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Abstract

Grid-connected power-electronic inverters play a crucial role in the transition from the
carbon-based energy production to renewable energy production. Because many power
generators that utilize renewable power sources cannot be connected directly to the
alternating-current distribution grid for power delivery, an inverter is often required as
an interface between the renewable energy source and the distribution grid. However,
potential dynamic interactions between feedback-controlled power converters and the
power grid can lead to stability issues. Detrimental interactions should be prevented in
the inverter controller design phase where the interactions can be modeled with equivalent
small-signal impedances of the grid and the grid-connected inverters. However, the
impedances are usually unknown.

Previous studies have presented methods to measure the terminal impedances in
grid-connected-inverter systems for an improved controller design. Recent developments
in the impedance measurement have led to broadband measurement methods that can
be implemented in a short amount of time using orthogonal binary sequences and with
a low computational effort. However, previous non-parametric measurement methods
performed with orthogonal sequences have not dealt in depth with a crucial issue of
three-phase impedance measurements: distortion between synchronous reference-frame
measurement channels.

Conventionally, an impedance that is measured for the control design is assumed
to behave linearly in the system operating point where the measurement is performed.
However, under low load conditions, a nonlinearity stemming from the deadtime can be
significant. The nonlinear deadtime effect adds significant damping, which can lead to a
false interpretation of the system stability margins if not modeled correctly.

This thesis presents a novel synchronous-reference-frame impedance measurement
method for three-phase grid-connected power-electronic systems. The method makes it
possible to measure an equivalent synchronous-reference-frame system impedance within
a single measurement cycle, which provides disturbance rejection capability. In addition,
a describing function model for the nonlinear deadtime effect is proposed. The model can
be used to compute the sinusoidal steady state of an inverter under low load conditions.
These methods and models can be applied to the adaptive control, the real-time stability
analysis, and the robust control of grid-connected converters.
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Chapter1
Introduction

This chapter provides the essential background for the topics discussed in this thesis,
clarifies the motivation for the conducted research, and revises the existing knowledge
related to the topic. It also summarizes the objectives of the thesis.

1.1 Background

Emissions from carbon-based electricity generation are a major cause of the climate
change that threatens the variety of environment [1]. To retard climate change, a shift
to renewable energy generation from the polluting generation is required [2]. The Paris
Agreement was established in 2015 to combat climate change and has important goals,
including a peaking of emissions as soon as possible, and carbon neutrality [3]. Regarding
carbon-based energy production, some countries in Europe have made concrete plans;
for example, France and the United Kingdom are closing all of their coal-fired power
stations by 2023 and 2025, respectively [4]. To make Europe climate-neutral by 2050 and
to promote the development of technologies for clean, reasonably priced, and reliably
delivered energy, the Green Deal program was launched in the European Union in 2019
[5]. Between 2008 and 2018, the amount of electrical energy produced from solar power
in the European Union increased from 7.4 TWh to 115 TWh [6].

A major technical challenge in increasing the amount of renewable energy involves
connecting renewable power plants to the existing distribution grid in order to deliver
electricity to customers [2, 7]. In traditional power plants, rotating synchronous machines
that are directly connected to the grid are most commonly used to generate electricity.
The advantage of a synchronous machine is that the rotating rotor shaft is synchronously
coupled to the voltage and currents through a magnetic field. Therefore, the moment
of inertia of the rotor shaft contributes to the system inertia, and the stored rotational
energy in the rotor shaft can compensate for abrupt changes in the power consumption
in the grid.

In the case of many renewable power generation technologies, such as photovoltaic
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Chapter 1. Introduction

(PV) solar generators, a direct connection of the generating technology to the grid is
typically not possible because the generated electricity is not suitable for the distribution
grid. A required interface between distribution grid and the power source is an inverter
[8–12]. The inverter transforms the direct current (DC) produced by the photovoltaic
panels to suit the 50 Hz or 60 Hz frequency of the alternating-current (AC) distribution
grid. Because the inverter-based power sources lack the inertia of the synchronous
machines, large numbers of inverter-based power sources can compromise the stability
of the distribution grid [13]. Furthermore, the power flow in the distribution grid may
change direction due to the increasing number of installed inverter-based power sources
because the inverter-based power sources are distributed around the grid, sometimes close
to the consumption [14].

The individual inverters can have different control modes depending on the avail-
able resources and the grid codes: grid-feeding, grid-forming, current-source-based grid-
supporting, and voltage-source-based grid-supporting [15]. The innermost and the most
rapidly responding control in all of the modes traditionally consists of current feedback,
the purpose of which is to control the harmonic content and the power factor of the
current by making the current track the desired reference value. In grid-forming mode,
cascaded voltage and current feedbacks are used [15]. The bandwidth of these controllers
ranges from a few hundred Hertz to a few kilohertz, depending on the power level and
available hardware. An inverter interacts through its feedback control with the grid
line impedances [16, 17] or the controllers of parallel inverters [18]. The interaction can
be detrimental and distort the power quality, or even destabilize the complete system.
Potential adverse interactions between inverter-based power sources should be modeled
in the design phase and prevented by the controller design. A proper controller design
ensures that the current and voltages fed by the inverter-based power sources track their
desired reference values in different operating conditions.

Modeling and Measurement of Terminal Impedances in
Power-Electronic Systems

Conventionally, a linearized state-space model of the grid-connected inverter system
is developed for the control design. The advantage of state-space models of complete
inverter-based power source systems is that they can accurately represent harmonic
modes and indicate how different parameters affect the system [19, 20]. This modeling
approach requires precise information about all passive component sizes, voltage and
current steady-state values, and the controller structure. However, a practical grid can
locally consist of unknown loads, line impedances, and commercial inverter-based power
sources from different suppliers whose parameters are unknown. Consequently, only
a single inverter-based power source can be commonly modeled in detail due to the
lack of information about the system parameters. However, it is not sufficient for an
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1.1. Background

inverter-based power source to be stand-alone stable because of the possible adverse
interaction among the inverter-based power sources [21] or between the inverters and the
grid [22] or active loads [23].

An alternative to developing a state-space model of the complete system is to measure
the terminal impedance of an unknown converter in the frequency domain in order to
gain information about the dynamics at the interface [24]. The measurement requires
that the system be perturbed at desired frequencies so that the responses in terminal
voltages and currents can be measured. The perturbation can be added to the current
reference of another nearby-connected inverter. The system terminal impedance can
be then computed by applying Fourier methods to the measured voltage and current
responses. The measured impedance can be used with a modeled terminal impedance
to perform an impedance-based interaction analysis. The advantage of this approach is
that only little information about the system under test is required. The measurement
must be done when the system is in operation in order to gain information at the correct
operating point because the impedance can vary over time. Therefore, an impedance
obtained in real time is most desired.

The measurement of a converter impedance or a grid impedance is typically performed
at an interface in the grid. Therefore, the resulting driving-point impedance can consist of
combinations of multiple inverter-based power sources, dynamic loads, and line inductances.
Consequently, measurement at a wide frequency band is required because the impedance
cannot be considered to be a simple resistor-inductor circuit of the line impedance
from a medium-voltage distribution grid [25] or a terminal impedance of an inverter
with a specific filter and controller. Recent studies have presented wideband techniques
based on broadband perturbation and Fourier methods for performing fast and accurate
impedance measurements of power-electronics systems [26–29]. The challenge in applying
those methods in terminal-impedance measurements is that the current cannot become
significantly distorted by the measurement injection, because harmonic emissions into the
distribution grid are subject to regulation. Recent literature has addressed the design of
broadband injection signals that allow rapid measurement of a three-phase driving-point
impedance in the synchronous reference frame [27, 29].

The aforementioned wideband techniques can be adopted to perturb three-phase
systems by injecting uncorrelated wideband sequences to the direct (d) and the quadrature
(q) channels in the synchronous reference frame (DQ frame) [26–29]. Both channels can
be perturbed simultaneously for the measurement because the uncorrelated sequences do
not have energy at same frequencies, and data about voltages and currents from both
the channels can be obtained rapidly for the impedance calculation. In general, however,
no accurate information can be directly computed from such measurements because an
equivalent synchronous-reference frame impedance consists of cross-coupling in the form
of current-dependent voltage sources in addition to impedance elements. Therefore, an
impedance element cannot be measured similarly to Ohm’s law. While there are methods
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for tackling this problem, they are either parametric [30] or require multiple measurements
[31]. A rapid and accurate measurement can be developed from the existing wideband
measurement techniques. The development requires that the characteristics of the injected
sequence and the synchronous reference impedance be considered in detail.

Nonlinearities in Dynamic Modeling of Power Electronics Systems

Power electronic converters are based on switching semiconductor switches between the
conduction mode and the blocking mode, which is very nonlinear. The traditional dynamic
modeling of power-electronic systems is based on averaging the system over a switching
cycle and assuming that a frequency-domain model can be developed from a linearized
time-domain model [32]. However, the traditional models may not be accurate in the
presence of significant nonlinearities that can be potentially caused by many different
phenomena. Some of these nonlinearities appear at high-frequency range due to the
switching actions of semiconductor switches [33]. Some other nonlinearities can occur
due to the phase-locked loop [34], saturation of inductors [35], or the controller behavior;
for example, the perturb and observe algorithm that is used in the maximum power point
tracking in PV panel generators [36, 37].

One source of nonlinearity in all inverter systems is caused by the deadtime that is
required to prevent shoot-through faults [38–40]. The deadtime causes a voltage error
that depends on the deadtime length, the direct voltage level, and the instantaneous
direction of the current [38]. In inverters, the current direction changes every half cycle of
the synchronous-frequency component, and the deadtime creates a voltage error that is in
phase with the current [38]. The average of the voltage error over a switching cycle is a
nonlinear function of the converter current, and various approaches have been suggested
to compensate the voltage error [38, 41–43].

The deadtime effect is visible in the frequency domain as damping because the
deadtime effect is a current dependent voltage error [44, 45]. Under low-load conditions,
the nonlinearity with respect to the current amplitude is significant, and the deadtime
effect cannot be linearized. The accuracy of the traditional linearized model can become
compromised and unexpected measurement results can be obtained if the nonlinear
behavior is not considered properly. Consequently, it is essential to analyze the conditions
under which the voltage error from the deadtime can be linearized and what is a proper
way to model the nonlinear effect.

1.2 Aim and Scope of the Thesis

The goal of the thesis is to provide techniques to facilitate the design of a resilient
power-electronic system. A desirable control system tracks the reference values under
disturbances and maintains the stability of the power-electronic system under varying
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Figure 1.1: Graphical abstract of the thesis.

operating conditions. To achieve the goal, all couplings between the DQ-frame channels
and the significant nonlinearity from the deadtime are considered in detail in modeling
and measurements of the converters.

This thesis shows that the deadtime effect can significantly affect the damping of an
inverter system and the effect is highly nonlinear under low load conditions. A describing
function method is proposed to model the amplitude-dependent deadtime effect under low
load conditions. The proposed model enhances the dynamic modeling of power-electronic
inverters by setting a limit on the linear modeling region.

The present work also investigates how a measurement injection can leak between
DQ-frame channels in the presence of a finite-bandwidth closed-loop control. For the
analysis, the dynamics of the converter that perturbs the system for the measurement
are considered in the impedance interaction. A measurement procedure that avoids the
detrimental behavior of the perturbations is proposed.

Fig. 1.1 shows a graphical abstract of the thesis. The converter transforms the direct
current produced by the PV panels to alternating current that is fed to the distributing
grid. The distribution grid consists of power lines, loads, and local power plants. At
the connection point of the inverter, a detrimental interaction between the grid and the
converter can occur and destabilize the system. The proposed techniques can be used to
prevent the detrimental interaction.

The main advantages of the presented methods can be summarized as follows.
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• The nonlinear deadtime effect in frequency response measurements is characterized.

• The developed describing-function-method model for the nonlinear deadtime effect
makes it possible to solve the sinusoidal steady state of an inverter with a deadtime.

• The impedance coupling is characterized to occur with a grid-connected converter-
performed grid-impedance measurements.

• Disturbance rejection is provided by the novel measurement procedure that is
implemented with orthogonal binary sequences.

Research Questions

The main research questions in this thesis can be given as follows.

• What are the characteristics of the inverter-side inductor current that limit the
linear small-signal modeling of the deadtime effect?

• How is the nonlinear injection-amplitude-dependent voltage error modeled under
low load conditions in the frequency domain?

• What is the dynamic effect of the interaction between the measurement device
dynamics and the measured impedance in measurement of linear impedance systems
in the DQ frame?

• How can the impedance coupling be avoided in a non-parametric measurement
procedure that is based on simultaneous broadband perturbation of both d and q
channels in the DQ frame?

1.3 Review of Previous Studies

This section reviews the past literature on the topics of this thesis. It first reviews the
synchronous-reference-frame impedance measurement, and then the existing modeling of
the deadtime effect.

Measurement of Driving-Point Impedance in the DQ Frame

Early investigations into DQ-frame impedance measurements found that the DQ-frame
equivalent impedance of a balanced three-phase system that consists of four impedance
elements cannot be computed as the direct ratio of the voltage and the current related to
each impedance element in practical systems. Instead, multiple independent measurement
injections must be performed at the same frequencies, and a system of linear equations
must be solved for the impedance elements [46, 47]. The solution based on two independent
injections was presented in matrix form in [31]. The method relies on the assumption that
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the system operating conditions do not vary between the two independent measurements
[31]. Nevertheless, the method based on multiple independent injections has been a
reliable way of measuring the DQ-frame impedance [31, 48–52]. The work in [31, 48–52]
focused primarily on measuring the impedances in a grid-connected converter system by
using an additional device to perturb the system.

Another approach to perturbing a converter system for the measurement is to use a
grid-connected converter to perturb the system [27, 28]. In the method, the measurement
algorithm is implemented in the converter controller system, and the injection signal is
summed to the alternating current references. In [26–28], uncorrelated pseudorandom
binary broadband sequences that were generated by using the Hadamard modulation
[53, 54] were used as the injection signals. Because the uncorrelated sequences have
energy on a wide band, but not on same frequencies with each other, both the d and
the q channels in the synchronous reference frame were injected simultaneously under
same operating conditions. One disadvantage regarding the methodology in [26–28]
is that the impedance elements were not solved from a group of linearly independent
equations according to the earlier studies of DQ-frame impedance measurement presented
in [31, 46, 47], and the impedance elements were computed as direct ratios of the measured
voltages and currents, as noted in [30, 55]. Hence, the measured resistor-inductor circuits
have resonances that they should not have in [27, 28].

Parametric methods have been used for measuring a three-phase impedance in the
frequency domain [55–58] and the time domain [30]. However, parametric methods are
not suitable for measuring a driving point impedance of a system whose internal structure
is not known, such as a microgrid that can consist of virtually unknown meshed terminal
impedances of inverters, loads, and line impedances. Regarding the measurement of a
grid impedance, many parametric methods rely on the assumption that a grid-feeding
inverter is connected to a stiff grid with a line inductance, whose equivalent network
is a resistor-inductor circuit [56–58]. However, results from practical grid-impedance
measurements [25, 59] show that a resistor-inductor circuit is not suitable to model a
network impedance. There are also passive measurement methods that do not require a
perturbation injection into the system. However, these methods may not be available
at all times because they rely on existing background distortions in the voltages and
currents [60].

Dynamic Modeling of the Deadtime Effect

In the dynamic modeling and controller design of power electronic converters, the deadtime
effect is commonly neglected [19, 23, 61–63]. However, few studies have been published
on the small-signal effect of the deadtime on inverters [44, 45, 64, 65] and on DC–DC
converters [66, 67]. In [44, 45, 65–67], a resistor-like element was used to model the
deadtime effect. The resistor-like element appears in series with the filter inductor that is
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connected to the switch leg and adds damping to the system. In the models presented in
[44, 45, 65–67], the resistance of the resistor-like element increases as the fundamental
current amplitude decreases. This indicates that, under a low-load condition, the deadtime
effect causes a stronger damping than under the nominal condition. In the synchronous
reference frame, the cross-coupling elements were used in addition to the resistor-like
elements in the modeling of deadtime effect in grid-connected three-phase inverters [44, 68].
A similar method was used to model the deadtime effect with three-phase induction motor
drives in [69, 70].

The deadtime effect on the open-loop output impedance of a full-bridge inverter was
studied in [45]; a clear improvement was made in the dynamic modeling of the deadtime
effect by including the current ripple effect on the voltage error in the model. The current
ripple affects the voltage error when the current fundamental component crosses zero
[45, 71], which is especially visible under low-load conditions. In [45], the describing
function method was used to solve a linear resistor-like element as a function of the current
ripple and the current fundamental component amplitude. The main weakness in the
study was that a single-phase inverter with an inductor (L) filter and resistive load was
analyzed, and a current injection between the filter and the load with a small amplitude
was used to perturb the current. With this approach, the inverter current that causes the
voltage error has a known maximum amplitude at the perturbation frequency. Therefore,
the voltage error can be relatively easily modeled at the perturbed frequency because it
is known that the current amplitude will be small at the perturbed frequency. However,
the situation changes substantially if filtering is accomplished by an inductor-capacitor
(LC) circuit. The filter can amplify the current perturbation and the voltage error can
significantly affect the inverter current that affects the voltage error, which creates a
non-linear feedback into the converter system. In the existing literature [44, 45, 64, 65],
the inductor current amplitude is assumed to be small at the frequency of interest, and
the nonlinear voltage error is presented by a linear element in the small-signal modeling.

1.4 Summary of Scientific Contributions

The main scientific contributions of this thesis are as follows.

• A method to characterize a dead zone, a slope, and a saturation region in the
deadtime effect under sinusoidal perturbations.

• A technique based on the describing-function method for modeling the nonlinear
deadtime effect in a sinusoidal steady state under low-load conditions.

• A method for modeling the impedance coupling in three-phase system measurements
considering the dynamics of the injection device.

8



1.5. Structure of the Thesis

• A technique for a rapid DQ-frame impedance measurement in a grid-connected
three-phase converter system in the presence of impedance coupling.

1.5 Structure of the Thesis

This thesis consists of five chapters and publications [P1]–[P5]. The following chapters
can be briefly summarized as follows.

Chapter 2: Frequency-Domain Analysis of Power-Electronic
Converters

Chapter 2 looks at the single-phase and three-phase converter topologies and the frequency-
domain models of the converters that are essential for this thesis. First, half-bridge
inverters are investigated and their dynamic modeling and the voltage error from the
deadtime are reviewed. Then, the dynamic modeling of three-phase inverters is revised,
and the load-affected model is examined.

Chapter 3: Methods

Chapter 3 presents the methods applied in the work. The methods related to the
modeling of the deadtime effect and the measurement in the synchronous reference frame
are presented in separate parts.

Chapter 4: Implementation and Verification

Chapter 4 presents the used experimental setups and the experimental verification of the
proposed models and techniques.

Chapter 5: Conclusions

Chapter 5 summarizes the thesis and provides the main conclusions. The benefits and
limitations of the proposed methods are discussed.
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Chapter2
Frequency-Domain Analysis of
Power-Electronic Converters

This section presents background information about the inverters applied in the thesis.
The deadtime effect on the half-bridge inverter is investigated and the principles of the
linear dynamic modeling and issues in the dynamic analysis of power-electronic systems
are revised.

2.1 Half-Bridge Inverter

An inverter phase leg that consists of two semiconductor switches is the building block
of many converters. Fig. 2.1 shows three different models of an inverter phase leg. The
positive and the negative rails of the DC bus are denoted by p and n, respectively. The
AC phase is denoted by a. In Fig. 2.1a, metal-oxide-semiconductor field-effect transistors
(MOSFETs) are used as the switches with diodes connected anti-parallel. Fig. 2.2 shows
the gate signal of switches S1 and S2, where Tsw and Tdead denote the switching cycle
length and the deadtime length, respectively. Ideally, a switch would be turned on

Figure 2.1: An inverter phase leg with (a) MOSFETs , (b) ideal switches, and (c) ideal
switches with anti-parallel diodes.
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Figure 2.2: Gate signals of switches S1 and S2. The length of Tdead is exaggerated
compared to the length of Tsw for illustrative purposes.

immediately after the gate signal of the complementary switch is pulled to zero. However,
this cannot be done because practical semiconductor switches, such as MOSFETs and
insulated-gate bipolar transistors (IGBTs) have finite turn-on and turn-off times. For
example, when the gate signal for S1 is pulled to zero, the gate signal of S2 cannot be
pulled up because S1 does not turn off instantaneously. Otherwise, a shoot-through fault,
where the direct voltage bus is short-circuited, could occur and the direct voltage sources
and the semi-conductor switches could be damaged or destroyed. Therefore, a deadtime
is required. The deadtime ensures, with a time margin, that a switch has turned-off
before the complementary switch is turned on. The anti-parallel diodes (D1 and D2)
are required because the phase current (ia) must have a path at all times. During the
deadtime, the current commutates to either of the anti-parallel diodes depending on the
instantaneous current direction.

Fig. 2.1b shows an inverter phase leg with ideal switches, but without the anti-parallel
diodes. This model is usually sufficient for developing state-space average models of the
inverters and simulations related to linear controller system verification. However, the
deadtime effect cannot be modeled because there is no path for the current during the
deadtime. Fig. 2.1c shows an inverter phase leg with ideal switches and ideal anti-parallel
diodes. This model is sufficient to model the voltage error that arises from the deadtime
because the anti-parallel diodes provide a path for the phase current during the deadtime.

A half-bridge inverter consists of one inverter phase leg [72]. In order to use a phase
leg as an inverter, a connection to the DC bus midpoint must be available. Fig. 2.3
shows the circuit diagram of a single-phase half-bridge inverter, where z denotes the DC
bus midpoint. Hence, +Vdc/2 (S1 conducts) or −Vdc/2 (S2 conducts) can be connected
between the phase leg (a) and the DC bus midpoint (z) in order to produce an alternating
phase voltage (vaz).
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2.1. Half-Bridge Inverter

Figure 2.3: Single-phase half-bridge inverter.

Dynamic Model of Half-Bridge Inverter

Typically, the output voltage and the output current of the inverter must be filtered due to
harmonics caused by switching [73]. An inductor (L) filter can be used to filter the current;
however, in order to achieve efficient attenuating with an L filter, a high inductance value
is required that makes the filters bulky [74]. Therefore, inductor-capacitor (LC) [75]
or inductor-capacitor-inductor (LCL) [76, 77] filters are most often used because they
provide more efficient attenuation compared to L filters.

Fig. 2.4 shows a voltage-output half-bridge inverter with an LC filter. A half-bridge
inverter has no direct steady values on the AC side; the alternating currents and voltages
are sinusoidal whose averages are zero. Therefore, the dynamics of a linearly operating
half bridge converter can be modeled by the dynamics of the passive-filter components.
The half-bridge with ideal switches shown in Fig. 2.1b is used here in order to develop a
sinusoidal steady-state model without considering any nonlinearities of the switches.

Fig. 2.5 shows an equivalent sinusoidal steady-state circuit of the converter. It is
assumed that the bridge voltage follows the reference voltage (vref) within the frequency
band of interest. The impedances of the filter inductor (L) and the filter capacitor (C) as
the function of the angular frequency (ω) are given as

ZL (ω) = rL + jωL. (2.1)

ZC (ω) = rC + 1
jωC

(2.2)

where j is the imaginary unit, and rL and rC denote equivalent series resistances of the
inductor and the capacitor, respectively. The control-to-output voltage dynamics are
dictated by the LC filter. The transfer function Gcofrom the duty cycle (d) to the output
voltage is given as

13



Chapter 2. Frequency-Domain Analysis of Power-Electronic Converters

Figure 2.4: Voltage-output half-bridge inverter with an LC filter.

Figure 2.5: Equivalent circuit in a sinusoidal steady state.

Gco = vo

d
= ZC

ZL + ZC
=

jω
rC

L
+ 1
LC

(jω)2 + jω
rL + rC

L
+ 1

LC

(2.3)

The control-to-inductor current transfer function is

GcL = iL

d̂
= 1
ZL + ZC

= jω/L

(jω)2 + rLjω + rC

L
+ 1
LC

(2.4)

The second-order polynomial factor in the transfer function can be given in the traditional
form of a second-order systems as

GcL = jωω2
0

L ((jω)2 + 2ξω0jω + ω2
0) (2.5)

where ω0 and ξ denote the natural frequency and the damping factor, respectively. The
damping factor and the natural frequency are given as

ξ = R

2

√
C

L
(2.6)
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Figure 2.6: Voltage-output half-bridge inverter with an LC filter at the output, and the
DC bus voltage is split by the capacitors.

ω0 = 1√
LC

(2.7)

The output impedance is given as the ratio of the output voltage (vo) and the output
current (io) as

Zo (jω) = ZLZC

ZL + ZC
=
rC(jω)2 +

(
rLrC

L
+ 1
C

)
jω + rLrC

LC

(jω)2 + rL + rC

L
jω + 1

LC

(2.8)

Commonly, two identical voltage sources are not used to implement the DC bus in
practical half-bridge inverters. Instead, DC capacitors are used to split the direct voltage
and provide access to the midpoint (z), as shown in Fig. 2.6. It is assumed that the
upper and the lower DC capacitors (Cdc) are identical and, therefore, the DC voltage
(Vdc) is evenly divided over the capacitors. The parallel connection of the DC capacitors
is visible in the AC output impedance of practical half-bridge inverters. The impedance
of the parallel-connected DC capacitors can be given as

Zpar
C-dc =

rC-dc + 1
jωCdc

2 (2.9)

where Cdc and rC-dc are the DC capacitance and its ESR. In the output impedance,
the parallel connection appears in series with the inductor impedance, and the output
impedance can be given as

Zo = (ZL + Zpar
C-dc)ZC

(ZL + Zpar
C-dc) + ZC

(2.10)
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The system in Fig. 2.4 is simulated with Matlab Simulink. A sinusoidal pulse-width
modulation (SPWM) with a triangular carrier waveform is used to turn on and turn off
the switches. The parameters of the half-bridge inverter Simulink simulation are given in
Table 2.1.

The output impedance of the half-bridge inverter is measured with the stepped-sine
method. A sinusoidal perturbation is added to the output current in addition to the
synchronous-frequency component. The measurement is not performed at the integer
multiples of the fundamental (50 Hz) component because of the energy content on those
frequencies, which could distort the measurement. The variables are recorded for 10
synchronous-frequency cycles at a sinusoidal steady state. The recorded data is discrete
Fourier-transformed (DFT), and the output impedance is calculated as the ratio of
the frequency bins at the injected frequencies. Fig. 2.7 shows the result of a Simulink
simulation of an output impedance measurement.

The simulations are performed under nominal load conditions (Fig. 2.7a), where the
inductor current synchronous-frequency amplitude is 10 A, and under no-load conditions
(Fig. 2.7b). The measurements are performed with perturbation amplitudes of 0.5 A and
3 A. As expected according to the linear circuit theory, the results are the same and they
follow the linear model in Figs. 2.7a and 2.7b. The dynamic models of power electronics
systems are typically based on the assumption of linearity. However, introduction of the
deadtime that is essentially required in all converter systems introduces a nonlinearity to
the system.

The half-bridge with the ideal switches in Fig. 2.8 is now replaced by the half-bridge
shown in Fig. 2.1c, where the anti-parallel diodes are included. A deadtime of 4 µs that
delays the turn-off of both switches is introduced. The output-impedance measurement
simulations are repeated with the new half-bridge with perturbation amplitudes of 0.5 A,
1 A, and 3 A, and the results are shown in Fig. 2.8. In Fig. 2.8a, the inductor current is
nominal (10 A), and in Fig. 2.8b, the converter is in the no-load condition. A damping
can be seen around the resonance under both operating conditions. However, the damping
is amplitude dependent. In the case of the no-load condition in Fig. 2.8b, the amplitude

Table 2.1: Simulation parameters of the half bridge inverter.

Parameter Symbol Value Parameter Symbol Value
Input voltage VDC 700 V Grid voltage rms Vg 120 V
Synchronous
frequency

ωs 2π50
rad/s

Switching fre-
quency

fsw 10 kHz

Filter capacitor ca-
pacitance

C 10 µF Filter inductance L 4 mH

C ESR and damp-
ing resistor

rC 0.1 Ω L ESR rL 0.001 Ω

Output current Io(ωs) 0—20 A Deadtime Tdead 0—4 µs
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2.1. Half-Bridge Inverter

Figure 2.7: Simulation of the output impedance measurement without the deadtime
and with different perturbation amplitudes (0.5 A and 3 A) (a) under the nominal load
condition and (b) under the no-load condition.

Figure 2.8: Simulation of the output impedance measurement with the deadtime of 4 µs
and with different perturbation amplitudes (0.5 A, 1 A, and 3 A) (a) under the nominal
load condition and (b) under the no-load condition.

dependency is higher than under the nominal conditions. With the perturbation amplitude
of 0.5 A, only the resonance is damped. With the perturbation amplitude of 3 A, the
resonance peak is only slightly damped, but at low frequencies there is more damping,
which is more clearly visible in the phase than in the magnitude. Furthermore, the
damping is not visible at all frequencies at the same time, which indicates that the
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Figure 2.9: (a) Illustration of the voltage error due to the deadtime under positive values
of the phase current, and (b) the average error over every switching cycle during a
synchronous-frequency cycle.

deadtime effect cannot be modeled by a linear model. Simulation results of the deadtime
effect on the output current-to-inductor current dynamics are provided in [P2].

