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In studies following selective sampling protocols for secondary outcomes, con-
ventional analyses regarding their appearance could provide misguided infor-
mation. In the large type 1 diabetes prevention and prediction (DIPP) cohort
study monitoring type 1 diabetes-associated autoantibodies, we propose to
model their appearance via a multivariate frailty model, which incorporates a
correlation component that is important for unbiased estimation of the baseline
hazards under the selective sampling mechanism. As further advantages, the
frailty model allows for systematic evaluation of the association and the differ-
ences in regression parameters among the autoantibodies. We demonstrate the
properties of the model by a simulation study and the analysis of the autoan-
tibodies and their association with background factors in the DIPP study, in
which we found that high genetic risk is associated with the appearance of all the
autoantibodies, whereas the association with sex and urban municipality was
evident for IA-2A and IAA autoantibodies.
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1 INTRODUCTION

The incidence of type 1 diabetes (T1D) has increased worldwide since the 1950s1 and in the 2000s leveled off in some
high-incidence countries such as Finland with the highest incidence of T1D in the world among children younger than
15 years.2

Emerging clinical T1D is commonly preceded by the appearance of autoantibodies. The progression from the pres-
ence of autoantibodies to T1D has been explicitly modeled in an additive joint modeling framework.3,4 Recent evidence
suggests varying sensitivity of the autoantibodies to different exposures as well as heterogeneity of T1D as a clinical
disease.5-7 The disease process may differ according to the first-appearing autoantibody and/or by age of the child.8,9

Autoantibody-specific associations have been shown for some dietary and infectious exposures.5,10,11 The role of infant
diet in the etiology of T1D has been studied quite extensively,12-15 while much less is known about significance of diet
later during childhood.16-18

The availability of the autoantibody measurements can, however, make the conduct and interpretation of
autoantibody-specific analyses challenging. For example, the primary screening tool islet cell autoantibodies (ICA) in the
type 1 diabetes prevention and prediction study, has been monitored systematically throughout the follow-up period up
to 15 years of age during the time period 1994 to 2004. Importantly, the other three autoantibodies (insulin autoantibod-
ies (IAA), glutamic acid decarboxylase autoantibodies (GADA) and islet antigen 2 autoantibodies (IA-2A)) were analyzed
from available and subsequent samples only if the child seroconverted to ICA positivity. In addition, a subcohort within
the study had all their autoantibodies measured (Figure 1).

The selective monitoring of other than ICA autoantibodies raises the question whether the conventional analyses
regarding appearance of the secondary autoantibodies would remain statistically valid and efficient. In the motivating
setting described, we would expect that a naive marginal (autoantibody-specific) analysis of the secondary autoantibodies
separately on the available data would give biased estimates of the proportion of children with positivity to them and
could possibly cause bias in the estimates of regression coefficients of prognostic variables.

We propose to model the appearance of autoantibodies via a multivariate frailty model, which incorporates the asso-
ciation parameters for the four autoantibodies. The correlation component is important for unbiased estimation of the
baseline hazards under selective sampling. As further advantages, the multivariate frailty model allows for systematic
evaluation of the association and the differences in regression parameters among the autoantibodies. We demonstrate the
properties of the model by a simulation study and the analysis of the autoantibodies and their association with background
factors in the DIPP study.

F I G U R E 1 Proportion of children with at least annual IAA or ICA measurement by age and by birth cohort
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2 METHODS

2.1 Autoantibody and background data

The Finnish prospective population-based type 1 diabetes prediction and prevention (DIPP) birth cohort study screened
newborn infants born in the Tampere and Oulu University Hospitals for HLA-DQB1-conferred susceptibility to T1D using
cord blood samples between September 1996 and September 2004.19 Infants carrying increased genetic susceptibility
(HLA-DQB1*02/0302 heterozygous and DQB1*0302/x-positive subjects [x stands for homozygosity or a neutral allele])
were monitored for islet autoimmunity and their blood samples are collected by venepuncture at the ages of 3, 6, 9, 12,
18, and 24 months and subsequently at 12-month intervals up to the age of 15 years. In the analyses we used actualized
sampling ages reflecting some variation around the scheduled sampling times and missed visits. Islet cell autoantibodies
(ICA) were used as the primary screening tool for beta cell autoimmunity. When a child seroconverted to positivity for ICA
for the first time, all available retrospective and subsequent samples were analyzed for IAA, GADA, and IA-2A. From that
point onwards, blood samples were collected in three-month intervals. For a subcohort, all autoantibody measurements
from birth was collected. This subcohort consists of children born in 2003 to 2004. The availability of autoantibody data
is illustrated for IAA and ICA in Figure 1.

