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A B S T R A C T

Conventional industrial communication systems suffer from rigidness, inflexibility and lack of scalability. The
environment is heterogeneous as the systems exchange data with a variety communication protocols, some of
which are proprietary. This makes it laborious and expensive to reconfigure or upgrade the systems. As the
solution, this article proposes a message-bus-based communication architecture to enable information exchange
between systems regardless of their geographical location and position within the functional hierarchy of the
plant. The architecture not only enables communication to cross the conventional physical borders but also
provides scalability to growing data volumes and network sizes. As proofs of concept, the article presents a
prototype in three environments: a copper smelter, a steel plant and a distillation column. The results suggest
that the message-bus-based approach has potential to renew industrial communications, a core part of the
fourth industrial revolution.
1. Introduction

The industry of the future must exploit information to stay com-
petitive and sustainable, but especially process industry suffers from
non-interoperable and rigid communication systems. The lack of inter-
operability results from vendor-specific solutions as well as the diver-
sity caused by the hierarchical communication structure of production
plants [1]. Furthermore, the communication technologies couple sys-
tems tightly to one another, which hampers evolution [2]. The lack
of loose coupling is an obstacle to the communications required for
data-driven methods, which are essential for smart production [3]. In
general, both data and connectivity are among the success factors of
future systems [4].

To overcome the challenges, this paper studies the potential of
message bus architecture in plant-wide communication. The message
bus is defined as follows:
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A Message Bus is a combination of a common data model, a common
command set, and a messaging infrastructure to allow different
systems to communicate through a shared set of interfaces. [5]

The message bus specifies a single communication protocol and
set of information models, which is conceptually simple yet powerful.
This approach enforces each connected system to communicate in a
unified manner. The message bus differs from Enterprise Service Bus
(ESB) that implements the adapters for protocols and data in the bus
itself [6]. Instead, the message bus requires a dedicated adapter for
each connected system. This can require additional effort for the first
integration of a system, but the cost becomes profitable once the
number of connected systems grows and each can operate with the
others via a single common API (Application Programming Interface).
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Fig. 1. A unified communication channel could bring various benefits into industrial
communications.

As the result, scalability increases while the bus remains simplistic and
clean from business logic.

As illustrated in Fig. 1, the goal of the message bus is to realise in-
teroperability, eliminate physical limitations as well as enable scalable
systems and Internet connectivity. This is analogous with the vision of
Industrial Cyber–physical Systems (ICPS) that replace the automation
pyramid with a flexible system of systems [7, p. 4]. Although the
proposed message bus simplifies the overall communication structure,
the approach requires the bus to manage all the complexity of data de-
livery. The proposed message-bus-based architecture is called COCOP
(Coordinating Optimisation of Complex Industrial Processes), named
after the related research project.

The research objective of this paper is:

Design a message-bus-based communication architecture to meet
the requirements and challenges of process control in plant-wide
systems.

As proofs of concept, this article presents an implementation in
three production systems: (1) a copper smelter, (2) a steel plant and
(3) a distillation column for ethanol. (1) and (2) are actual production
plants, whereas (3) operates in a research laboratory.

2. Methodology

In this study, the research method is design science research, which
ims at designing artefacts to solve problems. Once designed, the
rtefacts are evaluated against their requirements to indicate useful-
ess. The artefacts should preferably be instantiated to demonstrate
dvantage. Research always aims at novelty. In design science, the
ovelty often comes from not the tool or method itself but rather a
ovel domain or fashion of application. On the other hand, design
cience often replies to the question if an approach or method is better
han previous solutions. [8]

Design science research has three cycles that cover not only the
esearch but also how this is connected to the environment. The rel-
vance cycle binds the work to a tangible problem. The rigour cycle
efers to connecting the work to knowledge, both by utilising existing
nowledge and producing new knowledge to other practitioners. This
istinguishes the work from routine design work. Finally, the design
ycle is the actual design, that is, the construction of artefacts and the
ubsequent evaluation [9].

This study applies design science research in the following stages:
2

• Define the problem to be solved
Section 3.1 Communication Needs

• Review state of art
Section 3.2 State of Art in Systems Integration

• Design a solution (i.e., the results of the study)
Section 4 Integration Architecture with Message Bus Communica-
tion

• Instantiate the solution (i.e., prove the results)
Section 5 Implementations for Production Systems

• Evaluate the results
Section 6 Discussion

. Background

.1. Communication needs

This section explains the requirements of plant-wide communica-
ion, including both present challenges and future directions. To have
concrete example of the challenges, a copper smelter is referred to

n the text, but the issues are generalisable to industrial production
ystems.

.1.1. Plant-wide coordination
In COCOP, a core goal is plant-wide coordination in process in-

ustry, which is challenging in certain plants. Some process plants
perate multiple autonomous but interdependent unit processes. The
nit processes are physically separate, and each has its own control
nd supervisory systems. Such plants are operable even if the control
ooms communicate manually, but unexpected conditions lead to non-
ptimal operation if the employees lack tools to schedule production
nd estimate how their decisions affect the plant as a whole. Therefore,
ools for plant-wide coordination help to consider both plant-wide and
nit-process-specific conditions in the effort to optimise plant-wide
roduction.

For a concrete example, let us consider the operation of a copper
melter that operates multiple unit processes (see Fig. 2). The processes
re many, but to shorten the example, only smelting furnace, convert-

ers and anode furnaces are considered. First, smelting produces matte
(approx. 65% copper) in a continuous process. This is delivered to
converters that produce blister copper (approx. 99% copper) in batches.
Finally, blister copper is delivered to anode furnaces, which further
refine blister copper in another batch process and cast the output
to anodes for subsequent electrolysis. Even the operation of a single
unit process requires expertise and careful control. For instance, the
converters operate in a temperature of over 1,200oC in a dirty, toxic
atmosphere, which makes it non-economical to constantly take samples
from the material, especially as manual samples require a break. The
converters operate as batches in a cyclic fashion, and the charged
materials as well as the end time of each cycle should be considered
carefully, which is a difficult task to the personnel due to the lack of
exact information. [10, p. 89, 127, 237]

Because our example smelter includes batch processes, scheduling
is necessary in plant-wide coordination. Scheduling must detect the
current bottleneck and provide sufficient time for material handling with
cranes. Scheduling must consider the heat balance of the material, as
too long waiting times cause solidification and too hot material causes
excessive wear in the equipment. Furthermore, the capacity of each
unit process varies unexpectedly due to defects and outages, and the
composition of raw material varies. The scheduler should target at a
suitable composition for the output of each unit process, as this affects
how much time the subsequent unit process needs and which actions
it must perform. For example, over-oxidation in converting requires
reduction in the subsequent anode furnace, which is expensive. Finally,
the scheduler should target at conditions that minimise the amount of
pure copper that ends up to waste. The challenges of copper smelter

optimisation have been studied by Korpi et al. [11].
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Fig. 2. A few unit processes to be coordinated in a copper smelter. Drawing based on
text in [10, p. 89, 127, 237].

Plant-wide coordination requires mathematical tools for modelling
and simulation that already exist, but these do not adequately support
distributed optimisation in I4.0. A typical challenge is that even if it
were possible to create a single mathematical tool for plant-wide opti-
misation, it is economically infeasible to maintain such a monolith. Fur-
thermore, it can be desirable to distribute separate computational tasks
to heterogeneous platforms depending on what platform is available in
each control room or what calculation tools are applied.

