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Abstract— This paper presents the first known high-level 

synthesis (HLS) implementation for the Sum of Absolute 

Transformed Differences (SATD) calculation. The proposed 

hardware architecture is designed for two SATD algorithms: a 

widespread Fast Walsh-Hadamard Transform (FWHT-SATD) 

and a recently introduced Transform Exempted scheme (TE-

SATD). This 2-stage architecture is made up of two 1-D Walsh-

Hadamard Transform (WHT) stages and a transpose buffer 

(TB) between them. The chosen HLS approach cuts down design 

time over contemporary design methods and thereby made it 

feasible to implement a set of dedicated FWHT-SATD and TE-

SATD architectures for 4×4, 8×8, and 16×16 pixel blocks. All 

these six architectures were synthesized for 28 nm and 45 nm 

standard cell technologies, and their area and energy 

consumptions were analysed. TE-based implementations 

provide 6.0-8.3% total cell area savings and 6.9-12.7% better 

energy-efficiency than traditional FWHT approaches. Our 

proposal is the first to introduce TE-SATD architectures for up 

to 16×16 blocks and each of these tailored architectures was 

shown to provide better trade-off between silicon area and 

performance than their reference implementations.   

Keywords—video coding, Sum of Absolute Transformed 

Differences (SATD), Hadamard transform, High-Level Synthesis 

(HLS), low-power hardware design 

I. INTRODUCTION  

The proliferation of high-quality and immersive media 
applications has led to the explosive growth of global video 
traffic. Therefore, each new video coding standard is aiming 
to introduce an improved coding efficiency that is 
substantially beyond that of the prevailing technology. The 
current mainstream High Efficiency Video Coding (HEVC) 
standard [1], [2] is able to halve the bit rate over its 
predecessor Advanced Video Coding (AVC) [3], [4] for the 
same subjective visual quality and the recently ratified 
Versatile Video Coding (VVC) [5] standard follows the same 
trend. However, improvements in coding efficiency tend to 
result in a large computational cost, which inevitably increases 
the power and energy dissipation of video codecs. In addition, 
today's video applications are more often performed on low-
power mobile devices. Therefore, developing dedicated 
hardware architectures is vital to mitigate the increased energy 
consumption in video coding. 

In block-based video coding, a plurality of blocks of M × 
N pixels is compared in order to find the most similar 
candidate block to the current block being encoded. Basically, 
the search process evaluates several available candidate 
blocks and the one that minimizes a dissimilarity metric will 
be chosen. Sum of Absolute Differences (SAD) [6] and Sum of 
Absolute Transformed Differences (SATD) [6] are the most 
common fast metrics to estimate similarity (or dissimilarity) 
between two different pixel blocks. In HEVC video coding, 
SAD is the most commonly used criterion in integer motion 
estimation (IME), whereas SATD is a preferred metric in 
fractional motion estimation (FME), intra search, and mode 

decision. On average, these coding tools together account for 
up to 40% of the whole HEVC encoder complexity. 

 SAD is simply the sum of absolute values applied to a 
prediction residual, whereas SATD first transforms the 
residual to different domain and then calculates the sum of 
absolute values. Usually, the Walsh-Hadamard Transform 
(WHT) [7] is used in SATD as the transforming function 
because calculation of WHT involves only additions and 
subtractions and allows thereby some optimizations. SATD 
tends to yield more accurate block estimates than SAD, 
because it better correlates with the Discrete Cosine 
Transform (DCT), which is a commonly used transform 
function in the well-known hybrid video coding scheme [8], 
[9]. However, the transform stage in SATD causes huge 
computational overhead. Therefore, it is vital to optimize 
SATD calculation method itself to make efficient hardware 
implementations possible. If SATD is used in FME or some 
other encoder stage, dedicated accelerators are recommended 
especially in mobile devices to meet strict constraints in 
execution time and power consumption [10]. 

It is possible to improve the energy efficiency of SATD by 
exploiting its mathematical properties. Traditionally, WHT is 
implemented using the Fast Walsh-Hadamard Transform 
(FWHT) [11] to reduce computational complexity. The 
FWHT can be implemented efficiently on hardware by 
dividing the 2-D transform into two 1-D transform stages and 
calculating both stages successively with butterfly-style 
adder/subtractor structure. Several FWHT-based SATD 
hardware architectures can be found in the literature [12]-[14]. 
The authors in [15], [16] investigated the usage of linear and 
transpose buffers between 1-D transform stages with square 
block sizes from 4×4 to 32×32. Transpose Buffer (TB) was 
reported to be more energy-efficient, although it results in 
greater chip area. The authors in [17], [18] utilized 
adder/subtractor compressors for butterfly operations and 
achieved about 10-14% reduction in energy consumption. 

