
High-Level Synthesis Implementation of

Transform-Exempted SATD Architectures for

Low-Power Video Coding

Tero Partanen, Ari Lemmetti, Panu Sjövall, Jarno Vanne

Ultra Video Group, Tampere University, Finland

{tero.partanen, ari.lemmetti, panu.sjovall, jarno.vanne}@tuni.fi

Abstract— This paper presents the first known high-level

synthesis (HLS) implementation for the Sum of Absolute

Transformed Differences (SATD) calculation. The proposed

hardware architecture is designed for two SATD algorithms: a

widespread Fast Walsh-Hadamard Transform (FWHT-SATD)

and a recently introduced Transform Exempted scheme (TE-

SATD). This 2-stage architecture is made up of two 1-D Walsh-

Hadamard Transform (WHT) stages and a transpose buffer

(TB) between them. The chosen HLS approach cuts down design

time over contemporary design methods and thereby made it

feasible to implement a set of dedicated FWHT-SATD and TE-

SATD architectures for 4×4, 8×8, and 16×16 pixel blocks. All

these six architectures were synthesized for 28 nm and 45 nm

standard cell technologies, and their area and energy

consumptions were analysed. TE-based implementations

provide 6.0-8.3% total cell area savings and 6.9-12.7% better

energy-efficiency than traditional FWHT approaches. Our

proposal is the first to introduce TE-SATD architectures for up

to 16×16 blocks and each of these tailored architectures was

shown to provide better trade-off between silicon area and

performance than their reference implementations.

Keywords—video coding, Sum of Absolute Transformed

Differences (SATD), Hadamard transform, High-Level Synthesis

(HLS), low-power hardware design

I. INTRODUCTION

The proliferation of high-quality and immersive media
applications has led to the explosive growth of global video
traffic. Therefore, each new video coding standard is aiming
to introduce an improved coding efficiency that is
substantially beyond that of the prevailing technology. The
current mainstream High Efficiency Video Coding (HEVC)
standard [1], [2] is able to halve the bit rate over its
predecessor Advanced Video Coding (AVC) [3], [4] for the
same subjective visual quality and the recently ratified
Versatile Video Coding (VVC) [5] standard follows the same
trend. However, improvements in coding efficiency tend to
result in a large computational cost, which inevitably increases
the power and energy dissipation of video codecs. In addition,
today's video applications are more often performed on low-
power mobile devices. Therefore, developing dedicated
hardware architectures is vital to mitigate the increased energy
consumption in video coding.

In block-based video coding, a plurality of blocks of M ×
N pixels is compared in order to find the most similar
candidate block to the current block being encoded. Basically,
the search process evaluates several available candidate
blocks and the one that minimizes a dissimilarity metric will
be chosen. Sum of Absolute Differences (SAD) [6] and Sum of
Absolute Transformed Differences (SATD) [6] are the most
common fast metrics to estimate similarity (or dissimilarity)
between two different pixel blocks. In HEVC video coding,
SAD is the most commonly used criterion in integer motion
estimation (IME), whereas SATD is a preferred metric in
fractional motion estimation (FME), intra search, and mode

decision. On average, these coding tools together account for
up to 40% of the whole HEVC encoder complexity.

 SAD is simply the sum of absolute values applied to a
prediction residual, whereas SATD first transforms the
residual to different domain and then calculates the sum of
absolute values. Usually, the Walsh-Hadamard Transform
(WHT) [7] is used in SATD as the transforming function
because calculation of WHT involves only additions and
subtractions and allows thereby some optimizations. SATD
tends to yield more accurate block estimates than SAD,
because it better correlates with the Discrete Cosine
Transform (DCT), which is a commonly used transform
function in the well-known hybrid video coding scheme [8],
[9]. However, the transform stage in SATD causes huge
computational overhead. Therefore, it is vital to optimize
SATD calculation method itself to make efficient hardware
implementations possible. If SATD is used in FME or some
other encoder stage, dedicated accelerators are recommended
especially in mobile devices to meet strict constraints in
execution time and power consumption [10].