Although plant-wide coordination is a special case of industrial
communications, the related requirements are generalisable. Indus-
trial systems are networked multi-vendor environments that benefit
from manageable yet straightforward data exchange. Therefore, the
advances that help plant-wide coordination help communications in
I4.0 in general.

3.1.2. Requirements of communication
Let us look at the communication requirements of plant-wide co-

ordination (see Fig. 3). The plant operates unit processes that are
physically separate, and each has its own control and supervisory
systems. The related process data is exploited in multiple locations, not
only the control system but also in a scheduler system. The scheduler
observes the state of all unit processes and generates schedules for the
operators, helping them to consider the plant-wide scope. To develop
plant operation in the future, the process data should be pushed to a
cloud environment to enable process analytics and development as well
as data-driven control methods. The resulting communication-related
requirements are explained in the following paragraphs.

Loose coupling. As information systems are integrated, it facilitates
updates and reconfiguration if the systems are connected only logically
rather than physically [2]. This means that the systems do not know
the physical (i.e., intrastructure-level) address of each other but com-
municate via a higher-level address that redirects to the physical one. In
the best case however, systems should be able to communicate without
knowing the communication partner in the first place. In the copper
smelter example, loose coupling would help in maintaining the systems,
because a system could be occasionally unavailable without requiring
downtime in other systems. Downtime can affect the availability of
data, which can have side effects, such as unavailability of functionality
in supervisory software. Still, loose coupling helps in designing the
systems to tolerate outages. Another advantage is easier testing, as any
party of communication can be replaced with a mock that provides a
suitable interface.
3

Fig. 3. The items that must communicate in the example plant.

Network scalability. Information systems tend to grow in size and data
volume, which leads to a need to scale up the systems. Scaling should
be straightforward, because it is not only non-economical to leave
a computational reserve to each part of the system but also some-
times difficult to foresee bottlenecks. In the copper smelter example,
any data source is a potential bottleneck. For instance, a server of
measurement data can be overloaded by a requirement to provide
measurement values to multiple clients. This would be avoided if the
network infrastructure routed the measurement values to the clients,
which would enable the server to concentrate on supplying the values
instead of routing. The requirement of scalability becomes most evident
when the data sources are computationally restricted devices, such as
microcontroller-operated sensors, although all systems have a maxi-
mum capacity. It is notable, however, that the network infrastructure
can become the bottleneck especially if a centralised medium takes
care of message routing. Besides, such a medium can increase latency
compared to a direct node-to-node communication scheme. Thus, it
must be considered case by case which solution leads to the best
scalability.

Internet connectivity. In the industrial context, data-driven systems lead
to the exploitation of cloud infrastructures and Internet, as data is
collected and processed [12]. Therefore, the networks of production
systems should enable Internet connectivity. In addition, an industrial
plant can span multiple factories (e.g., [11]). To coordinate such a
plant, there must be a means to control the factories as a whole
and deliver information between these. The example copper smelter
produces anodes for electrolysis that occurs kilometres away from
the plant, which necessitates coordination. On the other hand, indus-
trial maintenance is often outsourced, which leads to a need to share
equipment-related real-time data with an external organisation [13].
Finally, even supply chains necessitate collaboration [14].

Security. Security is essential in modern information technology due
to the related risks. Information security is concerned with information,
whereas cyber security aims at protecting the environment from threats
that result from ICT [15]. For example, an exposure of information
could reveal business secrets to competitors, and a malicious instance
might cause a cyber incident, which could result in human, capital or
environmental consequences. Therefore, the communication channel
should support at least the basic security features, which are user
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authentication, access control and the encryption of traffic. Whether
the security measures should go beyond these depends on the case.
No system can fulfil all security requirements out of the box. On the
other hand, security is not only technology but also processes and
education [16, pp. 22–25].

Discovery. Conventionally, systems integration has been manual in
industrial plants, but once the systems become more structurally more
flexible, there should be a means for the components to discover each
other. In an ideal case, the components can connect to each other
dynamically without any prior knowledge about the exact network
address of the services they need. Discovery is most important in
facilities that are reconfigured repeatedly. This need appears more often
in manufacturing than in process plants, but dynamic discovery still
makes reconfiguration and system updates smoother even in process
industry.

Orchestration and choreography. In a distributed production plant, the
systems must interact over a network. Because this functionality in-
volves complexity, such as dependencies, preconditions, data struc-
tures and timing constraints, there should be a tool to coordinate
the overall interaction. Two aspects arise: orchestration refers to the
centralised composition of services, whereas choreographing helps in
oordinating parties that operate autonomously but follow certain rules
f interaction [17].

tandardised information models. Communications does not limit to the
echanism of sending and receiving information but must also cover
resentation. The information models must cover any communication
etween systems. This ranges from individual measurement values to
he state information of processes and the instructions of operation,
uch as schedules. In the copper smelter example, the schedule should
overs issues, such as the timing of batch processes (i.e., converters
nd anode furnaces) as well as the production rate of the continuous
melting process. On the other hand, the state information of each
nit process must be delivered to the scheduler, so that the generated
chedules are feasible. The information models should be based on
ndustry-wide open standards, because this enables interoperability and
tandards are among the key factors of Industry 4.0 [18].

nteroperability. In production plants, the typical environment is a
ixture of systems from multiple vendors. For these to communicate,

nteroperability is necessary. This is defined as ‘the ability of two or
ore systems or components to exchange information and to use the

nformation that has been exchanged’ [19, p. 114]. In the best case, the
ystems can communicate directly without any additional logic to adapt
nterfaces. In the copper smelter example, there are multiple control
ooms and control systems. Among these, there are likely software
ystems from separates vendors, but information exchange is necessary
o coordinate the plant. Respectively in the scope of equipment, such
s valves, pumps, instrumentation and electric motors, there is a range
f manufacturers. Interoperability necessitates common agreements be-
ween vendors about the practices of communication. The wider the
cope of communication, the more effort is necessary to settle such
greements.

ard real-time support. Some industrial control systems require re-
ponse times that take no longer than a fraction of second. This applies
articularly to devices close to the production process rather than
he systems related to manufacturing operations or enterprise-level
usiness processes. In a copper plant, the dynamics of the processes
s slow due to the nature of the chemical reactions of oxidation and
eduction. Therefore, the instructions of operation are often given
ith a resolution of minutes, but a response time should be always
e guaranteed. On the other hand, certain activities require quick
esponses. For example, as converters oxidise matte, the generation
f offgas fluctuates. Because these gases contain sulphur dioxide, they
4

hould be captured with dedicated equipment. The equipment should
react appropriately to the variation of offgas generation. All in all, as
the ultimate aim is to specify a communication scheme suitable for
a variety of industrial plants, a hard and fast real-time support is a
necessity.

3.2. State of art in systems integration

This section reviews the state of art. This includes design paradigms
as well as previous frameworks and research for industrial systems
integration. Although previous research successfully addresses core
issues in systems integration, there is still a gap to fill in plant-wide
communication systems.