Deadtime Effect

Fig. 2.9a illustrates the instantaneous voltage error (verr) from the deadtime under positive
values of the inductor current (iL). The error is defined as:

verr(t) = videal(t)− vaz(t) (2.11)

where videal is the phase voltage without the deadtime. The voltage error occurs when the
turn on of S1 is delayed by the deadtime. During the deadtime, the current commutates
from S2 to D2, and the phase voltage is −Vdc/2. In the ideal case, S1 would conduct and
the phase voltage would be Vdc/2. Therefore, the error defined in (2.11) can be given as:

verr = Vdc/2− (−Vdc/2) = Vdc (2.12)

A similar phenomenon takes place during the negative values of the phase current when
S2 is turned on, and the current commutates to D1 during the deadtime. Thus, the error
defined in (2.11) can be given as:

verr = −Vdc/2− Vdc/2 = −Vdc (2.13)

Therefore, during the deadtime, the instantaneous voltage error is a function of the phase
current sign:

verr(t) = sign(iL(t))Vdc (2.14)
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During a half fundamental frequency cycle, the voltages error relates to turn-on of either
of the switches and the sign of the voltage error does not change. The voltage error can
be averaged over a switching cycle (Tsw) as:

vavg
err = 1

Tsw

τ+Tsw∫
τ

verr (t)dt = sign(iL)Tdead

Tsw
Vdc (2.15)

where it is assumed that the inductor does not cross zero during the switching cycle. The
maximum value of the average voltage error is

V avg-max
err =

∣∣∣vavg-Ts
err

∣∣∣ =
∣∣∣∣sign(iL)Tdead

Tsw
Vdc

∣∣∣∣ (2.16)

The synchronous frequency component of the voltage error is given by [38]

verr - f1 = 4
π

Tdead

Tsw
Vdc (2.17)

which is the first harmonic of the Fourier series of the square-wave voltage error.
Fig. 2.9b illustrates one fundamental cycle of the phase current, and the error that

is averaged over every switching cycle. The average error clearly follows the sign of the
current; therefore, the square-wave voltage error has the main frequency component at
the fundamental frequency of the current. It was pointed out in [72] that the deadtime
effect corresponds to adding a resistance in series with the load. The main limitation
of the resistor model is that the square-wave voltage error stems from a saturation. If
the current in Fig. 2.9b was perturbed, the square-wave error (2.15) would not have a
response in amplitude, but only in phase. A resistive element could be used to model the
voltage error in a steady state; however, this may have limitations in dynamic modeling
of the deadtime effect.

In the ideal case, where only the fundamental component of the current is considered,
the deadtime effect can be divided into the positive and the negative half cycles of the
inductor current. However, multiple zero crossings of the inductor current due to the
current ripple changes the behavior of the voltage error [45, 71]. During the zero crossings,
the current sign has such a value that during the turn-on of both switches S1 and S2

the deadtime effect causes no error. For example, S1 is turned on always at lowest peak
value of the ripple; a voltage error is caused if the current valued is positive. However, if
the ripple peak has a negative value, no voltage error occurs. During the zero crossing,
a similar phenomenon takes place in the turn-on of S2. Due to the ripple, no voltage
error occurs as longs the current has both positive and negative values within a switching
cycle, as illustrated in Fig. 2.10a. The zero current crossing period ends when the average
(fundamental current amplitude in Fig. 2.10a) is higher than half the peak-to-peak current
ripple. The peak-to-peak current ripple (∆ip-p) that is approximated as
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Figure 2.10: (a) Illustration of the instantaneous voltage error during the zero crossings
with the ripple in the inductor current. (b) The average error over every switching cycle
including the ripple in the inductor current.

Figure 2.11: a) The current slope during the deadtime. b) If the current value reaches
zero during the deadtime, the current remains zero for the rest of the deadtime.

∆ip-p = VdcTsw

4L
(2.18)

The effect of the deadtime on the ripple is neglected.
Fig. 2.10a shows that the voltage error is Vdc/2 at t = 9.4 ms, which indicates that

the phase voltage is 0 V. This happens due to a zero-current clamping. The current
drops to zero during the deadtime; therefore, the diode stops conducting and none of the
semiconductor devices (S1, S2, D1, and D2) conduct for the rest of the deadtime [78].
Hence, the phase voltage is zero. Close to no-load conditions, the current change during
the deadtime (∆idead) is approximated here by [P2]

∆idead = VdcTdead

2L
(2.19)

which is calculated at the current zero crossing, assuming a unity power factor.
Fig. 2.11a illustrates the current slope during the deadtime (∆idead). Fig. 2.11b shows

that if the current value reaches zero during the deadtime, the current remains zero for
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the rest of the deadtime, which takes place in Fig. 2.10a at t = 9.4 ms (and for a negative
slope at t = 10.6 ms).

The following observations can be put together from Fig. 2.8 and the analysis of the
voltage error from the deadtime effect:

• The deadtime causes an average voltage error that is in phase with the (inductor)
current, and the error depends on the current amplitude at the frequency that is
analyzed.

• The voltage error can saturate; therefore, a resistive element may not model properly
the dynamics of the error.

• The saturation depends on the operating conditions and the measurement pertur-
bation amplitude.

• A measurement perturbation cannot be commonly made directly to the converter-
side inductor current; for example, due to an LC filter. Therefore, the amplitude
of the inductor current during the deadtime is not known based on linear models
because the voltage error can reduce the inductor current.

The voltage error must be studied in detail under different operating conditions in
order to determine whether a linearized model can be used. A describing-function model
that can be used solve the sinusoidal steady state is developed in Chapter 3.1.

Measurement of Linear Systems

The output-terminal dynamics of the half-bridge inverter in Fig. 3.1b can be modeled
with a Thévenin equivalent circuit according to the classical circuit theory [79]. In
Fig. 2.12a, the Thévenin impedance (Zth) corresponds to the output impedance (Zo)
of the half-bridge inverter. The Thévenin equivalent voltage (vth) represents sinusoidal
perturbations caused by the controller of the converter (c) and the direct input voltage
of the converter (vin). In Fig. 2.6, the current sink, which is the load and also used to
perturb the output current for the measurement, is directly connected to the output of the
converter. Obviously, the converter can be part of a larger system and the perturbation
for the measurement source may not be directly connected to the output of the converter.

Fig. 2.12b shows a circuit consisting of M linear impedance elements ZM , including
the Thévenin equivalent circuit of the half-bridge inverter. iinj is a current source that is
used to perturb the system, and the responses in the voltage (vm) and the current (vm)
over an arbitrary impedance element can be measured in order to calculate the impedance
of the element similarly to the Ohm’s law:
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Chapter 2. Frequency-Domain Analysis of Power-Electronic Converters

Figure 2.12: (a) Thévenin equivalent of the output dynamics of the single-phase half-
bridge inverter. (b) The equivalent circuit of the output dynamics as a part of a larger
circuit.

Figure 2.13: An equivalent impedance consisting of two channels that are cross-coupled.

Zm = vm

im
(2.20)

The Thévenin voltage is assumed to be zero at the frequencies of interest at which
the system is perturbed; therefore, the voltage source corresponds dynamically to a
short circuit. Hence, the ratio of the terminal voltage (v) and current(i) equals the
Thévenin equivalent impedance (Zth) although the system is originally perturbed at a
different location in the circuit. This is intuitive to electrical engineers and, in a practical
system, this feature can be used provided that perturbation amplitude is not considerably
dampened and measurement does not become distorted by noise.

The measurement would be more complicated if the system consists of two (equivalent)
circuits that are cross-coupled. Fig. 2.13 shows a circuit that consists of d and q channels.
The d channel consists of the impedance element Zd, the coupling from q channel current
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2.2. Three-Phase Inverter

by the current-dependent voltage source Zqd and the equivalent voltage source vg-d. The
q channel consists of Zq, Zdq and vg-q. The measurable variables are id and vd in the d
channel and iq and vq in the q channel.

The goal is to measure the circuit elements Zd, Zqd, Zdq, and Zq. The identification
can be done, for example, by perturbing id at first, and computing the ratios of vd and
id and the ratios of vq and id in order to identify Zd and Zdq, respectively. In order to
identify Zqd and Zq, iq can be perturbed, and the ratios vq to iq and vd and iq can be
computed for the identification. The measurement is based on the assumption that when
one of the channels is perturbed, the other can be kept at zero.

In practical systems, the measurement of the circuit elements of the system in Fig. 2.13
may not be as straightforward because the circuit is practically part of a larger system
and no ideal perturbations exist. Therefore, it cannot be assumed that the current
in the channel that is not perturbed is zero. This problem is encountered when the
synchronous-reference frame equivalent impedance of a three-phase system is measured.

2.2 Three-Phase Inverter

Fig. 2.14 shows a circuit diagram of a three-phase grid-connected inverter that consists of
three half-bridge phase legs. The output of the inverter is filtered by a LCL filter. La,b,c,
Ca,b,c, and L2-a,b,c denote the converter-side filter inductors, the filter capacitors, and
the grid-side inductors, respectively. The grid is modeled by stiff grid voltages (vg-a,b,c)
that are behind grid inductances Lg-a,b,c. The grid currents are denoted by ig-a,b,c. The
inverter is connected to the grid at the point of common coupling (PCC) where other
parallel-connected loads and sources can be connected. Although the output voltages
(vo-a,b,c) are at the physical output of the inverter, the controller frame is commonly
synchronized to the voltages over the filter capacitors.

Synchronous Reference Frame

The sum of balanced sinusoidal three-phase system voltages or currents can be presented
as a phase vector rotating at the frequency of the sinusoidal phase quantities, and a
reference frame can be synchronized at the rotating frequency of the phase vector. In the
synchronous reference frame (DQ frame), a balanced three-phase system is presented by
the direct (d) and quadrature (q) channels that are direct quantities. The fundamental
advantage of using the DQ frame is that traditional proportional-integral (PI) controllers
can be used because the synchronous frequency (50 Hz or 60 Hz) component is presented
by the DC component where the integral term of the controller has an infinite gain, which
leads to zero steady-state error [80].

Commonly, the Clarke transformation is first used to transform the balance three-phase
system variables (xa, xb, and xc) to the stationary reference frame [81]
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Figure 2.14: Three-phase grid-connected inverter.
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where xα and xα are the variables in the stationary reference frame. Then, the modified
Park transformation is used to obtain the direct (xd) and the quadrature (xq) components
in the synchronous reference frame:

x︷ ︸︸ ︷[
xd

xq

]
=
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

][
xα

xβ

]
(2.22)

where θ denotes the phase angle that equals the time integral of the synchronous angular
frequency, ωs. In a grid-connected converter, the phase angle is obtained by a synchro-
nization, where the controller reference frame is synchronized to the phase voltages [15].
In the grid-forming mode, the phase angle is created by the controller [15].

The transformation in (2.22) can be given by presenting xq and xβ at the imaginary
axis and xd and xα at the real axis:

xd + jxq = (cos(ωst)− j sin(ωst))(xα + jxβ) (2.23)

By using Euler’s identity, the equation can be given as

x̄ = e−jωstx̄αβ (2.24)

where x̄αβ and x̄ denote the stationary-reference frame phasor and the complex-valued
synchronous-reference frame variable, respectively. Eq. (2.24) can be solved for x̄αβ :

x̄αβ = ejωstx̄ (2.25)
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2.2. Three-Phase Inverter

The inductor current derivative as a function of the voltage over the inductor in the
stationary reference frame can be given as

δīαβL
δt

= v̄αβL
L

(2.26)

where īαβL and v̄αβL are the inductor current phasor and the voltage over the inductor
phasor in the stationary reference frame, respectively. The equation can be expressed in
the synchronous reference frame by using (2.25):

δejωstīL
δt

= ejωstv̄L

L
(2.27)

where īL and v̄L are the complex inductor current and the voltage over the inductor in
the synchronous reference frame. The derivative term is computed as follows:

δejωstīL
δt

= δejωst

δt
īL + ejωst

δīL
δt

= jωse
jωstīL + ejωst

δīL
δt

(2.28)

The final form for (2.26) in the synchronous reference frame can be given as

δīL
δt

= −jωsīL + v̄L

L
(2.29)

The derivative cross-couples the d and q channels. The cross-coupling is clearly visible
when the channels are presented by separate equations:

δiLd

δt
= ωsiLq + vLd

L
δiLq

δt
= −ωsiLd + vLq

L

(2.30)

In the synchronous reference frame, the derivatives of the capacitor voltage components
are also cross-coupled:

δvCd

δt
= ωsvCq + iCd

C
δvCq

δt
= −ωsvCd + iCq

C

(2.31)

where vCd and vCq denote the capacitor voltage d and q components, respectively, and
iCd and iCq denote the capacitor current d and q components, respectively.

Dynamic Model in Synchronous Reference Frame

Fig. 2.15 shows the synchronous-reference-frame equivalent circuit of the grid-following
inverter in Fig. 2.14. The converter is fed from a direct voltage source (vin), and the
input current is denoted by iin. The equivalent series resistance of the DC capacitor is
denoted by rC-dc, and the voltage over the DC capacitor is denoted by vC-dc. At the
output, the converter is connected to stiff grid voltages presented by the voltage sources
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Figure 2.15: Synchronous frame equivalent average circuit of the grid-following inverter.

vod and voq in the d and q channels, respectively. If the converter was fed from a PV
panel string, the input voltage source should be replaced by an equivalent current source
that more accurately models the dynamics of a PV panel [62, 82, 83].

The duty ratio d and q components are denoted by dd and dq, respectively. It is
assumed that the passive components are identical in all three phases. Therefore, the
passive components can be presented with identical values in both the d channel and the
q channel. The equivalent series resistances of the filter inductor and the filter capacitor
are denoted by rL and rC, respectively. At the output terminal of the converter, the
d-channel components and the q-channel components of the output current are denoted
by iod and ioq, respectively. The grid-side filter inductor is denoted by L2 and its ESR
by rL2.

The inductor current cross-coupling (2.30) and the capacitor voltage cross-coupling
(2.31) are visible as current-dependent voltage sources and voltage-dependent current
sources, respectively. The switching action is not modeled in the synchronous reference
frame equivalent circuit. Instead, the bridge voltage is modeled as the average by the
products of the duty ratio of the channel and the input voltage. The two-thirds gain
is required in the two current sinks modeling the DC-side dynamics because the power
leaving the DC side and entering the AC side must be equal.

The derivation of the synchronous-reference frame small-signal model for the three-
phase grid-forming inverter is examined in [P4]. The main steps of deriving the small-signal
model for a following inverter are put together here. At first, state-space equations are
formulated from the circuit in Fig. 2.15. The capacitor voltage derivatives and the
inductor current derivatives are set to zero and the steady state operating point of
the converter is solved. Then, the coefficients of the small-signal variables, which are
obtained after a linearization at the steady state, are collected to state-space matrices.
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2.2. Three-Phase Inverter

The state-space presentation can be solved for the transfer functions from the system
input variables (v̂in, v̂od, v̂oq, d̂d, d̂q) to the system output variables (̂iin, îLd, îLq, îod,
îoq). The hat denotes small-signal variables. With the G transfer functions [62], the
relation from the inputs to the output can be given as:



îin

îLd

îLq

îod

îoq


=


Yin Toi-d Toi-q Gci-d Gci-q

GiL-d GoL-d GoL-qd GcL-d GcL-qd

GiL-q GoL-dq GoL-q GcL-dq GcL-q

Gio-d −Yo-d −Yo-qd Gco-d Gco-qd

Gio-q −Yo-dq −Yo-q Gco-dq Gco-q





v̂in

v̂od

v̂oq

d̂d

d̂q


(2.32)

where Yin denotes the input admittance, Toi denotes the reverse transfer function, Gci

denotes the control-to-input transfer function, GiL denotes the input-to-inductor current
transfer function, GoL denotes the output-to-inductor current transfer function, GcL

denotes the control-to-inductor current transfer function, Gio denotes the input-to-output
transfer function, Yo denotes the output admittance transfer function, and Gco denotes
the control-to-output transfer function. The subscripts d and q indicate that the transfer
functions are related to the d or q channels, respectively. If the transfer function is from
a d-channel input to a q-channel output, the input channel is denoted first. For example,
GcL-qd is the transfer function from the q-channel duty ratio (d̂q) to the inverter-side
current d component (̂iLd). The transfer functions are responses to the Laplace variable
(s), which is omitted for brevity.

The transfer functions in (2.32) that are related to same variables, but with different
channels, can be presented with matrices, and the input and output variables can be
collected to vectors. The compact notation can be given as:

 îin

îL

îo

 =

 Yin Toi Gci

GiL GoL GcL

Gio −Yo Gco


 v̂in

v̂o

d̂

 (2.33)

where the bold font means 2×1 vector in the case of the input and the output variables,
and in the case of the transfer functions the bold font denotes a transfer matrix. In
(2.32), the transfer functions are grouped by the lines to show which transfer function are
presented by a single matrix in (2.33). The effect of the phase synchronization by means
of a phase-locked loop (PLL) on the system can be computed by linearizing the PLL and
computing the PLL effect on the open-loop dynamics [62].

Fig. 2.16 shows the transfer-matrix block diagram of the grid-following inverter with
a converter-side inductor-current feedback, which is commonly applied to grid-connected
inverters. In addition to the transfer matrices in (2.33), the current-controller transfer
matrix is used
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Figure 2.16: Block diagram of the dynamics of the grid-following inverter with the
inductor-current feedback.

Gcc =
[
Gcc 0
0 Gcc

]
=

 Kp-c + Ki-c

s
0

0 Kp-c + Ki-c

s

 (2.34)

where Kp-c and Ki-c are the P gain and the I gain of the proportional-integral (PI)
controller, respectively. The delay from the digital control and the pulse width modulation
(e−s1.5Tsw) can be approximated by Padé approximation [P4], and the delay can be
modeled as a part of the current-controller transfer function (Gcc). The closed-loop
current-reference-to-current transfer matrix can be calculated as follows:

Gc
cL = (I + Lc) Lc (2.35)

where Lc = GcLGcc is the multi-variable current loop gain, and the superscript ‘c’ denotes
that the current-control loop is closed. However, the superscripts are omitted for the
rest of this thesis when dq-frame systems are analyzed. The closed-loop presentation of
the other transfer matrices can be computed by similar principles as in the case of the
grid-forming mode [P4].

Fig. 2.14 shows a simplified diagram of the grid-connected three-phase inverter. If the
grid impedance is unknown, the output current of the inverter can be perturbed and the
grid-impedance can be measured. Here, the grid impedance is a series RL circuit whose
impedance matrix is given as

ZLg =
[
ZLg-d ZLg-qd

ZLg-dq ZLg-q

]
=
[
rg + sLg −Lgωs

Lgωs rg + sLg

]
(2.36)

where Lg and rg denote the grid inductance and the grid-inductance equivalent series
resistance. Because the inverter current measurement and feedback are from the converter-
side inductor current, the filter capacitor is considered part of the grid impedance. The
impedance of the filter capacitor is given as:
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Figure 2.17: A block diagram of the grid impedance measurement performed with a
grid-connected inverter.

ZC =
[
ZC-d ZC-qd

ZC-dq ZC-q

]
=

 s

Cs2 + Cωs2 + rC
ωs

Cs2 + Cωs2
ωs

Cs2 + Cωs2
s

Cs2 + Cωs2 + rC

 (2.37)

The parallel connection of the grid inductance and the filter capacitor forms the grid
impedance (Zg) that is measured:

Zg =
(
I + ZLgZ−1

C
)−1 ZLg (2.38)

The small-signal output voltages can be presented as a function of the small-signal
inductor current and the impedance elements:

[
v̂o-d

v̂o-q

]
=

Zg︷ ︸︸ ︷[
Zg-d Zg-qd

Zg-dq Zg-q

][
îL-d

îL-q

]
(2.39)

Assuming that only either îL-d or îL-q is perturbed at a time, the impedance elements
can be computed as

[
Zg-d Zg-qd

Zg-dq Zg-q

]
=


v̂o-d

îL-d

v̂o-d

îL-q
v̂o-q

îL-d

v̂o-q

îL-q

 . (2.40)
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Impedance coupling

Fig. 2.17 shows a block diagram of a voltage-fed grid-connected inverter that is feedback-
controlled from the converter-side inductor current. A grid-impedance measurement is
performed with the inverter by using the inverter and applying a broadband perturbation
(maximum-length binary sequence) [26]. The perturbation is injected on top of the
current reference d and q components, and the resulting responses in the inductor current
and the output voltage are measured and Fourier transform is applied to extract the
spectral information of the grid impedance. The system is simulated with Matlab Simulink
Simscape toolbox, and the system parameters are given in Table 2.2. The grid inductance
value Lg in the simulation is the sum of Lline and LT.

The synchronous-reference-frame impedance elements are computed from the responses
in the output voltage and the inductor current d and q components according to (2.40).
Fig. 2.18 compares the modeled grid impedance d and dq components to the results from
a simulated measurement performed with Simulink. The superscripts vd/id and vq/id
denote that the impedance elements are calculated as the ratios of the corresponding
voltages and currents according to (2.40). There are clear differences between the modeled
and the measured impedance elements. In the d component in the simulation result,
there is additional resonance at around 120 Hz and the resonance peaks at around 500 Hz
are merged [P1]. In the dq-component simulation result, only the low-frequency part
below 40 Hz matches the model. The simulation result shows that, regardless of the
feedback-controlled converter used in perturbing the system, some errors occur in the

Table 2.2: Grid-connected inverter parameters and operating point values.

Parameter Symbol Value Parameter Symbol Value
Input voltage Vdc 413 V Grid voltage rms Vg-rms 120 V
Output current d
component

Iod 10.6 A Output current q
component

Ioq 0.71 A

Synchronous
frequency

ωs 2π50
rad/s

Switching fre-
quency

fs 8 kHz

Filter capacitor ca-
pacitance

Cf 10 µF Filter inductance L 2.5 mH

Cf ESR and damp-
ing resistor

rCf 1.81 Ω L ESR rL 0.065 Ω

Filter inductance 2 L2 0.1 mH L2 ESR rL2 0.022 Ω
Line inductance Lline 8.83 mH Line inductance

ESR
rLg 0.262 Ω

Transformer induc-
tance

LT 0.507
mH

Transformer induc-
tance ESR

rT 0.417 Ω

Current controller
P gain

Kp-c 0.0149 Current controller I
gain

Ki-c 23.4

PLL P gain Kp-pll 0.0120 PLL I gain Ki-pll 0.0144
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Figure 2.18: Modeled and simulated measurement results of the grid impedance (a) d
component and (b) dq component.

Figure 2.19: Modeled and simulated measurement results based on two independent
injections of the grid impedance (a) d component and (b) dq component.

measurement. The distorting effect is also visible in the voltage-perturbed simulated
measurements in [P5].

In the traditional approach to tackle the impedance coupling, multiple independent
measurements are performed at the same frequencies [31, 48–52]. Two measurement
cycles are performed. First, the injection is summed on top of the d-channel current
reference. Secondly, the injection is summed on top of the q-channel current reference.
The results from the two sets of measurements can be used to form a group of equations
based on (2.39) and solved for the impedance elements [31]:

31



Chapter 2. Frequency-Domain Analysis of Power-Electronic Converters

[
Zd Zqd

Zdq Zq

]
=
[
Vd1 Vd2

Vq1 Vq2

][
ILd1 ILd2

ILq1 ILq2

]−1

(2.41)

where subscripts 1 and 2 denote the results from the first and the second independent
measurements, respectively. The capital letters in the currents and the voltages denote
discrete Fourier transformation (DFT) of the variables. Fig. 2.19 shows the impedance
elements identified with the method based two independent injections and based on (2.41).
Evidently, the simulated measurements match the models. Figs. 2.18 and 2.19 only show
the d and dq impedance elements; nevertheless, similar behavior is visible in q and qd
components as it is shown in [P1].

The main disadvantage of the described method is the requirement for at least two
sequentially performed measurements during which the system is prone to disturbances.
In order to improve the measurement, a procedure that is based on one measurement
cycle is developed in Chapter 3.

2.3 Discussion

This chapter has presented background information on the nonlinear deadtime effect and
the measurement of equivalent synchronous-reference frame impedance of a three-phase
system. The nonlinear deadtime effect in the time domain was revised, which is the
basis for the development of the nonlinear frequency-domain model in the following
sections. The unterminated model for a three-phase inverter in the synchronous-reference
frame was revised, and the cause of the cross-coupling between the direct and the
quadrature channels in the synchronous-reference frame was derived. The measurement
of the equivalent impedance of a three-phase system in the synchronous-reference frame
was investigated, revealing that the cross-coupling can distort the measurement even
though a feedback-controlled inverter was used to perform measurement. The background
information presented in this chapter acts as prerequisites for the following chapters where
a novel nonlinear frequency-domain model for the deadtime effect, and a novel real-time
synchronous-reference-frame impedance-measurement procedure is proposed.
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Methods

This chapter is divided into two sections. The first section looks in detail into the
deadtime effect in a sinusoidal steady state of the inverter, and a describing function
model is derived for the nonlinear deadtime effect. The second section starts by examining
the impedance coupling in impedance measurements with a load-affected model in the
synchronous reference frame. Then, the generation and the characteristics of orthogonal
pseudo-random binary sequences are revised. Finally, a measurement method is proposed
that utilizes the orthogonal sequences to tackle the impedance coupling is proposed.

3.1 Dynamic Modeling of Nonlinear Deadtime Effect

The average voltage error caused by the deadtime depends on the deadtime length, the
switching frequency, the direct voltage value, and the converter-side inductor current
sign. In the presence of a synchronous frequency (50 Hz) current component, the current
sign changes every half cycle, and the voltage error sign changes with the current sign at
the synchronous frequency, provided that the current amplitude is higher than half the
peak-to-peak ripple. When an additional frequency component to synchronous-frequency
component is added to the current, the current may cross zero at the perturbation
frequency; therefore, a voltage error can occur at the perturbation frequency (Fig. 3.2a).
In following, the behavior of the voltage is analyzed in the presence of an additional
current perturbation.

A voltage error appears at the perturbation frequency if the sum of the perturbation-
frequency current amplitude, the synchronous current amplitude, and the zero-current-
clamping-occurrence current is higher than half the peak-to-peak current ripple. Therefore,
in the occurrence of the voltage error as a function of the current, there is a dead zone
if the synchronous-frequency current amplitude (Async) subtracted by the zero-current
clamping value is less than half the peak-to-peak ripple (∆i/2). This current value is the
limit where the dead zone ends, and the error begins to appear [P2]:
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Figure 3.1: Half-bridge inverter with (a) an L filter connected to an alternating voltage
source, and (b) an LC filter connected to a current sink.

Rdead = ∆i
2 −Async −∆idead (3.1)

The minimum value of Rdead is zero. When the perturbation amplitude equals the sum
of the synchronous-frequency current amplitude and half the peak-to-peak ripple, the
current error saturates for the first time at one point in the synchronous-frequency cycle,
which is visible as the end of the linear in region in the voltage error that is averaged
over a switching cycle [P2]. At higher perturbation amplitudes, the error approaches the
maximum voltage error. The limit for the beginning of saturation region can be given as
[P2]1:

Rsat = ∆i
2 +Async (3.2)

The voltage-output inverter in Fig. 3.1b is preferred over the current-output inverter
in Fig. 3.1a in the detailed study of the deadtime effect. If the filter inductor of the half-
bridge inverter is connected directly to an alternating voltage source and perturbations
are summed to the alternating voltage source in Fig. 3.1a, the perturbations become
visible in the inductor current and the voltage error at the injection frequency. However,
the voltage error may also significantly affect the current fundamental component, and
hence change the operating conditions. If the synchronous-frequency current is created by
a current sink (Fig. 3.1b), the voltage error from the deadtime has a small effect on the
fundamental current that flows through the inductor. Therefore, the operating conditions
remain mostly unchanged for the study of the deadtime effect.

The voltage error under current perturbations from the output current is studied with
an LC filter that is critically damped with the capacitor series resistance:

1In [P2], Async is multiplied by cos θ, where θ is the phase angle. This is not relevant because the
ripple (∆ip-p) is based on the approximation (2.18).
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Figure 3.2: Fundamental cycle of the inductor current and the average voltage error (a)
with a synchronous current of 6 A and inductor current perturbation of 3.2 A, and (b)
with a synchronous current of 0 A and inductor current perturbation of 2.8 A.

rC = 2
√
L

C
(3.3)

Matlab Simulink simulations are used to verify the behavior of the voltage error. Pa-
rameters given in Table 2.1 are used. Fig. 3.2a shows a simulated synchronous-frequency
cycle of the inductor current and the average voltage error with a synchronous-frequency
current amplitude of 6 A and inductor current perturbation of 3.2 A at 625 Hz. The
perturbation is visible in the inductor current (iL) that has the ripple. The average
voltage error is clearly affected by the current sign changes, and the voltage error has
visible components at the perturbation frequency [P2]. The errors at the perturbation
frequency are around the original zero crossing of the synchronous-frequency current
component because the perturbation is more likely to change the current direction at the
lowest synchronous-frequency current values [P3].

Fig. 3.2b shows a simulated synchronous-frequency cycle of the inductor current and
the average voltage error with a fundamental current of 0 A and an inductor current
perturbation of 2.8 A at 625 Hz. Because there is no current at the synchronous frequency,
there is also no voltage error at the synchronous frequency. The error at the perturbation
frequency resembles a square wave [P2]. It can be observed from Figs. 3.2a and 3.2b that
the voltage error at the perturbation frequency is periodic over a synchronous-frequency
cycle.

The simulations are repeated with different combinations of the synchronous-frequency
current amplitude and the perturbation current amplitude. Fig. 3.3 shows the result-
ing voltage error and the inductor current at the perturbation frequency in frequency
domain. The synchronous-frequency current values are taken from the conditions when
no perturbations are added to the inductor current. When the perturbation amplitude
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Figure 3.3: Voltage error at the perturbation frequency (fpert = 625 Hz) as a function of
the inductor current perturbation amplitude at different synchronous-frequency current
amplitudes.

and the synchronous-frequency current amplitude are high enough (Rdead is zero), the
error begins to increase from zero as a linear function of the current [P3]. Furthermore,
when the synchronous-frequency current is high, the saturation is less likely to occur
because required perturbation current for the saturation is relatively high, which implies
that a resistive-element model can be used under such operating conditions. A heuristic
model for the linear-region voltage error is developed in [P3]. Another linear model was
published simultaneously with [P3]; it was suggested in [45] that the ripple effect must be
considered in detail in the model and this seems to be a reliable approach.