HLA-DQ was genotyped using panels of sequence-specific oligonucleotide probes. Genotypes HLA-DQB1(*02/*03:02)
represent “high” and HLA-DQB1*03:02/x (x not *02, *03:01, or *06:02) “moderate” risk for type 1 diabetes. INS-23 A/T
(rs689) and PTPN22 1858C/T (rs2476601) were genotyped using the Sequenom platform, or using the TaqMan SNP
genotyping array, with INS AA and PTPN22 TT/CT regarded as the risk genotypes for type 1 diabetes.8

Information on offspring sex was collected with a questionnaire after delivery. Urbanization level of home municipal-
ity was categorized according to Statistics Finland guidelines as rural, semiurban, and urban.

2.2 Definition of the outcome and justification for the frailty model

We consider the seroconversion as a four-variate time-event-outcome; each child contributes either the timing of the
first positive measurement for each of the four autoantibodies, or a right-censored observation of the autoantibody. As a
child can become positive for several autoantibodies, the setting is a multivariate setting rather than a competing risks
setting. To be precise, the times of the first autoantibody positivity are interval-censored.20 Earlier, Park21 (nonpara-
metric approach) and Zhang et al22 (latent variable approach) considered dependent censoring with interval-censored
data. Our setting fits those approaches poorly, because the censoring times were a priori fixed by the protocol, and only
the decision of whether to analyze or not to analyze the samples from those times depended on the presence of ICA
autoantibody. When we assume that the monitoring algorithm is the source of incomplete data the problem can be
framed as a missing value problem. Recall that ICA was analyzed throughout the follow-up period, but absence or pres-
ence of data on the three other autoantibodies was determined by the positivity of ICA. In such a missing at random
setting, an analysis based on an appropriate observed data likelihood alone can provide valid inference.23 In the next
section, we propose a frailty model for the joint likelihood of the four autoantibodies to deal with the unusual study
design.

2.3 Multivariate frailty model for autoantibodies

To approximate the baseline hazard of seroconversion, we assume a piecewise linear baseline log-hazard

log hj(t) = 𝛼j + 𝛽1jt + 𝛽2j(t − 𝜅1)+ + 𝛽3j(t − 𝜅2)+,

in which j ∈  = {ICA, IAA,GADA, IA-2A} indicates the autoantibody to be modeled. We used two knots at 𝜅1 =
2, 𝜅2 = 4 in the construction of the baseline hazard, and we note that the model was not sensitive to the position of the
knots. More flexible estimation would be possible by using splines,24 but that is not our main focus here. Individual
autoantibody-specific hazards were modeled with

hij(t) = hj(t) exp
{
𝜃′xi + gjui

}
; i = 1, … ,n,
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where ui ∼ N(0, 𝜎2) represents individual “shared frailty” to the autoantibodies, and we assume that the autoantibodies
are independent given ui. Frailty variance can be interpreted to represent whatever the autoantibodies have in common,
for example, sharing the same risk factors or being involved in the same biological process.

The parameters gj are constrained with gICA = 1 and (1∕3)
∑

j∈ ⧵ICA |gj| = 1 so that the model is identifiable.
Note that the formulation allows direct and inverse associations between two autoantibodies, as well as different
magnitudes of shared frailties with ICA. We chose ICA as the reference for the frailty term as it was completely
observed.

Let TL
ij denote the last time instance where the ith child was measured as not positive for autoantibody j, and

TU
ij the first time the child was positive to that autoantibody. If a child was never observed to be positive, TU

ij = ∞,
which is a right-censored observation. The likelihood contribution of an individual with interval-censored event times
(TL

ij ,TU
ij ) is

Li(Θ;ui) =
[

Si,ICA(TL
i,ICA) − Si,ICA(TU

i,ICA)
] ∏

j∈ ⧵ICA

[
Sij(TL

ij ) − Sij(TU
ij )
]𝛿i

,

where 𝛿i = 1
[
child i ICA positive ∨ i ∈ ], Sij(t) is the survival function of individual i and autoantibody j and  is the

set of subcohort members. The full observed data likelihood,

L(Θ) = ∫
n∏

i=1
Li(Θ;ui)dF(ui),

which can be programmed and optimized in statistical software capable of numerical integration.