3.2.1. Service-oriented architecture
Service-oriented Architecture (SOA) is a common paradigm in net-

worked systems and suitable for industrial solutions as well. In SOA, the
distributed software items are modelled as services that follow certain
principles to facilitate design, maintenance and scaling. According to
Erl [20], the principles are:

• Abstraction: The services should only expose to clients what is
necessary to use the service

• Autonomy: Design the services to be abstract not to bind these to
any specific platform, and avoid any strict runtime dependencies
to other services

• Composability: Enable the services to be composed as a service
built upon other services

• Discoverability: Enable the services to be discovered
• Loose coupling (or decoupling): Aim to reduce the number of

direct dependencies between the services
• Reusability: Design the services generic to enable reuse
• Standardised service contracts: Use standardised technologies as

the basis of service interfaces and their description
• Statelessness: Maintain state information out of the services when

possible

Conventionally, SOA has been associated with the client–server
model and pull communication. The technologies include, for instance,
Simple Object Access Protocol (SOAP [21]), which exposes software
interfaces as remotely callable procedures. SOAP is based on Hyper-
text Transfer Protocol (HTTP [22]) and Extensible Markup Language
(XML [23]). An alternative approach is Representative State Transfer
(Rest [24]), where the services are modelled as resources rather than
operations. Rest, also called ‘Restful’ when referred with an adjective,
can be based on HTTP and XML as well, but alternatives exist, such
as JavaScript Object Notation (JSON [25]) for data serialisation and
Constrained Application Protocol (CoAP [26]) for the communication
protocol. Both SOAP and Rest, which are client–server approaches, are
possible tools in designing a system that realises SOA principles.

Besides pull communication, even SOA can be implemented with
the push model where the data source determines when to publish
data. This suits for scenarios that require the data consumer to monitor
a certain data set, such as a sensor reading. In some use cases, there
must be a way to select which data to receive from a data source. This
pattern is called publish–subscribe, and the protocols that implement
this include, for instance, MQ Telemetry Transport (MQTT [27]) and
Advanced Message Queueing Protocol (AMQP) version 0-9-1 [28].

3.2.2. Industry 4.0
Industrial Cyber–physical Systems (ICPS) have been a core trend

in the research of intelligent industrial systems in recent years. ICPS,
as well as the domain-agnostic term Cyber–physical Systems (CPS),
refers to systems where distributed, networked, re-configurable, intel-
ligent computational units collaborate with their environment [29].

According to Lee et al. [30], CPSs must implement connectivity and
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data analysis methods to enable information collection from the envi-
ronment. Information enables self-comparison within the environment,
decision support and self-configuration. The implementation of ICPSs
require multiple technologies, including sensors and actuators, commu-
nication protocols as well as methods for data analysis and knowledge
management.

ICPSs are exploited in the German Industry 4.0 (I4.0) initiative that
aims at increasing the competitiveness of industrial production. In I4.0,
the technological goal is to exploit ICPSs to increase the adaptability
and intelligence of production as well as facilitate timely commu-
nication within enterprises and collaborative business networks [31,
pp. 13–17]. The name ‘Industry 4.0’ refers to the fourth industrial rev-
olution, which does not only include technology but also organisations
and management. As reviewed by Lu [32], I4.0 has multiple definitions,
and some authors consider even smart cities included. The development
of I4.0 is coordinated with the Reference Architectural Model Industrie
.0 (RAMI 4.0 [14]). RAMI 4.0 includes plant hierarchies, organisation
nd communication as well as the lifecycle of production equipment. In
4.0, another core concept is Asset Administration Shell (AAS), which
ims to specify the interface required for information exchange in value
hains [33]. AAS does not specify the interfaces required for the actual
rocess control but instead refers to existing standards for this need.

I4.0 has competition in other countries, including Industrial Internet
onsortium (IIC) in United States. To coordinate research and devel-
pment, IIC has released the Industrial Internet Reference Architecture
IIRA [34]). IIRA overlaps partially with RAMI 4.0, but the two also
omplement each other as indicated in a comparative study [35]. RAMI
.0 focuses deeply in manufacturing, whereas IIRA has a cross-domain
cope without specialisation. I4.0 and IIC are not the sole initiatives to
evelop the industrial Internet, but this article regards them as most
nfluential worldwide and therefore omits others. Because this work
ocuses on industrial production, I4.0 is the primary reference.

.2.3. Frameworks for systems integration
To implement systems integration in I4.0, there are multiple can-

idate frameworks. Some of these stem from the Internet of Things
IoT) paradigm that aims at contributing to the connectivity in general
hereas others focus on the domain-specific questions of industrial

ystems. The following paragraphs review the frameworks. Earlier,
aniagua & Delsing [36] have conducted another survey about the
rameworks.

rrowhead. Arrowhead is a SOA framework to enable the interoper-
bility of system of systems. It provides generic services to facilitate the
ealisation of SOA. There are five target domains: ‘production’, ‘smart
uildings and infrastructure’, ‘electro mobility’, ‘energy production and
nd user services’ as well as ‘virtual market of energy’. To comply with
rrowhead, a system must support at least the following Arrowhead
ervices: service registry, authorisation and orchestration. Arrowhead
ealises the system of systems paradigm by enabling subsystems called
local clouds’ at the side of ‘global cloud’. The framework enables
ven legacy systems to be connected, which is important in industry.
37] Additionally, Arrowhead enables the management of workflows
ith choreographing and orchestration tools [38]. That is, Arrow-
ead provides an infrastructure with commonly needed SOA functions
o enable systems to interoperate. However, it does not implement
ny case-specific communication, such as the delivery of production-
elated information in a process plant and the required communication
rotocol.

UTOSAR. Automotive Open System Architecture (AUTOSAR [39])
ims to facilitate the integration of automotive software. In automotive
ndustry, system development occurs in parallel between multiple or-
anisations and the systems have requirements, such as safety, security,
onnectivity and updateability. AUTOSAR creates an abstraction layer
etween software and hardware to reduce dependency and promote
5

oftware re-use. AUTOSAR specifies two platforms, namely classic and
daptive. The classic platform has four basic principles: ‘functional
afety’, ‘efficiency’ (of development), ‘field proven’ (maturity) and ‘per-
ormance’ (e.g., hard real-time capability, scalability and support for a
ange of communication protocols). The adaptive platform has arisen
rom the need to enable the connectivity of vehicles rather than enable
pplications to interact within one vehicle [40]. The adaptive plat-
orm contributes to features, such as autonomous driving, automatic
oftware updates and deployment, car-to-car communication and the
Car-2-X’ connectivity with infrastructure or smart homes.

aSys and BaSyx. BaSyx is a reference implementation of an architec-
ure developed in a research project called BaSys [41], which specifies

middleware to realise industrial CPSs that form a flexible network
nstead of the strict automation pyramid. BaSyx implements the AAS
nterface [33] for equipment as referred to in I4.0. The framework
romises to support the communication protocols HTTP and MQTT
s well as OPC UA, and it enables integration with the information
ystems for Manufacturing Operations Management and Enterprise Re-
ource Planning. In addition, BaSyx provides a software development
it for developers [42]. To manage the AASs of equipment and enable
iscovery, BaSyx maintains a registry. The user can implement com-
unication with ‘any’ protocol but must ensure compatibility between

omponents to enable data exchange [43].
BaSyx has four levels for components. First, on the bottom, the field

evel covers sensors and actuators without any existing BaSys support.
econd, the device level contains devices that have a BaSys-compliant
nterface or have been adapted to such. Third, the middleware level
rovides generic services, such as registry, discovery, ‘protocol gate-
ays’ and AASs. Fourth, on the top, plant covers any components that

manage, optimise and monitor’ production [44].