The frequency-domain results that correspond to the time-domain waveforms in
Figs. 3.2a and 3.2b are denoted by (i) and (ii) in Fig. 3.3, respectively. Clearly, in case
(ii), where there is no synchronous-frequency current component, the error is closer to
the square wave and the saturation in the frequency domain, although the perturbation
amplitude is around the same range as in case (i). It can be observed from Fig. 3.3 that
the higher the fundamental current, the lower the voltage error is for a given perturbation
amplitude when the synchronous-frequency current amplitude is higher than half the
peak-to-peak ripple (∆ip-p/2).

The limits Rdead and Rsat are presented in Fig. 3.4a and 3.4b for synchronous-
frequency amplitudes of 1 A and 6 A, respectively. In Fig. 3.4a, Rdead accurately models
the end of the dead zone. Between Rdead and Rsat, the error increases relatively linearly
when the perturbation amplitude is increased. When the perturbation amplitude equals
Rsat, the error begins to saturate.
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3.1. Dynamic Modeling of Nonlinear Deadtime Effect

Figure 3.4: The voltage error with different synchronous-frequency current amplitudes of
(a) 1 A and (b) 6 A at (fpert = 625 Hz).

Figure 3.5: The voltage error with different deadtime lengths under no-load conditions at
(fpert = 625 Hz.

When the synchronous-frequency current amplitude is 6 A, there is no dead zone in
Fig. 3.4b. Rsat accurately models the perturbation current value when the error begins
to saturate. From 0 A to Rsat, the approximation of the linear increase in the error with
the perturbation current amplitude seems to be valid.

The voltage error as a function of the perturbation current is analyzed with different
deadtime lengths. The voltage errors are normalized by dividing the voltage errors by
π/4V avg-max

err so that the maximum magnitude of the voltage errors is 1. Fig. 3.5a shows
that the error behaves similarly with different deadtime lengths in operating conditions
that are otherwise the same. The error saturates at high current perturbation amplitudes.
However, at low perturbation amplitudes, there are differences in the error behavior.
Fig. 3.5b shows in detail the region where the voltage error begins to appear. With
longer deadtime lengths, the error appears with smaller perturbation amplitudes. This
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is considered in Rdead in (3.1) where the zero-current clamping effect (∆idead) reduces
the value of Rdead and makes the dead zone shorter. Table 3.1 shows the most important
values related to the deadtime in the simulations. The values are calculated with the
parameters given in Table 2.1. Parameters V avg-max

err and ∆idead are linearly dependent
on the deadtime length.

The detailed analysis of the deadtime effect under sinusoidal perturbations shows that
the deadtime effect behaves nonlinearly depending on the inductor current amplitude
at the perturbation frequency and the synchronous frequency. Effectively, the deadtime
effect is a nonlinear negative feedback. The inductor current is not only dependent on
the system filter dynamics; the voltage error reduces the inductor current that causes the
voltage error. Therefore, the inductor current and perturbation-frequency component of
the voltage error are in a sinusoidal steady state.

Describing-Function Model

The average voltage error from the deadtime is time periodic. When the average error is
inspected over a synchronous frequency cycle, the effect of the error can be represented
with the dead zone, the slope, and the saturation regions as a function of the current
amplitude at the analyzed frequency. The describing-function method is suitable for
signals with such shapes as the output of a system with sinusoidal inputs [84]. Regarding
power-electronic systems, the describing function method has been applied in dynamic
modeling of maximum power point tracking in PV generators [36, 37], current-mode
control of buck converters [85], and developing a linear model for the deadtime effect [45].

The describing function is, by definition, the ratio of the fundamental component
of the system output and the sinusoidal input [86]. In other words, the describing
function approximates a periodic waveform with its first (fundamental frequency) Fourier
series term [87, 88]. However, a nonlinear element produces higher harmonics than the
fundamental that are present in the system; therefore, the system must be assumed to
have low-pass characteristics [84, 86, 87]. However, this assumption may not be valid in
power-electronic systems that have undamped resonances.

Under low load conditions, the average deadtime effect as a function of the inductor

Table 3.1: Current and voltage parameters related to the deadtime effect.

Variable
Deadtime length (Tdead)

1 µs 2 µs 3 µs 4 µs
V avg-max

err (2.16) 7 V 14 V 21 V 28 V
4
π
V avg-max

err 8.91 V 17.83 V 26.74 V 35.65 V
∆idead (2.19) 0.0875 A 0.175 A 0.263 A 0.350 A
∆ip-p/2 (2.18) 2.19 A 2.19 A 2.19 A 2.19 A
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3.1. Dynamic Modeling of Nonlinear Deadtime Effect

current amplitude can be approximated over an integer amount of the synchronous-
frequency cycles by a dead zone, a linear zone, and a saturation. A describing function
model (N(A)̄iL) can be derived for such conditions, where A is the amplitude of the
inductor current phasor (̄iL). The expression for the voltage error phasor with the
describing function is defined as

v̄err = N
(∣∣̄iL∣∣) īL (3.4)

With this definition, the voltage error phasor is in phase with the inductor current phasor.
The describing function model (N(A)̄iL) can be created by summing two describing
function models (N1(A)̄iL and N2(A)̄iL), both of which model a slope and a saturation
[84]. The describing function model for the saturation is well known [84, 86], and N1(A)
and N2(A) can be given as

N1(A) = −2k
π

sin−1
(
Rdead

A

)
+ Rdead

A

√
1−

(
Rdead

A

)2
 (3.5)

N2(A) = 2k
π

sin−1
(
Rsat

A

)
+ Rsat

A

√
1−

(
Rsat

A

)2
 (3.6)

where k is the slope that is given by

k = V max
err

Rsat −Rdead (3.7)

where it is assumed that the error linearly rises from 0 to V max
err when the current amplitude

is increased from Rdead to Rsat [P2]. The sum of N(A)1 and N(A)2 is the final model

N(A) = < [N1(A) +N2(A)] . (3.8)

where only the real parts of N1(A) and N2(A) are considered because the square-root
factors result in imaginary values at lower amplitudes than Rdead and Rsat, respectively.
It is known that the voltage error is in phase with the current, and therefore the final
expression for the voltage error is defined as N(A)̄iL. On amplitudes below Rdead, N1(A)
and N2(A) cancel out each other because they have the same slope k but with different
signs. N1(A) saturates at Rdead and no longer cancels the positive slope; therefore, the
positive slope becomes visible in N(A). At Rsat, N2(A) saturates and the saturation
becomes visible in N(A). The summation is illustrated in [P2]. Figs. 3.6a and 3.6b show
the simulated and modeled (N(A)̄iL) voltage error as a function of the perturbation current
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Figure 3.6: The voltage error with different synchronous-frequency current amplitudes of
(a) 0 A (no-load condition) and (b) 4 A at (fpert = 625 Hz).

Figure 3.7: An equivalent circuit of the half-bridge inverter including the deadtime effect
in a sinusoidal steady state.

amplitude under the no-load condition and with the load current of 4 A, respectively.
The model clearly catches the main nonlinear behavior of the voltage error as a function
of the perturbation current amplitude.

Fig. 3.7 shows a circuit diagram of the half-bridge inverter in a sinusoidal steady state.
The inductor current (iL), output voltage (vo), and the output current (io) at frequency
ω are expressed with phasors īL, v̄o, and īo, respectively. The bridge voltage is assumed
to provide only the 50 Hz component; therefore, vref is grayed out. At first, only the
output current is known at the perturbation frequency. The voltage amplitude over the
capacitor branch and the inductor branch is equal:
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3.1. Dynamic Modeling of Nonlinear Deadtime Effect

∣∣N (∣∣iL (̄iL, ω)∣∣)+ ZL (jω) + ZC (jω)
∣∣ iL (̄iL, ω)

−
∣∣ZC (jω) io

(̄
io, ω

)∣∣ = 0
(3.9)

Due to the nonlinear term, N
(∣∣iL (̄iL, ω)∣∣), the equation cannot be solved analytically

for the inductor current; nevertheless, the equation can be solved numerically. The solved
inductor current is real-valued; therefore, the output current must be resolved in order to
obtain the correct phasor for the output impedance expression:

io
(̄
io, ω

)
=
[
N
(∣∣iL (̄iL, ω)∣∣)+ ZL (jω) + ZC (jω)

]
iL
(̄
iL, ω

)
ZC (jω)

(3.10)

The output voltage is the product of the capacitor impedance and the capacitor current:

vo (v̄o, ω) = ZC (jω)
[
io
(̄
io, ω

)
− iL

(̄
iL, ω

)]
(3.11)

The solved output current (3.10) and the output voltage (3.11) can be used to express
the output impedance:

Zo
(∣∣̄io∣∣ , jω) = −vo (v̄o, ω)

io
(̄
io, ω

) (3.12)

The model is compared to simulation results of the output impedance measurement
under no-load conditions where the synchronous-frequency inductor current consists of
only 0.54 A reactive current charging the capacitor. Under these conditions, Rdead and
Rsat are 1.30 A and 2.73 A, respectively. The used perturbation amplitudes are 0.5 A,
1 A and 3 A. The simulated and modeled inductor current and the voltage error are
shown in Figs. 3.8a and 3.8b, respectively. The model matches the simulation adequately
at a wide frequency range. With the perturbation amplitudes of 0.5 A and 1 A, the
region where the dead zone changes to the slope is not modeled especially accurately,
which is also visible in Fig. 3.6a. In the case of 3 A perturbation amplitude, the model
satisfactorily approximates the voltage error. The simulation results deviate the most
from the model between 200 Hz and 300 Hz. However, this is probably because the third
harmonic of the square-wave-like voltage error is not negligible, and the third harmonic is
amplified by the resonance peaking at 795 Hz. The describing function model is based
on the assumption that higher harmonics than the fundamental are filtered out in the
system [84, 86, 87].

Fig. 3.9 shows the simulated and modeled output impedance with different perturba-
tion amplitudes. The model clearly catches the nonlinear amplitude dependent damping
that can be explained with Rdead and Rsat. With the perturbation amplitudes of 0.5 A
and 1 A, the voltage error is zero at low frequencies because the current amplitude is below
Rdead, as shown in Fig. 3.8a. At Rdead, the error begins to appear. The current amplitude
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Figure 3.8: Simulated (solid line) and modeled (dashed line) (a) inductor current amplitude
and (b) voltage error amplitude with different perturbation amplitudes at (fpert = 625 Hz).

Figure 3.9: Simulated (lines) and modeled (dots) output impedance in the no-load
condition (0.54 A capacities current) with perturbation amplitudes of 3 A, 1 A, and
0.5 A.

never reaches the beginning of saturation region Rsat. Therefore, with the perturbation
amplitudes of 0.5 A and 1 A there is visible damping in the output impedance in Fig. 3.9.

With the perturbation amplitude of 3 A the error appears immediately when the
perturbation is injected, as shown in 3.8b; the injection amplitude is higher than Rdead

even without amplification from the system dynamics. This is visible as damping at low
frequencies in Fig. 3.9. The injection amplitude is also even higher than Rsat, which
means that error is in the saturation region. Fig. 3.8b shows that the error saturates
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3.2. DQ-Frame Impedance Measurement in Presence of Impedance Coupling

Figure 3.10: Inductor-current dynamics and output dynamics of the grid-connected
inverter.

Figure 3.11: Inductor-current dynamics and output dynamics of the grid-connected
inverter with equivalent matrix elements.

around the resonance, therefore, the error does not hinder the current from increasing.
Hence, the resonance is not visibly damped in Fig. 3.9.

3.2 DQ-Frame Impedance Measurement in Presence of
Impedance Coupling

This section begins by analyzing the impedance coupling in the DQ frame with a load-
affected model. Characteristics of uncorrelated pseudorandom-binary sequences are then
looked into. Finally, a measurement procedure that utilizes uncorrelated pseudo-random
binary sequences in tackling the impedance coupling is proposed.

Load Effect on the Injection Path

It was shown in Chapter 2.2 that erroneous impedance measurement results were obtained
on a wide frequency range even though the three-phase inverter used in the measurement
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was feedback-controlled. Fig. 3.10 shows the equivalent-circuit model of the control-
to-inductor current and the control-to-output current dynamics of the grid-connected
converter. Due to the complex interaction of the output-admittance elements and the
grid-impedance elements (ZLg), a significant cross-coupling between the d and q channels
can occur regardless of the feedback control. A load-affected model can be used to analyze
the cause for this behavior [P1]. Therefore, the load effect is revised for the grid-feeding
inverter in order to analyze the load effect on the cross-coupling in the synchronous
reference frame. The load-affected model of the grid-feeding inverter has been analyzed
in [62, 83, 89, 90].

Load-affected models have been widely used to analyze the effect of different dynamic
loads on converter dynamics [62, 83, 91]. Typically, the converter model is first developed
for a voltage-output converter with a current sink load and for a current-output converter
with a stiff voltage-source at the output [62, 83, 91]. Then the effect of the load dynamics
is computed using the model for the impedance-based interaction. The capabilities of the
load-affect model for modeling the loop gain of a grid-forming inverter under different
dynamic loads is demonstrated in [P4].

Fig. 3.11 shows the equivalent inductor-current dynamics and the output dynamics of
the grid-feeding inverter with transfers matrices. The grid dynamics are modeled by ZLg,
and v̂g denotes the small-signal stiff grid voltages. The equivalent grid impedance (ZLg)
can consist, for example, of an RL-circuit that models a resistive-inductive medium-voltage
distribution grid or a more complex meshed circuit of active and passive impedances.
The duty ratio (d̂) is replaced by a general control variable (ĉ) that can be the inductor
current reference or the input voltage reference when analyzing the system with feedback
loops closed.

The load-affect control-to-inductor current dynamics are derived as follows. When the
controller variable (ĉ) is perturbed, a response is caused to the converter-side inductor
current (̂iL) according to GcL. Additionally, a response is visible in the output current (̂io)
that is modeled by Gco in the unterminated case. However, in the presence of non-zero
grid impedance, the output voltage (v̂o) is not stiff. The output current affects the output
voltage through the impedance interaction ZLg(I + YoZg)−1. The inductor current is
affected by the output voltage through GoL. The load-affected inductor current dynamics
can be given as

GL
cL = GcL + GoLZLg(I + YoZLg)−1Gco (3.13)

where superscript ´L’ denotes that the transfer matrix is load-affected.
The grid-connected inverter is analyzed with the parameters given in Table 2.2.

Fig. 3.12a shows the unterminated closed-loop control-to-inductor current d and dq
transfer functions. It can be seen that the inductor current d component reference causes
only a weak response in the current q component. However, when the grid inductance of
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Figure 3.12: Bode plot of the current reference-to-inductor current transfer function d
and dq components in the (a) unterminated and (b) the load-affected case.

8.83 mH (ZLg) is introduced, the dynamics change substantially, as shown in Fig. 3.12b.
The magnitude of the dq component transfer function is significantly amplified. Both d
and dq components have a drop in the gain at around 500 Hz, and the transfer functions
have approximately the same gain at a wide frequency range. Clearly, the response in îLq

caused by îref
Ld can no longer assumed to be small, either absolutely or in comparison to

the response in îLd. With aid of a scalar equivalent dynamic circuit, further analysis of
the system is provided in [P1]. The present analysis shows that the impedance coupling
affects the measurement regardless of the current-feedback-controlled inverter that is
connected in series with the measured impedance. The impedance coupling in a similar
system was analyzed in [30, 55]; however, the perturbations were injected by an external
device, the dynamics of which were not modeled, that was connected parallel to the
grid-connected inverter. In the following, a measurement procedure that is rapid and
tackles the impedance coupling is developed.

Orthogonal Pseudo-Random Binary Sequences

Pseudorandom-binary sequences (PRBSs) are two-level broadband signals that are periodic
and predetermined [53]. The PRBS has the lowest possible peak factor, which makes it
suitable for systems whose operation may not be disturbed excessively [92]. The PRBS
has been widely used in rapid wide-band frequency-domain analysis of power electronic
systems [92, 93].

One class of the PRBS is the maximum-length binary sequence (MLBS). The MLBS
has become very popular because the signal can be easily generated using simple shift-
register circuit [53, P1]. An n-stage feedback register can be used to generate a binary
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Figure 3.13: (a) 20 ms sample of the repeating MLBS (n = 4) in the time domain and
(b) the MLBS magnitude in the frequency domain.

sequence whose length is N, given as

N = 2n − 1 (3.14)

With a generation frequency of fgen, the lowest frequency that has energy is fgen/N , and
the frequencies that have energy are:

fMLBS
k = k

fgen

N
, k = 1, 2, 3...N (3.15)

where k denotes the sequence number of the spectral line and fgen is the highest frequency
considered.

Fig. 3.13a shows a sample of the MLBS in the time domain. The length of the
feedback register is 4 and the sequence generation frequency is 4 kHz. Fig. 3.13b shows
the amplitude spectrum. The energy of the MLBS drops to zero at the signal generation
frequency.

In DC–DC and single-phase converter systems, the output impedance is modeled as
the ratio of a single output (voltage) and a single input (current). However, in three-phase
systems modeled in the synchronous reference frame, there are impedance elements related
to both d and q channels and the cross-couplings between the channels. Hence, in the DQ
frame, the impedance is defined as a combination of multiple inputs and multiple outputs;
there are up to four transfer functions to be measured. The traditional technique to
measure the DQ-frame impedance element requires sequential injection into both d and
q channels [31], which can be implemented with the maximum-length binary sequence.
However, the sequential measurements can compromise the measurement accuracy because
the system is prone to disturbances during the injections. Therefore, the capability to
measure multiple transfer functions simultaneously is desired.

A system with multiple coupled inputs and multiple outputs can be measured in a
short time by applying orthogonal binary sequences [27, 54, 92]. Because the orthogonal
sequences have energy at different frequencies, they can be injected simultaneously to
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Figure 3.14: OBS1 (n = 4) and OBS2 in frequency domain.

different inputs of the system, and several frequency responses can be measured at the
same time within one measurement cycle. This approach is a viable alternative to applying
sequential perturbations because the frequency responses are measured under the same
system operating conditions, which may not be the case if sequential perturbations are
applied.

Uncorrelated pseudo-random binary sequences can be generated with the Hadamard-
matrix modulation [54]. When two orthogonal sequences are created, the MLBS can be
considered as the first orthogonal sequence (OBS1), and the second orthogonal sequence
(OBS2) can be generated by modulating OBS1 by the second Hadamard matrix. This
corresponds to combining the maximum-length binary sequence (OBS1) twice, one after
the other, and inverting every second bit [94]. The length of the resulting OBS2 is 2N if
the length of the original sequence is N . The frequencies where OBS2 has energy are:

fOBS2
k = (2k − 1)fgen

2N , k = 1, 2, 3...N (3.16)

Fig. 3.14 shows the amplitude spectrum and the phase of two orthogonal binary
sequences (OBS1 and OBS2). The first sequence is obtained by using a four-bit-length
shift register and the second sequence by the Hadamard modulation. Both sequences have
been generated at 4 kHz. According to (3.15) and (3.16), the energy of OBS1 falls exactly
in between the frequencies of OBS2; therefore, OBS2 and OBS1 are uncorrelated. Thus,
OBS1 and OBS2 can be simultaneously injected into different inputs of a linear multiple-
input system. Therefore, multiple transfer functions can be measured simultaneously
from a multiple-input and multiple-output system under the same operating conditions
[27, 93].
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Transfer-Function Interpolation

OBS1 and OBS2 have energy at different frequencies and can be injected independently
of each other into a linear system. Therefore, the orthogonal sequences can be used
to simultaneously measure the four synchronous-reference frame impedance elements.
However, the measurements related to both sequences are affected by the impedance
coupling similarly to the single-injection measurement [30, 55, P1]. Nevertheless, due to
the deterministic nature of the sequences, frequency domain data can be easily interpolated
from the frequencies of OBS2 to the frequencies of OBS1 or vice versa, and two independent
sets of measurements can be obtained at the same frequencies [P1]. The traditional
method [31] to overcome the impedance coupling can be used with the obtained data.

As shown in Fig. 3.14, the magnitudes of OBS1 and OBS2 are approximately constant
over a wide frequency range. However, the phases have a pseudo-random behavior. The
jumps in the phase are not suitable for interpolation, which is discussed in [P1]. Therefore,
the responses in the voltages and currents (IOBS2

Ld2 , V OBS2
d2 , IOBS2

Lq2 , and V OBS2
q2 ) are first

divided by the injected spectrum:


GOBS2

cL-qd

GOBS2
cv-qd

GOBS2
cL-q

GOBS2
cv-q

 =


IOBS2

Ld2

V OBS2
d2

IOBS2
Lq2

V OBS2
q2

 1
Iref-OBS2

Lq2
(3.17)

The results are the control-to-inductor current (GOBS2
cL-qd and GOBS2

cL-q ) and control-to-output
voltage-related transfer function components (GOBS2

cv-qd and GOBS2
cv-q ) at the OBS2 frequencies.

The transfer functions no longer have the pseudorandom behavior in the phase and they
can be interpolated to the OBS1 frequencies [P1]. The deterministic nature of the
sequences is advantageous in the interpolation because the energy of OBS1 is exactly
between the frequencies of OBS2. Therefore, the interpolation is a straightforward
arithmetic mean [P1]:

GTF-intrpl-k = Gf-OBS2-k +Gf-OBS2-k+1

2 , (3.18)

where GTF-intrpl-k and Gf-OBS2-k denote the k:th frequency of OBS1 (resulting from the
interpolation) and OBS2, respectively. The interpolation results can be used to replace
Vd2, Vq2, ILd2, and ILq2 in (2.41), resulting in

[
ZTF-intrpl

d ZTF-intrpl
qd

ZTF-intrpl
dq ZTF-intrpl

q

]

=
[
Vd1 GTF-intrpl

cv-qd
Vq1 GTF-intrpl

cv-q

][
ILd1 GTF-intrpl

co-qd
ILq1 GTF-intrpl

co-q

]−1

(3.19)
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Figure 3.15: Models and simulation results with the proposed transfer function interpola-
tion method of the grid impedance (a) d component and (b) dq component.

where the superscript ‘TF-intrpl’ denotes that the elements are resulting from the proposed
method [P1].

A Matlab Simulink Simscape simulation is used to test the proposed technique. The
used system parameters are given in Table 2.2. The lengths of the applied OBS1 and
OBS2 were 511 and 1022 bits, respectively, and OBS1 and OBS2 were injected for 160
cycles and 80 cycles, respectively. Fig. 3.15 compares the d and dq components of the
grid-impedance elements obtained with the proposed method to the grid-impedance
model. The impedance coupling is clearly tackled. Furthermore, the proposed method
utilizes the advantageous averaging capabilities of the simultaneously-injected orthogonal
pseudo-random binary sequences that are demonstrated in [P1].
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Chapter4
Implementation and Verification

This chapter presents the experimental verification of the proposed models and methods.
The chapter is divided into three sections. The first section introduces the used experimen-
tal setups. In the second section, the describing-function model for the nonlinear deadtime
effect is verified. The third section presents the experimental implementation of the novel
synchronous-reference-frame impedance measurement technique. The experiments can be
summarized as follows:

Experiment set 1:

The first experiment set verifies the proposed describing function model for the
deadtime effect under low load conditions. In the experiment set, the output
impedance of a single-phase grid-connected inverter is measured by perturbing
the output voltage with a grid emulator.

Experiment set 2:

The second experiment set verifies the proposed synchronous-reference impedance
measurement method. First, the method is implemented with a three-phase
inverter and the grid-impedance is measured. Then, the output admittance
of a grid-connected PV inverter is measured by perturbing the PCC voltages
with a grid emulator.

4.1 Experimental Setups

Two different experimental setups are applied. Experimental Setup 1 consists of a single-
phase inverter that is connected to a grid-emulator and is used to study the deadtime
effect. The single-phase inverter is implemented with both MOSFETs and IGBTs. In
Experimental Setup 2, both a DC voltage source and a PV panel emulator are used to
feed a three-phase inverter that is connected to a grid emulator. The setup is used to
implement the proposed synchronous-reference frame impedance measurement technique.
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Figure 4.1: Diagram of the laboratory setup for the half-bridge inverter.

Experimental Setup 1

Fig. 4.1 shows a diagram of the experimental setup that includes a single-phase inverter,
a DC voltage source, an isolation transformer, and a grid-emulator. The converter
topology is the half-bridge inverter that is implemented with Imperix half-bridge power
module PEB 8024 (MOSFET) and alternatively with PEB 8032 (IGBT). The switches
are controlled with an Imperix Boombox rapid control prototyping system.

The direct and alternating voltage sources used are a Spitzenberger & Spies PV
Simulator PVS 7000 and a Spitzenberger & Spies Three-Phase Mains Simulation System
DM 15000/PAS, respectively. A 380V/380V transformer is used for isolation. The
synchronous-frequency voltage reference for the grid-emulator is created by a dSpace

Table 4.1: System parameter values of the single-phase inverter.

Parameter Symbol Value Parameter Symbol Value
Input voltage VDC 700 V Grid voltage rms Vg 120 V
Synchronous
frequency

ωs 2π60
rad/s

Switching fre-
quency

fsw 10 kHz

Filter capacitor ca-
pacitance

C 10 µF Filter inductance L 1.2 mH

C ESR and damp-
ing resistor

rC 0.1 Ω L ESR rL 0.13 Ω

DC capacitor ca-
pacitance

CDC 470 µF CDC ESR rC-DC 0.246 Ω

PLL P gain Kp-pll 0.03 PLL I gain Ki-pll 10.5
Deadtime Tdead 4 µs
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Figure 4.2: Diagram of the laboratory setup for the grid-connected three-phase inverter.

real-time simulator. A PC is used to generate a sinusoidal perturbation that is summed
to the emulator voltage reference. The output voltage and the inductor current are
recorded with a measurement card (NI USB-3636) that is used with the PC. The system
parameters are given in Table 4.1, and a picture of the setup is shown in [P2].

Experimental Setup 2

Fig. 4.2 shows a diagram of the three-phase grid-connected inverter. The power stage is a
Myway PlusMWINV-9R144 that has six IGBTs. The filtering is accomplished by an LCL
filter. The output of the inverter is connected to the Spitzenberger & Spies Three-Phase
Mains Simulation System DM 15000/PAS over the additional inductance that emulates a
grid inductance and a 380V/380V isolation transformer. A dSpace real-time simulator
controls the inverter and produces the references for the grid emulator. The Spitzenberger
& Spies PV Simulator PVS 7000 is used as the DC voltage source. A measurement card
(NI USB-3636) is used with the PC to record data.

The setup is also used to measure the converter output admittance by injecting
perturbations with the grid emulator. When the converter output admittance is measured
with the grid emulator, a PV emulator, Spitzenberger & Spies Photovoltaic Simulator PVS
7000/BS, is used as the DC source, and the grid inductance and the isolation transformer
switch places with each other due to the phase shift over the isolation transformer, which
could add unnecessary complication to measurements. The system parameters are given in
Table 2.2, and the controller parameters used with the PV inverter are given in Table 4.2.
When the output admittance of the PV inverter is measured, an additional measurement
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Table 4.2: Controller parameters of the experimental PV inverter.

Parameter Symbol Value Parameter Symbol Value
Current controller
P gain

Kp-c 0.0149 PLL P gain Kp-pll 0.7760

Current controller I
gain

Ki-c 23.4 PLL I gain Ki-pll 39.52

DC-voltage con-
troller P gain

Kp-v -0.0962 Measurement PLL
P gain

Kmeas.
p-pll 0.0120

DC-voltage con-
troller I gain

Ki-v -1.209 Measurement PLL
I gain

Kmeas.
i-pll 0.0144

PLL is used to synchronize the measurement to the voltages at the grid emulator-side of
the isolation transformer.

4.2 Experiment Set 1: Deadtime Effect

The deadtime causes a voltage error as a function of the inductor current, and the
voltage error is visible as damping in frequency-domain measurements [P2, P3]. The
error behaves nonlinearly, especially under low load conditions, and the deadtime effect
on an undamped resonance was studied with simulations in Section 3.1. However, in the
simulations, the measurement perturbation was injected by an ideal current sink that is
not practically available. In Experimental Setup 1, a voltage injection is used, and the
measured frequency range focuses on the anti-resonance that is caused by the parallel
connection of the DC capacitors where the impedance is low. The parallel resonance of
the output LC filter is at 1.45 kHz.

The half-bridge inverter shown in Fig. 4.1 is run under low load conditions in the open
loop. The converter is connected to the grid emulator that provides the grid voltage at the
synchronous frequency (ωs). A low-bandwidth phase-locked-loop is used to synchronize
the controller to the voltage over the filter capacitor (C). To perform an impedance
measurement requires perturbing the output voltage at a desired frequency, in addition to
the fundamental frequency; a sinusoidal perturbation is summed to the emulator voltage
reference.

For the sake of simplicity, the capacitor branch is not considered part of the converter
output impedance. The output voltage and the inductor current are measured and
Fourier-transformed, and the output impedance (Zo) is computed at the perturbation
frequency as the ratio of the output voltage and the inductor current as:

Zo = −Vo (ω)
IL (ω) (4.1)

In the experimental validation of the describing function model, it must be taken into
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4.2. Experiment Set 1: Deadtime Effect

Figure 4.3: (a) Output voltage with the nominal voltage injection amplitudes of 1 V
and 4 V. (b) Experimental (lines) and modeled (dots) inductor current amplitude with
different perturbation amplitudes.

account that the voltage perturbation is injected by the grid emulator behind the isolation
transformer as shown in Fig. 4.1, not directly at the converter output. Fig. 4.3a shows
the output voltage amplitude at the perturbation frequency with nominal perturbation
amplitudes of 4 V and 1 V when the converter is built with MOSFETs, and the inductor
current amplitude at the synchronous frequency is 1.3 A when no perturbations are
injected. The converter output voltage is clearly not the ideal injection at the grid
emulator. In order to verify the proposed model properly, the measured output voltage
that varies slightly over the frequencies is used as the input to the model, not a constant
voltage amplitude. Nevertheless, the injections are referred to by their nominal amplitudes.

