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A B S T R A C T

This paper is a sequel to papers studying the continuum approach to the high-cycle fatigue model of Ottosen
et al. First, we study the estimation of fatigue limit and statistical characteristics of the estimates. We have two
cases. Either the fatigue limit is a material constant or it is a random variable. Finally, we derive approximate
distributions for the parameter estimators of the fatigue model due to Ottosen et al.
. Introduction

Mechanical fatigue phenomena occur when a material is subjected
o the repeated application of stresses or strains, which produces
hanges in the material microstructure as well as the initiation, growth
nd coalescence of microdefects. This degrades the material’s proper-
ies.

It is customary to distinguish between high-cycle (HCF) and low-
ycle fatigue (LCF). In low-cycle fatigue, plastic deformations occur
n a macroscopic scale, while when the loading is in a high-cycle
atigue regime, the macroscopic behavior can be considered primarily
s elastic. If the loading consists of well defined cycles, the transition
etween LCF and HCF regimes is typically considered to occur between
03 − 104 cycles.

Ottosen et al. [1] proposed a continuum-based HCF model which
s based on a moving endurance surface and a set of internal variables
haracterizing the movement and damage accumulation. The evolution
f these internal variables is governed by evolution equations. Such an
pproach treats multiaxial stress states and arbitrary loading sequences
n a unified manner, and heuristic cycle counting techniques are not
eeded. In Section 2, we give a short review of the method.

To determine the model parameters, we need some Wöhler curves
f the material with different mean stresses. Since a Wöhler curve is
lways a least square fitting of measured values, there is a lot of uncer-
ainty in the initial data and hence also in the model parameters. The
tatistical properties of Wöhler curves are discussed for example in [2–
]. Hence, a natural research problem is that if we know the statistical
roperties of Wöhler curves, for example their distributions, how can
he corresponding things be computed in the model parameters? In this
aper, we provide an answer to this question.

The structure of the paper is the following. In Sections 2 and 3,
e give a short introduction to the fatigue model of Ottosen et al.

∗ Corresponding author.
E-mail addresses: Osmo.Kaleva@tuni.fi (O. Kaleva), Heikki.Orelma@tuni.fi (H. Orelma).

and explain the estimation of parameters. In Section 4, we discuss the
statistical properties of Wöhler curves and describe in detail what kind
of initial distributions are needed and how they can be measured. In
Section, 5 we study the statistical distributions of the model parameters.

2. Evolution equation-based continuum model

First, we briefly recall the basic ideas of evolution equation-based
fatigue model, represented in [1]. The fundamental idea is to define a
so-called endurance surface

𝛽(𝝈,𝜶) = 0

in stress space such that the damage develops when the stress 𝝈 is
outside of the surface. In [1] and in this paper, we use the function
of the form

𝛽(𝝈,𝜶) = 1
𝜎−1

(𝜎 + 𝐴𝐼1 − 𝜎−1), (1)

where 𝜎−1 and 𝐴 are positive material parameters, 𝐼1 = tr(𝝈) is the first
stress invariant of 𝝈 and

𝜎 =
√

3
2 tr((𝒔 − 𝜶)2), (2)

where 𝒔 = 𝝈 − 1
3 tr(𝝈)𝑰 and 𝑰 stands for the identity matrix.

The variable 𝜶 denotes the center of the endurance surface, and it
is governed by the evolution equation

𝜶̇ =

{

𝐶(𝒔 − 𝜶)𝛽̇, when 𝛽, 𝛽̇ ≥ 0,
0, otherwise.

(3)

The fundamental postulate of the continuum model is that the
damage increases when the center 𝜶 moves. The damage development
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is modeled by the damage equation

𝐷̇ =

{

𝑔(𝛽,𝐷)𝛽̇, if 𝛽, 𝛽̇ ≥ 0,
0, otherwise,

(4)

where 𝑔 is a damage rule function. Usually 𝐷 is normalized such that
the initial condition is 𝐷(0) = 0 and the failure happens at the time 𝑡𝑓
when 𝐷(𝑡𝑓 ) = 1. In the sequel, we will use the damage of rule

𝑔(𝛽,𝐷) = 𝐾𝑒𝐿𝛽 ,

as given by Ottosen et al. [1].