IWARE. FIWARE is an open-source platform that aims to facilitate
he development of ‘smart solutions’, built by a developer community.

ithin the community, the explicitly mentioned domains are food pro-
uction, cities, energy and industry. [45] In the core of FIWARE, there
s a centralised broker component that manages context information.
he context information is available for the connected components to
e exploited or enriched. Furthermore, the are APIs to connect IoT and
ther devices. [46] The context information management API, ‘Next
eneration Service Interfaces Linked Data’ (NGSI-LD), has even been
ublished as a standard [47].

WM2M. Lightweight M2M (LWM2M) has been designed to enable
ervice architectures built on resource-constrained devices. The original
otivation of the specification is the remote management of devices.

WM2M interfaces are Restful and built upon CoAP, and the specifi-
ation provides a resource and information model as well. [48] Still,
owadays there is a binding for even HTTP and MQTT [49]. For data,
here are serialisation formats, such as JSON and Concise Binary Object
epresentation (CBOR) [50]. To implement LWM2M, there are multiple
pen source tools that provide either a server or client [51].

CF and IoTivity. Open Connectivity Foundation (OCF) is ‘dedicated
o ensuring secure interoperability for consumers, businesses and in-
ustries by delivering a standard communications platform’ for IoT
ystems. OCF provides a set of specifications to specify aspects, such
s architecture, APIs, resource model, security, discovery, adapters
i.e., ‘bridging’) and cloud integration. At least a subset of the specifica-
ions has been accepted as an international standard by ISO or IEC [52].
o implement communication, OCF specifies a stack that includes CoAP
s the protocol and CBOR [53] as the encoding. All APIs are modelled
s resources and therefore Restful. Furthermore, the resources enable
he clients to subscribe for updates from the server [54].

IoTivity is an open-source reference implementation of OCF. It has
een implemented in C programming language. IoTivity detaches its
ogic from platform-specific functionality with ‘abstract interfaces’ to
acilitate multi-platform support and maintenance as well as lengthen
he lifecycle [55]. IoTivity seems to mainly target to resource-constrai-
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ned devices, as C has been chosen for the programming language. C
is limited and has a non-intuitive syntax compared to modern high-
level languages (such as Java, C#.NET, Python and JavaScript), but
its internal logic is simple and it therefore has a wide support across
platforms.

OPC UA. Open Platform Communications Unified Architecture (OPC
UA) is a ‘platform-independent standard through which various kinds
of systems and devices can communicate’ [56]. It specifies, for instance,
communication protocols, information models, a security model, dis-
covery mechanism and functionality for data browsing, aiming at in-
teroperability in multi-vendor environments. OPC UA facilitates the
realisation of interoperability with profiles that specify a set of fea-
tures, so that not all compliant system must support all features. The
conventional OPC UA is based on a client–server model, which is
practical when single data items are explicitly requested but lacks
scalability in push communication. Therefore, OPC UA PubSub [57]
has been released to enable communication that scales better in data-
driven applications. However, PubSub excludes message routing, which
means it only standardises a data link. The original OPC UA has a
production-process-oriented focus that lacks a support for the higher-
level problems of production systems. This could be addressed with
so called companion specifications that include an information model
for devices [58], manufacturing operations [59] and robotics [60],
to mention a few. Finally, the conventional OPC UA cannot guaran-
tee real-time communication, but this can change with Time-sensitive
Networking (TSN) [61]. This would enable OPC UA to implement
communication down to the field level of control systems.

3.2.4. Related paradigms and research projects
Middleware is another approach to integrate software systems but

suffers from maintenance-related issues. It is a system that enables
software to communicate in a distributed environment [62]. In this
study, middleware is considered a monolith, such as an ESB, that adapts
incompatible interfaces to one another. A middleware can not only
be proprietary but also implement standard interfaces, such as Web
Service Information Service Bus Model (WS-ISBM [63]) that specifies an
SOAP-interfaced ESB. Another Web-service-based middleware was pro-
posed by the Socrades project [64]. On the other hand, even FIWARE
can be considered a middleware, as it provides a centralised context
broker [46]. While a middleware can contribute to interoperability, its
maintenance can become problematic because it must implement data
and protocol conversions and its hub-and-spoke approach tends to host
business logic, although the medium should only deliver data [6, p. 25].

As modern industrial control necessitates the distribution of com-
putation, multi-agent systems are a potential paradigm. They refer to
systems where problems are solved by letting autonomous intelligent
units called agents to collaborate. In multi-agent systems, there are
challenges, such as coordination, security and task allocation [65],
which are relevant in any production plant as well. Although multi-
agent systems are a potential viewpoint in implementing plant-wide
control systems, the paradigm itself does not remove the need to
communicate information with a protocol and information model.

Prior to COCOP, earlier publications have studied industrial systems
integration but lack factors considered by COCOP. The core factors are
interoperability in the plant-wide scope as well as scalability to grow-
ing data volumes. The project ‘Model Based Control Framework for
Site-wide Optimisation of Data-intensive Processes’, (MONSOON [66])
specifies a platform for the ‘collection, storage and processing’ of in-
dustrial big data. The system resembles a ‘hub-and-spoke’ architecture
without an effort towards plant-wide interoperability with common
technologies. The project ‘Production Harmonised Reconfiguration of
Flexible Robots and Machinery’ (PERFoRM) proposes an industrial mid-
dleware with a common information model [67]. The proposal supports
multiple communication protocols, which does not aim at reducing
heterogeneity to similar extent as this study, but the common informa-
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tion model contributes to this goal. Theorin et al. [68] have presented
‘Line Information System Architecture’ (LISA). LISA uses a message
bus but does not communicate with standard-based messages, and the
focus is on device-level issues rather than plant-wide systems. Modoni
et al. [69] propose ‘Virtual Integrative Manufacturing Framework for
Resources Interaction’ (VICKI) to refine and deliver information be-
tween manufacturing resources. Although the framework implements
messaging with a publish–subscribe-capable middleware, the focus is
on production lines rather than plant-wide systems integration.

In COCOP, earlier publications have described work in progress.
Initial prototypes were published in [70], comparison of candidate in-
formation models in [71] and the first specification of the architecture
in [72].

4. Integration architecture with message bus communication

This section introduces the message-bus-based COCOP architecture
to meet the challenges of plant-wide communications. After the ar-
chitecture has been presented, the section evaluates it against the
requirements explained in Section 3.1.2.

4.1. Service orientation with topic-based message bus

To implement a service-oriented plant-wide communication system,
COCOP architecture has adopted the following philosophy:

Communicate over a message bus based on standardised message
structures with a standardised protocol that implements topic-based
publish–subscribe communication.

The message bus has advantages over the conventional client–
server-based SOA, which suffers from limitations regarding the re-
quirements specified in Section 3.1. First, because the server must
serve each client individually, it can run out of resources (e.g., [73]).
The server can be scaled up, but this were more efficient if the data
source remained intact and there were a scalable network medium.
Second, client–server necessitates the clients to directly interact with
the servers, which does not realise loose coupling. Instead, a message
bus can realise SOA without similar limitations. In this approach, the
message bus is the server and all other network nodes are clients
regardless if they are data sources, data consumers or both. The role
of the server is merely to route message traffic without any knowledge
about the workflows being executed. This means that the server role
disappears from the viewpoint of business logic.