With the voltage injection (vo (v̄o, ω)) as the input and the output impedance definition
without the capacitor branch, the nonlinear equation for the sinusoidal steady state reduces
to

∣∣N (∣∣iL (̄iL, ω)∣∣)+ ZL (jω)
∣∣ iL (̄iL, ω)+ |vo (v̄o, ω)| = 0 (4.2)

which is solved numerically for the inductor current amplitude (iL
(̄
iL, ω

)
). The parameters

of the describing function model are given in Table 4.3. Fig. 4.3b compares the measured
and the modeled inductor current amplitudes. The model accurately represents the
inductor current amplitude. With perturbation amplitudes of 0.25 V and 1 V, the current
amplitudes are below Rdead, which indicates that there is no error from the deadtime
effect. However, the modeled current is higher than the measured current at around
130 Hz. A reasonable explanation for this may be that voltage drop over the MOSFETs
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and the anti-parallel diodes, which is not taken into account in the model, adds damping
to the system.

The solved inductor current satisfies (4.2) only for the amplitude. The output voltage
must be resolved for the correct phase difference between the current and the voltage.
The solution for the output impedance reduces to

Zo (|v̄o| , jω) = N
(∣∣iL (̄iL, ω)∣∣)+ ZL (jω) (4.3)

Fig. 4.4 shows the modeled output impedance and the result of the experimental
output impedance measurements from the half-bridge inverter that is built with the
MOSFETs. The proposed model clearly catches the nonlinear deadtime effect. With
the lowest perturbation amplitudes, the anti-resonance is visible. The damping becomes
visible with the perturbation amplitude of 4 V because the current is higher than Rdead

in the sinusoidal steady state, as shown in Fig. 4.3b. With the perturbation amplitude of
24 V, there is a considerable amount of damping. At the low frequencies, there is less
damping with the perturbation amplitude of 35 V than with 24 V. This indicates that
the error is in the saturation region with the highest perturbation amplitude. This is also
visible in Fig. 4.3b, where the current amplitude is clearly above Rsat with a perturbation
amplitude of 35 V.

Fig. 4.5 shows the modeled output impedance and the result of the output impedance
measurements with the inverter implemented with the IGBTs. The inductor current
amplitude at the synchronous frequency is 1.4 A when no perturbations are injected.
Rdead and Rsat are 4.7 A and 8.7 A, respectively. The other parameters are the same as
given for the MOSFET-inverter experiment in Table 4.3. The measured output voltage is
used as the input to the describing function model. The similar behavior as a function
of the perturbation amplitude as with the MOSFETs can be seen. However, with the
lowest perturbation amplitudes, the model does not match the measurement. This is
expected given that IGBTs have a constant voltage drop term in the collector-emitter
voltage drop, which causes a voltage error even with low current amplitudes. In [P2],

Table 4.3: Parameters of the describing function model for the MOSFET-inverter experi-
ment.

Parameter Symbol Value Parameter Symbol Value
Half the peak-to-
peak inductor cur-
rent ripple

∆ip-p/2 7.3 A Maximum current
change during the
deadtime

∆idead 1.2 A

End of dead zone
current limit

Rdead 4.8 A Saturation region
current limit

Rsat 8.6 A

Maximum average
voltage error

V max
err 28 V
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Figure 4.4: Experimental output impedance with MOSFETs (lines) and modeled output
impedance (dots and crosses) under low load condition (1.3 A synchronous-frequency
current) with different voltage perturbation amplitudes.

Figure 4.5: Experimental output impedance with IGBTs (lines) and modeled output
impedance (dots and crosses) under low load condition (1.4 A synchronous-frequency
current) with different voltage perturbation amplitudes.

the experimental results with the MOSFETS and the IGBTs are compared to hardware-
in-the-loop real-time simulations where ideal switch models are used. The findings are
similar; the ideal-switch simulation results correspond accurately to the experimental
measurements with the MOSFETs and are less accurate with the IGBT experimental
results [P2].

The evidence from this experiment set implies that the deadtime effect under low load

57



Chapter 4. Implementation and Verification

conditions can be modeled with the describing function of the dead zone, the linear region,
and the saturation. For a more detailed analysis, the voltage drops over the semiconductor
switches have to be modeled. Nevertheless, the purpose of these experiments was to
verify the describing function model and the behavior of the deadtime effect in a practical
system. The highest perturbation amplitudes of 24 V and 35 V, which were used to
demonstrate the saturation region, are unlikely to be used to in a practical measurement.
However, the saturation can occur with more moderate injection amplitudes in current-
injection-based measurements, which were only simulated in Section 3.1 due to limitations
in the experiment setup.

4.3 Experiment Set 2: Synchronous-Reference-Frame Impedance
Measurements

The synchronous-reference-frame equivalent impedance of a balanced three-phase system
consists of four elements related to the d and the q channels and the cross-couplings
between the channels. When the equivalent impedance is measured by injecting a
perturbation into the d or the q channel currents or voltages, the perturbation can also
appear in the other channel due to the impedance coupling between the measurement
device and the measured impedance [P1]. Experimental measurements are used to show
how the interaction can cause erroneous results, and the proposed technique is shown
to tackle the impedance coupling similarly to the traditional technique. First, a grid-
impedance is measured with a grid-connected inverter, then, the output admittance of a
PV inverter is measured by injecting the perturbations with a grid emulator.

Grid-Impedance Measurement

Experimental Setup 2, shown in Fig. 4.2, is used to study a grid connected inverter that
is connected to a stiff grid over an inductive grid impedance (ZLg). The converter is fed
from a DC voltage source, and the feedback control is from the converter-side inductor
current. A grid impedance measurement is performed by perturbing the converter side
inductor current by injecting PRBSs into the current references, and the impedance
components are computed from the measured converter-side inductor current and the
output voltage over the filter capacitor [P1]. Hence, the filter capacitor impedance is
included to the measured grid impedance (Zg).

Orthogonal binary sequences OBS1 and OBS2 are injected into the d current reference
and the q current reference of the inverter, respectively. The OBS1 is a maximum-length
binary sequence whose length is 511 bits, and the length of the OBS2, which is generated
by the Hadamard modulation, is 1022 bits. The amplitude of the injections is 0.5 A. In
order to avoid spectral leakage of the 50 Hz component DFT, the OBS1 and OBS2 are
injected for 160 cycles and 80 cycles, respectively [95].

58



4.3. Experiment Set 2: Synchronous-Reference-Frame Impedance Measurements

Figure 4.6: Experimental grid impedance (a) d component, (b) qd component, (c) dq
component, and (d) q component with different measurement methods.

First, the impedance elements are calculated based on the direct ratios of the voltage
and the current corresponding to each element:

Z
vd/id
g-d = Vod (jω)

ILd (jω) , Z
vq/id
g-dq = Voq (jω)

ILd (jω) , Z
vd/iq
g-qd = Vod (jω)

ILq (jω) , Z
vq/iq
g-q = Voq (jω)

ILq (jω) (4.4)

The results Zvd/id
g-d and Z

vq/id
g-dq are measured at the OBS1 frequencies and the results

Z
vd/iq
g-qd and Zvq/iq

g-q are measured at the OBS2 frequencies. It is convenient to perform the
measurement this way, and the direct ratio results are shown in Fig. 4.6. However, it is
known that impedance coupling can occur in this type of measurement [P1].

The impedance measurement is performed with the technique based on two sequential
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independent injections. First, the OBS1 is injected into the d channel current reference.
Then, after the first injection, the OBS1 is injected into the q channel current reference.
The voltage and the current data obtained from the injections is Fourier-transformed and
the impedance elements are computed as

[
Z2MLBS

g-d Z2MLBS
g-qd

Z2MLBS
g-dq Z2MLBS

g-q

]
=
[
Vd1 Vod2

Vq1 Voq2

][
ILd1 ILd2

ILq1 ILq2

]−1

(4.5)

where the superscript ´2MLBS’ denotes that the results are based on the two sequential
injections. The technique gives a clearly different result than the direct-ratio method, as
shown in Fig. 4.6. The result corresponds to the dq-frame equivalent of a parallel LC
circuit; the resonance has two peaks in the d and the q components, and there are no
other additional resonances [P1].

The proposed measurement technique based on the simultaneous injection of the
OBS1 and OBS2 is implemented next. After the injection of the sequences, the measured
inductor currents and the output voltages are Fourier-transformed. The responses at
the OBS2 frequencies (IOBS2

d2 , V OBS2
d2 , IOBS2

q2 , and V OBS2
q2 ) are divided by the injected

spectrum (OBS2) and interpolated to the frequencies of the OBS1 in order to apply (4.5).
Fig. 4.6 shows that the impedance coupling is avoided similarly to the existing method
(2MLBS), but without the requirement of sequential injections [P1].

PV Inverter Output Admittance Measurement

The output admittance of the grid-connected PV inverter of Experimental Setup 2 is
measured by perturbing the output voltages with the grid emulator. The PV inverter has
a DC voltage control cascaded with the d channel current control and a low-bandwidth
phase-locked loop, both of which are visible in the output admittance at low frequencies.

The OBS1 and the OBS2 are summed to the d and the q voltage references of the grid
emulator, respectively. The transfer functions for the interpolation are calculated with
respect to the q-voltage reference (V ref

q2 ). The amplitudes of the injected OBS1 and OBS2
are 10 V. The OBS1 is obtained by a 10-bit-length shift register, yielding a frequency
resolution of 3.9 Hz.

The transfer functions from V ref
q2 to Id2, Vd2, Iq2, and Vq2,which are the interpolated

intermediate results of the proposed method, are denoted by G1, G2, G3, and G4,
respectively. The transfer functions and the measurements at the OBS1 frequencies (Id1,
Vd1, Iq1, and Vq1) are used to solve the output admittance elements [P1]:

[
Y TF-intrpl

o-d Y TF-intrpl
o-qd

Y TF-intrpl
o-dq Y TF-intrpl

o-q

]
=
[
Id1 G1

Iq1 G3

][
Vd1 G2

Vq1 G4

]−1

(4.6)
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Figure 4.7: Experimental PV inverter output admittance (a) d component, (b) qd
component, (c) dq component, and (d) q component with different measurement methods.

Fig. 4.7 shows the output admittance measured with the different methods. The
proposed transfer-function interpolation method tackles the impedance coupling that
is visible in the direct-ratio-method results [P1]. The low-frequency resonance, which
is caused by the direct voltage controller, in Yo-d is caught by the proposed method as
accurately as with the traditional sequential method (2MLBS). The negative incremental
resistance region caused by the PLL is visible in Yo-q. Between 200 Hz and 700 Hz, the
measurements by all methods are slightly noisy. This is because the voltage is perturbed
by the grid emulator, and the additional grid impedance and the output admittance of
the inverter act as a voltage divider, which leads to a low voltage perturbation amplitude
at the inverter output that is prone to noise [P1].
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Conclusions

The next decade is likely to witness a considerable rise in the electrical energy generation
from renewable sources, the exploitation of which is essential for slowing down climate
change. Renewable power generators are commonly interfaced by power-electronic con-
verters to the distribution grid. However, the grid-connected converters can interact
detrimentally with each other and the grid, which can lead to harmonic resonances and
compromise the stability of the electric power distribution system. Therefore, possible
detrimental interactions should be considered in the design phase of the converters.

Improved controller design of grid-connected converters through the use of a measured
grid impedance has received much attention recently. Real-time measurement methods
that can be performed in a short time by injecting orthogonal sequences to different
inputs of the multiple-input multiple-output three-phase system have been proposed.
The methods based on orthogonal sequences enable simultaneous measurement of the
synchronous-reference frame impedance elements. The shortcoming of this approach
has been clearly recognized; the injected sequences can leak between the synchronous-
reference-frame channels unintentionally due to an impedance coupling of the equivalent
system impedances.

This thesis has proposed a novel impedance measurement procedure that tackles
the coupling of the synchronous-reference-frame equivalent system impedances affecting
the measurement. In the proposed method, two orthogonal sequences are used to
simultaneously perturb the system. The deterministic nature of the used orthogonal
sequences is taken advantage of, and an interpolation from the frequencies of the second
orthogonal sequences to the first orthogonal sequence is done on measured and Fourier-
transformed currents and voltages in order to obtain two independent sets of measurements
at the same frequencies. As a result, the impedance elements can be solved from a group
of equations without relying on sequentially performed measurements that have been
required to tackle the impedance coupling in existing non-parametric methods.

Another issue affecting the dynamics of a grid-connected inverter is the voltage error
caused by the deadtime effect. This thesis has shown that the deadtime effect can change
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the inverter dynamics substantially under low-load conditions. Through analytical models
and experiments, the thesis has shown that the inverter output impedance becomes
significantly nonlinear under low-load conditions due to the deadtime effect, and a
linearization is no longer correct modeling method. The proposed model for the nonlinear
deadtime effect is based on the describing function method.

The analysis on the nonlinear deadtime effect and the developed synchronous-reference
frame measurement method can be summarized as follows.

• The nonlinear deadtime effect is characterized in the frequency domain. Under low
load conditions, the deadtime effect can be modeled with a describing function of a
dead zone, a slope, and a saturation region. The inductor current amplitude limits for
the dead zone and the saturation are developed based on the inductor current ripple,
the direct voltage, the deadtime length, and the synchronous-frequency current
amplitude. The developed describing-function-method model for the nonlinear
deadtime effect makes it possible to solve the sinusoidal steady state of an inverter
with a deadtime.

• The impedance coupling is characterized to occur with a feedback-controlled grid-
connected converter-performed grid-impedance measurement. A measurement
method that is based on perturbing the three-phase converter system with two
orthogonal sequences is developed. Due to the simultaneous injection of the se-
quences, the novel method provides more efficient averaging capability compared to
the traditional measurement technique, which is based on sequentially performed
injections.

The proposed nonlinear deadtime effect model and synchronous-reference frame
measurement technique were verified by experimental measurements. The results showed
that the describing-function model catches the nonlinear current-amplitude-dependent
damping. The synchronous-reference-frame measurement method was shown to yield
equivalent results with an existing method, both in the measurement of the grid impedance
and the PV inverter output admittance.

Discussion and Criticism

The proposed model for the nonlinear deadtime effect is based on the describing function
method, which is a powerful tool for the analysis of a system with a nonlinearity. However,
there are several potential sources for error in the application of the describing function
method for the deadtime effect.

The describing function is an approximate method, and it relies on the assumption
that the system has low-pass characteristics so that only the fundamental-frequency
component of the modeled waveform is significant. Inevitably, some inaccuracies occurred
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in the application of the describing function method to the analyzed system containing
an undamped resonance that amplified higher harmonics of the voltage error.

The peak-to-peak current ripple is an important parameter in modeling of the dead
zone and the saturation of the amplitude dependent deadtime effect. However, the ripple
was approximated by a rough estimate at the zero crossing of the synchronous-frequency
inductor current with a unity power factor. Furthermore, the capacitor voltage ripple
that affects the inductor current ripple was assumed to be zero. These approximations
especially affect the transitions from the dead zone to the slope and from the slope to the
saturation.

The deadtime effect was modeled to occur when the amplitude of the perturbation
amplitude exceeds the derived limit for the dead zone and begins to saturate when the
limit for the saturation is reached. However, the voltage error model is not dynamic and
does not take into account the likelihood of such events occurring. It is plausible that,
with a high perturbation frequency, the amplitude-dependent zero crossing is more likely
to occur, and the appearance of the error is over-estimated at low perturbation frequencies.
Furthermore, with a low perturbation frequency, close to the synchronous frequency, the
phase difference between the synchronous-frequency component and the perturbation
can have a significant effect on the error. The error was inspected only at perturbation
frequencies that were at least one and a half times higher than the synchronous frequency.
Despite the limitations of this method, the findings suggest that the proposed model is
accurate enough to model the significant damping caused by the nonlinear effect.

Regarding the proposed synchronous-reference-frame measurement method that tackles
the impedance coupling, there are some drawbacks. The proposed measurement method
requires information about the spectrum of the second injected orthogonal sequence
that is used to divide the Fourier-transformed measurements related to the injection.
Processing the injected spectrum, and the interpolation required, are more computationally
demanding than the existing sequential-injections method, which does not require the
division followed by the interpolation of the method.

In the proposed measurement method, the orthogonal sequences were injected with
the same amplitude as the amplitude of a single injection in the sequential method, and
the length of a whole measurement cycle is the same with both methods. Therefore,
the injected harmonic content is higher in the proposed method than in the sequential
method because two sequences were injected simultaneously.

Future Research Topics

This research has raised many questions in need of further investigation. The modeling of
the nonlinear deadtime effect focused mainly on the output impedance of an open-loop
single-phase inverter. Further studies are needed to estimate the nonlinear deadtime effect
in the presence of a feedback controller where analysis from control-to-output dynamics
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point of view is essential. Research is also needed to develop synchronous-reference
frame models for the nonlinear deadtime effect on three-phase converters. The describing
function based modeling used in this research can become inefficient in modeling of a
three-phase converter due to the system complexity; therefore, other modeling approaches
are recommended to be looked into.

The design and development of fast and reliable online impedance measurement
methods for three-phase systems will still be a challenge in the future. The proposed
impedance measurement based on simultaneously-injected orthogonal sequences and
interpolation can serve as a base for future studies. Future work should concentrate
on investigating the measurement under different types of disturbances in order to
further evaluate the benefits of the proposed method in comparison to the conventional
measurement method. An important issue is the selection of perturbation amplitude for
simultaneously injected orthogonal sequences. Therefore, future studies are recommended
in order to establish whether the averaging from the proposed methods yields results that
are as accurate as the traditional method based on sequential injections if the harmonic
content of both methods is adjusted to be the same.
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Abstract—Identifying grid-impedance at the point of common
coupling is essential for the adaptive control and the online
stability analysis of grid-connected converters. A balanced three-
phase system is commonly modeled by d and q components
in the synchronous reference frame. In identification of the
synchronous reference-frame impedance components, errors may
occur due to the coupling of the system impedances; for example,
a measurement injection that is intended to perturb only the d-
channel current may also perturb the q-channel current thus
distorting the impedance measurements. Traditionally sequen-
tially performed measurements, where different injections are
performed one after another at same frequencies, have been re-
quired to tackle the impedance coupling. However, the sequential
measurements are prone to changes in the operating conditions
between the measurements. The present paper proposes a method
to simultaneously obtain all the grid-impedance components
within a single measurement cycle with no coupling effect. In
the method, two orthogonal binary injections are simultaneously
injected into the d and q current references of the inverter
controller. Then, a frequency-domain interpolation technique is
applied to adjust the measured current and voltage responses. As
a result, the impedance coupling is avoided in the measured grid
impedance. The proposed technique is validated by experimental
measurements.

Index Terms—frequency response, identification, three-phase
VSI, grid-impedance, MIMO

I. INTRODUCTION

Replacing conventional energy sources with renewable
sources has been recognized as an important tool for retarding
climate change [1]. The remarkable feature of renewable
energy sources is that they commonly need to be connected
through power-electronic interfaces to the grid. Therefore,
grid-connected three-phase converters are increasingly be-
coming a vital factor in the operation of distribution grids.
However, the grid-connected converters are prone to adverse
impedance-based interactions between the grid impedance and
other converters, which disturbs the power quality and may
even introduce stability issues [2]–[6]. In order to prevent
the adverse interactions, information on the grid impedance is
often required for improved control design or adaptive control.

Accurate identification of the grid impedance or the con-
verter impedance generally requires an external injection to
the system. The injection can be made by a grid-connected
converter [7]–[9] or by a separate measurement device [10],

This work was supported in part by Business Finland Project SolarX.
M. Berg*, H. Alenius, and T. Roinila are with the Faculty of Information

Technology and Communication Sciences, Tampere University, Finland,
*e-mail: matias.berg@tuni.fi.

[11]. The grid-impedance identification may rely on the as-
sumption of the grid-impedance shape. The grid-impedance
is occasionally assumed to be a series resistor-inductor (RL)
circuit [12], [13]. In [13], the identification method was based
on a step response, and while in [12] the method was based on
a current injection at a single frequency. However, the grid-
impedance may vary significantly from a series RL circuit
[14]–[16]. Therefore, identification at a wide frequency range
may be more advantageous, and it is required for an accurate
multi-variable stability analysis, such as with the generalized
Nyquist criterion [11], [17].

Recent studies have presented a number of wideband tech-
niques to measure the grid impedance [7]–[9], [18], [19].
In such techniques the impedance is measured by injecting
a broadband perturbation such as a pseudo-random binary
sequence (PRBS), for example, into the inverter controller ref-
erence. The resulting grid voltages and currents are measured,
and Fourier methods are applied to obtain the grid impedance.
The PRBS exhibits multiple favorable characteristics for use
in online impedance identification, such as periodic and deter-
ministic nature, and the lowest possible peak factor [20].

In the synchronous-reference frame, a three-phase converter
system is a multiple-input-multiple-output system and consists
of direct (d) and quadrature (q) channels [10], [11] that must
be identified for a proper analysis. Both channels can be
identified simultaneously in a brief time by using orthogonal
binary injections [7]–[9]. In practice, however, the d and q
channels are cross-coupled. Due to the cross-coupling and
the interaction between the system impedances, an impedance
coupling occurs. The impedance coupling may cause an in-
tended d-channel current injection to appear also in the current
q channel. Therefore, for example the response in the voltage
d component would not only be caused by the intended d-
channel current but also by q-channel current. A thorough
analysis of the impedance coupling was performed in [21].

It was reported in [21] that the orthogonal injections applied
into dq-domain systems in [7]–[9], [22] can give erroneous re-
sults if the impedance coupling effect is overlooked. However,
the authors in [21] made a hasty generalization regarding the
issue of the orthogonal injections because a DC-DC converter
system that has not been reported to have d and q channels was
analyzed in [22]. To avoid the impedance-coupling effect, a
time-domain parametric identification method was proposed in
[21] where uncorrelated binary sequences were used to perturb
the system. However, the presented uncorrelated broadband
injections, whose design algorithms were not given, differ
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greatly from the analytically derived uncorrelated sequences
that have been used in the field of process identification in [23],
[24]. The orthogonal-sequence-generation methods from [23],
[24] have been applied in identification of power electronic
systems in [7]–[9], [22] and are used in the present paper.

In tackling the impedance-coupling effect without paramet-
ric model, sequential independent injections have been proven
to be an adequate method for obtaining the accurate multivari-
able impedance [10], [11], [25], [26]. By applying this method,
the impedance-coupling effect can be taken into account in
the calculation of impedance components. However, applying
multiple sequential measurements relies on the assumption that
the impedance does not change between the injections [10].

The present paper proposes a novel measurement proce-
dure that utilizes orthogonal binary broadband injections in
the elimination of impedance interactions. An orthogonal se-
quence is injected to the current reference d component, and a
second orthogonal sequence is injected to the current reference
q component. The result of the q-channel measurement is
interpolated to the frequencies of the d-channel measurement.
The result is used as an independent measurement. However,
obtaining an accurate interpolation result is not straightforward
due to the random phase behavior of the binary sequences;
the results must be divided by the spectrum of the injected
sequence before the interpolation. The original orthogonal
binary sequence and the interpolation result are independent
of each other, and can be used to accurately identify the grid
impedance. As a result, the accurate multivariable impedance
can be identified non-parametrically with simultaneous broad-
band excitations.

The remainder of this paper is structured as follows. Section
II presents the system and the broadband injections. Section
III describes the impedance coupling in the measurement and
revises an existing method to obtain accurate results in the
presence of the impedance coupling. The novel identification
procedure is derived and simulated in Section IV. Experi-
mental verification of the proposed technique is presented in
Section V. Conclusions are drawn in the final section.

II. CONVERTER SYSTEM AND IDENTIFICATION SEQUENCES

This section begins by introducing the parameters and the
controller structure of the grid-connected converter. Then,
characteristics and the generation of orthogonal broadband
binary injections are revised.

A. Grid-connected inverter

A block diagram of the system under study is shown
in Fig. 1. The traditional synchronous-reference-frame phase-
locked loop (PLL) is used to synchronize the rotating syn-
chronous reference frame to the grid voltages at the point of
common coupling [27]. The converter-side inductor currents
are controlled with PI controllers. The perturbation signal,
which is required for the grid impedance identification, is
injected to the inductor current reference. The system and
control parameters are given in Table I.

The diagram in Fig. 1 shows that the grid-impedance is
identified from the output voltage (v) and the output current

Figure 1: Block diagram of the grid-connected three-phase
inverter and the control system.

(i) measurements. Therefore, the filter capacitor (Cf) is not
included in the impedance that is identified. A small error in
the traditional measurement arises from the current angle shift
at the filter capacitor.

B. Orthogonal broadband binary injections

Pseudorandom binary sequences are broadband signals that
can be used for fast frequency response measurements because
multiple frequencies are injected simultaneously. One of the
most common of such signals is the maximum-length binary
sequence (MLBS), which has two levels and can be generated
with low computational effort by using shift registers [23]. The
sequence is periodic, with a length of N = 2n − 1, where n
is the length of the shift register. [23]. The lowest frequency
with energy is fgen/N , where fgen is the generation frequency.
When considering up to the fgen, the frequencies at which the
MLBS has energy can be given as:

fMLBS
k = k

fgen
N

, k = 1, 2, 3...N (1)

where k denotes the sequence number of the spectral line.
An inverse repeat sequence (IRS) can be generated from

the MLBS by applying the Hadamard modulation discussed
in [23]. The IRS generated from a N -bit-long MLBS has a
length of 2N , and the IRS has energy at frequencies:

f IRS
k = (2k − 1)

fgen
2N

, k = 1, 2, 3...N (2)

The excited frequencies of the IRS fall exactly between the
frequencies of the MLBS; therefore, the MLBS and the IRS
are orthogonal. They can be used for simultaneous identi-
fication of multiple transfer functions from a multiple-input
and multiple-output system [7], [28]. The advantage is that
both measurements are done simultaneously under the same
conditions [29].

Fig. 2a shows a sample to the MLBS and IRS time-domain
waveforms and 2b shows the amplitude and the phase of
the MLBS and IRS whose magnitude is scaled by 1.2 for
illustrative purposes. The present paper uses n = 9 and,
therefore, the lengths of the MLBS and the IRS are 511 bits
and 1022 bits, respectively. The generation frequency fgen
is 4 kHz, and the amplitude of both sequences, AMLBS and
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(a)

(b)

Figure 2: (a) Part of the MLBS and the IRS in time domain
and (b) frequency-domain amplitude and phase of the used
MLBS and IRS. The IRS is set to have larger amplitude for
illustration.

AIRS, is 0.5. The energy of the MLBS drops to zero at fgen,
and the practical measurement bandwidth is up to 0.45fgen
[9]. Fig. 3, where

1

z
denotes the unit delay, shows how the

sequences are generated with shift registers.

III. IMPEDANCE COUPLING IN MEASUREMENTS

This section begins by inspecting the equivalent small-signal
model of the grid-connected converter to analyze the effect of
the impedance coupling on the measurement injections. Then,
an existing measurement procedure that is not affected by the
impedance coupling is revised.

Figure 3: Block diagram of the MLBS and the IRS shift-
register generation (n = 9).

A. Impedance-based interaction

Fig. 4 shows the equivalent small-signal circuit diagram
of the grid-connected converter. The dynamic model of the
converter has been derived in [30], but now the system is
fed from a voltage source instead of photovoltaic panel. The
inductor current reference, the output current, and the output
voltage vectors are denoted by îrefL , î, and v̂, respectively.
The perturbations in the grid-voltage v̂g are assumed to be
zero here because we are analyzing a perturbation caused by
the inverter and identifying the grid-impedance. The transfer
matrices Gco, Y, and Z that denote the unterminated control-
to-output dynamics, the inverter output admittance, and the
grid impedance describe the relations between the variables:

î︷ ︸︸ ︷[
îd
îq

]
=

Gco︷ ︸︸ ︷[
Gco−d Gco−qd

Gco−dq Gco−q

]
îrefL︷ ︸︸ ︷[
îrefL−d

îrefL−q

]
(3)

Figure 4: Equivalent small-signal circuit diagram of the grid-
following converter control-to-output-dynamics-affected injec-
tion.

Table I: Grid-connected inverter parameters and operating point values.

Parameter Symbol Value Parameter Symbol Value

Input voltage VDC 413 V Grid voltage rms Vg 120 V
Output current d component Id 10.6 A Output current q component Iq 0.71 A
Synchronous frequency ωs 2π50 rad/s Switching frequency fs 8 kHz
Filter capacitor capacitance Cf 10 µF Filter inductance L 2.5 mH
Cf ESR and damping resistor rCf 1.81 Ω L ESR rL 0.065 Ω
Filter inductance 2 L2 0.1 mH L2 ESR rL2 0.022 Ω

Line inductance Lline 8.83 mH Line inductance ESR rLg 0.262 Ω

Transformer inductance LT 0.507 mH Transformer inductance ESR rT 0.417 Ω
Current controller P gain Kp-c 0.0149 Current controller I gain Ki-c 23.4
PLL P gain Kp-pll 0.0120 PLL I gain Ki-pll 0.0144
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(a) (b)

Figure 5: Frequency response of the simulation identifications grid-impedance a) d component and b) qd component. Zvd/id
d

and Z
vq/id
dq are based on the assumption that only the intended channel is perturbed.

î︷ ︸︸ ︷[
îd
îq

]
=

Y︷ ︸︸ ︷[
Yd Yqd

Ydq Yq

]
v̂︷ ︸︸ ︷[
v̂d
v̂q

]
(4)

v̂︷ ︸︸ ︷[
v̂d
v̂q

]
=

Z︷ ︸︸ ︷[
Zd Zqd

Zdq Zq

]
î︷ ︸︸ ︷[
îd
îq

]
(5)

where subscripts d and q denote the direct and quadrature
components, respectively. The transfer matrix from the current
reference-to-output voltage is denoted as follows:

v̂︷ ︸︸ ︷[
v̂d
v̂q

]
=

Gcv︷ ︸︸ ︷[
Gcv−d Gcv−qd

Gcv−dq Gcv−q

]
îrefL︷ ︸︸ ︷[
îrefL−d

îrefL−q

]
(6)

The dq-frame impedance matrix of the identified impedance
is given as follows

Z =

[
req + sLeq −Leqωs

Leqωs req + sLeq

]
(7)

where s is the Laplace variable, Leq. = L2 + Lline + LT,
and req. = r2 + rline + rT. The parameter descriptions and
values are given in Table I. In order to demonstrate a strong
impedance-based interaction, a relatively high line inductance
(8.83 mH) is used.