It is possible to improve the energy efficiency of SATD by
exploiting its mathematical properties. Traditionally, WHT is
implemented using the Fast Walsh-Hadamard Transform
(FWHT) [11] to reduce computational complexity. The
FWHT can be implemented efficiently on hardware by
dividing the 2-D transform into two 1-D transform stages and
calculating both stages successively with butterfly-style
adder/subtractor structure. Several FWHT-based SATD
hardware architectures can be found in the literature [12]-[14].
The authors in [15], [16] investigated the usage of linear and
transpose buffers between 1-D transform stages with square
block sizes from 4×4 to 32×32. Transpose Buffer (TB) was
reported to be more energy-efficient, although it results in
greater chip area. The authors in [17], [18] utilized
adder/subtractor compressors for butterfly operations and
achieved about 10-14% reduction in energy consumption.

 A more recent method to further reduce the number of
arithmetic operations in Hadamard-based SATD is called a
Transform Exempted (TE) method [19], [20]. In TE-SATD,
the second 1-D stage exploits specific properties of absolute
values to reduce arithmetic operations. The works in [21], [22]
compared different 4×4 TE-SATD and butterfly-based
FWHT-SATD architectures, of which TE-SATD
architectures turned out to be more area and energy efficient.
In [23], the authors introduced a combined 4×4 and 8×8
SATD hardware architecture, which deployed also TE-SATD.
In that architecture, the transformed 4×4 block was reused for
8×8 SATD calculation. If both block sizes were required in
coding, this approach was shown to save operations and
buffers resulting in reduced energy consumption over separate
4×4 and 8×8 SATD architectures. However, in a case where
both block sizes are not needed, this approach results in
hardware overhead.

Our work proposes separate FWHT-SATD and TE-SATD
hardware architectures for block sizes of 4×4, 8×8, and 16×16.
They were all implemented using Algorithmic C (C++) and
Catapult high-level synthesis (HLS) tool [24]. To the best of
our knowledge, this is the first work that implements SATD
units with the HLS design method [25] that is an emerging
approach to raise the abstraction level over that of traditional
Hardware Description Languages (HDL) such as VHDL and
Verilog. By using HLS, designers can get 4-6 times increase
in productivity over manual register-transfer level (RTL)
flows [26].

The rest of the paper is organized as follows: Section 2
describes the adopted FWHT-SATD and TE-SATD
algorithms and Section 3 details the proposed 2-stage
architectures for them. Section 4 compares power dissipation
and cell areas of these architectures using 28 nm technology.
In addition, the respective area and throughput results are
reported with 45 nm technology for comparison with related
works. Section 5 concludes the paper.

II. SATD CALCULATION

 The SATD is defined as

 �������×	
 = � ×

����,��	
���

�
��� , �1

where c ϵ ℝ� is a scaling constant, ��×	 is the pixel matrix
of a residual block (difference between candidate and current
block being coded), and the ���,� denotes the (i, j)th element

of the 2-D transformed residual block ����×	
 = ��×	 × ��×	 × ��×	� . �2

 ��×	 is the transform matrix of an integer linear transform,
usually WHT. It is derived from a generalized class of the
Fourier transform and it uses a Hadamard matrix of size 2� ×2�, � ϵ ℝ� [27] as a transform matrix. 1-D Hadamard
transform (HT) is defined as ���� !×�
 = � !× ! × � !×�, �3

and 2-D HT is correspondingly defined as

 ���� !× !
 = � !× ! × � !× ! × � !× !� , (4)

where � !× ! is

� !× ! =
⎩⎪⎨
⎪⎧ 1√2 (1 11 −1* , +, � = 112� -� !./× !./ � !./× !./� !./× !./ −� !./× !./0 , +, � > 1. �5

 As expressed in (5), the Hadamard matrices are
symmetric, i.e., �� = � . The scaling constant c in (1) is
defined for WHT-based SATD as

� = 12� �6

 A naïve method to calculate the transform in (4) would be
to use basic matrix multiplications, which have computational
complexity of 4�56
, 7ℎ9:9 5 = 2� . Even though n is
usually quite small, the 2-D transform requires two matrix
multiplications resulting in a large number of multiplications

and additions. In the case of Hadamard matrices, which are
composed of only +1 and -1 elements, multiplications can be
omitted and only additions and subtractions are needed. But,
still the number of operations remains quite high �56 − 5
.
For example, 448 additions are still needed for one matrix
multiplication when � = 3.