Fig. 4 illustrates the message-bus-based philosophy. The message
bus is in the middle, enabling communication. In the scope of COCOP,
the network nodes are graphical user interfaces (GUI), optimisation
software, control systems, databases and nodes that provide measure-
ment data from equipment. Additionally, the message bus enables
Internet connectivity to support geographical distribution as well as
data-driven methods in the cloud.

The keywords of COCOP philosophy are topics, publish–subscribe
and standards. Regarding topics and publish–subscribe, the message
bus routes messages based on topic names. Any data sources publish
messages to the topics, and the data consumers subscribe to receive the
messages. Regarding standards, both the communication layer (i.e., the
message bus) and the message structures are based on standards.

Fig. 5 illustrates topic-based communication within the message
bus. To receive messages from one or more topics, each network node
creates one or more message queues. The nodes associate their queues
to the topics they subscribe for, and the message bus takes care of
message routing to the queues. The message bus creates a copy of each
message for each subscriber. In the figure, System A is a data source,
B monitors a variable, C generates schedules based on the state of
production processes and D displays the schedules created by C. The
example is simplistic, as a real scenario would include too many topics

and systems to be illustrated in a figure.
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Fig. 4. COCOP architecture for plant-wide systems integration.

Fig. 5. An example of topic-based communication.

The novelty and advantages of COCOP stem from the goal to
implement plant-wide communication with a topic-based message bus.
The approach has at least three advantages. First, the network nodes are
loosely coupled, and there are no direct dependencies between systems.
The publish–subscribe approach enables decoupling in ‘time, space and
synchronisation’, because the network nodes do not directly bind to
one another and the queues remove any direct temporal dependencies
between data sources and consumers [74]. Second, for any connected
system, the message bus removes the strict levels of the automation
pyramid [1]. As the third advantage, the approach scales up well for
two reasons. Firstly, because there is a common data information and
common protocol, all network nodes can interpret the information
produced by others, which enables interoperability. This reduces the
price of modifications and extensions. Secondly, even when the number
of data consumers grows, there is no need to add resources to any
data source, because the message bus delivers all message traffic. If the
maximum capacity of the message bus is reached, it will be scaled up
7

Fig. 6. If a system lacks a COCOP-compliant interface, a dedicated adapter is
implemented to enable communication via the message bus. The adapters do not
execute in the message bus but in another runtime.

while the data sources stay intact. Earlier, OPC UA PubSub [57] has
targeted at this but lacks the specification of the actual message routing.
Furthermore, COCOP is more flexible compared to ESB that tends to
gather complexity by implementing protocol and data translations in
itself, which leads to a rigid and difficult-to-maintain monolith.

For the communication protocol of the message bus, COCOP selects
the industry standard AMQP 0-9-1, because this supports topic-based
communication and has been targeted to systems that require scal-
ability to a high volume [75]. Certainly, volume is paramount in
process plants that can comprise tens or even hundreds of thousands
of devices. Still, MQTT could be studied as well, because it supports
the topic scheme and the newest 5.0 version (as of 2021) promises
improvements in scalability [27]. To communicate with AMQP 0-9-
1, RabbitMQ server [76] is a candidate for the message broker. It is
available at no cost, and the source code is open.

4.2. Systems integration with adapters

A message bus enforces each connected system to communicate in a
unified manner, which is different from Enterprise Service Buses (ESB)
that connect systems with a comparably heavyweight monolith. Similar
to a message bus, ESB performs message routing. However, an ESB can
also provide services, such as a business process engine, conversion
of communication protocols and mapping of message formats [6, p.
16, 28]. This makes an ESB complex compared to a message bus that
contains neither business workflows nor any logic for the adaptation of
data formats and protocols.

Because the message bus only uses one communication protocol and
delivers messages in certain information models, adapters are necessary
for some systems. This is illustrated in Fig. 6, where system A has a
COCOP-compliant interface but system B does not. System B can either
have a legacy interface, be vendor specific or support another standard.
Although the development of adapters requires additional work, this is
compensated by a lower overall complexity within the network. This is
supported by a study by Trunzer et al. [77] that have applied software
metrics to indicate a reduced complexity compared to point-to-point
integration, which is common in the client–server scheme.

It is notable that the message bus does not execute the adapters, but
these must have a separate runtime. Therefore, the internal logic of the
adapters is out of the scope of this article.

4.3. Meeting the requirements

The following sections assess how the selected message bus ap-
proach meets the requirements specified in Section 3.1.2. In each sec-
tion, the first paragraph assesses how COCOP meets the requirement,
whereas the second paragraph compares COCOP with the frameworks
reviewed in Section 3.2. The final section summarises the comparison.
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Loose coupling. In conventional client–server-based web services, loose
coupling is realised with domain names that map to an Internet Pro-
tocol (IP) address. In COCOP however, the systems communicate with
topics and message queues that decouple the communication partners
from one another. In the approach, the data sources (or publishers)
associate a topic identifier to each message they publish to the message
bus. Respectively, the data recipients (or subscribers) announce the
message bus which topic identifiers they are interested in. To receive
messages, each subscriber creates a message queue into the message
bus. Based on topics, the message queue routes the messages into the
queues. This publish–subscribe approach decouples systems in ‘time,
space and synchronisation’, because the subscribers do not directly
know the subscribers and they can process incoming messages from
the queue as suitable for them without blocking the execution of any
communication partner [74].

All the reviewed frameworks implement loose coupling to some
degree, because they suggest a model where items reach one another
based on a network address. For example, FIWARE is a centralised
solution that bring context information available to the network. This
means that any clients do not have to interact directly, but the approach
is opposite to COCOP that strictly keeps the actual information storages
outside of its message bus. The resource-oriented model of LWM2M
and OCF implements a Restful SOA, which means that the resources
can form physical one-to-one dependencies and be therefore tighter
coupled than in COCOP. However, this can be relieved with a discovery
mechanism, such as the one provided by Arrowhead [37], to enable the
network nodes to discover one another at runtime. Arrowhead could
potentially improve loose coupling even in COCOP by enabling the
network nodes to discover the relevant topics at runtime. However, it
requires another study to verify how feasible this combination is.

Network scalability. Scalability is one of the main arguments in COCOP.
ecause the bus routes all traffic based on topics, each data source

ust publishes data to one or more topics and any data consumers
ubscribe for the topics as relevant. This eliminates the need for data
ources to serve each client individually. The message bus can become
bottleneck, but this will be the only node to require scaling, whereas
client–server scenario necessitates computational reserve in each

ata source just in case. COCOP has selected AMQP 0-9-1 as the
mplementing protocol, which was initially motivated by scalability
nd capacity [75]. If required, message bus can run on multiple servers
hat implement load balancing.