2.4 Simulation setup

A simulation study was conducted to demonstrate the performance of the models and to investigate their statistical prop-
erties. For individuals i = 1, … ,n, frailty ui ∼ N(0, 1) was generated, which converts to a multiplication of the marginal
baseline hazard by a factor of E (eui) = 1.649 compared to a hazard with no frailty. This is because if a random variable
X ∼ N(𝜇, 𝜎2), then E[exp(X)] = exp(𝜇 + 𝜎2∕2). Then, at each time t, we generated

Yijt ∼ Ber
(

hij(t)Δt
)
,

with a grid of 0.1 years. The chosen hazards were:

hi1(t) = exp {−6 + 0.5t − 0.7(t − 2)+ + 0.2xi + ui} , (1)

hi2(t) = exp {−6 + 0.5t − 0.2(t − 2)+ − 0.8(t − 4)+ − 0.2xi + ui} . (2)

The time to positivity Tij was defined to be the minimum of t at which Yij = 1 (uncensored observation) or 10 (cen-
sored observation), whichever came first. A particular setting with two autoantibodies was studied so that the data were
complete for the first autoantibody, but a proportion of the data was set to missing for the second autoantibody. To mimic
the actual conditional data collection protocol of the study, these data were available when either (i) the first autoanti-
body was positive or (ii) the individual fell into a 100 × 𝜋% random sample. The parameter 𝜋 was set at .1,.5, and 1.0, and
𝜃 = 0.2 to represent the effect of xi. The number of individuals was n = 5000 in the simulation and the model was fitted
with maximum likelihood in the SAS/NLMIXED procedure. To improve the estimation of the frailty variance parameter,
we estimated its logarithm.

The performance of two models was compared. Both had the correct model structure (1)-(2) and they were identical
with the exception that the frailty term was absent from the other, that is, autoantibodies were modeled independently.
For benchmarking purposes, the models were fitted on all available data and on the random sample with complete
data.
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3 RESULTS

3.1 Simulation study

Table 1 shows that the estimates from the multivariate frailty model on all data available hit their target values for all the
parameters. For the first autoantibody, which was completely observed, the estimates and their standard errors remained
similar regardless of the 𝜋-parameter controlling the amount of data for the second autoantibody. A slight improvement
for coverage probabilities from 𝜋 = 0.1 to 𝜋 = 1.0 was observed. For the second autoantibody, the estimators behaved also
well: they showed no meaningful bias. Standard errors increased as 𝜋 decreased since less information was available for
that autoantibody. Coverage probabilities remained at their nominal levels. While point estimation of the frailty variance
parameter was overall without bias, interval estimation improved from 0.88 coverage to 0.95 coverage when the complete
data subset was larger than 10% of the individuals.

When the frailty term was omitted from the model, a marked bias was observed in the 𝛼-parameter. For the first
autoantibody, as well as for the 𝜋 = 1.0 case, this is a result of a misspecification of the model rather than a result of the
selective sampling. When the estimates were compared to the reference value of 𝛼∗ = 𝛼 + log 1.649 from the marginal
hazard h∗

j (t) = EU
[
hij(t)

]
, that is, −5.5, the bias disappeared in the cases of complete data. However, the bias remained

when 𝜋 = 0.1, 0.5 and it was more evident with less data on the second autoantibody. Interestingly, other estimators
including the estimators of the regression coefficients suffered little from the offset bias in the baseline hazard and from
the omission of the frailty parameter.

Table 1 also lists the results obtained from fitting the models on the random sample only. The results are similar to
identical analyses with all available data with the exception of the standard error estimates, which were notably larger.
These indicate that a much higher precision can be achieved with the use of all available data.

Tables S1 and S2 show simulation results supporting these observations for a smaller data set, and for the case of four
antibodies.