 FWHT is a more efficient method, where the 2-D
transform is decomposed into two 1-D steps, namely, rows
and columns [7]. In other words, the first 1-D step in (4) would
be equal to rows and the second step equal to columns. The
associative property of matrix multiplication holds as (HD)H
= H(DH), so the order in which the steps are calculated is
negligible. Both steps have n levels of adders represented by
a butterfly structure and each n levels has m adders to
transform one row or column of the residual matrix [7].
Butterfly is constructed so that Hadamard matrices are
recursively split into two smaller matrices. The residual matrix
is transformed, e.g., by calculating the first step in row-major
order and then the second step in column-major order. FWHT
has 5 × ;<= �5
 additions for one step. For n = 3, it means
192 additions which is 57% less than the ordinary matrix
multiplication with entry multiplications omitted. After the
transform computation, 5 absolute operations and 5 − 1
additions are required to complete the SATD. Therefore, the
total operation count for FWHT-SATD is 2 × 5 ×;<= �5
 + 5 − 1 additions (447 additions for n = 3) and 5 absolute operations (64 operations for n = 3).

 In recently introduced TE-SATD method [19], [20], the
first 1-D step is computed as in FWHT, but the second 1-D
step combines sum, absolute, and compare operations using
Property 1 [19]: |�� + � | + |�� − � | = 2 × max�|��|, |� |
.

The left-hand side of Property 1 is substituted by right-hand
side to reduce operation counts without impacting the SATD
result. In practice, the 2 × multiplication can also be omitted
because of the scaling constant (6). The TE-SATD replaces
the 1-D Hadamard transform and the sum of absolutes.

1-D SATD can be defined by ������ !×�
 = ��C��� !×�
D = ���� !× ! × � !×�
. �7

Applying matrix partition and (5) yields

 ���� !× ! × � !×�

= �� F-� !./× !./ � !./× !./� !./× !./ −� !./× !./0 G ��, ,…, ! � ! ��,…, !IJ

= �� K� !./× !./ L��, ,…, ! + � ! ��,…, !MN
+ �� K� !./× !./ L��, ,…,O!O − �O!O ��,…, !MN. �8

Equation (8) shows how SATD can be calculated using the
lower order SATDs. However, calculating SATD for two
different block sizes at once can introduce some
computational and hardware overhead. Therefore, this work
implements separate SATD units for each block size.
 In [19], 1-D TE-SATD for �Q×� = [��, � , �6, �Q]� was
derived as

TE-SATD��Q×�
 = 2 × �5TU�|�� + �6|, |� + �Q|
 + 5TU�|�� − �6|, |� − �Q|

 �9

In this work, recursive property shown in (8) was also used
with 8×8 and 16×16 blocks. For 8×8 block size, TE-SATD is
computed for �W×� = [��, … , �W]� as

TE-SATD��W×�
 = ����W×W × �W×�
 = �� X-�Q×Q �Q×Q�Q×Q −�Q×Q0 -��, ,6,Q�Y,Z,[,W0\
= ��]�Q×QC��, ,6,Q + �Y,Z,[,WD^ +��]�Q×QC��, ,6,Q − �Y,Z,[,WD^, �10

which is composed of two 4×1 SATD calculations and by
applying (9)

TE-SATD��W×�
 = 2 × [5TU�|��� + �Y
 + ��6 + �[
|, |�� + �Z
 + ��Q + �W
|
 +5TU�|��� + �Y
 − ��6 + �[
|, |�� + �Z
 − ��Q + �W
|
 +5TU�|��� − �Y
 + ��6 − �[
|, |�� − �Z
 + ��Q − �W
|
 +5TU�|��� − �Y
 − ��6 − �[
|, |�� − �Z
 − ��Q − �W
|
]
(11)

Finally, the 8×8 TE-SATD is computed as ������W×W
 = ����W×W × �W×W × �W×W�
, �12

in two 1-D steps by first calculating `W×W = �W×W × �W×W� as
in FWHT and then applying (11) for each column of R8×8.