 A more recent method to further reduce the number of 
arithmetic operations in Hadamard-based SATD is called a 
Transform Exempted (TE) method [19], [20]. In TE-SATD, 
the second 1-D stage exploits specific properties of absolute 
values to reduce arithmetic operations. The works in [21], [22] 
compared different 4×4 TE-SATD and butterfly-based 
FWHT-SATD architectures, of which TE-SATD 
architectures turned out to be more area and energy efficient. 
In [23], the authors introduced a combined 4×4 and 8×8 
SATD hardware architecture, which deployed also TE-SATD. 
In that architecture, the transformed 4×4 block was reused for 
8×8 SATD calculation. If both block sizes were required in 
coding, this approach was shown to save operations and 
buffers resulting in reduced energy consumption over separate 
4×4 and 8×8 SATD architectures. However, in a case where 
both block sizes are not needed, this approach results in 
hardware overhead.  



Our work proposes separate FWHT-SATD and TE-SATD 
hardware architectures for block sizes of 4×4, 8×8, and 16×16. 
They were all implemented using Algorithmic C (C++) and 
Catapult high-level synthesis (HLS) tool [24]. To the best of 
our knowledge, this is the first work that implements SATD 
units with the HLS design method [25] that is an emerging 
approach to raise the abstraction level over that of traditional 
Hardware Description Languages (HDL) such as VHDL and 
Verilog. By using HLS, designers can get 4-6 times increase 
in productivity over manual register-transfer level (RTL) 
flows [26]. 

The rest of the paper is organized as follows: Section 2 
describes the adopted FWHT-SATD and TE-SATD 
algorithms and Section 3 details the proposed 2-stage 
architectures for them. Section 4 compares power dissipation 
and cell areas of these architectures using 28 nm technology. 
In addition, the respective area and throughput results are 
reported with 45 nm technology for comparison with related 
works. Section 5 concludes the paper. 

II. SATD CALCULATION 

 The SATD is defined as 

 �������×	
 = � × 
  
����,��	
���

�
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where c ϵ ℝ� is a scaling constant, ��×	 is the pixel matrix 
of a residual block (difference between candidate and current 
block being coded), and the ���,� denotes the (i, j)th element 

of the 2-D transformed residual block  ����×	
 = ��×	 ×  ��×	 × ��×	� .             �2
 

 ��×	 is the transform matrix of an integer linear transform, 
usually WHT. It is derived from a generalized class of the 
Fourier transform and it uses a Hadamard matrix of size 2� ×2�, � ϵ ℝ�  [27] as a transform matrix. 1-D Hadamard 
transform (HT) is defined as  ���� !×�
 =  � !× ! ×  � !×�,                     �3
 

and 2-D HT is correspondingly defined as 
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 As expressed in (5), the Hadamard matrices are 
symmetric, i.e., �� = � . The scaling constant c in (1) is 
defined for WHT-based SATD as  

� =  12�                                            �6
 

  
 A naïve method to calculate the transform in (4) would be 
to use basic matrix multiplications, which have computational 
complexity of 4�56
, 7ℎ9:9 5 =  2� . Even though n is 
usually quite small, the 2-D transform requires two matrix 
multiplications resulting in a large number of multiplications 

and additions. In the case of Hadamard matrices, which are 
composed of only +1 and -1 elements, multiplications can be 
omitted and only additions and subtractions are needed. But, 
still the number of operations remains quite high �56 − 5 
. 
For example, 448 additions are still needed for one matrix 
multiplication when � = 3.  

 FWHT is a more efficient method, where the 2-D 
transform is decomposed into two 1-D steps, namely, rows 
and columns [7]. In other words, the first 1-D step in (4) would 
be equal to rows and the second step equal to columns. The 
associative property of matrix multiplication holds as (HD)H 
= H(DH), so the order in which the steps are calculated is 
negligible. Both steps have n levels of adders represented by 
a butterfly structure and each n levels has m adders to 
transform one row or column of the residual matrix [7]. 
Butterfly is constructed so that Hadamard matrices are 
recursively split into two smaller matrices. The residual matrix 
is transformed, e.g., by calculating the first step in row-major 
order and then the second step in column-major order. FWHT 
has 5 ×  ;<= �5
 additions for one step. For n = 3, it means 
192 additions which is 57% less than the ordinary matrix 
multiplication with entry multiplications omitted. After the 
transform computation, 5  absolute operations and 5 − 1 
additions are required to complete the SATD. Therefore, the 
total operation count for FWHT-SATD is 2 × 5 ×;<= �5
 + 5 − 1 additions (447 additions for n = 3) and 5  absolute operations (64 operations for n = 3).  