3.2 Autoantibodies in the DIPP study

Among 6081 children during a 10-year follow-up from birth, GADA positivity was observed for 285 children, IA-2A for
201, IAA for 284 and ICA for 862. Figure 2 shows their coexistence. Due to the sampling scheme, ICA was by far the most
common autoantibody to appear alone, and together with other autoantibodies. For example, IAA and IA-2A autoanti-
bodies did not appear together without either GADA or ICA being present as well. Seroconversion process was considered
irreversible.

We analyzed the available data, which included all children in the frailty model, and in autoantibody-specific analyses
omitting frailty terms, only the children who had at least one interval-censored or right-censored measurement on that
particular autoantibody.

3.2.1 Estimated hazards and survival functions

Autoantibody-specific estimates of the marginal log hazards, without the inclusion of covariates, were:

⎧⎪⎪⎨⎪⎪⎩

−4.39 + 0.55t − 0.83(t − 2)+ − 0.05(t − 4)+, for GADA;
−5.03 + 0.78t − 1.19(t − 2)+ + 0.16(t − 4)+, for IA-2A;
−3.71 + 0.23t − 0.76(t − 2)+ + 0.35(t − 4)+, for IAA; and
−4.32 + 0.52t − 0.74(t − 2)+ + 0.15(t − 4)+, for ICA.

The four-variate frailty model gives the log hazards for a child with ui = 0 of

⎧⎪⎪⎨⎪⎪⎩

−8.51 + 1.11t − 1.18(t − 2)+ − 0.08(t − 4)+, for GADA;
−11.44 + 1.66t − 1.67(t − 2)+ − 0.18(t − 4)+, for IA-2A;
−8.27 + 0.95t − 1.35(t − 2)+ + 0.27(t − 4)+, for IAA; and
−8.51 + 1.34t − 1.24(t − 2)+ − 0.02(t − 4)+, for ICA.
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T A B L E 1 Estimation results from the simulation study with 1000 runs

Autoantibody 1 Autoantibody 2Data and
model used 𝝅 Parameter Mean Bias SE Coverage Mean Bias SE Coverage