3. Estimating the material parameters

In this section, we give a short description how to find the material
parameters 𝐴, 𝜎−1, 𝐶, 𝐾 and 𝐿 from the given material measurements.
A detailed description can be found in [1], and we only give the
necessary computational details below. Let us start from the parameters
𝐴 and 𝜎−1. They are governed by the linear part of the Haigh diagram
due to the equation

𝜎𝑎 + 𝐴𝜎𝑚 − 𝜎−1 = 0.

Hence, 𝜎−1 is the endurance limit for 𝜎𝑚 = 0 and 𝐴 the negative of the
slope of the line.

With 𝐶, 𝐾 and 𝐿, we proceed as follows. Assume that we have
experimental data (𝜎(𝑖)𝑎 , 𝜎(𝑖)𝑚 , 𝑁 (𝑖)

exp), 𝑖 = 1,… , 𝑛, where fatigue failure
akes place at the 𝑁 (𝑖)

expth cycle. Assume further that the uniaxial stress
oading varies periodically between 𝜎2 = 𝜎𝑚+𝜎𝑎 and 𝜎4 = 𝜎𝑚−𝜎𝑎. Then

Ottosen et al. [1] show that the positions of endurance surface 𝛼2 and
4 are given by the equations

3
2𝛼2 − (𝐴 + 1)𝜎2 + 𝜎−1 −

𝜎−1
𝐶𝐴 (𝐴 + 1) ln

(

1− 𝐶𝐴
𝜎−1

(

𝜎2−
3
2 𝛼2

)

1− 𝐶𝐴
𝜎−1(𝐴+1)

(

𝜎−1−
3
2𝐴𝛼4

)

)

= 0

− 3
2𝛼4 − (𝐴 − 1)𝜎4 + 𝜎−1 −

𝜎−1
𝐶𝐴 (𝐴 − 1) ln

(

1− 𝐶𝐴
𝜎−1

(

𝜎4−
3
2 𝛼4

)

1− 𝐶𝐴
𝜎−1(𝐴−1)

(

𝜎−1−
3
2𝐴𝛼2

)

)

= 0.

straightforward matrix computation shows that for uniaxial stress
oading 𝜎 we have

= 1
𝜎−1

(|𝜎 − 3
2𝛼| + 𝐴𝜎 − 𝜎−1).

Integrating the damage evolution equation, we see that in each cycle
the damage increases by

𝛥𝐷 = 𝐾
𝐿

(

exp(𝐿𝛽2) + exp(𝐿𝛽4) − 2
)

.

When 𝑁 cycles lead to fatigue failure, i.e. 𝐷 = 1, then

1
𝑁

= 𝐾
𝐿

{

exp
(

𝐿
𝜎−1

[

(𝐴 + 1)𝜎2 −
3
2
𝛼2 − 𝜎−1

]

)

+ exp
(

𝐿
𝜎−1

[

(𝐴 − 1)𝜎4 +
3
2
𝛼4 − 𝜎−1

]

)

− 2

}

.

(5)

inally, we calibrate the parameters 𝐶,𝐾 and 𝐿 by minimizing the sum
f squares

(𝐶,𝐾,𝐿) =
𝑛
∑

𝑖=1

(

ln𝑁 (𝑖)
exp − ln𝑁 (𝑖))2,

here 𝑁 (𝑖) is a predicted number of cycles given by (5) and 𝑁 (𝑖)
exp is an

xperimentally obtained number of cycles.
For physical reasons, the true model parameters are positive. Since

he terms 1∕𝑁 (𝑖) are small, some iterates may give a negative value for
ome terms and consequently a complex value for ln𝑁 (𝑖), which results
n a failure of the algorithm.