 In recently introduced TE-SATD method [19], [20], the 
first 1-D step is computed as in FWHT, but the second 1-D 
step combines sum, absolute, and compare operations using 
Property 1 [19]:  |�� + � | + |�� − � | = 2 × max�|��|, |� |
. 

 
The left-hand side of Property 1 is substituted by right-hand 
side to reduce operation counts without impacting the SATD 
result. In practice, the 2 × multiplication can also be omitted 
because of the scaling constant (6). The TE-SATD replaces 
the 1-D Hadamard transform and the sum of absolutes. 

 
1-D SATD can be defined by ������ !×�
 = ��C��� !×�
D = ���� !× ! × � !×�
.      �7
 

Applying matrix partition and (5) yields 

      ���� !× ! × � !×�
 

= �� F-� !./× !./ � !./× !./� !./× !./ −� !./× !./0 G ��, ,…, ! � ! ��,…, !IJ 
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Equation (8) shows how SATD can be calculated using the 
lower order SATDs. However, calculating SATD for two 
different block sizes at once can introduce some 
computational and hardware overhead. Therefore, this work 
implements separate SATD units for each block size.   
 In [19], 1-D TE-SATD for �Q×� = [��, � , �6, �Q]�  was 
derived as   

TE-SATD��Q×�
 = 2 × �5TU�|�� + �6|, |� + �Q|
 + 5TU�|�� − �6|, |� − �Q|
 
         �9
 

In this work, recursive property shown in (8) was also used 
with 8×8 and 16×16 blocks. For 8×8 block size, TE-SATD is 
computed for �W×� = [��, … , �W]� as 

TE-SATD��W×�
 = ����W×W × �W×�
  = �� X-�Q×Q �Q×Q�Q×Q −�Q×Q0 -��, ,6,Q�Y,Z,[,W0\                  
= �� ]�Q×QC��, ,6,Q + �Y,Z,[,WD^                   +�� ]�Q×QC��, ,6,Q − �Y,Z,[,WD^,       �10
 

 
which is composed of two 4×1 SATD calculations and by 
applying (9) 

TE-SATD��W×�
 = 2 × [5TU�|��� + �Y
 + ��6 + �[
|, |�� + �Z
 + ��Q + �W
|
 +5TU�|��� + �Y
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 − ��Q + �W
|
 +5TU�|��� − �Y
 + ��6 − �[
|, |�� − �Z
 + ��Q − �W
|
 +5TU�|��� − �Y
 − ��6 − �[
|, |�� − �Z
 − ��Q − �W
|
] 
(11) 

Finally, the 8×8 TE-SATD is computed as ������W×W
 = ����W×W × �W×W × �W×W� 
,       �12
 

in two 1-D steps by first calculating `W×W = �W×W × �W×W�  as 
in FWHT and then applying (11) for each column of R8×8.  

 Similarly, (8) and (11) were applied to derive the TE-
SATD for 16×16 block size, but the respective equations are 
omitted in this paper for brevity. 

 Table I summarizes the operation counts for complete 
FWHT-SATD and TE-SATD calculations. For example, in 
the case of 8×8 TE-SATD the final 1-D step has 255 
operations (159 additions, 64 absolutes, and 32 compares). In 
FWHT, the last 1-D step takes 319 operations. Thus, TE-
SATD saves 64 operations (13%).  

III. PROPOSED HARDWARE SATD IMPLEMENTATION 

 Since 2-D WHT is orthogonal, it is inherently separable 
and can be decomposed into two successive 1-D WHT stages. 
However, the second WHT stage uses the output of the first 
stage, so a buffer is needed between them if the transforms are 
not fully parallel. Several architecture explorations between 
parallel and buffer-based schemes can be found in the 
literature [15], [16], [21], [22]. A two-stage architecture with 
a TB [12] between the stages has proven to be a good trade-
off between energy consumption and area, so it was selected 
as basis for this work.  