All data available 0.1 𝛼 −5.502 0.498 0.249 0.471 −5.222 0.778 0.609 0.657

No frailty parameter 𝛽1 0.483 −0.017 0.159 0.943 0.531 0.031 0.371 0.959

𝛽2 −0.280 −0.080 0.514 0.962

𝛽3 0.011 0.011 0.140 0.942 −0.770 0.030 0.283 0.941

𝜃 0.192 −0.008 0.115 0.954 −0.156 0.044 0.239 0.939

0.5 𝛼 −5.502 0.498 0.249 0.471 −5.466 0.534 0.364 0.629

𝛽1 0.483 −0.017 0.159 0.943 0.507 0.007 0.227 0.955

𝛽2 −0.695 0.005 0.234 0.945 −0.243 −0.043 0.318 0.950

𝛽3 0.011 0.011 0.140 0.942 −0.772 0.028 0.172 0.947

𝜃 0.192 −0.008 0.115 0.954 −0.177 0.023 0.144 0.946

1.0 𝛼 −5.502 0.498 0.249 0.471 −5.521 0.479 0.277 0.549

𝛽1 0.483 −0.017 0.159 0.943 0.501 0.001 0.174 0.938

𝛽2 −0.695 0.005 0.234 0.945 −0.233 −0.033 0.243 0.935

𝛽3 0.011 0.011 0.140 0.942 −0.776 0.024 0.131 0.933

𝜃 0.192 −0.008 0.115 0.954 −0.189 0.011 0.110 0.949

All data available 0.1 𝛼 −6.029 −0.029 0.300 0.908 −6.007 −0.007 0.761 0.926

Frailty parameter included 𝛽1 0.495 −0.005 0.164 0.914 0.493 −0.007 0.392 0.929

𝛽2 −0.697 0.003 0.233 0.912 −0.219 −0.019 0.519 0.931

𝛽3 0.020 0.020 0.163 0.909 −0.787 0.013 0.316 0.918

𝜃 0.202 0.002 0.118 0.924 −0.209 −0.009 0.249 0.920

𝜎2 – – – – 1.024 0.024 0.302 0.886

0.5 𝛼 −6.006 −0.006 0.293 0.941 −6.015 −0.015 0.390 0.945

𝛽1 0.499 −0.001 0.168 0.942 0.509 0.009 0.231 0.946

𝛽2 −0.694 0.006 0.246 0.936 −0.214 −0.014 0.325 0.948

𝛽3 0.001 0.001 0.142 0.938 −0.793 0.007 0.174 0.942

𝜃 0.201 0.001 0.120 0.958 −0.199 0.001 0.152 0.961

𝜎2 – – – – 0.987 −0.013 0.221 0.948

1.0 𝛼 −5.985 0.015 0.274 0.937 −6.004 −0.004 0.297 0.940

𝛽1 0.486 −0.014 0.158 0.945 0.508 0.008 0.176 0.935

𝛽2 −0.676 0.024 0.233 0.944 −0.215 −0.015 0.246 0.932

𝛽3 −0.005 −0.005 0.139 0.942 −0.791 0.009 0.132 0.939

𝜃 0.201 0.001 0.120 0.958 −0.199 0.001 0.116 0.951

𝜎2 – – – – 0.981 −0.019 0.206 0.952

Random sample only 0.1 𝛼 −5.737 0.263 1.112 0.865 −5.769 0.231 1.329 0.885

No frailty parameter 𝛽1 0.576 0.076 0.652 0.967 0.600 0.100 0.742 0.972

𝛽2 −0.790 −0.090 0.872 0.963 −0.321 −0.121 0.931 0.964

𝛽3 0.001 0.001 0.463 0.943 −0.811 −0.011 0.436 0.944

𝜃 0.177 −0.023 0.390 0.963 −0.197 0.003 0.355 0.946

(Continues)
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T A B L E 1 (Continued)

Autoantibody 1 Autoantibody 2Data and
model used 𝝅 Parameter Mean Bias SE Coverage Mean Bias SE Coverage

0.5 𝛼 −5.517 0.483 0.350 0.677 −5.546 0.454 0.389 0.734

𝛽1 0.485 −0.015 0.224 0.956 0.511 0.011 0.242 0.950

𝛽2 −0.696 0.004 0.332 0.943 −0.242 −0.042 0.339 0.951

𝛽3 0.010 0.010 0.195 0.942 −0.777 0.023 0.179 0.955

𝜃 0.192 −0.008 0.169 0.946 −0.189 0.011 0.149 0.959

Random sample only 0.1 𝛼 −6.263 −0.263 1.188 0.965 −6.282 −0.282 1.349 0.969

Frailty parameter included 𝛽1 0.592 0.092 0.655 0.969 0.612 0.112 0.733 0.973

𝛽2 −0.784 −0.084 0.874 0.961 −0.301 −0.101 0.927 0.966

𝛽3 −0.013 −0.013 0.464 0.943 −0.830 −0.030 0.438 0.945

𝜃 0.186 −0.014 0.410 0.962 −0.208 −0.008 0.377 0.944

𝜎2 – – – – 1.039 0.039 0.681 0.885

0.5 𝛼 −5.995 0.005 0.375 0.959 −6.023 −0.023 0.411 0.948

𝛽1 0.491 −0.009 0.224 0.959 0.519 0.019 0.243 0.951

𝛽2 −0.682 0.018 0.333 0.946 −0.226 −0.026 0.342 0.950

𝛽3 −0.004 −0.004 0.195 0.942 −0.792 0.008 0.180 0.956

𝜃 0.200 −0.000 0.176 0.948 −0.199 0.001 0.157 0.962

𝜎2 – – – – 0.965 −0.035 0.287 0.952

Note: 𝛼 = −6 is the intercept parameter of the log hazard. 𝛽1, 𝛽2, 𝛽3 are the slope parameters of the piecewise linear log hazard with true values at
(0.5,−0.7, 0.0) and, (0.5,−0.2,−0.8) for the first and the second autoantibody, respectively. 𝜃 is the regression coefficient for the covariate with true value of
0.2 for the first and −0.2 for the second autoantibody.

F I G U R E 2 Venn diagram on the frequency of appearance of the four autoantibodies during the first 10 years of life among n = 6081
children with increased genetic risk of type 1 diabetes. The Venn diagram is based on the layout from
http://bioinformatics.psb.ugent.be/webtools/Venn/ [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 Estimates of the autoantibody-free survival functions derived nonparametrically and from two competing models. The
survival function of the marginal model fitted on the subcohort data is shown as a benchmark [Colour figure can be viewed at
wileyonlinelibrary.com]

These indicate that the appearance of autoantibodies accelerates during the first two years of life, but the hazard rates
start to decline thereafter—all the autoantibodies follow the same pattern with some heterogeneity in the changes over
time. For example, IA-2A seems to have a steeper increase in the log hazard in the first two years than IAA. Overall, the
coefficients of the frailty model indicate steeper changes than those of the marginal model. Note that the intercept terms
should not be compared because of the frailty variance.