The grid impedance elements Zd and Zdq are identified
by injecting the MLBS on top of the d current reference. To
avoid the effect of harmonic voltages, the number of averaged
periods is chosen to be 80 throughout this paper so that an
integer amount of fundamental cycles are included in the
experimental measurement data [18]. Then, the responses in
the voltages and currents are measured, and by computing
the ratios of v̂d to îd and v̂q to îd the impedance elements
are obtained. Fig. 5a shows the experimental measurement
result of Z

vd/id
d . The result clearly has an error compared to

(a) (b)

Figure 6: Equivalent small signal circuit of (a) an ideal current
injection to a dq-frame impedance and (b) a current injection
with a converter to a dq-frame impedance.

the reference grid impedance below 150 Hz. Fig. 5b shows
the identified Z

vd/iq
qd that is erroneous in the whole frequency

range from 150 Hz to 1250 Hz. The errors are caused by the
impedance coupling.

In order to study the effect of the impedance coupling, an
ideal current injection into an equivalent dq-frame impedance
is first considered. The circuit diagram of such a system is
shown in Fig. 6a. The elements that cross-couple the d and
q channels of the equivalent grid impedance can be seen as
current-dependent voltage sources. Both d and q channels are
injected using ideal current sources. At the desired frequencies,
îq can be kept zero while îd is be perturbed. To illustrate this,
the circuit elements that are dependent on îq are grayed out.
The ratio of v̂d to îd results in Zd:

v̂d

îd
= Zd (8)

In practical systems there are no ideal current sources. The
perturbations are injected into the converter current references,
and the responses in the currents and voltages are affected
by the converter dynamics and the grid. Fig. 6b represents a
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Figure 7: Modeled unterminated and load-affected ’L’ control-
to-output dynamics d and dq components.

case where a perturbation is added to îrefL−d and îrefL−q is not
perturbed. The circuit elements that are affected only by îrefL−q

are grayed out. The cross couplings in the converter output
admittance are modeled by the voltage-dependent current
sources. In contrast to the previous case, the response in iq
is not zero because the interaction among the circuit elements
forms a path from îrefL−d to îq. It is highlighted in red that
Zqdîq may have a nonzero value unlike in the case of the
ideal current injection. Therefore, the ratio of v̂d to îd may
not result in Zd:

v̂d

îd
=

Zdîd + Zqdîq

îd
6= Zd (9)

Similarly, the other impedance elements Zqd, Zdq, and Zq can-
not be identified by computing the ratios of the corresponding
frequency domain voltage and current.

The transfer function from the current references to the out-
put currents can be modeled by grid-impedance-load-affected
control-to-output dynamics as [31]:

GL
co = (I+YZ)

−1
Gco (10)

where superscript ”L” denotes that the transfer matrix is
load-affected. The dynamics from îrefL−d to îq are modeled
by transfer function GL

co−dq that is shown in more detail in
Appendix A. The gain of the transfer function may be low
depending on the parameters and the impedance coupling may
have no significant effect. For example, if the grid impedance
was only resistive

Z =

[
Zd Zqd

Zdq Zq

]
=

[
req 0

0 req

]
, (11)

the current-dependent voltage sources in Fig. 6b would dis-
appear and no impedance coupling occurs. However, no such
assumption can be made if an unknown system is identified.

Fig. 7 shows the Bode plots of the modeled unterminated
and the load-affected control-to-output dynamics d component
and dq component transfer functions. In the load-affected case,
where the line inductance (Lg) and the transformer inductance
(LT) are connected in series with the grid-side filter inductor

L2, the responses from îrefLd to îd and îq have a gain that is
approximately the same magnitude. From 105 Hz to 200 Hz
and 1250 Hz to 1410 Hz, the difference in gains of GL

co−dq and
GL

co−d is small. Consequently, an injection to d-component
reference at these frequencies results not only in a response in
îd, but also in îq that cannot be neglected. Therefore, the result
from v̂d/̂id would not give Zd because v̂d is also affected by
Zqdîq. These observations give background for the error in the
measurement results in Fig. 5. In [21], the impedance coupling
was illustrated by a block diagram and the exact erroneous
measurement result was derived step-by-step. Similarly to the
present paper, the system consisted of an inverter and a grid-
impedance. However, an external device was used to inject the
current perturbations.

B. Existing solution

The impedance coupling can be avoided by using multiple
independent injections in the measurement [10], [11], [17],
[25], [26]. Here this is accomplished by first injecting the
MLBS to irefL−d, while the injection to irefL−q is zero. The second
MLBS injection is made to irefL−q, while the injection to irefL−d

is zero. This method is denoted here by ”2MLBS” because
it is implemented by two sequential MLBSs. All currents
and voltages are recorded from both injections. It has to be
assumed that the grid-impedance does not change between the
measurements and two sets of equations can be written [10]:

Vd1 = ZdId1 + ZqdIq1
Vq1 = ZqIq1 + ZdqId1

(12)

Vd2 = ZdId2 + ZqdIq2
Vq2 = ZqIq2 + ZdqId2

(13)

where subscript 1 and 2 denote the first and the second
injection, respectively. The capital letters are used to denote
the discrete Fourier transform (DFT) of the variables. The
equations can be presented in matrix form [10]:

[
Vd1 V d2

Vq1 Vq2

]
=

[
Zd Zqd

Zdq Zq

] [
Id1 Id2
Iq1 Iq2

]
(14)

Eq. 14 can be easily solved for the impedance elements [10]:

[
Zd Zqd

Zdq Zq

]
=

[
Vd1 Vd2

Vq1 Vq2

] [
Id1 Id2
Iq1 Iq2

]−1

(15)

Figs. 8 shows the resulting impedance elements based on
the two independent measurements (Z2MLBS

d , Z2MLBS
qd and

Z2MLBS
dq , and Z2MLBS

q ) and results obtained by the simple
ratios of voltages to currents (the injection for measurement
of Zvd/iq

qd and Z
vq/iq
q was implemented by adding the IRS on

top of the q current reference). The undesired impedance-based
interaction is clearly no longer present in the measurement
results. However, the main shortfall of the ”2MLBS” method
is the requirement of two sequential independent injections
at the same frequencies. As a consequence, the measurement
is more prone to changes in the operating point between the
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(a) (b) (c) (d)

Figure 8: The simulation results with two independent injections are compared to the simple method. a) compares the Z
vd/id
d

to Z2MLBS
qd , b) compares Z

vd/iq
qd to Z2MLBS

qd , c) Zvq/iq
dq to Z2MLBS

dq , and d) Zvq/iq
q to Z2MLBS

q .

(a) (b) (c) (d)

Figure 9: Comparison of (a) Zd, (b) Zqd, (z) Zdq, and (d) Zq simulated identification results from the traditional two independent
measurements and the simple interpolation method.

measurements. Below, an identification method is proposed
that is based on two orthogonal injections, which allows the
independent measurements to be performed simultaneously.
As a result, similar results to the conventional method can be
achieved without having to perform sequential injections.

IV. NOVEL METHOD

This section begins by inspecting a simple interpolation
method to obtain an independent measurement at the MLBS
frequencies from the IRS measurement. It is noted that the
pseudorandom behavior in the IRS phase causes problems.
To tackle this problem, a procedure where transfer functions
from the injected sequence to the voltages and currents are
used in the interpolation is proposed. The disturbance rejection
capability of the proposed technique is demonstrated at the end
of the section.

A. Interpolation of IRS result in frequency domain

The objective is to obtain two sets of independent mea-
surements at the same frequencies. However, the orthogonal
injections, MLBS and IRS, have different frequency vectors,
by definition. The solution is to interpolate the results from
either of the simultaneously injected MLBS or IRS to the
frequencies of another in the frequency domain. The interpo-
lation from the IRS to the MLBS is chosen because the IRS
has the lowest frequency. Because the excited frequencies of
the MLBS are exactly in between the excited frequencies of

the IRS according to (1) and (2), the interpolation becomes a
straightforward arithmetic mean.

The frequency domain Id2, Vd2, Iq2, and Vq2 are inter-
polated to the frequencies of the MLBS, fMLBS

k , from the
frequencies of the IRS, f IRS

k . The interpolation of Vq2 is given
as an example:

V f−intrpl−k
q2 =

V f−IRS−k
q2 + V f−IRS−k+1

q2

2
(16)

which is the average of the complex-valued frequency bins,
and superscript ”intrpl” is used to denote that the variable
is a result of the interpolation. The interpolated values are
substituted into (15), and the impedance elements based on the
interpolation (Z intrpl

d , Z intrpl
qd , Z intrpl

dq , and Z intrpl
q ) are solved.

Fig. 9a compares the simulated identification results of the
interpolation method (Z intrpl

d ) to the traditional measurement
method (Z2MLBS

d ). In the case of the d component, the result
is acceptable. Z intrpl

qd , Z intrpl
dq , and Z intrpl

q are shown in Figs.
9b, 9c, and 9d, respectively. While the impedance coupling is
no longer present, it can be seen that the interpolated results
clearly have deviations from the traditional method.

The response in Vq2 originates from the injected IRS.
As shown in Fig. 2b, the phase behavior of the IRS is
pseudorandom. Fig. 10a shows a Bode plot of the Iref−IRS

Lq2 and
its interpolation (Iref−intrpl

Lq2 ). The figure clearly shows that the
interpolation result of the complex-valued bins gives mostly
no reasonable result. This is due to the large changes in the
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(a) (b) (c) (d)

Figure 10: (a) IrefLq2 and its interpolation, (b) Vq2 and its interpolation, (c) Vq2/I
ref
Lq2 and its interpolation, and (d) comparison

of V intrpl
q2 /Iref−intrpl

Lq2 and GTF−intrpl
cv−q . The results are from a Simulink simulation.

phase value between the frequencies that is a characteristic of
the used pseudorandom sequence. A similar problem in the
interpolation result of V2 can be seen in Fig. 10b.

Fig. 10c illustrates the ratio of V IRS
q2 to Iref−IRS

Lq2 that is the
transfer function GIRS

cv−q. The preudorandom phase is no longer
present in the data. The transfer function can be interpolated
according to

GTF−intrpl−k =
Gf−IRS−k +Gf−IRS−k+1

2
, (17)

where Gf−IRS is a general transfer function at the frequencies
of the IRS. The procedure is named as a transfer function
interpolation (TF-intprl). The result (GTF−intrpl

cv−q ) is smooth
because the pseudorandom phase was not present in the inter-
polation. Fig. 10d compares GTF−intrpl

cv−q and Gintrpl
cv−q . Clearly,

the result where the ratio is calculated first and the resulting
transfer function is interpolated gives more accurate result that
follows the model.

B. Transfer-function interpolation

Based on the previous analysis, the pseudorandom phase-
behavior problem is solved by using transfer-function inter-
polation (here ”TF-intrpl”). The technique is inspired by the
practical one used in [11] where transfer functions from the
injection reference to the currents and voltages were calculated
as intermediate results. In [11], a single-phase perturbation was
injected into a three-phase system.

Because the transfer functions are based on the system
dynamics, it can be assumed that there are no abrupt changes
within the resolution of the measurement. The grid-impedance
d component (Zd) is used as an example. The solution to the
grid impedance d component from (15) is calculated open:

Zd =
Vd1Iq2 − Iq1Vd2

Id1Iq2 − Iq1Id2
(18)

The current and the voltages related to the second independent
measurement can be replaced by the corresponding transfer
functions from the q current reference (IrefLq2) to the voltages
(6) and the currents (3):

Zd =
Vd1Gco−qI

ref
Lq2 − Iq1Gcv−qdI

ref
Lq2

Id1Gco−qI
ref
Lq2 − Iq1Gco−qdI

ref
Lq2

=
Vd1Gco−q − Iq1Gcv−qd

Id1Gco−q − Iq1Gco−qd

(19)

Because the injected IRS to IrefLq2 and the responses at the IRS
frequencies are known, the unknown transfer functions can be
solved at the frequencies of the IRS as




GIRS
co−qd

GIRS
cv−qd

GIRS
co−q

GIRS
cv−q


 =




IIRS
d2

V IRS
d2

IIRS
q2

V IRS
q2




1

Iref−IRS
Lq2

(20)

The equation also includes GIRS
cv−q because it is needed in order

to identify Zq and Zdq. Because the transfer functions are at
the frequencies of the IRS, Eq. (19) cannot be directly applied.
However, the solved transfer function can be interpolated to the
frequencies of the MLBS by using (17). The interpolated trans-
fer functions can be used to replace the second independent
injection results in (15), which gives solutions to all impedance
elements:

[
ZTF−intrpl
d ZTF−intrpl

qd

ZTF−intrpl
dq ZTF−intrpl

q

]

=

[
Vd1 GTF−intrpl

cv−qd

Vq1 GTF−intrpl
cv−q

][
Id1 GTF−intrpl

co−qd

Iq1 GTF−intrpl
co−q

]−1

(21)

The solution to Zd is given as:

ZTF−intrpl
d =

Vd1G
TF−intrpl
3 − Iq1G

TF−intrpl
2

Id1G
TF−intrpl
3 − Iq1G

TF−intrpl
1

(22)

Fig. 11 presents Simulink simulation results obtained by
the proposed measurement procedure that is presented as a
flow chart in Fig. 12. The identified Zd, Zqd, Zdq, and Zq are
shown in Figs. 11a, 11b, 11c, and 11d, respectively. The results
obtained by the proposed method (TF-intrpl) are almost as
accurate as those obtained by the traditional method (MLBS).
The results obtained by the simple interpolation in Fig. 9 have
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(a) (b) (c) (d)

Figure 11: Comparison of the simulated identification results with the existing method and the proposed method.

Figure 12: Flowchart of the proposed measurement procedure.

deviations caused the by the phase problem that is not present
in the proposed transfer-function interpolation method.

In order to provide more validation of the result, a fit ratio
is computed as follows:

FR =


1−

K∑
k=1

|Zreference(k)−Zidentified(k)|2
K∑

k=1

|Zreference(k)|2


× 100% (23)

where Zreference is the reference to which the identification
result (Zidentified) is compared, and K equals 256 when n = 9
(because 256th element of the frequency vector is close to
2 kHz that is the reasonable measurement bandwidth). Here
the fit ratio of the identification results obtained by the pro-
posed technique to the reference model of the grid-impedance
is computed. For ZTF−intrpl

d , ZTF−intrpl
qd , ZTF−intrpl

dq , and
ZTF−intrpl
q , the fit ratios are 99.96 %, 99.47 %, 99.63 %,

and 99.95 %, respectively. These numbers further validate the
observations from the Bode plots in Fig. 11.

Figure 13: Illustration of the temporary harmonics in the
grid voltages and how the harmonics relate to the injected
sequences in the time domain.

C. Disturbance rejection

The benefit of the proposed method is that both channels
are injected and the impedance elements measured under the
same operating conditions which provides rejection against
effects of disturbances in the system during the measurement.
In order to put the disturbance rejection to test, 5th, 7th, 11th,
and 13th harmonics are added in the grid voltages during
the measurement, and the identification results between the
proposed method and the traditional method are compared.

Fig. 13 shows the grid-voltages and illustrates how the har-
monics in the voltages affect the traditional and the proposed
technique. The phase voltages are denoted by vg−a, vg−b and
vg−c, respectively. In the traditional method, the harmonics
affect the measurement of the first MLBS when the d channel
is injected. This implies that the DFT of the d channel will be
distorted. The measurement of the q channel injection is not
affected by the harmonics.

In the case of the proposed method in which the orthogonal
sequences are applied, the effect of the harmonics in the grid
voltages is different. The length of the IRS equals two times
the length of the MLBS. Therefore, the proposed method
and the traditional method have the same measurement time.
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(a) (b) (c) (d)

Figure 14: Comparison of the simulated identification results with the existing method and the proposed method under
temporary harmonics in the grid voltages during the indentification.

(a) (b) (c) (d)

Figure 15: Experimentally identified grid impedance including the filter capacitor. (a) Zd, (b) Zqd, (c) Zdq, and (d) Zq.

Table II: Comparison of the fit ratio of the simulated re-
sults obtained by proposed method (TF-intrpl) and traditional
(2MLBS) method to reference under grid voltage harmonics.

Impedance (Fig. 14) Traditional method
(2MLBS)

Proposed method
(TF-intrpl)

Zd 99.95 % 99.96 %
Zqd 99.46 % 99.05 %
Zdq 96.98 % 98.96 %
Zq 99.98 % 99.95 %

However, in the proposed method, both channels are simulta-
neously injected and measured over the whole measurement
time. Therefore, the harmonics affect the measurement of both
channels but the time average is over a longer period of time
in the case of the IRS. In the case of the MLBS, two sequences
are averaged for every IRS period.

Fig. 14 shows simulated identification results in the case of
the additional harmonics. In order to facilitate the comparison,
fit ratios (23) are calculated for both methods (shown in
Table II). The direct components (Zd and Zq) are equal with
both methods. In the case of Zqd, the traditional method is
slightly better than the proposed method. In the case of Zdq,
the results obtained by the traditional method have the largest
deviations among all the results with both methods. In the
proposed method, due to the good averaging capability, large
deviations are more efficiently avoided than in the traditional
method.

Figure 16: Block diagram of the grid-connected three-phase
PV inverter and the control system.

V. VERIFICATION OF THE PROPOSED TECHNIQUE

This section provides experimental verification for the pro-
posed technique. First, a grid impedance that has a resonance
is identified by the grid-connected inverter. Then, the output
admittance of a grid-connected PV inverter is identified.

A. Identification of Grid Impedance Including Filter Capaci-
tor

The used measurement setup is shown in Fig. 1. However,
the identification procedure is changed so that the filter induc-
tor current measurement is used for the identification. There-
fore, the filter capacitor is included in the grid impedance,
and the grid impedance becomes a parallel LC circuit with a
resonance.
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(a) (b) (c) (d)

Figure 17: Experimentally identified output admittance of the grid-feeding PV inverter. (a) Yd, (b) Yqd, (c) Ydq, and (d) Yq.

Fig. 15 shows that the method that is based on ratios of the
voltages to the currents clearly gives the results that are not
the impedance elements of an LC circuit in the dq frame. In
the dq frame, a parallel LC resonance has two peaks that are
separated by two times the fundamental frequency. However,
using the measurement method based on ratios of the voltages
and currents, the resonance peaks appear combined in the
measured impedance. Furthermore, in the direct components
(Zd and Zq) there are additional resonances at around 120 Hz.
The existing method and the proposed method give practically
identical results, and the interpolation does not cause prob-
lems.

The fit ratio is computed according to (23), and the results
from the traditional method (2MLBS) are used as the refer-
ence to which the proposed method (TF-intrpl) in compared.
Table III shows the fit ratios that clearly verify the applicability
of the proposed method.

B. Identification of PV Inverter Output Admittance

To further verify the proposed measurement procedure, the
output admittance of a photovoltaic (PV) inverter is measured.
Fig. 16 shows a block diagram of the system. The inverter
is similar to the inverter in Fig. 1; however, the inverter is
fed by a PV panel emulator instead of a DC voltage source.
Therefore, a DC-voltage controller that produces the reference
to the current d component is required. For the admittance
identification, the currents and voltages are measured at the ter-
minals of the isolation transformer; the transformer impedance
is included to the converter output admittance that is identified.
A measurement (meas.) PLL is used to synchronize the
voltages at the transformer. The MLBS and IRS are added
to the d and q voltage references of the grid emulator that
is connected to the transformer over a line inductance. The

Table III: Fit ratio of the proposed method (TF-intrpl) to the
(2MLBS) method in experiments.

Impedance
(Fig. 15)

Fit ratio
(FR)

Admittance
(Fig. 17)

Fit ratio
(FR)

Zd 99.7 % Yd 98.4 %
Zqd 99.2 % Yqd 96.0 %
Zdq 99.3 % Ydq 91.6 %
Zq 99.7 % Yq 94.7 %

interaction of the line impedance and converter impedance
may cause an intended d-channel injection to appear in the
q-channel and the impedance coupling occurs. The values of
the passive components are given in Table I, and the controller
parameters of the PV inverter and the measurement PLL that
is used in the identification are given in Appendix B.

The measurement procedure is slightly modified compared
to the previously used procedure because now the inverter
output admittance is identified. Eq. (21) becomes

[
Yd Yqd

Ydq Yq

]
=

[
Id1 G1

Iq1 G3

] [
Vd1 G2

Vq1 G4

]−1

(24)

where G1, G2, G3, and G4 are TF-interpolated transfer
functions from V ref

q2 to Id2, Vd2, Iq2, and Vq2, respectively. The
transfer functions are calculated with respect to the reference
q voltage (V ref

q2 ) because the IRS is injected to the q-voltage
reference of the grid-emulator. The amplitudes of the injected
MLBS and IRS are 10 V, and the length of the shift register
(n) is increased from the previously used 9 to 10 in order to
improve the frequency resolution of the MLBS from 7.8 Hz
to 3.9 Hz.

Fig. 17 shows the identified PV inverter output admittance
obtained by different methods. Clearly, the method based on
ratios of two variables deviates from the traditional method
(2MLBS) and the proposed (TF-intrpl). As Fig. 17a. shows,
the resolution of the proposed method is sufficient to reveal
the resonance at 23 Hz caused by the DC-voltage control
bandwidth. The negative incremental resistance region caused
by the PLL whose bandwidth is 20 Hz is visible in Yo−q in
Fig. 17d.

Table III shows the fit ratio of the proposed methods to
the traditional method. In (23), K equals 512 because n = 10.
In the case of PV inverter, there is more deviation in the fit
ratio than in the case of the grid impedance. The reason for
this deviation is that the relatively high line impedance damps
the voltage perturbations that are implemented by the grid
emulator. Furthermore, the converter admittance has a low
magnitude resulting in a low current response that is prone
to noise. Both 2MLBS and TF-intrpl methods suffer from
the noise in the frequency range from 100 Hz to 1000 Hz.
Nevertheless, the proposed method tackles the impedance
coupling problem. The results could be enhanced by averaging
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APPENDIX A

GL
co−dq =

Gco−dq(1+YdZd+YqdZdq)−Gco−d(YdqZd+YqZdq)

1+YdZd+YdqZqd+YqdZdq+YqZq+YdYqZdZq−YdYqZdqZqd−YdqYqdZdZq+YdqYqdZdqZqd
(A1)

over a longer period of time or by increasing the injection
amplitude.

The experiments verify the applicability of uncorrelated
broadband injections in the presence of impedance coupling.
The benefit of the proposed procedure lies in the short mea-
surement time due to the use of the orthogonal binary perturba-
tions. Furthermore, the method ensures that each channel is in-
jected with the system in the same operating conditions, which
may not be the case if sequential perturbations are applied. On
the other hand, the method requires more signal processing
than the existing method based on sequential injections. The
reference signal must be recorded in the same reference frame
as the voltages and currents which can set a limit for the
PLL bandwidth. Another drawback of the interpolation is the
introduction of small error. However, the interpolation error
can be kept small by using an adequate frequency resolution.

VI. CONCLUSIONS

The identification of the grid impedance at the point of com-
mon coupling of grid-connected converters is advantageous for
the controller design and the adaptive control. An injection
can be added to the converter current reference, and the
identification can be made from the responses in the terminal
currents and voltages. The interaction of the converter output
impedance and the grid impedance causes an error in the
impedance identification if an element of the multiple-input-
multiple-output impedance is identified under an assumption
that the injected perturbation affects only the intended channel.

In this work, orthogonal binary injections are used to obtain
two independent sets of measurements from a grid-connected-
converter system. Through the use of interpolation, one set
of measurements can be moved to the frequencies of the
other as an independent measurement. However, due to the
pseudorandom phase behavior of the binary sequences, inferior
results are obtained if the measured variables are interpolated
directly in the frequency domain. In the proposed method, the
variables are divided by the injected sequence and the obtained
transfer functions are interpolated. The two acquired sets of
measurements can be used to accurately identify the grid
impedance by using existing methods. The presented method
allows simultaneous measurement of the two independent
measurement sets. The benefit lies in the fast measurement
process and the mitigation of the possibility of excessive
disturbances or changes in the grid impedance during the
measurement.
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Abstract—Dead time is required to ensure that the switches
of a synchronous switching inverter leg never conduct at the
same time. During dead time, the current commutates to an
antiparallel diode that can cause a voltage error depending on the
instantaneous current direction. To measure a frequency response
from a system, external injections are commonly required to
perturb the system. The perturbation can change the current
direction at the frequency of the injection, causing a voltage
error at the injection frequency due to the dead time. The
error depends on the perturbation amplitude, inductor current
ripple, and fundamental current amplitude. This article proposes
a describing-function method to model the dead-time effect under
low-load conditions. It is shown that a nonlinear damping effect
from the dead time can occur under low-load conditions and can-
not be modeled with a resistor-like element. Real-time hardware-
in-the-loop-simulation results are presented and used to demon-
strate the effectiveness of the proposed method. Experimental
measurements are used to verify the nonlinear dead-time effect.

Index Terms—Dead time, describing function, frequency
response, nonlinearity.

I. INTRODUCTION

FREQUENCY-RESPONSE analysis is among the most
widely used techniques in dynamic analysis and controller

tuning of the power electronic systems. The basis of deriving
the dynamic models lies in the linearity of the inspected
system or linearizing the system around an operation point that
yields a linear frequency response. Impedance-based stability
is an application that is based on the measured or modeled
frequency responses and has received a great deal of attention
in the last few years [1]–[3].

A possible source of nonlinearity is the dead time that is
required to prevent the shoot-through faults in the synchronous
switching power converters. Dead time causes a voltage error
that is dependent on the inductor current sign [4]. The inductor
current sign can change due to an external disturbance that can
be caused, for example, by a frequency-response measurement.

A typical frequency-response-measurement method of
a power-electronics system is based on an external
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voltage/current injection that is placed, for example, on the
top of the nominal input voltage or current or control signal.
Fourier methods are then applied to extract the spectral infor-
mation between the desired input and the output variables [5].
In a power-electronics system with the dead time, a measure-
ment injection can change the current sign at the injected
frequency and cause a voltage error that acts as a damping.

The dead-time effect regarding the small-signal dynamics
has gained some attention in the literature. Several studies
have modeled the dead-time effect with a resistor-like element
[6]–[10]. Three-phase converters were analyzed in [6] and
[7], and single-phase converters in [8] and [9]. In [10],
the dead-time effect on the dynamics of a synchronous switch-
ing buck converter was analyzed, focusing on the charging
of the drain–source capacitance during the dead time. The
dead-time effect on the dynamics of a quasi-square-wave
flyback converter was analyzed in [11].

The importance of the ripple effect is shown in [8],
and a describing-function-based method is used to solve a
resistor-like element to model the dead-time effect. The model
predicts damping to occur when the fundamental current
amplitude is higher than half of the peak-to-peak current
ripple. Furthermore, it is assumed that the inductor current
amplitude is the same as the injection current. This assumption
in [8] is well grounded, because the output filter of the
analyzed full-bridge inverter consists of only an inductor.
However, if there was a resonance that increases the inductor
current with respect to injection, this assumption would not
be valid.

This article studies the dead-time effect under a low-load
condition, where the inductor current fundamental compo-
nent amplitude is lower than half the peak-to-peak ripple.
In [8], the opposite assumption and operating point were
used. Furthermore, in this article, the response in the inductor
current that causes the dead-time effect is not considered
small. Instead, we propose a describing-function-based method
that models the output impedance as a function of injection
amplitude and frequency. We show that resonance in the
system can increase the inductor current so that a voltage
error occurs or even saturates. Therefore, a moderate injection
amplitude does not guarantee a linear operating region.

The remainder of this article is structured as follows.
Section II examines the dead-time effect and the ampli-
tude dependence in the frequency-response measurements.
Section III derives a describing-function model for the
error. The proposed amplitude-dependent output impedance is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Half-bridge inverter.

TABLE I

OPERATING POINT AND COMPONENT VALUES

introduced in Section IV. In Section V, hardware-in-the-loop
(HIL) simulations and experimental measurements are used to
verify the analyzed dead-time effect. Conclusions are drawn
in Section VI.

II. DEAD-TIME EFFECT

This section begins by inspecting the voltage error that
is caused by the dead time. We then analyze and model
how the dead-time effect is visible in the frequency-response
measurements and how the operating point and system para-
meters affect the dead-time effect. Throughout this article,
it is assumed that the frequency-response measurement is
performed with a sinesweep, where one frequency at a time
is injected and measured.

A. Voltage Error Caused by Dead Time

Fig. 1 shows a half-bridge inverter that is used to analyze
the dead-time effect. The switches and the diodes are ana-
lyzed with ideal components. However, in reality, the required
dead time depends on the turn-off characteristics of the used
semiconductor switches [12]. When the dead-time length is
chosen, the changes in the switch characteristics with load
current and temperature must be considered [13]. The dead
time is not changed according to the operating conditions.
In general, faster switching devices require shorter dead time
than the lower switching devices. The operating point and
the component values are given in Table I. A dead time
value of 4 μs is applied in most parts of this article. This
value (in a combination of the applied switching frequency
of 10 kHz in the laboratory setup) was observed to demonstrate
the nonlinear effect efficiently.