 Similarly, (8) and (11) were applied to derive the TE-
SATD for 16×16 block size, but the respective equations are
omitted in this paper for brevity.

 Table I summarizes the operation counts for complete
FWHT-SATD and TE-SATD calculations. For example, in
the case of 8×8 TE-SATD the final 1-D step has 255
operations (159 additions, 64 absolutes, and 32 compares). In
FWHT, the last 1-D step takes 319 operations. Thus, TE-
SATD saves 64 operations (13%).

III. PROPOSED HARDWARE SATD IMPLEMENTATION

 Since 2-D WHT is orthogonal, it is inherently separable
and can be decomposed into two successive 1-D WHT stages.
However, the second WHT stage uses the output of the first
stage, so a buffer is needed between them if the transforms are
not fully parallel. Several architecture explorations between
parallel and buffer-based schemes can be found in the
literature [15], [16], [21], [22]. A two-stage architecture with
a TB [12] between the stages has proven to be a good trade-
off between energy consumption and area, so it was selected
as basis for this work.

 Fig. 1 depicts a conceptual block diagram of our TB-based
SATD hardware architecture. It supports data blocks of

size 2� × 2� , where n = 2, 3, 4. All these architectures are
pipelined and they output a new SATD result in every 2�
clock cycles. Altogether, six different hardware
implementations were realized, i.e., separate FWHT-SATD
and TE-SATD architectures for the block sizes of 4×4, 8×8,
and 16×16.

The Stage 1 takes as input the candidate (Can) and current
(Cur) data blocks row-by-row. It calculates first the residuals
and then the 1-D WHT using a butterfly structure. The Stage
1 has input registers, but all data calculations are
combinational.

 The TB is a transposing shift register array [12] of size 2� × 2�. It changes shift direction every 2�th cycle, i.e., at the
beginning of a new block. Thus, it allows fully pipelined
operation on a quite simple hardware structure.

 The Stage 1 and TB are identical to the FWHT-SATD or
TE-SATD algorithms, but the Stage 2 has to be tailored to
either of them. It calculates the second 1-D Hadamard
transform and accumulates the final sum of absolute values.
In the FWHT-SATD architecture, the second 1-D Hadamard
transform is computed using the butterfly structure as in the
Stage 1 and the resulting absolute values are accumulated as
in (1). In the proposed TE-SATD architecture, the Stage 2 is
made up of addition and absolute operations, but also compare
operations (right-hand side of Property 1), which are basically
implemented as multiplexers. Finally, the SATD result, stored
in separate registers, is the output of the architectures.

 Having the design implemented with Catapult HLS tool,
several advantages were attained over a traditional RTL flow.
As the RTL code is generated from the HLS code, it was
straightforward to generate all six SATD architectures with
minimal changes to the HLS code. In addition, because HLS
code is technology independent, it is possible to generate
optimized RTL for both ASIC and FPGA synthesis by only
changing the target from Catapult HLS. In this work, only the
ASIC results are presented. As an example, for RTL
optimizations, Catapult HLS calculates and modifies the
throughput of the design based on the desired clock frequency.
Depending on timing and the used technology, the number of
combinatorial operations that Catapult allocates per clock
cycle varies. The state machine of the architecture can be
pipelined by the tool for the best throughput.

Fig. 1. A conceptual block diagram of the proposed SATD architecture.

TABLE I. NUMBER OF OPERATIONS IN SATD CALCULATION

O peration FWHT TE FWHT TE FWHT TE

Add 79 55 447 351 2303 1903

Abs 16 16 64 64 256 256

Cmp 8 32 128

Total 95 79 511 447 2559 2287

Saving -17 % -13 % -11 %

4 × 4 SATD 8 × 8 SATD 16 × 16 SATD

IV. RESULTS

All the proposed SATD architectures were described in
Algorithmic C and converted to RTL using Catapult Ultra
Synthesis 10.5b tool. The RTL designs were synthesized with
Synopsys Design Compiler [28] and evaluated on a 28 nm
ASIC standard cell technology. The process technology was
Fully Depleted Silicon On Insulator (FD-SOI) with 0.95 V
supply voltage, typical process corner, and 25°C temperature.