The frailty variance was estimated as 𝜎̂2 = 8.66 with Wald 95% confidence limits from 7.54 to 9.97. Thus, autoantibod-
ies were associated with each other and the frailty model was justified. As ĝIAA = 0.97, ĝGADA = 0.88 and ĝIA−2A = 1.16,
the data suggested that the strongest association with ICA was that with IA-2A.

To illustrate how large the differences between the models are in practice, we converted the estimated hazards
to marginal survival functions. For the frailty model, the estimated survival function was obtained numerically from
Ŝ∗

j (t) = E
{

exp
[∫ t

0 ĥij(v)dv
]}

, where the expectation was taken over the distribution of the frailty term. Figure 3 shows
the different estimates. The nonparametric EMICM estimator25 of the survival function with interval-censored data and
available in the Icens package in R26 does not rely on a model, but provides estimates which agree closely with the sur-
vival estimates of the marginal model. Both are biased as they are based on all data, which have been collected with a
selective sampling protocol resulting in a particular type of incompleteness. They agree with the survival estimate of the
frailty model only for ICA, which was completely measured. For other autoantibodies, they overestimate the incidence
of the autoantibodies, because the individuals unlikely to be positive for them (ie, are negative for ICA) tend to have no
follow-up data. On other autoantibodies, the frailty model shows remarkably lower appearance probabilities. The frailty
model estimates—which are based on all data—are close to the estimate derived from the marginal model fitted on
2003 to 2004 on whom all autoantibodies were measured. The benchmark suggests that the frailty model is performing
well in estimating the appearance probabilities, whereas the marginal model and the nonparametric method markedly
overestimate them.

3.2.2 Association to background factors

We then studied the association of the appearance of autoantibodies to genetic risk (high or moderate), sex (female
or male), and urban (urban & semiurban or rural) surroundings. The autoantibodies were jointly modeled with
autoantibody-specific hazards as

http://wileyonlinelibrary.com
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T A B L E 2 Fixed parameter estimates from the frailty model

Factor Estimate Standard error Z

High genetic risk ICA 0.540 0.137 3.95

(vs moderate) IAA 0.696 0.185 3.77

IA-2A 0.650 0.226 2.87

GADA 0.881 0.180 4.91

Female ICA −0.113 0.113 −1.00

(vs male) IAA −0.387 0.163 −2.38

IA-2A −0.500 0.198 −2.53

GADA −0.305 0.159 −1.91

Urban or semi ICA 0.265 0.166 1.60

urban municipality IAA 0.695 0.267 2.60

(vs rural) IA-2A 0.894 0.339 2.64

GADA 0.274 0.245 1.12

hij(t) = hj(t) exp
{
𝜃j1[high genetic riski] + 𝜉j1[femalei] + 𝜂j1[urban municipalityi] + gjui

}
.

The estimates of the model parameters are displayed in Table 2. Note that the standard errors of parameters related to the
ICA autoantibody were always smaller than for other autoantibodies.

We observed that high genetic risk was strongly associated with appearance of all four autoantibodies. The hazard
ratios ranged from 1.72 (95% confidence interval, CI: 1.31, 2.24) for ICA up to 2.41 (1.70, 3.43) for GADA. All findings
were clearly significant.

Autoantibodies tended to be more frequent in boys. The strongest association was suggested for IA-2A, with a hazard
ratio for of 1.65 (1.12, 2.43) for males compared to females. All the associations with sex were in the same direction but
we found clear evidence of it only from IA-2A and IAA autoantibodies (Table 2); the association was nonsignificant for
ICA, and borderline significant for GADA.

A similar pattern was observed for urban surroundings: especially IAA and IA-2A seem more common in urban or
semiurban than in rural municipalities. Hazard ratios were 2.00 (1.19, 3.38) and 2.44 (1.26, 4.75), respectively.