The message bus is scalable and can result in fraction-of-second
essage delivery times, but it does not scale infinitely especially to

he lowest level of industrial systems. When a message travels through
he bus, there is always a latency in routing, and the message must
ravel first into the bus and then to the ultimate recipient. This is
rimarily not a problem regarding scalability but temporal constraints.
urthermore, when the size of a production plant grows, a question
rises how to keep topic names unique within the message bus. AMQP
as mechanisms for this, but these were not yet studied for COCOP.
esides, in geographically distributed facilities, there can be separate
essage buses. To handle the issue of locating the message bus server,

he could be a study about combining COCOP and another framework,
uch as Arrowhead.

nternet connectivity. COCOP message bus has been designed to sup-
ort connections via Internet. Concretely, this already works with the
elected AMQP interface that receives connections from clients via
protocol based on Transmission Control Protocol (TCP [78]). TCP

nables connections via Internet, enabling geographically distributed
ystems to communicate and facilitating information exchange not only
ithin large-scale production plants but also with external businesses

hat provide services. Furthermore, it is possible for sensors to stream
ata into the cloud, which enables data-driven methods in process
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ontrol. b
All of the reviewed frameworks communicate with Internet proto-
cols. Therefore, COCOP does not bring any advantage over them but is
still better than various legacy technologies, such as fieldbuses or Open
Platform Communications Data Access (OPC DA), that enforce the strict
levels of the automation pyramid to remain.

Security. COCOP architecture enables and supports security features
but does not focus in this field. If RabbitMQ is selected as the message
bus server, it enables user authentication, access control, traffic en-
cryption and guaranteed message delivery. Additional communication-
related security mechanisms can be implemented as needed. This can
be based on an existing standard, such as ITU-T X.805 [79]. The
organisational aspects of security are out of scope in this paper but
should be implemented based on a risk assessment, which is individual
to each production plant.

All of the reviewed frameworks consider security, because this is
one of the enablers of architectures that connect a fleet of IoT devices
with Internet-capable protocols. COCOP could be bundled with Arrow-
head [37] to bring a security layer above a particular message bus, as
this would bring more power to authorisation in a distributed plant.
This is a topic for future research.

Discovery. Regarding discovery, COCOP is twofold. On one hand,
topic-based communication enables data reception by subject without
knowing the network address of the data source. On the other hand,
there is no means to discover which topic names are appropriate for a
particular workflow, because there is no metadata about topics.

In this aspect, COCOP is inferior compared to at least Arrowhead,
BaSys and OCF. To enhance discovery, COCOP could potentially be
complemented with Arrowhead or BaSys, but it requires more research
to determine if this is functional in practice.

Orchestration and choreography. In COCOP, the message bus is merely a
message delivery tool and cannot therefore perform anything regarding
orchestration and choreography. Therefore, such actions must occur in
the systems and software that interact via the message bus. On the other
hand, this ensures that all business logic remains outside of the message
bus, which prevents the message bus from becoming a heavyweight and
difficult to maintain monolith similar to an ESB.

In this aspect, at least Arrowhead [38] is more advanced than
COCOP as it provides tools for both orchestration and choreogra-
phy. Therefore, there could be a future study about orchestrating and
choreographing a COCOP-based system with Arrowhead.

Standardised information models. Systems integration necessitates com-
mon information models that can be serialised for to enable electronic
communication. The following standards have been chosen, each en-
abling serialisation in XML. This article does not study information
models in detail but leaves these as a subject of another article.

• Business to Manufacturing Markup Language for production sched-
ules (B2MML [80]; implements ANSI/ISA-95 [1])

• Geography Markup Language for measurement values (GML [81])
• Sensor Web Enablement Common Data Model for data records

(SWE [82])
• Observations and Measurements for metadata (O&M [83])
• TimeseriesML for time series (TSML [84])
• Sensor Observation Service for the pull communication of measure-

ments and other data (SOS [85])
• Sensor Planning Service for the remote control of long-running

tasks (SPS [86]).

The current standards included in COCOP provide vocabulary for
he communication of industrial data, such as single measurement
alues, data records and timeseries, and the association of metadata,
uch as data quality, timestamp and location identifier. The data can

e delivered either with publish–subscribe or on request. Furthermore,
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B2MML specifies structures for the coordination of manufacturing op-
erations.

Compared with other frameworks, COCOP has advantages in
production-related data structures. OPC UA has a selection of informa-
tion models, but the abstraction level often remains low, because OPC
UA has conventionally focused on the integration of devices. OPC UA
has companion specifications, such as one for ANSI/ISA-95 [59] that
implements only a subset, whereas COCOP enables all structures from
the B2MML serialisation format. An advantage of COCOP is its possibil-
ity to simply extend the existing vocabulary with another information
model especially if this provides a schema or another comprehensive
documentation, because the message bus can technically deliver any
content. This can be in XML, JSON or anything else. Thus, COCOP can
adopt the serialisation format of any new standard as soon as it becomes
available without any additional mapping effort. COCOP brings the
simplicity of a bare communication protocol while providing a selection
of other features, such as message routing. However, this could degrade
interoperability if any additional agreements are required regarding
the usage of the new information models, especially if the information
model is loose or complex. Still, because information models are many
and complex, there should be another research study considering the
reviewed IoT frameworks. Presumably, the frameworks focus more
on general IoT questions rather than any process-industry-specific
structures that are a special use case of IoT.

Interoperability. COCOP architecture realises interoperability within
the production plant by enforcing all systems to communicate with a
common protocol and information models. AMQP 0-9-1 is an estab-
lished technology and has a wide tool support. Regarding information
models, COCOP specifies a profile about the features to be supported
for each standard. Still, no existing product supports COCOP, but an
adapter is necessary for each, because COCOP stems from a research
study without any industry-wide acceptance. However, the message
bus concept can exist in an interoperable environment. Considering
the advantages of COCOP, it can be asked if an existing interoperable
technology, such as OPC UA, should adopt ideas from COCOP. The
existing OPC UA PubSub [57] already refers to message-oriented com-
munication but excludes the actual message bus medium and especially
the management of message routing.

Of other frameworks, at least OCF and OPC UA are strong in inter-
operability especially if any existing products support these. Even BaSys
is a potential contributor in interoperability because it implements
AAS [33], which aims to realise an industrial standard for supply
chains. However, AAS focuses on a higher level of communication and
refers to existing standards for industrial control, including OPC UA.

Hard real-time support. COCOP does not guarantee any response times
in communication due to the underlying AMQP 0-9-1 system. A guar-
antee would require a dedicated mechanism, although soft real time
is possible, as RabbitMQ delivers messages ‘immediately’ as observed
by a human user when not overloaded. Thus, COCOP does not fulfil
the requirement of hard real-time support, and this requirement seems
open as long as topic-based communication is in place, because message
routing is non-deterministic. A potential solution is to bundle the
message bus with a real-time capable protocol, so there would be two
protocols. This is a subject of future research.

Among the reviewed frameworks, AUTOSAR supports hard real-
time communication, because fast response times are necessary in
certain control actions in vehicles. Furthermore, Arrowhead enables
real-time communication, but this would be implemented with a tech-
nology external to Arrowhead. Although the conventional OPC UA
cannot guarantee real-time communication, this is about to change due
to Time-sensitive Networking (TSN) [61].
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Fig. 7. COCOP communication stack consists of two layers: communication protocol
and information models. These are based on existing standards.

Summary of comparison. Based on the comparison with other frame-
works, COCOP could co-exist with and complement Arrowhead, BaSys,
OCF and OPC UA. For COCOP, these could provide services, such as
discovery, orchestration and choreography as well as authorisation. The
future OPC UA is likely to provide real-time support, which is impos-
sible with the current COCOP message bus that cannot guarantee any
timing constraints. AUTOSAR supports real time but is unfavourable,
because it originates from the automotive industry and therefore evokes
a danger that the needs of industrial plants receive little attention in
future development. LWM2M is a resource-oriented service framework.
Its resource-oriented model is a direct competitor to COCOP, but this
paradigm can lead to physical point-to-point dependencies, which is
one of the factors that COCOP aims to avoid. FIWARE is a centralised
technology and therefore different from COCOP that aims to distribute
everything except message delivery. If FIWARE is considered beneficial
in a production plant, it can be integrated with COCOP, but generally
there is no reason to combine these two. Compared to other technolo-
gies, COCOP excels at loose coupling, the scalability of message routing
and the flexibility of adding new information models.