 Fig. 1 depicts a conceptual block diagram of our TB-based 
SATD hardware architecture. It supports data blocks of 

size 2� × 2� , where n = 2, 3, 4. All these architectures are 
pipelined and they output a new SATD result in every 2� 
clock cycles. Altogether, six different hardware 
implementations were realized, i.e., separate FWHT-SATD 
and TE-SATD architectures for the block sizes of 4×4, 8×8, 
and 16×16.  

The Stage 1 takes as input the candidate (Can) and current 
(Cur) data blocks row-by-row. It calculates first the residuals 
and then the 1-D WHT using a butterfly structure. The Stage 
1 has input registers, but all data calculations are 
combinational.  

 The TB is a transposing shift register array [12] of size 2� × 2�. It changes shift direction every 2�th cycle, i.e., at the 
beginning of a new block. Thus, it allows fully pipelined 
operation on a quite simple hardware structure.  

 The Stage 1 and TB are identical to the FWHT-SATD or 
TE-SATD algorithms, but the Stage 2 has to be tailored to 
either of them. It calculates the second 1-D Hadamard 
transform and accumulates the final sum of absolute values. 
In the FWHT-SATD architecture, the second 1-D Hadamard 
transform is computed using the butterfly structure as in the 
Stage 1 and the resulting absolute values are accumulated as 
in (1). In the proposed TE-SATD architecture, the Stage 2 is 
made up of addition and absolute operations, but also compare 
operations (right-hand side of Property 1), which are basically 
implemented as multiplexers. Finally, the SATD result, stored 
in separate registers, is the output of the architectures.  

 Having the design implemented with Catapult HLS tool, 
several advantages were attained over a traditional RTL flow. 
As the RTL code is generated from the HLS code, it was 
straightforward to generate all six SATD architectures with 
minimal changes to the HLS code. In addition, because HLS 
code is technology independent, it is possible to generate 
optimized RTL for both ASIC and FPGA synthesis by only 
changing the target from Catapult HLS. In this work, only the 
ASIC results are presented. As an example, for RTL 
optimizations, Catapult HLS calculates and modifies the 
throughput of the design based on the desired clock frequency. 
Depending on timing and the used technology, the number of 
combinatorial operations that Catapult allocates per clock 
cycle varies. The state machine of the architecture can be 
pipelined by the tool for the best throughput. 

 
Fig. 1. A conceptual block diagram of the proposed SATD architecture. 

TABLE I. NUMBER OF OPERATIONS IN SATD CALCULATION 

 

O peration FWHT TE FWHT TE FWHT TE

Add 79 55 447 351 2303 1903

Abs 16 16 64 64 256 256

Cmp 8 32 128

Total 95 79 511 447 2559 2287

Saving -17 % -13 % -11 %

4 × 4 SATD 8 × 8 SATD 16 × 16 SATD



IV. RESULTS 

All the proposed SATD architectures were described in 
Algorithmic C and converted to RTL using Catapult Ultra 
Synthesis 10.5b tool. The RTL designs were synthesized with 
Synopsys Design Compiler [28] and evaluated on a 28 nm 
ASIC standard cell technology. The process technology was 
Fully Depleted Silicon On Insulator (FD-SOI) with 0.95 V 
supply voltage, typical process corner, and 25°C temperature.  

Switching activity interface format (SAIF) were used to 
estimate the power consumption of the synthesized designs. 
The files were produced using Questa Sim [29] inside the 
Catapult power estimation flow. The SAIF files contained real 
SATD inputs that were collected by encoding CityAlley, 
ReadySetGo, and ShakeNDry 4K test video sequences [30] 
with Kvazaar open-source HEVC encoder [31]. Architectures 
were synthesized for 2.5 ns clock period that was estimated to 
provide adequate SATD throughput for a full search FME 
algorithm in real-time (60 fps) 4K HEVC encoding [23]. 

The synthesis results for 28 nm technology, in terms of 
area, power, and energy, are presented in Table II. The results 
reported for the FWHT-SATD architectures serve as a 
baseline to highlight improvements of the proposed TE-SATD 
architectures. Cell leakage power was negligible thus it is 
omitted from the results. The proposed TE-SATD 
architectures resulted in 6.0-8.3% smaller total cell area and 
6.9-12.7% lower energy consumption than the FWHT-SATD 
baseline architectures. Hence, switching from FWHT-SATD 
to TE-SATD gives relatively significant savings considering 
that the Stage 1 and TB are identical in these two architectures. 
Because Catapult generated a flattened RTL designs, 
hierarchical area or power results are not analysed. However, 
synthesis results for each FWHT-SATD architecture declare 
that about 65% of the total area is used for registers and 35% 
for combinatorial logic. Thus, it can be estimated that 
approximately 60% of the total area is consumed by the TB. 
Considering this, TE method brings relatively substantial area 
and power savings.  