Switching activity interface format (SAIF) were used to
estimate the power consumption of the synthesized designs.
The files were produced using Questa Sim [29] inside the
Catapult power estimation flow. The SAIF files contained real
SATD inputs that were collected by encoding CityAlley,
ReadySetGo, and ShakeNDry 4K test video sequences [30]
with Kvazaar open-source HEVC encoder [31]. Architectures
were synthesized for 2.5 ns clock period that was estimated to
provide adequate SATD throughput for a full search FME
algorithm in real-time (60 fps) 4K HEVC encoding [23].

The synthesis results for 28 nm technology, in terms of
area, power, and energy, are presented in Table II. The results
reported for the FWHT-SATD architectures serve as a
baseline to highlight improvements of the proposed TE-SATD
architectures. Cell leakage power was negligible thus it is
omitted from the results. The proposed TE-SATD
architectures resulted in 6.0-8.3% smaller total cell area and
6.9-12.7% lower energy consumption than the FWHT-SATD
baseline architectures. Hence, switching from FWHT-SATD
to TE-SATD gives relatively significant savings considering
that the Stage 1 and TB are identical in these two architectures.
Because Catapult generated a flattened RTL designs,
hierarchical area or power results are not analysed. However,
synthesis results for each FWHT-SATD architecture declare
that about 65% of the total area is used for registers and 35%
for combinatorial logic. Thus, it can be estimated that
approximately 60% of the total area is consumed by the TB.
Considering this, TE method brings relatively substantial area
and power savings.

It is not straightforward to compare our results with prior
works because they used mixed supply voltages and distinct
target clock periods. However, area results for 45 nm
technology are reported in some works, so the proposed TE-
SATD architectures were also synthesized for 45 nm NanGate
standard cell technology [32] using 2.5 ns clock period. Table
III presents these results for the proposed and related TB-
based SATD architectures. In comparison with the existing
4×4 SATD architectures [15], [22], the proposed solution has
competitive area, although it only takes one-fifth and one-
fourth of their clock periods, respectively. In the case of 8×8
SATD architectures, the proposed work is the smallest.
Furthermore, a combined 4×4 & 8×8 SATD architecture in

[23] resulted larger area than the aggregated area of the
proposed 4×4 and 8×8 SATD architectures. The 16×16 SATD
architecture in [15] has 25 times as long clock period as ours,
but still the area results are similar. The throughput
determined by computed blocks per second (blocks/s) is
mainly comprised from target period, thus our proposal
outperforms most of the related works with high margins.

V. CONCLUSIONS

This paper presented the first known HLS implementation
of the FWHT-SATD and TE-SATD architectures for block
sizes of 4×4, 8×8, and 16×16 pixels. TE-SATD method has
earlier been proven to decrease the needed operations in
SATD calculation so it can potentially improve the energy
efficiency in video coding. Our results confirm the advantages
of the TE-SATD scheme over that of the FWHT-SATD.
Synthesis results for 28 nm technology showed that SATD-
architectures implementing the TE-method can save 6.0-8.3%
on cell area and 6.9-12.7% on consumed energy. In addition,
the proposed architectures were synthesized for 45 nm
technology and the results denoted that TE-SATD
architectures designed with HLS offer better area-
performance trade-off than the existing implementations.
Hence, replacing traditional HDL design approach with the
HLS flow not only increased design productivity and code
reusability in this case, but also performance was at least equal
to that of the traditional HDL design flow.

ACKNOWLEDGMENT

This work was supported in part by the European ECSEL

project ADACORSA (under the grant agreement 876019).