5. Implementations for production systems

COCOP has delivered multiple implementations for everyday indus-
trial use cases. The enabler of implementations is a communication
stack for plant-wide communications. The actual proofs of concept were
developed for the coordination of a copper smelter, quality control in
a steel plant and Online Life Cycle Assessment related to a distillation
column.

5.1. Open communication stack and toolkit

To maintain interoperability and facilitate software development,
a communication stack was developed to cover both the communi-
cation protocol and information models (Fig. 7). The communication
protocol layer is based on the client libraries made for AMQP 0-9-1 or
particularly RabbitMQ. These libraries exist for multiple environments,
including .NET, Java, C++, C and Python, to mention a few. In case
pull communication is needed, the developers can utilise the AmqpRe-
questResponseHelper library implemented in COCOP for C#.NET and
Java. Furthermore, COCOP delivers a library called MessageSerialiser
to process the messages exchanged between application. This enables
the developers to concentrate on the application logic rather than the
message syntax. MessageSerialiser was implemented in C#.NET and
Java, and it implements information models based on the standards
presented in Section 4.3: B2MML, O&M, SWE, GML, TSML, SOS and
SPS.
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Fig. 8. The software tools for the coordinating optimisation of a copper smelter.
The COCOP-implemented parts of the stack have been published
as open source.1 as a part of COCOP Toolkit [87] Thus, the software
is available for other studies and further development as needed.
Additionally, COCOP Toolkit includes not only the stack but also other
tools, such as a message logger application and a library to connect
Matlab with the message bus protocol.

5.2. Plant-wide optimisation in copper smelter

This prototype aims at the plant-wide coordination of a copper
smelter, providing advisory to control the unit processes smelting fur-
nace, converters as well as anode furnace and anode casting. As ex-
plained in Section 3.1, operating a copper smelter requires profes-
sional knowledge and timely reactions to the repeatedly changing
conditions. The current control tools are far from optimal, but more
advanced functionality can be implemented with mathematical models
and algorithms.

To help operators, there must be control tools that exploit process-
related measurement data and react appropriately to events within
the plant. The process data is available in the control system of each
unit process. In addition, there is a crane database that reveals how
material moves and another for the composition of the matte produced
by smelting furnace. Besides the operation of unit processes, there
must be a scheduler to coordinate the plant as a whole. Schedules
are essential because converters and anode furnaces operate in batches
rather than continuously. The timing of each batch must cover factors,
such as the availability of the input, the prevailing capacity of the
subsequent unit process and the heat balance of the material. Therefore,
the schedules must consider not only the actual process states but
also future performance regarding factors, such as productivity, copper
losses and energy consumption.

Fig. 8 illustrates the tools developed as well as how these are con-
nected with the message bus. The advisory tools and the scheduler GUI
execute in a platform called Outotec ‘ACT’ (Advanced Control Tool).

1 https://kannisto.github.io/Cocop-Toolkit/.
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The advisory tools receive process data via the legacy OPC DA protocol
(in the future, the plan is to replace this link with the message bus).
All other data travels via the message bus, including analysis results
from the smelting furnace, crane events and schedules. Furthermore,
the scheduler receives the state information of unit processes from ACT.
In addition, the operators feed any operation-related constraints, such
as maintenance breaks, with the scheduler GUI that publishes these to
the message bus and become available to the scheduler.

To communicate via the message bus, an adapter was created
for each connected system. The adapters provide message bus con-
nectivity for Structured Query Language (SQL) interfaces, a Matlab
mathematics environment and the proprietary ACT interface. All mes-
sages are processed with the MessageSerialiser library of COCOP Toolkit,
Matlab with the Java implementation and others with .NET. This
realises interoperability within the multi-platform and multi-vendor
environment.

Once the system had been developed, a two-week online test period
was organised in the copper smelter. Two weeks is short in a copper
smelter due to the complexity of production processes, so a longer test
could be committed to prove long-term improvements. However, the
advisory tools as well as the scheduler reacted to plant-wide states
and events appropriately most of the time. Due to the complexity of
the processes, there is still room for improvement in the mathemat-
ical tools, but the experiment proved the architecture concept to be
functional. Furthermore, there are advantages in interoperability and
loose coupling, as there are no direct dependencies between the systems
connected via the message bus.

5.3. Quality control in steel plant

The steel plant prototype aims to reduce the number of surface
defects in micro-alloyed steel products. The prototype improves the
performance of the three sub-processes that affect the generation of
defects: secondary metallurgy, continuous casting and hot rolling. To
achieve this objective, several predictive models were developed. Fig. 9
shows the final three-layer architecture, where each layer operates in
a separate virtual machine:

https://kannisto.github.io/Cocop-Toolkit/
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Fig. 9. The software tools for the quality control of a steel plant.
1. Field Layer represents the operations near the production line,
covering data acquisition and a user interface for the operators.

2. Integration Layer integrates information from the various data
sources and stores this in a centralised data container called
Process Data Storage. All systems integration occurs via the
message bus.

3. Optimisation and Model Layer is where the optimisation takes
place. The outcome is stored in Process Data Storage and shown
in the operator GUI.

To enable systems integration via the message bus, adapters were
developed (also called Application Programming Interfaces or APIs).
First, the operator GUI communicates via web services based on Hyper-
text Transfer Protocol Secure (HTTPS). Second, control systems provide
process data over OPC UA. Third, the Informix database has an SQL
interface.

There are two modes of operation:

1. Online Mode (for online tools): The operator uses the user
interface to request to start calculation. Then, the user inter-
face continuously receives results calculated from actual process
data.

2. Offline Mode (for optimisation and offline tools): The operator
changes one or more variables in the user interface and launches
the calculation of the related model or optimiser that returns a
result.

For both operation modes, a message structure was defined, and
the required message queues were created in the message bus. The
messages are routed based on topic names. The prototype does not
exploit the data structures of COCOP MessageSerialiser library but still
communicates over the common protocol.

To test the tools, an online test period was organised in a steel
plant. Not only the tools and communication architecture were proven
functional but also an indication was discovered that the generated
advisory reduces the amount of re-working and reject as intended.
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5.4. Online life cycle assessment

Online Life Cycle Assessment (online LCA) enables the active moni-
toring of the environmental impacts of production. The conventional
‘offline’ LCA refers to the estimation of the environmental impacts
caused by an entity during its entire lifecycle. While useful, this ap-
proach does not actively guide plant operators due to the pre-calculated
nature. In contrast, online LCA estimates the impact during operation
based on the actual state of the production process. This enables the
operators to monitor the effects of their decisions. Such monitoring is
a suitable application for COCOP message bus.

This prototype performs online LCA related to a distillation column
that extracts ethanol from ethanol–water mixture. The column is lo-
cated in a laboratory but operates actual industrial equipment, such
as pumps and valves as well as a Valmet ‘DNA’ control system. In the
prototype, LCA is based on the values of energy consumption and raw
material feed.