Compared to the baseline model without explanatory factors, frailty variance decreased from 8.66 to 5.31, a marked
39% decline which suggests that these three factors are shared and important risk factors for seroconversion to autoanti-
body positivity.

When these results were compared with the estimates of regression coefficients from a simpler model, a marginal
model fitted on the subcohort, we observed that the frailty model tended to result in markedly smaller standard errors
(Tables 2 and S3). The estimated coefficients for high genetic risk seemed overall smaller for the subcohort. This was
possibly due to the smaller precision of estimation: for example, a 95% Wald confidence interval for the coefficient for
ICA from the subcohort analysis ranged from −0.049 to 0.551, and it did not exclude the point estimate of 0.540 from
the analysis of the full data set. Following this procedure, possibly differing estimates between the two analyses could
be the coefficients of female sex for IA-2A. In this case, the full analysis indicated a strong association with sex, but
the subcohort analysis provided a nearly null result. Note, however, that there was still considerable overlap in their
confidence intervals; the CI was (−0.888,−0.112) from the full analysis and (−0.492, 0.566) for the subcohort analysis. To
summarize, the majority of estimates from both analyses pointed into the same direction with some variation in their
estimated effect sizes, but the evidence from the frailty model was more conclusive.

The final advantage of using the frailty model is the joint likelihood, which allowed direct testing custom hypotheses
of differential effects on different autoantibodies. If 𝜃̂ICA, 𝜃̂IAA, 𝜃̂IA−2A and 𝜃̂GADA are the estimated regression coefficients,
a quadratic form of the three-variate test statistic (𝜃̂IAA − 𝜃̂ICA, 𝜃̂IA−2A − 𝜃̂ICA, 𝜃̂GADA − 𝜃̂ICA) can be used to test whether
the association of background factors and autoantibodies are different from one autoantibody to another. The covari-
ance matrix of the parameter estimates was based on the observed information matrix. Here, we observed marginal
heterogeneity in the association with sex and municipality (p = 0.10; details not shown).
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4 CONCLUDING REMARKS

We proposed to model diabetes-related autoantibodies by a multivariate frailty model, when their monitoring was done
according to a nonstandard protocol. We demonstrated by a simulation study that valid inference is obtained. Compared
with a marginal (autoantibody-specific) model with these data structures, the approach provides unbiased parameter
estimates throughout. In addition, it provides means to study the coexistence of the autoantibodies and their common
risk factors, as well as testing for heterogeneity in regression coefficients between different autoantibodies. We believe
that the proposed model has wider applicability to other disease scenarios employing selective data collection methods.
However, sufficient amount of data need to be available for the estimation of the frailty variance, which was the case with
our complete data on the subcohort. The subcohort also needs to be representative of the same target population as the
remaining cohort, meaning for example, the same recruitment criteria and measurement standards, to ensure that the
model and the frailty variance as part of it are estimated correctly.

We observed that the autoantibody-specific analysis performs similarly in this setting as the usual logistic regression
on case-control data: intercept terms are estimated incorrectly, but the regression coefficients remain valid.27,28 Therefore,
a simpler approach could be adopted if a single autoantibody and its risk factors would be the only goal of analysis.

We believe that the model could be modified in terms of alternative estimates of the baseline hazard or distribution
of the frailty terms. Here we used a normally distributed frailty term and a piecewise linear baseline hazard, which were
sufficiently flexible choices with interval-censored data leading to reasonable computation time. The models with the
largest number of parameters could be fitted in less than 2 hours computation time on a normal PC (16 GB RAM, Intel
2.70 GhZ processor on a 64-bit Windows 10 operating system).

In the analysis of the example data, we found little direct evidence of differential associations with the risk factors. The
observation of a higher risk of IAA and IA-2A autoantibodies in urban or seminurban municipalities is in line with the
finding of an inverse association between agricultural land cover with the risk of multiple islet autoantibodies and type 1
diabetes.29 Our results on the association between autoantibodies and sex mostly agree with the Finnish diabetes register
analysis of Turtinen et al,30 who detected the same association on IAA and IA-2A, and found no association with ICA.
We could not, however, replicate their finding of an inverse association between sex and GADA. Kukko et al31 found no
gender differences among children carrying HLA-conferred susceptibility to type 1 diabetes, but observed that genetically
high-risk children were more often positive for all autoantibodies.
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