The dead time is used to delay the turn-on of switches S1
and S2, ensuring a period during which neither of the switches
conducts. During dead time, the current commutates to either
of diodes D1 or D2, depending on the instantaneous current
sign [4]. Therefore, the dead time causes an instantaneous
voltage error, verr , in the inverter voltage during the dead time

Fig. 2. Inductor current (red) and average voltage error (blue) waveforms
when (a) fundamental current is higher than half the peak-to-peak current
ripple and (b) with an added sinusoidal perturbation in the inductor current.

that can be given by

verr = sign(iL)Vdc (1)

where Vdc and iL are the dc voltage and the inductor current,
respectively. In order to facilitate the analysis, the error is
averaged over a switching cycle

v
avg−Ts
err = 1

Ts

∫ τ+Ts

τ
verr(t)dt (2)

where Ts and Tdead are the switching cycle and the dead-time
lengths, respectively. The resulting maximum average voltage
error is

Vmax
err = ∣∣vavg−Ts

err
∣∣ =

∣∣∣∣sign(iL)
Tdead

Ts
Vdc

∣∣∣∣ (3)

which yields 28 V with the parameters of Table I. The
fundamental component of a square wave with the amplitude
of 28 V is 4/π 28 V = 35.56 V. The value of the average volt-
age error has been analyzed in the literature earlier [4], [12]

Fig. 2(a) shows the averaged voltage error over a 60-Hz
fundamental cycle. The error has the same sign as the cur-
rent. However, during the period of current zero crossings,
the average voltage error is zero. In Fig. 2(b), a perturbation is
added to the inductor current, and a voltage error appears at the
perturbation frequency due to the changes in the current zero
crossings. The zero-crossing period was modeled in [14], and a
similar approach was used for modeling the dead-time effect in
[9]. However, this article focuses on modeling the dead-time
effect under a low-load condition, where the 60-Hz funda-
mental current component is lower than half the peak-to-peak
inductor current ripple.

Fig. 3(a) and (b) shows the inductor current and the aver-
aged voltage error under low-load conditions. In Fig. 3(a),
there is no fundamental 60-Hz component in the inductor
current, and in Fig. 3(b), the fundamental component is lower
than half the peak-to-peak current ripple. The average voltage
error during the whole fundamental cycle is zero, because the
inductor current crosses zero during every switching cycle, and
the instantaneous error has both signs during a switching cycle.
Fig. 3(c) illustrates a case where a perturbation is added to
the current fundamental component, and the sum has a higher
amplitude than half the peak-to-peak current ripple. Therefore,
a voltage error appears when there are no zero crossings within
a switching cycle or a zero current clamping occurs.
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Fig. 3. Inductor current waveforms (red) and averaged voltage errors (blue)
with different fundamental current amplitudes (a) 0, (b) 1, and (c) 1 A with
a perturbation of 1.5 A at 600 Hz.

B. Perturbation Amplitude Dependence

The half-bridge inverter in Fig. 1 is simulated with
MATLAB/Simulink. A current injection is made with the
output current, io, to measure the output impedance,
Zo = v̂o/îo. The fundamental load current, a 60-Hz compo-
nent, Afund, is provided by the current sink if required. In the
following, the current sink draws no 60-Hz current component,
and the current sink is used only for the injection. Fig. 4 shows
the simulated measurement of the output impedance when no
dead time is applied in the switching as the benchmark. The
simulation is done two times with the injection amplitudes
of 0.5 and 2 A.

A dynamic model of the system is created based on the
parallel connection of the filter inductor impedance, ZL, and
filter capacitor impedance, ZC

ZC = rC + 1

sC
(4)

ZL = rL + sL (5)

Zo(s) = ZCZL

ZC + ZL
=

rCs2 +
(
rLrC

L
+ 1

C

)
s + rLrC

CL

s2 + rL + rC

L
s + 1

CL

(6)

where L, C , rL , and rC denote the inductance, capacitance,
inductor resistance, and capacitor resistance, respectively. As
shown in Fig. 4, the model corresponds to the simulations
according to the linear circuit theory.

Next, the output impedance simulation is repeated when
a dead time of 4 μs is applied in the switch control sig-
nals. Fig. 5 compares the results with the linear model,
Zo(s). It is apparent from Fig. 5 that the dead time makes
the system highly nonlinear, and the linear model cannot
be used to model the system. With the injection amplitude
of 0.5 and 1 A, the resonance is damped. On the other
hand, with the injection amplitudes of 2 and 3 A, a damping
appears at lower frequencies and the resonance is less damped.

Fig. 4. Output impedance from a simulation without the dead time with
different injection amplitudes.

Fig. 5. Output impedance, Zo, measured from a simulation with the dead
time and different injection amplitudes.

Therefore, a resistor-like element that is constant at all fre-
quencies cannot be used to model the dead-time effect.

It is known that the error caused by the dead time is
dependent on the inductor current. Therefore, it is useful to
look at the output current-to-inductor current dynamics. The
transfer function can be given by

GoL(s) = ZC

ZC + ZL
=

rC

L
s + 1

CL

s2 + rL + rC

L
s + 1

CL

. (7)

Fig. 6 compares the modeled and simulated GoL(s). Similar
to the case of the output impedance, the dead-time effect is
visible and the linear model is not valid. Fig. 7 shows the
absolute values of the inductor current and the voltage error
with different injection amplitudes. It can be seen that the
resonance amplifies the inductor current, which increases the
voltage error. However, the voltage error has its maximum
value Vmax

err according to (3). When the error saturates to the
maximum value, its effect on the frequency response begins
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Fig. 6. Output current-to-inductor current transfer function, GoL, measured
from a simulation with different injection amplitudes.

Fig. 7. Simulated absolute values of the inductor current and the voltage
error with different injection amplitudes.

Fig. 8. Simulated voltage error as a function of the inductor current
perturbation amplitude with different fundamental current amplitudes.

to diminish. It can be also noted that there is no voltage error
at all if the inductor current amplitude is not high enough.

Fig. 8 illustrates how the error behaves as a function of the
inductor current perturbation amplitude. For the simulations
in Fig. 8, the filter capacitor was changed from 10 to 0.5 μF

in order to reduce the reactive current fundamental component.
All injections were made at 650 Hz. With zero fundamental
current amplitude, there is a dead zone below which there is
no voltage error. When the fundamental current amplitude is
increased, the dead zone shortens until the fundamental ampli-
tude is approximately half the peak-to-peak current ripple,
�i/2

�i = VdcTs
4L

. (8)

Half the peak-to-peak ripple, �i/2, is 2.19 A with the para-
meters of Table I.

Because the gain of GoL(s) is close to 0 dB at low
frequencies, the injection amplitude must be higher than half
the peak-to-peak ripple for the error to occur. This can be
seen in Fig. 7. When the perturbation amplitude is high
enough, the error saturates to the fundamental component of
the square-wave voltage error. The saturation begins when the
perturbation amplitude equals the sum of half the peak-to-peak
current ripple and the fundamental current. After this point,
the increase in the perturbation amplitude affects the whole
fundamental cycle; this can be seen from Figs. 7 and 8.
Between the dead zone and the saturation is a slope region
that can be seen well from Fig. 8 in the case where the
fundamental current amplitude is 1 A. This behavior of the
voltage error under low-load conditions was illustrated in [9]
but not analyzed.

Fig. 8 also shows the voltage error when the dead time is
1 μs. The error is scaled by multiplying it by 4 in order to have
the maximum error, Vmax

err , unchanged compared to the case
with the dead time of 4 μs according to (3). By inspecting
the error as a function of the current with Afund = 0,
Fig. 8 shows that there is a voltage error on the lower inductor
current perturbations than �i/2. This is partly due to the
approximation of �i/2 in (8) that gives the ripple when the
duty cycle is 0.5 (that is, around the fundamental component
zero crossing).

Furthermore, Fig. 8 reveals that the dead-time length
not only affects the maximum voltage error, Vmax

err . With
Tdead = 1 μs, the error remains zero with higher inductor
current-response amplitudes. This can be explained with a zero
current clamping effect, which causes a voltage error. For a
zero current clamping to occur, it is sufficient for the current
to drop to zero during the dead time, and remain zero for the
rest of the dead-time length. The maximum current change
during the dead time is approximated by

imax
clamp = VdcTdead

2L
. (9)

If the zero is crossed for imax
clamp or fewer Amperes before

the current slope direction changes, a zero current clamping
occurs. The zero current clamping effect is the first source
of voltage error rather than the main dead-time effect. The
zero current clamping effect and the voltage error have been
analyzed in [15].

III. DESCRIBING-FUNCTION MODEL

A describing-function model for the voltage error can be
developed based on the observations from the voltage error
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Fig. 9. (a) Dead zone, slope, and saturation that are modeled in frequency
domain with (b) describing function.

as a function of the inductor current perturbation amplitude,
current ripple, and current fundamental component in Fig. 8.
Therefore, a describing-function model consisting of a dead
zone, a slope, and a saturation illustrated in Fig. 9(a) must be
created.

With lower current perturbation amplitudes, A, than R1,
there is no voltage error, and with higher than R2, the error
saturates. The zero current clamping effect reduces R1 by
imax
clamp according to (9). R1 and R2 are defined by

R1 = �i

2
− Afund − imax

clamp (10)

R2 = �i

2
+ Afundcos(φ) (11)

where Afund is the fundamental current amplitude. The reactive
current produced by the capacitor with amplitude Areact cannot
be neglected, because it affects R2 if the inductor current fun-
damental component is not in phase with the ripple. Therefore,
the reactive current component has to be considered

Areact = Vo2π60C. (12)

Therefore, the fundamental current amplitude is given by

Afund = √
Areal + Areact. (13)

The angle φ in (11) is given by

φ = tan−1
(

Areact

Areal

)
(14)

where Areal is the 60-Hz component current drawn by the
current sink. Between R1 and R2, the error increases from
zero to Vmax

err by the slope k

k = Vmax
err

R2 − R1
. (15)

Therefore, the error model, N(A), can be created by summing
the two describing-function models, N(A)1 and N(A)2, both
modeling slope and saturation [16]

N(A)1 = −2k

π

⎡
⎣sin−1

(
R1

A

)
+ R1

A

√
1 −

(
R1

A

)2
⎤
⎦ (16)

N(A)2 = 2k

π

⎡
⎣sin−1

(
R2

A

)
+ R2

A

√
1 −

(
R2

A

)2
⎤
⎦ (17)

N(A) = �[N(A)1 + N(A)2]. (18)

Fig. 10. Simulation (circles) and model (solid line) of the voltage error as
a function of the inductor current perturbation amplitude with a fundamental
current of 0 A.

Fig. 11. Simulation (circles) and model (solid line) of the voltage error as
a function of the inductor current perturbation amplitude with a fundamental
current of 1 A.

Due to the dead zone, the sum of the slopes must be zero
before R1. Therefore, the slope of N(A)1 is −k. Fig. 9(b)
shows how N(A)1 and N(A)2 sum up to N(A).

Figs. 10–12 compare the proposed model, N(A)A as a
function of A, with the simulated voltage error with the
fundamental current amplitudes of 0, 1, and 1.83 A, respec-
tively. The fundamental amplitude of 1.83 A was chosen in
order to have R1 in (10) zero. The proposed model estimates
the nonlinear error sufficiently well. However, regardless of
modeling, the zero current clamping effect the model for R1
in Fig. 10 and the approximation with a single slope in Fig. 12
are not completely accurate.

IV. AMPLITUDE AND FREQUENCY RESPONSE

This section deals with the output impedance that is
affected by the nonlinear dead-time effect. Based on the
describing-function model N(A), an output impedance model
that depends on both the injection amplitude and injection
frequency is derived.

Due to the nonlinear voltage error, a transfer function must
be defined as a function of the amplitude A and frequency ω.
Therefore, the notation of the inductor and capacitor
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Fig. 12. Simulation (circles) and model (solid line) of the voltage error as
a function of the inductor current perturbation amplitude with a fundamental
current of 1.83 A.

Fig. 13. Nonlinear frequency-domain circuit from where IL must be solved
for every input combination of IO and ω.

impedance subsystems is changed from ZL(s) and ZC(s) to
ZL( jω) and ZC( jω), respectively. The effect of N(A) is
included in the output impedance and, therefore, becomes
a function of the input amplitude in addition to the
frequency Therefore, the output impedance is expressed
as Zo(A, jω).

Fig. 13 shows a frequency-domain circuit presentation of
the nonlinear system. The capacitor and inductor impedances
are the traditional linear elements. However, the nonlinear
voltage error is in series with the inductor impedance as
a reverse-biased nonlinear current-dependent voltage source.
The equation based on the circuit can be given by

|N(IL) + ZL( jω) + ZC( jω)|iL(IL, ω)

− |ZC( jω)|io(IO, ω) = 0. (19)

IO, VO, and IL are the phasors of the output current, output
voltage, and inductor current, respectively. IL must be solved
for each input combination on IO and ω. The phasors are
analyzed separately at different frequencies, ω. N(IL) is the
analytical expression from (18). The equation can be solved,
for example, by using the MATLAB fzero function. The solved
iL(IL, ω) is in a zero phase shift, because the equation could
be solved only for the absolute value. Thus, the output current
io must be resolved in order to find out the relational phase
shift

io(IO, ω) = [N(IL) + ZL( jω) + ZC( jω)]iL(IL, ω)

ZC( jω)
. (20)

Fig. 14. Modeled (lines) and simulated (circles) output impedance with
different perturbation amplitudes and a fundamental current of 0.64 A.

As the next step, the output impedance Zo(A, jω) can be
solved

Zo(A, jω) = −vo(VO, ω)

io(IO, ω)

= ZC( jω)io(IO, ω) − ZC( jω)iL(IL, ω)

io(IO, ω)
. (21)

Fig. 14 compares the modeled and the simulated output
impedance, Zo(A, jω). The model predicts well that, with
low injection current amplitudes when the inductor current
perturbation amplitude is small enough, the resonance is
damped. On the other hand, the error saturates around the
resonance with higher injection amplitudes and the undamped
resonance becomes visible again. Higher injection amplitudes
than R1 cause errors at lower frequencies, which can be seen
as damping.

Fig. 15 shows the modeled amplitudes of the voltage error
and inductor current corresponding to the case of Fig. 14.
As it can be seen, the error saturates at the resonance in
the case of injection amplitudes of 2 and 3 A. Due to this,
the damping effect is diminished as it can be seen from Fig. 14.
Figs. 16 and 17 compare the model with the simulation when
the fundamental load current is 1 A and the inductor current is
1.19 A. However, the effect is modeled only at the fundamental
frequency of the square-wave-like voltage error.

V. HIL SIMULATION AND EXPERIMENTAL VERIFICATION

This section deals with HIL simulations and experimental
laboratory measurements. First, we take a look at the changes
that are caused by dc capacitors of the used practical circuit.
Second, a voltage injection is used to measure the output
impedance in an HIL simulation. Third, a practical laboratory
setup is used to verify the nonlinear dependence on the
injection amplitude.

A. Practical Circuit

Fig. 18 shows the circuit diagram of the experimental setup.
In the practical half-bridge inverter, there are dc capacitors,
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Fig. 15. Modeled and simulated inductor current amplitude and voltage error
with different perturbation amplitudes and a fundamental current of 0.64 A.

Fig. 16. Modeled (lines) and simulated (circles) output impedance with
different perturbation amplitudes and a fundamental current of 1.19 A.

Fig. 17. Modeled and simulated inductor current amplitude and voltage error
with different perturbation amplitudes and a fundamental current of 1.19 A.

Cdc, instead of the two ideal voltage sources that were
used previously. Because the dc voltage source is a dynamic
short circuit, a parallel connection of the dc capacitors, Zpar

dc−C,

Fig. 18. Circuit diagram of the HIL simulations and laboratory experiment.

TABLE II

OPERATING POINT AND COMPONENT VALUES
OF THE HIL SIMULATION

is visible in series with the inductor and is, therefore, included
in the inductor impedance

ZC−dc( jω) = rC−dc + 1

jωCdc
(22)

Zpar
C−dc = ZC−dcZC−dc

ZC−dc + ZC−dc
(23)

ZL( jω) = Zpar
C−dc + rL + jωL (24)

where rC−dc is the equivalent series resistance of the dc
capacitor.

The analysis focuses on the antiresonance in (24), because
with the used laboratory equipment, it was not possible to
inject the voltages that cause high enough current at the
LC parallel resonant frequency to demonstrate the saturation
effect.

For the sake of simplicity, the filter capacitor is not included
in the output impedance. Therefore, the nonlinear circuit
equation that must be solved for IL reduces to

|N(IL) + ZL( jω)|iL(IL, ω) + vo(VO, ω) = 0. (25)

The output impedance can be solved from

Zo(A, jω) = −vo(VO, ω)

iL(IL, ω)
. (26)

The parameters of the HIL simulation in this section are
given in Table II.

B. HIL Simulations

The circuit of Fig. 18 is simulated with Typhoon HIL model
402. The phase-locked loop (PLL) is omitted for simplicity.
The inductor current amplitude, IL , and the capacitor current
amplitude, IC , are 1.01 and 0.64 A, respectively. The 60-Hz
fundamental voltage component is provided by the ideal
voltage source that has a very small series-connected inductor
and resistor to improve the simulation stability. The voltage
source is also used to inject a sine sweep for the measurement.
In order to demonstrate the nonlinear damping effect, high
injection amplitudes are required.
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Fig. 19. HIL simulation (circles) and model (lines) of the open-loop
output impedance of the grid-connected converter with different injection
voltages.

Fig. 20. Laboratory setup.

Fig. 19 shows the real-time HIL-simulated frequency
response and the model around the antiresonance at 150 Hz.
It can be seen that the model clearly predicts the damping as
the function of the perturbation amplitude. The most striking
result from Fig. 19 is that the damping increases when the
injection amplitude is increased from 0.5 to 23 V. With
injection amplitudes of 40 and 50 V, there is less damping,
which is predicted correctly by the model. A notable change
in the damping can be seen even with the injection amplitudes
0.5, 2.3, and 11 V, which are less than 10% of the fundamental
170-V component amplitude.

C. Laboratory Measurements and Comparison
to Simulations

The nonlinear damping by the dead time is verified by
laboratory measurements. Fig. 20 shows the laboratory setup
for the circuit in Fig. 18. A low-bandwidth PLL is used to
synchronize the half-bridge converter to the 60-Hz voltage
provided by the grid emulator. The frequency response of the
output impedance is measured by injecting a sine sweep with

Fig. 21. Injected output voltage amplitude at different frequencies.

Fig. 22. Laboratory measurement of the open-loop output impedance of
the grid-connected converter with MOSFETs with different injection voltages
and HIL replication of the measurement.

a grid emulator. The measurements are performed separately
with MOSFETs and insulated-gate bipolar transistors (IGBTs)
in order to see the effect of nonideal switches. The used
switch modules were the PEB Sic 8024 module and PEB
8032 module by Imperix.

Due to the used isolation transformer, there is a voltage drop
in the value, which depends on the injected frequency, and the
injected voltage over the capacitor is not the voltage over the
grid emulator. Fig. 21 shows two injections as an example.
The injected output voltage amplitude is not constant, and the
injected voltage over the filter capacitor varies slightly between
the IGBT and MOSFET measurements. The nominal values
for the injections, 4 and 24 V, are chosen from the values at
around 270 Hz. As it has been shown, the nonlinear dead-time
effect is very amplitude-sensitive. Therefore, the practical
measurement is replicated in an HIL simulation by injecting
a voltage that in reality was over the filter capacitor.

Figs. 22 and 23 show the measured laboratory measure-
ments with MOSFETs and IGBTs compared with the HIL sim-
ulations, respectively. The laboratory setup is shown in Fig. 20,
and the passive component parameters of the setup are given
in Table III. As stated earlier, ideal switches with ideal diodes
were used in the HIL simulations.

The HIL simulation gives a result that corresponds to
the laboratory measurements in the case of the MOSFETs,
as shown in Fig. 22. Fig. 23 shows the converter output
impedance with the IGBT. As shown in Fig. 23, there is a
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Fig. 23. Laboratory measurement of the open-loop output impedance of the
grid-connected converter with IGBTs with different injection voltages and
HIL replication of the measurement.

TABLE III

SYSTEM PARAMETER VALUES OF THE
LABORATORY MEASUREMENTS

more visible difference in damping between the simulation
in laboratory measurement with low injection amplitudes
compared with the case with the MOSFET. This implies that
nonidealities with the IGBT cause more problems regarding
the modeling of the dead-time effect. On the other hand,
the used dead time of 4 μs is not relevant for the MOSFETs,
because it is unnecessarily long. However, the purpose of
this article is to study the damping that stems from the dead
time. With the two highest injection amplitudes, the HIL
simulation matches accurately to the laboratory measurements.
Furthermore, with the highest injection amplitude, the damp-
ing decreases below the resonance frequency that is visible
in both the laboratory measurements and the HIL simulation.
The nonidealities with MOSFETs could become more visible
with higher switching frequencies.

VI. CONCLUSION

This article has investigated the nonlinear damping caused
by the dead time effect under load conditions where the fun-
damental current component is less than half the peak-to-peak
current ripple. The findings indicate that error caused by the
dead time can be modeled with a dead zone, slope, and
saturation as a function of the inductor current amplitude.
Due to the dead zone, the effect cannot be modeled with a
resistor-like element, as was used earlier in the literature with
the dead time under different load conditions.

By using a describing function, we found a model for the
error caused by the dead time under a low-load condition. The
describing-function model in combination with linear circuit

impedances was used to derive the output impedance of an
inverter as a function of the injection amplitude. We observed
that, even with a moderate measurement injection amplitude,
a system resonance can increase the inductor current ampli-
tude, making the nonlinearities become visible. This can occur
especially in simulations, where ideal current source that can
provide infinite voltage is used for the measurement injection.
The proposed model works accurately with real-time HIL sim-
ulations that are becoming increasingly popular. Experimental
measurements were provided for verifying the HIL simulations
and the nonlinear dead-time effect.

This article represents the first occasion that the output
impedance of a power electronic converter has been given
as a function of the injection amplitude in addition to the
injection frequency. Our article has some limitations regarding
the nonidealities in practical semiconductor switches. In addi-
tion, low-order harmonics except the first one were assumed
nonexistent. For example, considerable harmonics produced
by a nonlinear load could change the effect. Nevertheless,
we believe our article gives new theoretical background on
the analysis of the nonlinear small-signal dead-time effect
under low-load conditions. On a wider level, research is also
needed to determine how the nonlinear dead-time effect and
the measurement result behave under broadband injections that
are becoming increasingly popular [5], [17].
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Abstract—The deadtime is an important factor in design of
power-electronics converters in order to prevent shoot-through
faults. The deadtime may also cause a voltage error and
undesired damping effect which, in turn, affect the converter
stability. As most effects caused by the deadtime are highly non-
linear, conventional modeling techniques to analyze these effects
cannot be straightforwardly applied. This paper proposes a novel
frequency-domain approach to model the damping effect caused
by the deadtime in single-phase half-bridge inverters. Hardware-
in-the-loop (HIL) simulations and laboratory measurements are
presented and used to demonstrate the effectiveness of the
proposed method.

Index Terms—frequency response, deadtime, damping

I. INTRODUCTION

One of the main goals in the design of synchronous
switching power electronic converters is to prevent shoot-
through faults. By delaying the turn-on of the switches by
a period known as the deadtime, the shoot-through faults can
be prevented [1], [2]. The deadtime length is the sum of the
switch turn-off time and an additional safety margin. However,
the deadtime causes a voltage error and undesired damping in
the system, thus affecting the stability.

Fig. 1 presents the leg of a single-phase half-bridge inverter.
During the deadtime, neither of the switches S1 nor S2

conducts, and the current commutates to an antiparallel diode,
D1 or D2. The conducting diode is determined by the current
direction; thus, the voltage applied over the leg during the
deadtime depends on the current direction. The direction-
dependency of the current causes a nonlinear voltage error
[1].

A number of the previous research has focused on current
and voltage distortions caused by the deadtime error [1], [3]–
[5]. However, the deadtime effects in converter frequency-
domain analysis have not been extensively considered in past
studies. It is rarely specified, whether the effect of the deadtime
is completely neglected or a compensation method is used.
However, a few studies have addressed the issue of deadtime
in a dynamic analysis of DC-DC converters [6] and three-
phase inverters [7]–[10].

Figure 1: Leg from a half-bridge inverter.

In a dynamic power-converter analysis, the system is aver-
aged over a switching cycle [11]. The fundamental problem
in the analysis of deadtime effect is behind the fact that the
effect is highly nonlinear. The effect is dependent on the
current direction, and therefore, traditional averaging methods
cannot be applied directly to solve the average effect of the
deadtime. The deadtime is typically modeled as an equivalent
series resistance in the small-signal modeling as in the case
of the fundamental component in [2]. In [7], the fundamental
components of the voltage errors were modeled in the phase
domain and transformed to the synchronous reference frame.
The results were time-invariant circuit elements that corre-
spond to resistors among crosscoupling elements that appear
in the synchronous reference frame. Furthermore, the small-
signal effect has been shown to be a resistor also in [6]. The
error caused by the deadtime effect in light load conditions
was studied in detail in [12] and [13], but no frequency
responses were shown. It has been shown that the resistor has
its highest values under low load conditions [6]–[8]. Despite
this interest, no one, to the best of our knowledge, has studied
the deadtime effect on dynamics of single phase inverters. This
paper examines how the deadtime affects the dynamics of a
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Figure 3: Gating pulses of a synchronous-switching half-
bridge inverter.

single phase AC system.
The remainder of the paper is organized as follows. Section

II analyzes the voltage error caused by the deadtime as a
function of the inductor current, the deadtime length, switching
frequency, current perturbation amplitude and DC voltage.
Section III presents the small-signal model of the inverter
affected by deadtime, and verification by HIL simulations
and laboratory measurements is presented. Finally, Section IV
draws conclusions.

II. SMALL-SIGNAL MODEL

In this chapter, the deadtime effect on the dynamics of a
half-bridge inverter is analyzed. First, a brief overview of an
existing deadtime modeling method is given. Then, a Simulink
model is used to show the effect of perturbations in the
inductor current on the voltage error, and a model that is valid
with reasonably high fundamental currents is derived based on
analytical equations and the simulation results. Throughout the
paper the voltage and current values refer to the amplitude of
the AC waveform, unless otherwise stated.

A. Background of the modeling principle

The half-bridge inverter under study is shown in Fig. 2
and the used parameters are shown in Table I. In order to
analyze the unterminated dynamics of the converter, the load
is modeled as an ideal current sink. In the case of a resistor
as a load, the LC-resonance of the control-to-output transfer
function would be highly damped.

The gating signals with the deadtime during the switching
cycles, Ts are shown in Fig. 3. The turn on of the both switches
S1 and S2 is delayed by the deadtime, Tdead; thus, it is ensured
that the switches are not on at the same time. The red area
shows how the deadtime prevents a portion of the ideal gating
pulse. If current iL is positive during the deadtime, it will

Table I: Operating point and component values.

Parameter Value Parameter Value
Vdc 700 V Cin 1.9 mF
Io 15 A L1 2.5 mH

Vo,rms 120 V rL1 65 mΩ
ωs 2π60 rad/s Cf 10 µF
fs 10 kHz rCf 0.3Ω
Ts 0.1 ms Tdead 4 µs

j

}

Averaged voltage error

Inductor current
Sampled inductor current

Figure 4: Current and average voltage error waveforms.

commutate to the lower diode D2. This will cause an error
in the applied leg voltage if S1 is conducting ideally. With
negative iL, the error in the voltage takes place when the turn
on of S2 is delayed, and the current flows through D1. The
losses of the switches and diodes are omitted because the focus
is on the voltage error caused by the deadtime. Furthermore,
a unity power factor operation is assumed.

The instantaneous voltage error, verr, is given by

verr = sign(iL)Vdc (1)

where Vdc is the DC voltage. The error can be averaged over
a switching cycle according to

vavg−Ts
err = 1

Ts

τ+Ts∫
τ

verr (t)dt. (2)

Fig. 4 illustrates the waverforms of the voltage error that is
averaged over a switching cycle, vavg−Ts

err , and the inductor
current iL. In addition, the inductor current that is sampled at
the switching frequency, iTs

L , is shown.
With the parameters of Table I, the amplitude of the average

error is 28 V and the fundamental component of the error,
verr−f1, is given by

verr−f1 = 4
π
Tdead

Tsw
Vdc. (3)

It is apparent from Fig. 4 that the voltage error is not a
square wave; the average of the voltage error is zero during
the inductor current zero crossings because the sign of the
instantaneous voltage error changes during a switching period.
This zero crossing period was modeled with a modified sign



function in [5], and the resulting effect on the fundamental
component is

verr−f1−mod = 4
π
Tdead

Tsw
Vdc cos(ϕ) (4)

where ϕ is the angle corresponding to the zero crossings
of the inductor current. The angle is dependent on [5] the
inductor current fundamental component amplitude Afund and
the inductor current peak-to-peak ripple ∆Ip−p according to

ϕ = sin−1

(
∆Ip−p

2

Afund

)
. (5)

B. Novel small-signal modeling approach

Regarding the modeling of the small-signal dynamics, a
similar approach is used in this study as in the case of
fundamental component in [5]. First, it is shown with sim-
ulations how a sinusoidal perturbation affects the voltage
error waveform. Then, a model is developed based on the
observations from the simulations.

The average voltage error waveform is studied under si-
nusoidal perturbations from the output current, io. In order
to efficiently illustrate the deadtime effect, the perturbation
amplitudes are increased to overly necessary values in the
simulations. Figs. 5 and 6 show the simulation results under
the same system operating conditions that were applied for
obtaining the results in Fig. 4, but with the difference of
added 2 A and 5 A sinusoidal injections at 1190 Hz in io,
respectively. Due to the perturbation, the voltage error has a
visible component at the injection frequency. Since the voltage
error is a function of the current, it could be modeled with
a resistive element. However, the voltage error is dependent
on the current perturbation amplitude and the fundamental
inductor current amplitude. As shown in Figs. 5 and 6, with
a lower perturbation amplitude, the error component at the
perturbation frequency has a low amplitude, and it exists only
around the original zero crossing of the unperturbed inductor
current. As the amplitude of the perturbation is increased,
the length of the fundamental cycle during which the average
voltage error changes is longer. In addition, the amplitude of
the error increases. It should be noted that some zero current
clampings take place. They cause an instantaneous voltage
error other than ±Vdc.