TABLE II. SYNTHESIS RESULTS FOR 28 NM PROCESS TECHNOLOGY, 2.5 NS CLOCK PERIOD, AND 0.95 V SUPPLY VOLTAGE

TABLE III. COMPARISON OF THE PROPOSED AND EXISTING SOLUTIONS

FWHT-SATD (baseline) 1315 655 235 889 890 8.9

TE-SATD (proposed) 1206 -8.3% 598 179 777 777 7.8 -12.7%

FWHT-SATD (baseline) 4465 2386 768 3154 3154 63.1

TE-SATD (proposed) 4198 -6.0% 2247 632 2879 2879 57.6 -8.7%

FWHT-SATD (baseline) 17969 9494 2320 11815 11818 472.7

TE-SATD (proposed) 16747 -6.8% 8799 2196 10994 10997 439.9 -6.9%

Architecture Size
Cycles/

SATD

Cell Area

(µm
2
)

Area

Saving

16×16 16

Energy

Saving

4×4 4

8×8 8

Cell

Internal

Power

Net

Switching

Power

Total

Dynamic

Power

Total

Power

(µW)

Energy/SATD

(pJ/SATD)

[15] 4×4 FWHT TSMC 15.63 2943* 16M

[22] 4×4 FWHT TSMC 10.40 2600** 16M

[22] 4×4 TE TSMC 10.40 2500** 16M

Proposed 4×4 TE NanGate 2.50 2541 100M

[18] 8×8 FWHT NanGate 3.00 14833 41.6M

[14] 8×8 FWHT NanGate 1.69 12231 72M

[15] 8×8 FWHT TSMC 31.25 9468* 4M

[23]
4×4 &

8×8
TE TSMC 2.50 11935 50M

Proposed 8×8 TE NanGate 2.50 9337 50M

[15] 16×16 FWHT TSMC 62.50 33000** 1M

Proposed 16×16 TE NanGate 2.50 33667 25M

Area

(µm
2
)

Work Size

* Precise value from [23]; ** Estimated value from a graph

Blocks/sMethod
Library

(45nm)

Target

Period (ns)

REFERENCES

[1] High Efficiency Video Coding document ITU-T Rec. H.265 and
ISO/IEC 23008–2 (HEVC), ITU-T and ISO/IEC, Nov. 2019.

[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the High Efficiency Video Coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-
1668.

[3] Advanced Video Coding for Generic Audiovisual Services document,
ITU-T Rec. H.264 and ISO/IEC 14496–10 (AVC) ITU-T and ISO/IEC,
Mar. 2009.

[4] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar,
“Performance comparison of H.265/MPEG-HEVC, VP9, and
H.264/MPEG-AVC encoders,” in Proc. Picture Coding Symp., San
Jose, California, USA, Dec. 2013.

[5] B. Bross, J. Chen, S. Liu, and Y. K. Wang, “Versatile Video Coding
(Draft 10),” document JVET-P2001, July 2020.

[6] I. E. Richardson, The H.264 Advanced Video Compression Standard,
Second Edition, John Wiley & Sons Ltd, 2010.

[7] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image
coding,” IEEE, vol. 57, no. 1, Jan. 1969, pp. 58-68.

[8] T. Wiegand and H. Schwarz, “Video coding: Part II of fundamentals of
source and video coding,” in Video Coding: Part II of Fundamentals of
Source and Video Coding, Nov. 2016.

[9] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz,
“Performance and computational complexity assessment of high-
efficiency video encoders,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, Dec. 2012, pp. 1899–1909.

[10] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no.
12, Dec. 2012, pp. 1885–1898.

[11] B. J. Fino and V. R. Algazi, “Unified matrix treatment of the fast walsh-
Hadamard transform,” IEEE Trans. Comput., vol. 25, no. 11, Nov.
1976, pp. 1142-1146.

[12] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, “Parallel 4 ×4
2D transform and inverse transform architecture for MPEG-4
AVC/H.264,” in Proc. Int. Symp. Circuits Syst., Bangkok, Thailand,
May 2003.

[13] J. S. Dominges Jr, V. N. Possani, D. S. Silveira, L. S. da Rosa Jr, and
L. V. Agostini, “High throughput 4×4 and 8×8 SATD similarity criteria
architectures for video coding applications,” in Proc. IEEE Southern
Conf. Programmable Logic, Córdoba, Argentina, Apr. 2011.