It is not straightforward to compare our results with prior 
works because they used mixed supply voltages and distinct 
target clock periods. However, area results for 45 nm 
technology are reported in some works, so the proposed TE-
SATD architectures were also synthesized for 45 nm NanGate 
standard cell technology [32] using 2.5 ns clock period. Table 
III presents these results for the proposed and related TB-
based SATD architectures. In comparison with the existing 
4×4 SATD architectures [15], [22], the proposed solution has 
competitive area, although it only takes one-fifth and one-
fourth of their clock periods, respectively. In the case of 8×8 
SATD architectures, the proposed work is the smallest. 
Furthermore, a combined 4×4 & 8×8 SATD architecture in 

[23] resulted larger area than the aggregated area of the 
proposed 4×4 and 8×8 SATD architectures. The 16×16 SATD 
architecture in [15] has 25 times as long clock period as ours, 
but still the area results are similar. The throughput 
determined by computed blocks per second (blocks/s) is 
mainly comprised from target period, thus our proposal 
outperforms most of the related works with high margins. 

V. CONCLUSIONS 

This paper presented the first known HLS implementation 
of the FWHT-SATD and TE-SATD architectures for block 
sizes of 4×4, 8×8, and 16×16 pixels. TE-SATD method has 
earlier been proven to decrease the needed operations in 
SATD calculation so it can potentially improve the energy 
efficiency in video coding. Our results confirm the advantages 
of the TE-SATD scheme over that of the FWHT-SATD. 
Synthesis results for 28 nm technology showed that SATD-
architectures implementing the TE-method can save 6.0-8.3% 
on cell area and 6.9-12.7% on consumed energy. In addition, 
the proposed architectures were synthesized for 45 nm 
technology and the results denoted that TE-SATD 
architectures designed with HLS offer better area-
performance trade-off than the existing implementations. 
Hence, replacing traditional HDL design approach with the 
HLS flow not only increased design productivity and code 
reusability in this case, but also performance was at least equal 
to that of the traditional HDL design flow.  
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TABLE II. SYNTHESIS RESULTS FOR 28 NM PROCESS TECHNOLOGY, 2.5 NS CLOCK PERIOD, AND 0.95 V SUPPLY VOLTAGE  

  

TABLE III. COMPARISON OF THE PROPOSED AND EXISTING SOLUTIONS 

 

FWHT-SATD (baseline) 1315 655 235 889 890 8.9

TE-SATD (proposed) 1206 -8.3% 598 179 777 777 7.8 -12.7%

FWHT-SATD (baseline) 4465 2386 768 3154 3154 63.1

TE-SATD (proposed) 4198 -6.0% 2247 632 2879 2879 57.6 -8.7%

FWHT-SATD (baseline) 17969 9494 2320 11815 11818 472.7

TE-SATD (proposed) 16747 -6.8% 8799 2196 10994 10997 439.9 -6.9%

Architecture Size
Cycles/

SATD

Cell Area

(µm
2
)

Area

Saving

16×16 16

Energy

Saving

4×4 4

8×8 8

Cell 

Internal

Power 

Net 

Switching

Power 

Total 

Dynamic 

Power 

Total 

Power

(µW)

Energy/SATD

(pJ/SATD)

[15] 4×4 FWHT TSMC 15.63 2943* 16M

[22] 4×4 FWHT TSMC 10.40 2600** 16M

[22] 4×4 TE TSMC 10.40 2500** 16M

Proposed 4×4 TE NanGate 2.50 2541 100M

[18] 8×8 FWHT NanGate 3.00 14833 41.6M

[14] 8×8 FWHT NanGate 1.69 12231 72M

[15] 8×8 FWHT TSMC 31.25 9468* 4M

[23]
4×4 &

8×8
TE TSMC 2.50 11935 50M

Proposed 8×8 TE NanGate 2.50 9337 50M

[15] 16×16 FWHT TSMC 62.50 33000** 1M

Proposed 16×16 TE NanGate 2.50 33667 25M

Area

(µm
2
)

Work Size

* Precise value from [23]; ** Estimated value from a graph

Blocks/sMethod
Library

(45nm)

Target

Period (ns)
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