On combining the observations from the simulations, it can
be deduced that the angle during which zero crossings take
place is a key factor in modeling the deadtime effect. A model
considering the zero crossings in the deadtime analysis was
developed in [14], but a different model is proposed in this
paper. Now there are two angles, ϕ1 and ϕ2, regarding the
inductor current zero crossings. The angles are proportional to
the perturbation amplitude, Apert, and inversely proportional
to the fundamental amplitude ,Afund:

ϕ1 = sin−1

(
∆Ip−p

2 −Apert

Afund

)
(6)

Figure 5: Current and average voltage error waveforms with
a fundamental current amplitude of 15.2 A and perturbation
amplitude of 2.2 A.
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Figure 6: Current and average voltage error waveforms with
a fundamental current amplitude of 15.2 A and perturbation
amplitude of 5.4 A.

ϕ2 = sin−1

(
∆Ip−p

2 +Apert

Afund

)
(7)

where ϕ1 is the angle during which the inductor current
crosses zero every switching cycle, and ϕ2 is the angle
between the original fundamental zero crossing and the largest
angle where a zero crossing takes place due to the perturbation.
Applying (6) and (7), the proportion, p, of the switching cycle
during which the current perturbation affects the voltage error
can be expressed as shown in (8). Because the angles are
between zero and π radians and changed to a proportion
between 0 and 1, a division by π is required.

p = 1
π (ϕ2 − ϕ1 ) (8)

The average small-signal voltage error can be related to the
proportion, p, and the amplitude of the square wave error:

v̂avg
err (Apert) = pK

Tdead

Tsw
Vdc (9)



Figure 7: Current and voltage error at the injection frequency
with different fundamental load current amplitudes.

where K is a gain other than 4
π , because the error at the

perturbation frequency is not a square wave.
In order to find the value for K, a heuristic approach is used.

The error waveform at the perturbation frequency in Figs. 5
and 6 has properties of both a square wave and triangular
wave; therefore, the average of the fundamental components
of a square wave and triangle wave is given by

K =
8
π2 + 4

π

2
=

2π + 4

π2
≈ 1.04. (10)

The final expression for the error is

v̂avg
err (Apert) =

sin−1

(
∆Ip−p

2 +Apert

Afund

)
K

π

Tdead

Tsw
Vdc

−sin−1

(
∆Ip−p

2 −Apert

Afund

)
K

π

Tdead

Tsw
Vdc.

(11)

The effects of different combinations of the fundamental
current amplitude and perturbation amplitude on the small-
signal voltage error are shown in Fig. 7. The voltage error
amplitude dependency on the perturbation amplitude is non-
linear with fundamental currents lower than half the inductor
current ripple, ∆Ip−p. However, the higher the fundamental
current amplitude with reasonable perturbation amplitudes, the
more linear is the dependency. Thus, the deadtime effect can
be modeled with a constant resistor that is the derivative of
v̂avg

err (Apert):

Figure 8: Simulated and modeled (using rdead) small-signal
voltage error at the injection frequency with different funda-
mental load current amplitudes.

rDT =
d

dApert
v̂avg

err (Apert)

=
K Tdead

Tsw
Vdc/π

Afund

√√√√1 −
(

∆Ip−p/2+Apert

Afund

)2

+
K Tdead

Tsw
Vdc/π

Afund

√√√√1 −
(

∆Ip−p/2−Apert

Afund

)2
.

(12)

As stated earlier, the fundamental current amplitude is
assumed high. Furthermore, the perturbation amplitude is
assumed small. With these assumptions, the equation for the
average small-signal error reduces to (13).

rDT =
2

πAfund
K
Tdead

Tsw
Vdc (13)

Fig. 8 shows that the proposed model approximates the error
well with high fundamental currents. It can be noted that the
expression for rDT bears a close resemblance to the existing
model [7] with the term Tdead

AfundTsw
Vdc. However, the proposed

model is derived with a completely different approach for a
different converter topology.

III. FREQUENCY RESPONSE ANALYSIS

This section deals with the deadtime affected transfer func-
tions. The transfer functions related to the control and output
dynamics are derived, and the output impedances compared to
the results obtained by the HIL simulations and the laboratory
measurements.



Figure 9: Open-loop output impedance Zo−o: HIL simulation
(solid lines) and model (dots).

A. HIL simulations

The transfer functions for the half-bridge inverter are de-
fined by using the impedances of the filer inductor, ZL, and
capacitor, ZC:

ZC = rC +
1

sCf
(14)

ZL = rDT + rL + sL. (15)

It is to be noted that rDT in (13) is included in the filter
inductor impedance in (15). If the DC capacitors are included
in the model, they appear connected parallel (16) with the
inductor.

ZDC−C =

(
rC−DC + 1

sCDC

)(
rC−DC + 1

sCDC

)

(
rC−DC + 1

sCDC

)
+
(
rC−DC + 1

sCDC

) (16)

The parallel connection of the filter inductor, ZL, and capac-
itor , ZC, impedances forms the open-loop output impedance,
Zo−o, of the system:

Zo−o =
ZC (ZL + ZDC−C)

ZC + (ZL + ZDC−C)
(17)

The open-loop control-to-output voltage transfer function,
Gco−o, is given by

Gco−o =
ZC

ZC + ZL
. (18)

A Typhoon HIL 402 simulator is used to verify the deadtime
effect in frequency responses. The switches are modeled as
ideal switches in the simulator, and the controller is imple-
mented in the simulator so that a simulation can be run without

Figure 10: Interconnected AC half-bridge converters.

the deadtime to exclude the deadtime effect for comparison.
The output impedance, Zo−o, of the system is measured in
an HIL simulation by making a parallel current injection to
a resistive load. The deadtime damps the resonance in the
output impedance, and Fig. 9shows that the proposed model
is accurate with reasonable values of deadtime (1-2 µs).

It is possible to state now that the deadtime effect can be
clearly seen in the frequency responses. However, it is still
unclear whether the damping is only a measurement effect or if
it can affect the stability. The deadtime effect on the stability is
studied with an interconnected system of an output voltage and
input current controlled half-bridge AC converters. The circuit
diagram is shown in Fig. 10. For the sake of simplicity, the
phase-locked loop (PLL) and DC-voltage control of the active
rectifier (AFE) are omitted. This simplification is justified
because the LC resonance that is causing the instability is at
higher frequencies than the bandwidths of the traditional PLL
and DC voltage control.

The output voltage of the inverter and the input current of
the AFE are controlled by a PR-controller and a PI-controller,
respectively. The crossover frequency of the current loop gain
is 942 Hz, the phase margin is 27◦ and the gain margin is 4.4
dB. The PR-controller can be given by

Gvc(s) = Kp−v +
2Ki−vωbs

s2 + 2ωbs+ ω2
s

, (19)

where Kp−v, Ki−v and ωb are the proportional gain, integral
gain and the bandwidth around the synchronous frequency, ωs,
respectively. Fig. 11 shows both the loop gains. The system
parameters are shown in Table II.

The stability of the system is analyzed at the interface of
Yin−c and Zo−c. The closed-loop output impedance, Zo−c, is
given by

Zo−c =
Zo−o

1 +Gco−oGvcGdel
, (20)

where Gdel is the Padé approximation for the delay that is 1.5
Ts. Fig. 12 shows the modeled input and output impedances.
The deadtime length has not as significant effect on the input
impedance as it has on the output impedance; there is almost
no difference in the input impedance with the deadtime lengths
of 1 µ and 2 µ. Due to the current controller of AFE, there is



Figure 11: Control loops gains of half-bridge inverters: the
PR-controller of voltage output inverter and the PI-controller
of the AFE input current.

already a high amount of damping and the relatively small rDT

has a non-visible effect. In the following, the same deadtime
length is used for both the converters.

There is a potential for a harmonic instability at around 1.6
kHz because the gain curves overlap and the phase difference
is more than 180◦ . When the deadtime length is increased
from 1 µs to 2 µs, there is a decrease of 4.2 dB in the
output impedance. An impedance based stability analysis is
performed by using a Nyquist plot. Fig. 13 illustrates the
Nyquist plot of the modeled impedance ratio Zo−cYin−c with
the deadtime lengths of 1 µs and 2 µs . With a deadtime of 1
µs, the point (-1,0) is encircled; thus, the system is unstable
in the operating point where the fundamental load current is
15 A.

Table II: Operating point and component values of intercon-
nect converters.

Parameter Value Parameter Value
Vdc 700 V Cin 1.9 mF

Io = Iin 15 A L1 1.4mH
Vo,rms 120 V rL1 25
ωs 2π60 rad/s Cf 10 µF
fs 10 kHz rCf 10 mΩ
Ts 0.1 ms Tdead 1-4 µs
LAFE 5.5mH rLAFE 10 mΩ
KP-AFE 0.0452 KI-AFE 65.28
KP-v 0.0050 KI-v 31.62
ωb π rad/s

The voltage and the input current reference waveforms are
shown in Fig. 14 as the input current amplitude of the active
rectifier is increased slowly to 15 A. With a deadtime of 1
µs, the system is harmonically unstable as it is predicted by
the Nyquist diagram. The deadtime length of 2 µs stabilizes
the system. Nevertheless, the LC resonance is not completely
damped by rdead. It is emphasized that the only parameter that
was changed between the two simulations was the deadtime

Figure 12: Output impedance of the output voltage controlled
inverter and the input impedance of the input current controlled
AFE with deadtime lengths of 1 µs and 2 µs .

Figure 13: Nyquist diagram of the impedance ratio with the
deadtime lengths of 1 µs and 2 µs.

length of both the half-bridges (from 1 µs to 2 µs). This
confirms that the deadtime length can be a crucial factor
affecting a power electronics system stability.

B. Laboratory measurements

The applied experimental setup is shown in Fig. 15. The
applied half bridge module and control platform are a PEB-
8032 module and a Boombox control platform by Imperix,
respectively. The LC-filtered half-bridge inverter is loaded
by parallel connected resistors, and the operation point was
defined by changing the number of parallel connected resistors.
An amplifier with an injection transformer that is connected
in series with one of the resistors was used to perturb the
load current. The perturbation reference for the amplifier was
created by a multipurpose I/O device by National instruments
that was also used to record the waveforms. The same PR
controller as in the simulation was used in the experimental
measurements. The component parameters are given in Table
III.



Figure 14: Voltage waveforms with the deadtime lengths of 1
µs and 2 µs.

Table III: Operating point and component values of experi-
mental converter.

Parameter Value Parameter Value
Vdc 700 V Cdc 500 µF
Io 3—21 A L1 0.79mH

Vo,rms 120 V rL1 0.16—1.2Ω
ωs 2π60 rad/s Cf 9.8 µF
fs 20 kHz rCf 0.11 Ω

Fig. 16 shows the measured output impedance with the
deadtime length of 1 µs and different values of the output
current. The damping effect of the deadtime can clearly be
seen in the frequency responses. Both the resonance from the
parallel connected L and C at 1.8 kHz and the antiresonance
from the DC capacitors and the inductor at 200 Hz are damped.
It can be seen that with low fundamental current amplitudes
(3 A and 4.5 A) there is some damping. This is in line with
the observations from Fig. 7. Because the fundamental current
is lower than half the inductor current ripple (here 8.7 A), the

Injection transformerInjection transformer

AmplifierAmplifier

PC

Oscilloscope

Boombox

control platform

Half bridge

Oscilloscope

Boombox

control platform

Half bridge

LC-filter Resistive loadsLC-filter Resistive loads

Multifunction I/O

 device

Figure 15: Laboratory setup.

Figure 16: Experimental frequency response of the closed-loop
output impedance.

Figure 17: Measured fundamental current amplitude effect on
the deadtime damping.

perturbations from the load current have little effect on zero
crossings in the inductor current; thus, the deadtime effect is
small. When the fundamental current amplitude is close to
half the peak-to-peak current ripple, the damping is high and
the damping decreases as the fundamental current amplitude
is increased.

Fig. 17 compares the measured output impedance resonance
peak magnitude with the deadtime lengths of 1, 1.5, 2 and 2.5
µs and the fundamental output current of 11 A and 21 A. The
measurements verify that the higher the fundamental current,
the lower the damping with a given deadtime length.

In Figs. 18 and 19, the measurements are compared with
the proposed model. The experimental results clearly verify
that increasing the deadtime length increases damping of the
system. The comparison is done separately around both the
antiresonance and the resonance frequency, because the ESR
of the inductor changes due to the proximity and skin effects
and no frequency dependent ESR model is used [15]. Fig.



Figure 18: Measurements (solid line) and model (dots) of the
antiresonance peak damped by the deadtime with fundamental
currents of 11 A (left) and 21 A (right).

Figure 19: Measurements (solid line) and model (dots) of the
resonance peak damped by the deadtime with fundamental
currents of 11 A (left) and 21 A (right).

18 shows that the model correctly predicts the damping at
low frequencies with the load currents of 11 A and 21 A. At
higher frequencies, the model is not as accurate as it can be
seen from Fig. 19. However, the model predicts the change in
the damping relatively well.

IV. CONCLUSIONS

This paper has provided a frequency-domain analysis of the
deadtime effect, which gives a novel heuristic approach to ap-
proximate the deadtime effect in single-phase AC systems. The
damping effect was verified by experimental measurements on
the closed-loop output impedance of a voltage controlled half-
bridge inverter.

HIL-simulations were used to show that by increasing the
deadtime length, an unstable system can be stabilized. The
importance of selecting correct deadtime length in simulation
cannot be stressed too much. The selection of the correct
deadtime length is very important.

Given the limited number of different load conditions ap-
plied caution must be exercised, because the proposed model
clearly has some limitations. The most important limitation
in the heuristic model lies in the assumption that the wave
forms are clean sinusoidal and the power factor is one. In
addition, ideal switches were used in the model derivation.
Further experimental tests are needed to estimate the deadtime
effect on practical systems stability. More research is needed
to determine the contribution of the zero current clamping on
the small-signal deadtime effect.
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Abstract—The grid-forming mode of the voltage source
inverters (VSI) is applied in uninterruptible power supplies
and micro-grids to improve the reliability of electricity
distribution. During the intentional islanding of an inverter-
based micro-grid, the grid-forming inverters (GFI) are
responsible for voltage control, similarly as in the case of
uninterruptible power supplies (UPS). The unterminated
model of GFI can be developed by considering the load as an
ideal current sink. Thus, the load impedance always affects
the dynamic behavior of the GFI. This paper proposes
a method, to analyze how the dynamics of GFI and the
controller design are affected by the load. Particularly, how
the frequency response of the voltage loop gain changes
according to the load and, how it can be used to the predict
time-domain step response. The frequency responses that
are measured from a hardware-in-the-loop simulator are
used to verify and illustrate explicitly the load effect.

Keywords—grid-forming inverter, dynamics, dq-domain,
load effect

I. INTRODUCTION

The recent years have witnessed a huge growth in the
number of installed distributed photovoltaic generation
systems. Distributed generation with an energy storage
system in a micro-grid enables the intentional islanding of
the micro-grid during a failure in the utility network [1],
[2]. If there are no rotating generators in the micro-grid,
the inverters that normally operate in the grid-feeding
mode, have to form the grid during the intentional island-
ing [3]. The dynamics of the grid-forming inverter (GFI)
differ from the dynamics of the grid-feeding inverter. The
grid-forming inverter is a voltage-output converter and the
grid-feeding inverter is a current-output converter [4]. An
ideal current sink as the load of GFI is the basis fo the
dynamic analysis, but the load effect has to be taken into
account.

The importance of modeling the output impedance
of power-electronics-based systems has been widely ad-
dressed [5]–[7]. In order to derive the output impedance,
the output current has to be considered an input variable.
The output impedance has been derived this way in [5].
The output impedance modeled in [5] is verified by
frequency response measurements, but the other transfer
functions are not measured. Dynamics of an LC-filter
has been included to the input admittance of an active
rectifier for the purposes of impedance-based analysis
in [8]. Passive loads have been modeled as a part of
system consisting of grid-connected solar inverter and an
active rectifier in [9]. However, the analysis is focused on
the frequency responses of impedances and the effect of

the filter on control-to-output transfer functions was not
analyzed in [8], [9].

The control-related transfer functions change if the
load is changed from a current sink to a passive or active
load. The output impedance of the grid-forming inverter
has been derived also in [10] and the output current
is considered as an input variable. The unterminated
dynamics are analyzed when the controllers are tuned.
However, the simulation and practical tests are done with
passive and non-linear loads without analyzing the load
effect to the control loops. In [11] the output current of
a single-phase system is considered as an input variable
and the unterminated model is used to derive the transfer
functions. The time-domain behavior is tested under a
resistive load and a non-linear load. However, the load
effect on the loop gains is not shown.

A load-affected transfer function is directly derived
in phase domain in [1]. However, no frequency-response
verification is presented. A dynamic model of a passive
load is derived in [12], but it is not used for frequency re-
sponse analysis of the system. In [2] the load is analyzed
in the dq-domain and included in the system model, but
frequency response analysis is missing. A passive load has
been addressed also in [13] and [14], but no frequency
responses are analyzed.

This paper proposes a method, that can be used to
analyze the load effect on the unterminated dynamics of
GFI in the frequency domain. The rest of the paper is
organized as follows: Section II introduces the modeling
of the unterminated dynamics of the three-phase grid-
forming inverter in dq-domain. Section III examines the
load effect on the dynamics of GFI. Frequency response
analysis of the load effect is used to tune the controllers
and to predict the time-domain response in Section IV.
The conclusions are finally presented in Section V.

II. UNTERMINATED SMALL-SIGNAL MODEL

The used averaging and linearizing method originates
from the work of Middlebrook [15]. Figure 1 shows the
circuit diagram of a three-phase grid-forming inverter.
The load is assumed to be an ideal three phase current
sink in the dynamic analysis. Thus, the grid inductance or
load side inductors of the LCL-filter cannot be included
in the unterminated models due to violation of Kirchoff’s
law. Output impedance of the grid-forming inverter and
the other input-to-output transfer function can be derived
by analyzing the power stage in Fig. 1. The input variables
are input voltage, duty-ratios and output currents. The
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Figure 1. Circuit diagram of the grid-forming inverter including a
simplified control system.

output variables are input current, inductor currents and
output voltages. The inductor currents are chosen as
output variables, because they are commonly needed in
the cascaded control of the output voltage.

A state-space model of the grid-forming inverter is
derived. The capacitor voltages and inductor currents
are chosen as the state variables. Modeling in the syn-
chronous reference frame is applied. For brevity, the
equations are shown directly in the synchronous reference
frame (DQ-frame). In the following equations, subscripts
d and q denote whether the corresponding variable is
either the direct or quadrature component. iL is the
inductor current, io the output current, d the duty ratio, vin
the input voltage, vCf the filter capacitor voltage, iin the
input current. Angle brackets around the variables in (1)–
(7) denote that equations are averaged over one switching
period. Thus, on and off-time equations are not shown
separately.

〈iin〉 =
3

2
(dd 〈iLd〉+ dq 〈iLq〉) (1)

d 〈iLd〉
dt

=
1

L

[
dd 〈vin〉 − (rL + rsw +Rd) 〈iLd〉
+ ωsiLq +Rd 〈iod〉 − 〈vCfd〉

] (2)

d 〈iLq〉
dt

=
1

L

[
dq 〈vin〉 − (rL + rsw +Rd) 〈iLq〉
− ωsiLd +Rd 〈ioq〉 − 〈vCfq〉

] (3)

d 〈vCfd〉
dt

=
1

Cf
[〈iLd〉+ ωsvCfq − 〈iod〉] (4)

d 〈vCfq〉
dt

=
1

Cf
[〈iLq〉 − ωsvCfd − 〈ioq〉] (5)

〈vod〉 = 〈vCfd〉+Rd 〈iLd〉 −Rd 〈iod〉 (6)

〈voq〉 = 〈vCfq〉+Rd 〈iLq〉 −Rd 〈ioq〉 , (7)

where Cf , L, d, rsw and ωs denote filter capacitor, filter
inductor, duty ratio, parasitic resistance of a switch, grid
angular frequency, respectively. rL is the equivalent series
resistance of the filter inductor. The damping resistance
that includes the filter capacitor equivalent series resis-
tance is denoted by RD. Capital letters denote steady-
state values at the operating point.

Equations (1)–(7) are linearized at the steady-state op-
eration point and transformed into the frequency domain.
The linearized equations are expressed by coefficient
matrices A, B, C and D , input variable vector U,
output variable vector Y and state variable vector X.
Equation (8) shows the state space after transformation
to frequency domain using the Laplace variable ’s’ and
the output and input variable vectors are shown in (9) and
(10), respectively.

sX (s) = AX (s) + BU (s)

Y (s) = CX (s) + DU (s)
(8)

The coefficient matrices are shown in (11)–(14).

Y =
[
îin îLd îLq v̂od v̂oq

]T
(9)

U =
[
v̂in îod îoq d̂d d̂q

]T
(10)

A =




− req
L ωs − 1

L 0

−ωs − req
L 0 − 1

L
1
Cf

0 0 ωs

0 1
Cf

−ωs 0


 (11)

B =




Dd

L
Rd

L 0 Vin

L 0
Dq

L 0 Rd

L 0 Vin

L

0 − 1
Cf

0 0 0

0 0 − 1
Cf

0 0


 (12)

C =




3Dd

2
3Dq

2 0 0
1 0 0 0
0 1 0 0
Rd 0 1 0
0 Rd 0 1




(13)

D =




0 0 0 3ILd

2
3ILq

2
0 0 0 0 0
0 0 0 0 0
0 −Rd 0 0 0
0 0 −Rd 0 0



, (14)

where req denotes rL + rsw +Rd. The transfer functions
from the inputs to the outputs can be solved as shown
in (15).
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Figure 2. Circuit diagram of the grid-forming inverter including the
load-side inductor and a resistive load or alternatively a RLC-load.

Y (s) =

G︷ ︸︸ ︷(
C(sI−A)

−1
B + D

)
U (s) , (15)

where matrix G contains the transfer functions. Different
transfer functions can be collected from the matrix as
shown in (16).




Yin Toid Toiq Gcid Gciq

GioLd GoLd GoLqd GcLd GcLqd

GioLq GoLdq GoLq GcLdq GcLq

Giod −Zod −Zoqd Gcod Gcoqd

Gioq −Zodq −Zoq Gcodq Gcoq


 (16)

In this paper the transfer functions are merged into
transfer matrices [5], [16]. Equation (17) shows the
transfer matrices that were solved in (15) and the corre-
sponding input and output variables. Hats over the input
and output variables denote small-signal variables. Input
voltage and input current are scalar variables and their
small signal dependency is denoted by Yin. The input and
output variables that are collected into 2-by-1 vectors are
shown in (18).



îin
îL
v̂o


 =




Yin Toi Gci

GiL GoL GcL

Gio −Zo Gco





v̂in
îo
d̂


 (17)

îL =
[
îLd îLq

]T
v̂o =

[
v̂od v̂oq

]T

îo =
[
îod îoq

]T
d̂ =

[
d̂d d̂Tq

] (18)

III. LOAD EFFECT

Grid-feeding inverters are commonly equipped with
an LCL-filter. It is assumed that an inverter that is used
in the grid-feeding mode will be used also in the grid-
forming mode. In the case of grid-feeding inverters, load
impedances have been included in the model in [17]
and analytical equations for generalized source and load
interactions are shown in [4]. The effect of load dynamics
on the unterminated dynamics has been analyzed in the
case of DC-DC converters in [18]. Fig. 2 shows a circuit
diagram of the grid-forming inverter, where the load is a
resistor or alternatively a parallel RLC-load (as depicted

oZ

ov̂ oĵ

+

-
loadZ

oî

sv̂

Figure 3. An equivalent small-signal circuit that has been widely used
to analyze to impedance based stability.

using dashed lines). The load-side inductor is taken into
account in the model. In the unterminated model in Fig. 1
the load-side inductor is not included, because the series
connection of an inductor and current sink is inconsistent
according to circuit theory.

Fig. 3 shows an equivalent small-signal circuit of two
interconnected systems. Very similar circuits have been
widely used in the literature for impedance-based stability
analysis [7], [9], [19], [20]. Variables v̂s and ĵo denote
small-signal source voltage and load current, respectively.
However, they do not indicate, how the voltage and
current are dependent on the inverter input parameters.
In following, the general voltage source is replace by
the control-to-output transfer function matrices so that the
load-affected transfer functions can be solved.

The output dynamics of the grid-forming inverter are
shown as an equivalent linear circuit in Fig. 4(a) which
corresponds to the equation of v̂o in (17) that is developed
from the case the load is an ideal current sink in Fig. 1.
However, the load effect of the load-side inductor, its ESR
and the load resistor in Fig. 2 must be taken into account.
Figure 4(b) shows the output dynamics model, where the
load impedance Zload and the impedance of the load-side
inductor ZL2 are included. The transfer functions for the
load and the inductor impedance are derived similarly
as the unterminated model. Appendix A shows the state-
space coefficient matrices that are used to solve as the
admittance matrix of the grid-side inductor. The inverse
of the admittance matrix is ZL2. Appendix B shows the
coefficient matrices for the RLC-load. Equations for the
small-signal output voltage v̂o are written for the both
circuits in Figs. 4(a) and 4(b). The equations are shown
in (19) and (20), respectively.

v̂o = Giov̂in − Zo îo + Gcod̂ (19)

v̂o = ZL2 îo + Zload îo − Zloadĵo (20)

ioG

coG d̂

inv̂

ov̂ oî

+

-
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(a)

ioG
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ov̂ oĵ

+

-
loadZ

oî L2Z

(b)

Figure 4. a) Output dynamics and b) load-affected output dynamics.



Small-signal output current vector îo is solved from (20).
The solution is shown in (21).

îo =(ZL2 + Zload)−1v̂o

+ (ZL2 + Zload)−1Zloadĵo
(21)

Eq. (22) shows the result when îo in (21) is substituted
to (19). The (I + Zo(ZL2 + Zload)−1)−1 is the common
factor in all of the equations. The load-affected control-
to-output transfer functions are collected from the bot-
tom row of the matrix in (27). The transfer functions
from ĵo to v̂o could be also manipulated to (23). This
format shows that the small-signal current îo is solved
analogously to circuit theory by dividing ĵo according to
the impedances and the multiplying by −Zo to solve the
output voltage v̂o.

v̂o =(I + Zo(ZL2 + Zload)−1)−1

(Giov̂in − Zo(ZL2 + Zload)−1Zloadĵo

+ Gcod̂)

(22)

v̂o = −(Zo + ZL2 + Zload)−1ZloadZoĵo (23)

The control-to-output voltage transfer function GL
co

can be solved also directly from the load affected output
dynamics diagram in Fig. 4(b). The load affected circuit
can be understood as a voltage divider, which divides
the small-signal voltage caused by Gco or Gio over the
impedances Zo, ZL2 and Zload. A very similar equations
has been analyzed in [19], [20]. However, in [19], [20] the
equations are derived in the case of an arbitrary voltage
source as in Fig. 3 – not in the case of input-output
dynamics of the converter.

The remaining load-affected transfer functions in (27)
are solved by substituting îo in (17) by (21) as shown in
(24) and then substituting v̂o by (22). Solving for îin and
îL as a function of v̂in, ĵo and d̂ gives the load affected
transfer functions. Equation (25) shows the result in the
case of inductor current. Load-affected output transfer
functions GL

io, GL
o and GL

co are used for brevity in (25)
instead of using the expression in (22). The load affected
input current dynamics (26) can be solved similarly as
the load affected inductor current dynamics.

îL =GiLv̂in + GoL((ZL2 + Zload)−1v̂o

+ (ZL2 + Zload)−1Zloadĵo) + GcLd̂
(24)

îL =(GiL + GoL(ZL2 + Zload)−1GL
io)v̂in

+ (GcL + GoL(ZL2 + Zload)−1GL
co)d̂

+ GoL((ZL2 + Zload)−1Zload

− ((ZL2 + Zload)−1(−GL
o )))̂jo

(25)

îin =(Yin + Toi(ZL2 + Zload)−1GL
io)v̂in

+ (Gci + Toi(ZL2 + Zload)−1GL
co))d̂

+ Toi((ZL2 + Zload)−1Zload)

− ((ZL2 + Zload)−1(−GL
o )))̂jo

(26)



îin
îL
v̂o


 =



Yin

L TL
oi GL

ci

GL
iL GL

oL GL
cL

GL
io −GL

o GL
co





v̂in
ĵo
d̂


 (27)

The resulting load-affected dynamics can be expressed
as shown in (27), where superscript L denotes that the
transfer functions are affected by the load impedance. It
should be noted that ĵo replaces îo as an input variable
as it can be seen from Fig. 4(b). Since ĵo and v̂o are not
defined at an interface according to the definition of an
impedance, a transfer function matrix GL

o is used instead
of an impedance matrix.

References [21] and [22] have pointed out that
the impedances of interconnected three-phase systems
should be shifted to a global reference frame to enable
impedance-based stability analysis. However, the load
impedance matrix of the pure resistive load and the RLC-
load analyzed in this paper are symmetric, which means
that no impedance shifting is required.

IV. FREQUENCY RESPONSE ANALYSIS

The parameters and the operating point values of
the grid-forming inverter are shown in Tables I and II.
The resistive load in Fig. 2 is considered first. Fig. 6
shows both the frequency response given by analytical
model GL

cod and the frequency response measured from a
hardware-in-the-loop simulator. GL

cod is the transfer func-
tion from the duty ratio d-component to the output voltage
d-component, which has major importance for control
design. The resistive load Rload is chosen according to
(28) so that nominal operation point is maintained. Eq.
(29) shows, how the load impedance matrix is defined in
the case of the resistive load.