[14] E. Silveira, C. Diniz, M. B. Fonseca, and E. Costa, “SATD hardware
architecture based on 8×8 Hadamard transform for HEVC encoder,” in
Proc. IEEE Int. Conf Electron. Circuits Syst., Cairo, Egypt, Dec. 2015.

[15] I. Seidel, A. Beims Bräscher, J. L. Güntzel, and L. Agostini, “Energy-
efficient SATD for beyond HEVC,” in Proc. IEEE Int. Symp. Circuits
Syst., Montreal, Canada, May 2016.

[16] A. B. Bräscher, I. Seidel, and J. L. Güntzel, “Improving the energy
efficiency of a low-area SATD hardware architecture using fine grain
PDE,” in Proc. Symp. Integr. Circuits Syst. Des., Fortaleza, Brazil,
Aug. 2017.

[17] B. Silveira, R. Ferreira, G. Paim, C. Diniz, and E. Costa, “Low power
SATD architecture employing multiple sizes Hadamard transforms and
adder compressors,” in Proc. IEEE Int. New Circuits Syst. Conf.,
Strasbourg, France, June 2017.

[18] B. Silveira, B. Abreu, G. Paim, M. Greller, R. Ferreira, C. Diniz, E.
Costa, and S. Bampi, “Using adder and subtractor compressors to sum
of absolute transformed differences architecture for low-power video
encoding, ” in Proc. IEEE Int. Conf. Electron., Circuits Syst., Batumi,
Georgia, Dec. 2017.

[19] C. Zhu and B. Xiong, “Transform-exempted calculation of sum of
absolute Hadamard transformed differences,” in IEEE Trans. Circuits
Syst. Video Technol., vol. 19, no. 8, Aug. 2009, pp. 1183-1188.

[20] F. D. Jou, “Method for fast SATD estimation,” U.S. Patent 0 198 622
A1, Aug. 23, 2007.

[21] L. H. Cancellier, A. B. Bräscher, I. Seidel, and J. L. Güntzel, “Energy-
efficient Hadamard-based SATD architectures,” in Proc. Symp. Integr.
Circuits Syst. Des., Aracaju, Brazil, Sept. 2014.

[22] L. H. Cancellier, I. Seidel, A. B. Brascher, J. L. Guntzel, and L.
Agostini, “Exploring optimized Hadamard methods to design energy-
efficient SATD architectures,” J. Integr. Circuits Syst., vol. 10, no. 2,
Aug. 2015, pp. 113-122.

[23] I. Seidel, M. Monteiro, B. Bonotto, L. V. Agostini, and J. L. Güntzel,
“Energy-efficient Hadamard-based SATD hardware architectures
through calculation reuse,” IEEE Trans. Circuits Syst., vol. 66, no. 6,
June 2019, pp. 2102-2115.

[24] Catapult High-Level Synthesis: Overview. [Online] Available:
https://www.mentor.com/hls-lp/catapult-high-level-synthesis

[25] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Des. Test. Comput., vol. 26, no. 4, July–
Aug. 2009, pp. 8-17.

[26] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 5, May 2019,
pp. 898-911.

[27] S. W. Golomb and L. D. Baumert, “The search for Hadamard
matrices,” The American Mathematical Monthly, vol. 70, no. 1, pp. 12–
17, Jan. 1963.

[28] Synopsys. Synopsys Design Compiler, Version Q-2019.12-SP1.
[Online] Available: https://www.synopsys.com/

[29] Mentor. Mentor Questa Sim, Version 10.7c 2018.08. [Online]
Available: https://www.mentor.com/

[30] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K
sequences for video codec analysis and development,” in Proc. ACM
Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[31] A. Lemmetti, M. Viitanen, A. Mercat, and J. Vanne, “Kvazaar 2.0: fast
and efficient open-source HEVC inter encoder,” in Proc. ACM
Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[32] Nangate 45nm. FreePDK45 NanGate Open Cell Library, version
PDKv1.3 v2010_12