The message bus connects three components: the production pro-
cess, an LCA server and a control room (see Fig. 10). The production
process provides measurement values that are delivered to the LCA
server to enable LCA and Outotec ACT. ACT visualises both the mea-
surement values and the LCA results, so that the operators can see
how these are related. To enable connectivity via the message bus,
there is an adapter for each component. The adapter of the production
process accesses measurements via OPC UA, whereas the LCA model
is controlled over Functional Mockup Interface (FMI), which is a spec-
ification for exchanging simulation-related data. The LCA model was
modelled in a tool called Sulca and exported to enable execution as
a standalone application. The message bus performs message routing
based on topics, which decouples the data producers and consumers.

A practical experiment was performed with the prototype. The
column was heated to distil ethanol from water–ethanol mixture. As
the heating power of the column was changed, clear step responses
occurred in the calculated LCA results. This experiment demonstrates
the capability of the message bus for geographical distribution, as the
production process was located 200 kilometres away from the LCA
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Fig. 10. The online LCA prototype.
Source: Figure modified from [88].

server and the control room where monitoring occurred. On the other
hand, the connected systems are actual products and equipment for
industrial process control, which shows that the message bus suits for a
production environment. More importantly, the prototype shows how
heterogeneous environments can be connected in a loosely coupled
manner.

6. Discussion

The research objective of this article is:

Design a message-bus-based communication architecture to meet
the requirements and challenges of process control in plant-wide
systems.

As a solution to the requirements of plant-wide systems presented
in Section 3.1, Section 4 introduced the message-bus-based COCOP ar-
chitecture. The architecture follows the SOA principles that have been
proven beneficial in the integration of enterprise systems [20]. The
message bus applies topics to perform all of the required message rout-
ing between software systems. This ensures that the systems can reach
one another with a single standardised communication protocol. Fur-
thermore, the systems communicate with common information models,
although it is straightforward to extend the architecture with new
message structures as required. Therefore, the message bus simplifies
the topology of communication and ensures interoperability within the
production plant. This is an advantage compared to conventional point-
to-point connections or the hub-and-spoke approach, which performs
data and protocol adaptions in a centralised node typical to ESBs.

To prove the architecture, this paper presented three prototypes as
well as a software toolkit in Section 5. The prototypes include the plant-
wide optimisation of a copper smelter, quality control in a steel plant
and online LCA. In each prototype, multiple software systems were
connected via the COCOP message bus, providing a single medium to
enable interoperability. It was necessary to develop interface adapters,
but this burden was compensated as the systems became reachable
within the entire plant despite their legacy interface. On the other
hand, the software tools of COCOP Toolkit reduced the development
effort required for the implementation of the adapters. The experiments
did not test the capacity of the message bus, because the message
12
volumes were at most tens per minute. Therefore, there could be
another study about the performance of the message bus in plant-wide
communications with tens of thousands of network nodes that stream
data frequently.

The concept of COCOP excels particularly at loose coupling, scala-
bility and interoperability. Together with Internet connectivity, these
factors facilitate the development of data- and event-driven solutions,
which are gaining importance in industrial production [12,68]. COCOP
helps in the development of plant-wide systems where the functions
must span units, sites and Internet. This opens possibilities to the more
extensive use of cloud computing, advanced analytics and machine
learning applications that require massive amounts of data. The prob-
lems COCOP aims to solve resemble the goals of OPC UA PubSub [57].
PubSub relaxes the conventional strict client–server model of OPC
UA but lacks the exact specification of message routing. Conversely,
COCOP exclusively specifies topic-based messaging. Another advantage
of COCOP is the ease of adding new information models especially
when the information model provides a concrete schema or another
specification for serialisation. In OPC UA, this requires an explicit
mapping to the OPC UA information model, such as the one published
for ANSI/ISA-95 [59]. However, to apply an information model in an
interoperable manner, even COCOP may necessitate a dedicated profile
to explicitly specify the utilisation, especially if the model is either loose
or too complex to be specified with a schema language.

COCOP could be extended with other frameworks as it lacks a full
support for the requirements of plant-wide systems (see Section 4.3).
COCOP focuses on concrete information exchange rather than higher-
level SOA features, such as orchestration, choreography and discovery,
and the current COCOP does not enable hard real time communication
either. Therefore, COCOP could include another framework to pro-
vide the missing features rather than developing yet another solution.
Earlier, there have been studies about combining diverse frameworks
and communication protocols, such as a publication about combining
Arrowhead and OPC UA [89]. Based on the comparison in Section 4.3,
the potential extenders of COCOP include, for instance, Arrowhead for
discovery, orchestration and authorisation, OPC UA with TSN for real-
time support and BaSys to implement Asset Administration Shell [33]
for interoperability within supply chains. These potential extensions
require future research for verification.

COCOP contributes to the I4.0 aspects that are related to communi-
cations and the integration of physical systems across the hierarchical
levels of production systems. Fig. 11 illustrates this within the reference
architecture RAMI 4.0, which specifies hierarchy levels from shop floor
to production coordination and collaboration, layers from physical
assets to business and the life cycle of both products and physical
entities [14, pp. 5–11]. In layers, asset covers physical assets and people
and business focuses on business processes, so these are excluded in
COCOP. COCOP resides in other layers from communication to functional
by enabling the vertical integration of systems with a communication
protocol and information models. In hierarchy levels, COCOP covers
everything from product to enterprise, as the intention is to provide
a single solution for all integration within the plant. In the future,
it could be studied how COCOP could support business-to-business
information exchange and how the architecture should be extended
in this case. In addition, COCOP has not yet been implemented in
the device level. Regarding life cycle, COCOP operates in the usage
of systems, as neither the design, maintenance nor manufacturing of
production tools is considered, but these could be supported with
additional information models. In summary, COCOP aims at solving
the issues of vertical and horizontal integration of systems, which have
constantly been problematic in production systems.

7. Conclusions

This article presented the message-bus-based COCOP architecture
for plant-wide communications. The architecture enables the integra-
tion of industrial ICT systems over the levels of the conventional



Journal of Industrial Information Integration 26 (2022) 100253P. Kannisto et al.
Fig. 11. In RAMI 4.0, COCOP architecture contributes to the layers communication,
information and functional across all hierarchy levels within an enterprise in the usage
of facilities.
Source: Re-drawn and modified from [90, p. 43].

automation hierarchy as well as geographical borders. The core of
the architecture is a message bus that provides a single medium for
all communication. This helps in the management of heterogeneity,
enabling a loosely coupled, adaptable, interoperable environment. As
proofs of concept, COCOP was applied in three use cases in process
industry.

There are still topics to research in the future. The proposed archi-
tecture does not implement all the requirements of plant-wide SOA for
Industry 4.0, but it could be complemented with another integration
framework, such as Arrowhead, BaSys or OPC UA. This could enhance
features, such as discovery, orchestration and authorisation. To widen
the applicability of COCOP, there could be a study to explore exist-
ing standardised information models. To bring COCOP to the shop
floor, there could be a study about connecting devices with limited
computational resources and enable communication with hard real-
time requirements. Additionally, there could be proofs of concept in
manufacturing, as the current use cases only demonstrate applica-
bility in process industry. Finally, there could be experiments that
involve data-driven control methods, which will gain importance in the
future [3].
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