Rload =
Vod
Iod
− rL2 (28)

Zload =

[
Rload 0

0 Rload

]
(29)

Table I. INVERTER PARAMETER VALUES

Parameter Value Parameter Value

L 1.4 mH rL 25 mΩ
L2 0.47 mH rL2 22 mΩ
Cf 10 µF Rd 1.96 Ω
fs 10 kHz rsw 10 mΩ
ωs 2π60 Hz



Table II. OPERATING POINT VALUES

Parameter Value Parameter Value

Vod 169.7 V Voq 0.0000 V
Iod 19.64 A Ioq 0.0000 A
ILd 19.65 A ILq 0.6397 A
VCfd 169.7 V VCfq -1.254 V
Vin 416.0 V Iin 16.93 A
Dd 0.4088 Dq 0.0250

The correlation between the measured and predicted
based frequency responses in Fig. 6 confirms that the pro-
posed model is correct. The mainly resistive load damps
the resonance caused by the LC-filter. The instruments
utilized in the measurements were Typhoon HIL -real
time simulator, Boombox control platform from Imperix
and Venable frequency response analyzer. A photograph
of the HIL simulation setup is shown in Fig. 5. An
oscilloscope was used additionally.

Typhoon HIL -real time simulator

Venable frequency response analyzer

BoomBox 
control platform

PC

PC

Figure 5. Real-time simulation setup: PC, Venable frequency response
analyzer, Boombox control platform, and Typhoon HIL -real time
simulator.

Taking advantage of the steps to derive the load-
affected transfer function, the load effect can be also
removed from the frequency response. Eq. (30) shows,
how Gco can be calculated if the load-affected transfer
function matrix, GL

co is known from measurements, i.e.,
the unterminated dynamic model can be solved even if
the load is not an ideal current sink.

Gco = (I + Zo(ZL2 + Zload)−1)GL
co (30)

Fig. 6 shows also a comparison between the derived Gcod

in (17) and the transfer function calculated according to
(30). Gcod corresponds to the situation of Fig. 1, where
the load is an ideal current sink. Thus, the ideal transfer
functions can be illustrated even though, the converter
is affected by the load impedance. Assuming that the
impedance matrices Zo, ZL2 and ZLoad are known.

A cascaded controller is commonly used to control the
output voltage of the grid-forming inverter [5], [23], [24].
The controller consists of the inner inductor current loop

and outer output voltage loop. The controller is tuned ac-
cording to the control-to-inductor-current and control-to-
output voltage transfer functions affected by the R-load.
Fig. 7 shows the measured and model-based frequency
response of the GL

cLd. The unterminated control-to-current
d-component GcLd is also shown in Fig. 7. The resistive
load clearly damps the resonance and increases the low-
frequency gain, which greatly simplifies the tuning of the
current controller. The current controller Gcc is a PI-
controller. Consisting of an integrator, a zero at 1 kHz
and a gain of 36.8 dB.

Fig. 8 shows the frequency response of the full-order
current loop gain LFO

outCd. The phase margin is 65.4 ◦at
551 Hz. The gain margin is 8.51 dB. The full-order
current loop gain includes the cross-coupling between d
and q-components. The loop gain is given in (31) and it
has been derived in [4]. The delay caused by sampling
and PWM is 1.5 1/fs and it is modeled by a third order
Padé approximation [16]. The delay transfer function is
omitted for brevity from (31), but it is shown in (32) and
in completed block diagram of the system in Fig. 11.

LFO
outCd

= GL
cLdGcc −

GL
cLqdG

L
cLqd

1 +GL
cLqGcc

GccGcc (31)

The matrix current loop gain is shown in (32).

LoutC = GcLGdelGccGseC (32)

The current loop is closed in (33) and (34) shows, how
the inductor current reference-to-output voltage transfer
function Gsec

co is calculated. Superscript ’sec’ denotes
secondary and means that the secondary control loop (i.e.
current loop) is closed. Gsec

cod is used to tune the voltage
controller. Fig. 11 shows the control block diagram of
the complete system. The block diagram can be used
to calculate also other closed-loop transfer functions and
loop gains.

Figure 6. Measured and model-based frequency responses of GL
cod

(resistive load).



Figure 7. Bode plot of HIL-simulated and derived GL
cLd for the R-load

and the unterminated GcLd.

Figure 8. Bode plot of measured and derived current loop gain LFO
outCd

for the R-load.

Gsec
cL = (I + LoutC)

−1
GL

cLGdelGcc (33)

Gsec
co =GL

coGdelGcc

−GL
coG

−1
cL LoutC Gsec

cL

(34)

LFO
outV−d

= GL
codGvc −

GL
coqdG

L
coqd

1 +GL
coqGvc

GvcGvc (35)

Fig. 9 shows the simulated and the frequency response of
the analytic voltage loop gain LFO

outVd
(35) and the model

of Gsec
cod. The crossover frequency the voltage loop is

53.9 Hz and the phase margin is 93.5 ◦when the load
is pure resistance. The voltage controller Gvc consists of
an integrator, a zero at 200 Hz, a pole at 600 Hz and a
gain of 31.6 dB.

The cascaded controller is kept unchanged, but the

sec
codG

FO
outV-dL

Figure 9. Bode plot of simulated and derived voltage controller loop
gain LFO

outVd and the current loop affected control-to-output dynamics
GLsec

cod .

Analytical model, RLC

Analytical model, R

HIL simulation, RLC

HIL simulation, R

Figure 10. Bode plot of measured and derived voltage controller loop
gain LFO

outVd for the R-load and for the RLC-load.

load is changed to the RLC-load that is similar to the
RLC-load used in [13]. LL and CL are 4.584 mH and
1.535 mF, respectively. The resonance frequency is at
around 60 Hz as in [13]. 30 mΩ resistances rLL and rCL

are connected in series with the parallel capacitance and
inductance, respectively. RL of the parallel load equals
Rload, the load of the first case. Figure 10 shows also the
frequency response of the voltage loop in this case. It can
be seen that the crossover frequency is 16.5 Hz and the
phase margin is reduced to 26.7 ◦. The low phase margin
indicates that there will be oscillation in the step response
of the system.

A step response comparison by using the R and RLC-
loads is done. The system is simulated in Typhoon HIL
as in the case of frequency-domain measurement. An
oscilloscope is connected to the analog outputs of Imperix
Boombox to analyze the response in detail in dq-domain.
Fig. 12 shows the output voltage response to a step



ov̂

L
ciGvcG

ref
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Figure 11. Control block diagram of the closed-loop system.

change in the voltage reference d-component as the R-
load is used. The step is from 155 V to the nominal
amplitude 169,7 V. There is no overshoot or oscillation
in the response. The response with the RLC-load as the
controller remains unchanged is also shown in Fig. 12. A
significant overshoot and decaying oscillation is present
in the response.

The model is used to retune the controllers so that a
proper step-response is achieved with the RLC-load. The
current controller pole location is changed to 100 Hz and
the new gain is 24.8 dB. The voltage controller zero is
moved to 5 Hz, two poles are located at 60 Hz and the
new gain is 24.1 dB. Fig. 13 shows the predicted and
HIL-simulated voltage loop gains. The phase margin is
58.2 ◦ at 20.6 Hz. The gain margin is 14 dB at 129 Hz.
The step response in Fig. 14 is good, as the higher phase
margin than with previous controller tuning implies.

The previous analysis shows that the proposed model
can be used to analyze the effect of different loads on
the control dynamics. Frequency responses of the load-
affected transfer functions can be used to predict the time-
domain behavior and to design the controllers according

Figure 12. Typhoon HIL simulation of output voltage d and q-
components step response to a reference step for the R-load and for
the RLC-load.

Figure 13. Bode plot of simulated and predicted voltage loop gain
with the controller that is tuned for the RLC-load.

Figure 14. Typhoon HIL simulation of output voltage d and q-
component step responses to a reference step with the RLC-load with
the original controller and the controller retuned for RLC-load.

to a specific load or a worst-case scenario.

V. CONCLUSION

This paper proposes a method to model unterminated
dynamics of a grid-forming inverter. The effect of a
non-ideal load is included in the model by calculating,
how the load impedance affects the output dynamics.
Furthermore, the unterminated model of the grid-forming
inverter includes the output impedance that is required to
calculate the load-affected model and an important tool
in the stability analysis of interconnected systems.

The HIL measurements provided in this paper confirm
that the frequency response analysis is a powerful tool for
predicting the time-domain response of the grid-forming
inverter under distinct loads. One possible application of
the proposed modeling technique is to tune the controller
according to a specific load so that a desired time-
domain response is achieved. The model can be also used
to examine worst-case load conditions. The load effect
can be also removed from the measured load affected
frequency response and the unterminated model can be



verified. Future work will concentrate on the on the load-
affected dynamics in the case of an active load, such as
an active rectifier.

APPENDIX A

Eq. (36) shows the grid-side inductor admittance state-
space coefficient matrices.

AL2 =

[ −rL2

L2
ωs

−ωs
−rL2

L2

]
BL2 =

[ 1
L2

0

0 1
L2

]

CL2 =

[
1 0
0 1

]
DL2 =

[
0 0
0 0

]

(36)

APPENDIX B

Eq. (37) shows the RLC-load admittance state-space
coefficient matrices.

ARLC =




−rLL

LL
ωs 0 0

−ωs
−rLL

LL
0 0

0 0 −1
CLrCL

ωs

0 0 −ωs
−1

CLrCL




BRLC =




1
LL

0

0 1
LL

1
CL

0

0 1
CL


CRLC =

[
1 0 −1

rCL
0

0 1 0 −1
rCL

]

DRLC =

[ 1
RL

+ 1
rCL

0

0 1
RL

+ 1
rCL

]

(37)
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Abstract—Harmonic resonance and power quality prob-

lems have been reported in grid-connected photovoltaic

and wind power systems. The AC-side impedance of three-

phase converter is an important characteristic, which can

be effectively used as a design parameter to avoid instability

and excessive harmonics. A number of methods to measure

the three-phase AC impedance have been reported. However,

solutions for high power applications such as wind and

photovoltaic converters with a power rating of several

megawatts, have not been discussed. This paper introduces a

new method to measure impedance from high power three-

phase converter. The impedance is identified by perturbing

the converter first by voltage-type injection utilizing high-

power grid-forming inverter, and subsequently by current-

type injection by utilizing low-power grid-parallel converter.

The main benefit of the proposed setup is the possibility

to measure the converter impedance online in its natural

operating point both at high and low frequencies. The paper

presents a proof-of-concept by validating the method using

a switching model.

Keywords—Impedance Measurement, Identification,

Small-Signal Modeling, Three-Phase Power Conversion

I. INTRODUCTION

The share of renewable energy generation in power

systems is experiencing a rapid growth. New energy

sources are connected to the grid using power converters

ranging from a few kilowatts up to megawatts. Power

converters of several megawatts are nowadays a standard

solution in offshore wind parks and large PV power

plants.

The large share of renewable energy is expected to

challenge the stability of large power systems in near fu-

ture, especially due to smaller inertia [1]. Stability, power

quality problems and unwanted disconnection of the con-

verter from the power system have been reported recently

[2], [3]. The prime source of such problems can be often

found in the small-signal impedance characteristics of

power converters [4], [5]. In fact, the power converter

impedance should be shaped to have high magnitude or

passive characteristics to avoid instability induced by the

underdamped resonance between the converter and the

grid impedance [6], [7], [8].

There is a growing interest in the industry and

academia to obtain reliable analytical impedance models

that would allow more accurate harmonic and stabil-

ity analysis [9]. However, the derivation of impedance

models may be difficult due to numerous unknown pa-

rameters, such as internal control parameters, which are

most often well-protected secrets of converter manufac-

turer. The ability to measure the converter impedance

accurately would allow generating impedance models

by, e.g., different curve-fitting tools, which in principle

would not jeopardize the intellectual property. Therefore,

measurement method which can accurately capture the

output impedance of a high-power three-phase converter,

at its nominal operating point, is desperately needed.

Impedance measurement setup for power converter

with power rating of few tens of kilowatts can be done

accurately using standard laboratory equipment [10]. New

methods need to be developed as the power level increases

since standard laboratory power supplies are not able to

sink the generated electrical power. An impedance mea-

surement unit for shipboard MVDC systems presented

in [11] was shown to capture the impedance up to 1

kHz. However, power converters usually employ an LCL-

filter which may have very sharp resonance around few

kilohertz. Therefore, the impedance measurement setup

should have higher bandwidth than the LCL-filter reso-

nance to fully characterize the impedance. The method

presented in [12] relies on making a step change in the

passive load of the power converter. However, the method

is not applicable to grid-connected converters, since the

load is the power system itself. A noninvasive method

was introduced in [13], which is based on monitoring the

grid waveforms. However, this method is not suitable for

power converters with high output impedance, because

measuring their impedance generally requires perturba-

tion signal with sufficient amplitude.

This paper proposes a method to identify the inverter

impedance using a combination of grid-forming and grid-

parallel converters. A voltage-type injection is generated

by using a high-power grid-forming inverter, which is

capable for characterizing the low-frequency impedance

of the power converter. Subsequently, a current-type in-

jection is generated using a grid-parallel converter capable

of measuring the high-frequency part of the impedance.

Accuracy of the proposed method is compared to an ideal

measurement setup using a switching model.



Fig. 1. Principle of measurement setup to identify inverter output

impedance.

II. THREE-PHASE IMPEDANCE IN THE DQ-DOMAIN

Three-phase sinusoidal variables can be transformed

into the dq-domain, where the fundamental component

appears as a DC signal. The transformation is done using

the Park’s transformation according to (1).



xd

xq

x0


 = Tdq




xa

xb

xc


 (1)

where the transformation matrix is given by

Tdq =
2

3




cos (θ) cos
(
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3

)
cos

(
θ − 4π

3

)

−sin (θ) −sin
(
θ − 2π

3

)
−sin

(
θ − 4π

3

)
1
2

1
2

1
2


 .

(2)

The angle θ should follow the real phase angle of

a three-phase system, i.e., the phase angle changes with

the fundamental grid frequency. The phase angle can be

generated internally by the impedance measurement setup

or it can be obtained using a low-bandwidth phase-locked-

loop. It is customary to align the dq-reference frame so

that the steady-state value of grid voltage q-component

appears as zero.

Inverter impedance can be defined in the dq-domain

by four independent impedance components as in Eq. (3).

Zdd is the impedance d-component, which is defined as

the ratio of voltage and current d-components (vd/id). Zqd

is the cross-coupling impedance from q to d-component

(vd/iq) and Zdq is the cross-coupling impedance from d

to q-component (vq/id). Finally, Zqq is the impedance q-

component, defined as the ratio of voltage and current q-

components (vq/iq). Ideally, all the four impedance com-

ponents should be measured to allow full characterization

of the converter impedance [6].

Zinv =

[
Zdd Zqd

Zdq Zqq

]
(3)

III. MAXIMUM-LENGHT BINARY SEQUENCE

(MLBS)

Pseudo-random binary sequence (PRBS) is a periodic

broadband signal based on a sequence of length N . The

most commonly used signals are based on maximum-

length binary sequences (MLBS). Such sequences exist

Fig. 2. a) MLBS signal in time-domain and b) its frequency-spectrum.

for N = 2n − 1, where n is an integer. They are

popular because they can be generated using feedback

shift-register circuits [14].

Fig. 2 shows the MLBS sequence, which is gener-

ated at 1 kHz using a 5th-degree shift-register and has

signal levels ±1V. The figure also shows the energy

spectrum, which contains almost constant energy up to

one third of the generation frequency. The energy drops

to zero at the generation frequency and its harmonics.

An MLBS signal x has the lowest possible peak factor

regardless of its length |x|peak/xrms = 1, which means

that the sequence is well suited for sensitive systems

which require small-amplitude perturbation. Due to the

deterministic nature of the sequence, the signal can be

repeated and injected precisely and the signal-to-noise

ratio (SNR) can be increased by synchronous averaging

of the response periods. The MLBS signal is used in this

paper to perturb the inverter output terminal waveforms to

necessitate measuring the impedance components in (3).

IV. IDEAL IMPEDANCE MEASUREMENT SETUP

Fig. 1 illustrates principle of the ideal three-phase

impedance measurement setup. A three-phase grid-

feeding inverter, such as a photovoltaic inverter, is con-

nected to a balanced three-phase voltages source. The

inverter includes all the necessary control functions, such

as DC voltage control, AC current control and phase-

locked-loop to synchronize its output currents with the

grid voltages. Moreover, the inverter includes passive

components, such as an LCL-filter, which are required

to filter out ripple in DC and AC side waveforms. Table I

summarizes the most important parameters of the three-

phase inverter. Control delay is assumed to be 1.5 times

the switching period and it was included as a transport

delay within the current control of the inverter.



Fig. 3. Identified impedance from the simulator using ideal voltage-type injection.

TABLE I. INVERTER PARAMETERS.

Pdc 1 MW L1 60 µH

V line-to-line
ac 400 V L2 30 µH

fac 50 Hz Cdc 20 mF

Vdc 1500 V Cf 400 µF

fsw 5 kHz Rd 70mΩ

The output impedance of the inverter is to be identi-

fied, which requires a wide-bandwidth perturbation to the

voltages or currents on the AC side. In theory, the inverter

could be connected to a high-power voltage amplifier,

such as a linear amplifier, which can be used to inject the

required perturbation. This is actually a practical way to

measure the output impedance in the range of few tens

of kilowatts [7]. However, in the case of megawatt-level

converters using such arrangement is not practical, since

the voltage amplifier has to sink all the produced power.

The inverter impedance depends on the operating point

and should be measured while the converter is online and

operating at its nominal output power.

A wide-bandwidth perturbation is injected on top

of the grid voltage waveforms vDUT in the form of

a Maximum-Length Binary-Sequence [15]. The MLBS

signal is generated at 100 kHz with a peak-to-peak value

of 50 V. The MLBS signal is added to d-component of

the grid voltage reference value to measure impedance

components Zdd and Zqd and to grid voltage q-component

to measure Zdq and Zqq. As an example, the frequency

response of the impedance component Zdd can be com-

puted from the ratio of Fourier-transformed voltage and

current as in (4).

Zdd (jω) =
Vd (jω)

Id (jω)
(4)

Fig. 6 shows the perturbed grid voltage and the

corresponding output current of the inverter in the natural

reference frame during the impedance measurement. The

amplitude of grid voltage waveforms follows exactly the

MLBS signal, as expected, since the controlled ideal

voltage source does not attenuate the perturbation. The

impedances obtained by using this arrangement are con-

sidered as the reference curves in the following chapters.

Fig. 3 shows the identified impedance components

of the power converter which are obtained using the

setup in Fig. 1. The switching model is implemented

in MATLAB Simulink using the SimScape package. The

identified impedance is compared against a small-signal

impedance model of the inverter known to be accurate,

which can be found in [16]. Fig. 3 shows all four

components of the inverter impedance. The black curve is

the analytical small-signal model and the blue dots rep-

resent the corresponding identified frequency response.

The measurement is by theory accurate up to half of the

generation frequency, i.e., up to 50 kHz. However, the

swithcing ripple of the inverter distorts the measurement

near 5 kHz. A few remarks can be done based on the

impedance components:

Effect of DC Voltage Control

DC voltage control causes the impedance d-component

Zdd to behave as a positive resistance within the band-

width of DC voltage controller. The positive resistance

behavior appears as a constant magnitude and phase close

to zero degrees. The crossover frequency of DC voltage

controller was set to 10 Hz with 47 degree phase margin.



Fig. 4. Identified impedance from the simulator using grid-forming inverter to generate the voltage-type injection.

Effect of Phase-Locked-Loop

Phase-locked-loop makes the impedance q-component

Zqq to behave as a negative resistance within the band-

width of the PLL. The PLL was tuned to have a crossover

of 40 Hz with 65 degree phase margin. The negative resis-

tance can be seen as a constant low-frequency magnitude

and phase close to -180 degrees. The negative resistance

is known to cause stability problems if PLL is tuned to

have too fast dynamics [17].

Effect of LCL-filter

All impedance components experience a resonance near

1.7 kHz due to the use of LCL-filter. The series resonance

is effectively damped by the passive damping resistor Rd.

Peaking at the resonant frequency can cause instability,

especially if active damping is used [18].

Effect of Control Delay

Both impedance d and q-components Zdd and Zqq expe-

rience large positive peaking near the LCL-filter resonant

frequency due to 1.5/fsw control delay. Moreover, the

impedance does not behave as a passive circuit near the

resonant frequency and may amplify harmonics and cause

impedance-based instability. Passivity is lost when the

phase curve does not stay between -90 and +90 degrees.

A non-passive impedance is known to cause impedance-

based interactions.

Cross-Coupling Impedances

It is often assumed that the cross-coupling impedance

components are small and can be neglected, e.g., in

impedance-based stability analysis. However, the magni-

tude of cross-coupling impedance components Zdq and

Zqd differ from Zdd and Zqq only by roughly 12 dB

near the resonant frequency. It is important to be able

to measure the cross-coupling components to justify the

validity assumptions in stability analysis, i.e., whether the

cross-couplings can be neglected or not.

Frequency Range of Interest

The frequency range of interest can be defined based on

the above observations. The measurement setup should

be able to extract the impedance accurately from few

hertz up to several kilohertz to capture the effects of slow

control loops and the resonance of the LCL-filter. More-

over, the cross-coupling impedance components should

be measured, since they may affect impedance-based

stability [6].

V. IMPEDANCE MEASUREMENT USING

GRID-FORMING INVERTER

The inverter is connected to a grid-forming inverter

according to Fig. 7. The grid-forming inverter is used to

keep the inverter at its nominal operating point during the

measurement and to sink the generated power. The DC

side is modeled as an ideal voltage source, which would in

reality be implemented by a grid-interfacing three-phase

converter.

The grid-forming inverter controls its output volt-

ages in the dq-domain using simple integral-type control.

Integral-type control was found to be good compromise

between stability and control bandwidth, since the grid-

forming inverter control dynamics are inherently affected

by the impedance of the grid-feeding inverter (impedance

of the DUT). The detailed small-signal model and method

to take the load-effect into account can be found in [19].

Fig. 8 shows the identified and modeled control loop

gain of the grid-forming inverter of voltage d-component.

The loop gain related to the q-component has effectively

the same shape and is not shown here. The crossover



Fig. 5. Identified impedance from the simulator using grid-parallel converter to generate the current-type injection.

frequency of the control loop is approximately 140 Hz

and the phase margin 75 degrees.

The purpose of the grid-forming inverter is to repli-

cate the MLBS signal in its output voltages (d or q-

component depending on what impedance component is

to be identified). Therefore, the frequency response from

reference value of the voltage d-component to the ac-

tual d-component, i.e., the closed-loop transfer function,

should have as high bandwidth as possible to replicate

all of the frequency components of the MLBS signal as

accurately as possible. Fig. 9 shows the transfer function

and the identified frequency response from the reference

value of the voltage d-component to the actual voltage

d-component. Bandwidth of the voltage control is 216

Hz (-3dB). This suggests that the spectral energy of the

MLBS signal starts to attenuate at higher frequencies.

Thus, the injection does not go through the control system

at high frequencies. The transfer function related to the

q-component shows almost identical behavior and is,

therefore, not shown.

Fig. 10 shows the modeled transfer function from

the reference value of the d-component to the actual q-

component of the AC voltage. The identified frequency

response deviates slightly from the modeled transfer

function. The transfer function has very small magnitude

at low frequencies which makes extracting it accurately

challenging. Moreover, the gain was found out to be

highly sensitive to small changes in the operating point.

Thus, small inaccuracies in the simulation cause deviation

between the modeled and identified frequency responses.

However, the transfer function in Fig. 10 gives a decent

idea at what frequencies the injection to d-component

affects also the q-component. The transfer function should

have as small magnitude as possible to prevent the

injection from causing an unwanted perturbation to the q-

component. E.g., measuring the Zqq component in (3) re-

quires that the system is perturbed only by q-component,

while the d-component injection remains zero. However,

the transfer function in Fig. 10 experiences slight increase

in its magnitude near few hundred hertz, which affects

the accuracy of the impedance measurement. The opti-

mization of the grid-feeding inverter control system is

considered as a future topic and is not discussed further

in this paper.

The main parameters of the grid-feeding inverter

are given in Table II. The generation frequency of the

MLBS signal should be chosen well below the switching

frequency of the inverter and over the bandwidth of the

transfer function in Fig. 9. The MLBS signal has to be

sampled at least two times higher frequency than the

generation frequency. However, the sampling frequency

should be lower than the switching frequency of the grid-

feeding inverter to avoid aliasing-effects. As a compro-

mise, the generation frequency is selected as 1 kHz. The

perfect injection amplitude depends on the amount of

external noise and the magnitude of the impedance. It was

found out by simulations that 50 V peak-to-peak gives

the best outcome in the example case. Fig. 11 shows the

waveforms at the output terminals of the DUT when the

MLBS is injected through the control system of the grid-

feeding inverter. It is evident that the grid-forming inverter

cannot replicate the MLBS signal accurately, which is

expected due to low switching frequency. The voltage

waveform is dominated by the 5 kHz switching fre-

quency component. Moreover, the waveforms are affected

by the sampling frequency of the grid-feeding inverter,

since the control system was modeled in discrete-domain.

The MLBS signal was generated by using 10th-degree



TABLE II. GRID-FORMING INVERTER PARAMETERS.

Vdc 1500 V LGF 60 µH

RGF
d

200mΩ CGF
f

800 µF

fsw 5 kHz fMLBS 1 kHz

n 10 VMLBS 50 Vp-p

shift-register, which results in frequency resolution of

approximately one hertz. However, the waveforms include

enough energy at low frequencies to allow identifying the

low-frequency impedance.

Fig. 4 shows the impedance components, that were

identified by using the grid-forming inverter as the source

of injection. The impedance d and q-components Zdd and

Zqq are accurately captured approximately up to 500 Hz.

Thus, the effect of slow control loops such as DC voltage

control and phase-locked-loop can be evaluated. However,

the frequency range of the impedance measurement is

limited by the low generation frequency of the MLBS

signal (1 kHz). The cross-coupling impedances Zqd and

Zdq contain slight error due to the fact that some of the

injected perturbation leaks between d and q-components,

as can be seen by analyzing Fig. 10. However, the

accuracy could be increased by careful design of the grid-

forming inverter control system. Some form of decoupling

network should be designed to reduce the cross-coupling

in the grid-forming inverter control dynamics, which is

considered as a potential future topic.

VI. IMPEDANCE MEASUREMENT USING

GRID-PARALLEL CONVERTER

The bandwidth of the impedance measurement can

be extended by using a parallel-connected three-phase

converter accrording to Fig. 12. In principle the converter

is an active rectifier. However, since the purpose of the

converter is just to amplify the MLBS signal, it can

be operated without a load on the DC side. The main

parameters of the grid-parallel converter are given in

Table III. The converter can have significantly lower

power rating, because it is not required to sink any power.

Fig. 6. Three-phase current and voltage waveforms in the ideal

measurement setup.

Fig. 7. Principle of measurement setup using grid-forming inverter.

Fig. 8. Identified and modeled loop gain related to the control of

voltage d-component.

Fig. 9. Frequency response from the reference value of voltage d-

component to voltage d-component.



Fig. 10. Frequency response from the reference value of voltage d-

component to voltage q-component.

Fig. 11. Three-phase current and voltage waveforms with grid-forming

inverter.

The converter was assumed to have maximum power

rating of 10 kVA and, thus, its switching frequency can

be much higher (20 kHz). The MLBS signal is added in

the converter’s control system to the reference values of

of output currents.

The MLBS signal was generated at 4 kHz and

sampled at two times higher frequency of 8 kHz. The

amplitude was limited to 20 A peak-to-peak to avoid

over-current stress of the switching components. A 10th-

degree shift-register was used to generate the MLBS,

which translates to a frequency resolution of roughly 4

Hz.

The average of the identified impedances in Fig. 5

follow the ideal measurement up to approximately 2 kHz

TABLE III. GRID-PARALLEL CONVERTER PARAMETERS.

Vdc 1500 V LGP
1

1 mH

RGP
d

1.36 Ω CGP
f

10 µF

fsw 20 kHz fMLBS 4 kHz

n 10 VMLBS 20 Vp-p

LGP
2

200 µH Cdc 2 mF

Fig. 12. Principle of measurement setup using the grid-parallel

converter.

which is half of the generation frequency of the MLBS.

The non-passive region around the resonant frequency

of the LCL-filter can also be captured. The injection

does not have enough energy to enable identification of

cross-coupling impedance components. This is a matter

that has been left as a future challenge. One option is

to increase the power level of the grid-parallel inverter

which, however, may reduce the switching frequency and

thereby the maximum bandwidth of the measurement.

Another option would be to use decoupling impedance

placed before the grid-forming inverter to divert the high-

frequency current toward the DUT. However, this may

easily compromise the stability of the system and may

require re-tuning of the grid-forming inverter control

parameters.

Impedance measurement in the dq-domain requires

that the grid angle is known. In the case of voltage-

type injection the angle is known, since it is generated

inside the control system of the back-to-back converter.

However, in the case of the current-type injection this

angle cannot be used directly, because the decoupling

impedance causes a phase-shift. However, the angle can

be estimated by using a slow phase-locked-loop as de-

picted in Fig. 12.

VII. CONCLUSIONS

This paper shows the first attempt to identify the AC-

side output impedance of a 1 MW grid-feeding inverter

in its nominal operating point using a combination of

grid-forming and grid-parallel converters. A grid-forming

inverter is used to sink the power generated by the inverter

and to add enough perturbation to inverter output voltages

to measure impedance up to 500 Hz (in synchronous ref-

erence frame). An additional 10 kW grid-parallel inverter

is used to generate perturbation to inverter output currents

to measure impedance from 100 Hz up to 2 kHz. It is

demonstrated that the combination of grid-forming and

grid-parallel inverter can be effectively used in impedance

measurement of multimegawatt inverters. This paper pro-



vides a proof-of-concept by providing preliminary simula-

tion results based on a switching model, when the PRBS-

method is used for impedance identification. Dynamic

model of the grid-forming inverter is used to optimize the

control loops for operation with the inverter-under-test.
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