M such that N ′A =

N ′ANM because R(N ′A) = R(N ′AN),

N ′A(I−N(N ′AN)−N ′A) = N ′A−N ′AN(N ′AN)−N ′ANM)

= N ′A−N ′ANM = 0.

Then

S ′AS =

 L′(I− AN(N ′AN)−
′
N ′)

N ′

A((I−N(N ′AN)−N ′A)L,N);
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and

L′(I−AN(N ′AN)−
′
N ′)

×A(I−N(N ′AN)−N ′A)L = L′AL

−L′AN(N ′AN)−
′
N ′AL− L′AN(N ′AN)−N ′AL

+L′AN(N ′AN)−
′
N ′AN(N ′AN)−N ′AL

= L′AL− L′AN(N ′AN)−N ′AL

because all the terms involving AN(N ′AN)−N ′A are invariant to the choice of

generalized inverse, and (N ′AN)−
′

is a generalized inverse of N ′AN . Then

S ′AS =

 L′(A− AN(N ′AN)−N ′A)L 0

0 N ′AN

 .

Because BN = 0, B(I−N(N ′AN)−N ′A) = B, so that

L′(I− AN(N ′AN)−
′
N ′)B((I−N(N ′AN)−N ′A)L = L′BL = Ir.

Then

S ′BS =

 L′BL 0

0 0

 =

 Ir 0

0 0

 .

Turning back to S ′AS, the two matrices on the diagonal are symmetric, and

so there exist orthonormal matrices M and Q such that

M ′L′(A− AN(N ′AN)−N ′A)LM = Φ1 and

Q′N ′ANQ = Φ2,

where both Φ1 and Φ2 are diagonal. Let

T = S

 M 0

0 Q


= ((I−N(N ′AN)−N ′A)LM,NQ).
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Then

T ′AT =

 M ′ 0

0 Q′

S ′AS

 M 0

0 Q


=

 Φ1 0

0 Φ2

 = ∆1,

and

T ′BT =

 M ′ 0

0 Q′

S ′BS

 M 0

0 Q


=

 M ′ 0

0 Q′

 Ir 0

0 0

 M 0

0 Q


=

 M ′M 0

0 0


=

 I 0

0 0

 = ∆2.

To show that the columns of T are linearly independent, suppose that T

(
u

v

)
=

0. Then

T

(
u

v

)
= (I−N(N ′AN)−N ′A)LMu+NQv

= 0

implies that

BT

(
u

v

)
= B(I−N(N ′AN)−N ′A)LMu+BNQv

= BLMu = 0

because BN = 0. That implies that u′M ′L′BLMu = 0 =⇒ u′u = 0 be-

cause M ′L′BLM = I, hence u = 0. That leaves NQv = 0, which implies that

v′Q′N ′NQv = v′Q′Qv = v′v = 0, which implies that v = 0. �
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For the proof of (b), let T be a nonsingular matrix such that T ′AT = ∆1 and

T ′BT = ∆2, where both ∆1 and ∆2 are diagonal. Order columns of T = (T+, T0)

so that

T ′BT =

 T ′+BT+ T ′+BT0

T ′0BT+ T ′0BT0


=

 ∆2+ 0

0 0


and

T ′AT =

 T ′+AT+ T ′+AT0

T ′0AT+ T ′0AT0


=

 ∆1+ 0

0 ∆10

 .

Note that R(T0) = R(B)⊥

[Proof: That B is symmetric and nnd =⇒ T ′0BT0 = 0 =⇒ BT0 = 0. Therefore

R(T0) ⊂ R(B)⊥. With T nonsingular, z ∈ R(B)⊥ =⇒ ∃ x,w such that Bz =

0 = B(T0x+ T+w) = BT+w =⇒ w′T ′+BT+w = 0 =⇒ w′∆2+w = 0 =⇒ w = 0

=⇒ z = T0x ∈ R(T0).]

and R(B) = R(BT+). Define N to be T0(T
′
0T0)

−1/2, so that N ′N = I and

R(N) = R(B)⊥.

Proof of (b). With A, B, T = (T+, T0), and N as defined above, proposition

(b) is equivalent to

R(N ′AN)⊥ = R(N ′A)⊥.

Clearly R(N ′AN) ⊂ R(N ′A), and so it remains to prove that, for any x ∈ <n−r,

N ′ANx = 0 =⇒ ANx = 0.

Suppose N ′ANx = 0. Then ANx ∈ R(N)⊥ = R(B) = R(BT+) =⇒ ∃ w

such that

ANx = BT+w.
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Then

w′T ′+BT+w = w′T ′+ANx = 0,

because T ′+AN = 0; and this implies that BT+w = 0 because B is nnd. Therefore

ANx = 0. �

Given A and B, defining T entails the following steps.

1. Spectrally decompose B to get P+, Λ+, L = P+Λ
−1/2
+ , N = P0, and

(N ′AN)−. Check whether R(N ′A) ⊂ R(N ′AN) (one way is whether

(N ′AN)(N ′AN)−N ′A = N ′A).

2. Spectrally decompose L′(A−AN(N ′AN)−N ′A)L and N ′AN to get M and

Q.

3. Compute

T = ((I−N(N ′AN)−N ′A)LM,NQ).

4. For A = X ′X and B = D′D, both nnd, compute T ′AT = ∆1 and T ′BT =

∆2; permute the columns of T to correspond to the sets J++, J+0, J0+, and

J00 that are non-void.
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