For these reasons, we have to minimize 𝑆(𝐶,𝐾,𝐿) subject to con-
traints 𝐶 ≥ 0, 𝐾 ≥ 0, and 𝐿 ≥ 0. The state-of-the-art algorithm for
his kind of problem is the reflective trust region method. For more
nformation on this algorithm, see Coleman and Li [5].
2

Fig. 1. Fatigue life distributions and strength distributions.

4. Statistical properties of Wöhler curves

Fatigue test is the main tool for analyzing fatigue lifetime of a
material. Here a material specimen is subjected to cyclic loading until
the specimen fails. Hence we obtain a set of experimental lifetimes.
Since a Wöhler curve gives the stress as a function of the number
of lifetime cycles, then the experimental lifetimes are related to an
underlying Wöhler curve, see e.g. [6].

To take into account statistical properties, we associate a collection
of distributions to a curve. The following Fig. 1 due to Nelson [2]
elucidates the situation. In this section, we discuss different kinds of
distributions on a Wöhler curve and review their estimation.

4.1. Finite lifetime part of a Wöhler curve

The slanted part of a Wöhler curve is called the finite lifetime part.
A fundamental problem is to find a distribution of the lifetime cycles
for a given amplitude 𝜎𝑎 and mean stress 𝜎𝑚. For the continuum model,
one distribution is not enough, i.e. we need distributions for different
amplitudes and mean stresses. Thus, we assume that the following
measurements are obtained.

• Measure a sample of lifetimes
{𝑁𝑗 (𝜎𝑎𝑖 , 𝜎𝑚𝑖

)}𝑘𝑖𝑗=1
for some different amplitude 𝜎𝑎𝑖 and mean stress 𝜎𝑚𝑖

, 𝑖 = 1,… ,𝓁.

In other words, we measure lifetime samples or datasets for 𝓁 different
combinations of amplitude and mean stress. Two such collections are
illustrated in Fig. 2.

Thus, the lifetime 𝑁 is a random variable depending on the mean
stress 𝜎𝑚𝑖

and the corresponding amplitude 𝜎𝑎𝑖 . The random variable is
denoted by 𝐿𝑖. We model these lifetimes with log-normal distribution.
Hence, we have log-normally distributed random variables

𝐿𝑖 = 𝑁 ∣ {𝜎𝑎 = 𝜎𝑎𝑖 , 𝜎𝑚 = 𝜎𝑚𝑖
} ∼ LogN(𝜇𝑖, 𝜈2𝑖 ),

for 𝑖 = 1,… ,𝓁.
Recall that 𝐿 is log-normally distributed, denoted by 𝐿 ∼ LogN

(𝜇, 𝜈2), if and only if ln(𝐿) ∼ 𝑁(𝜇, 𝜈2). In this case, see [7],

E(𝐿) = exp(𝜇 + 1
2 𝜈

2) and Var(𝐿) = exp(2𝜇)(exp(2𝜈2) − exp(𝜈2)).

he classical maximum likelihood estimators for parameters are

𝑖̂ =
1
𝑘

𝑘𝑖
∑

ln(𝑁𝑗 (𝜎𝑎𝑖 , 𝜎𝑚𝑖
))
𝑖 𝑗=1



O. Kaleva and H. Orelma Probabilistic Engineering Mechanics 63 (2021) 103117

H
L

4

s
H

𝜎

T
m
c

𝜎
F
a
F
a
𝑁
h
a
o

d
𝜎
a
i
i
f
𝜎

𝑝

N

𝑝

t
𝑝

Fig. 2. Two collections of lifetimes related to different amplitudes and the same mean
stress.

and

𝜈2𝑖 = 1
𝑘𝑖

𝑘𝑖
∑

𝑗=1
(ln(𝑁𝑗 (𝜎𝑎𝑖 , 𝜎𝑚𝑖

)) − 𝜇𝑖)2.

ence, 𝐿𝑖 is approximatively log-normally distributed, that is 𝐿𝑖 ≈
ogN(𝜇𝑖, 𝜈2𝑖 ), for each 𝑖 = 1,… ,𝓁.

.2. Estimating the distribution of fatigue limit

If the stress is uniaxial and periodic with an amplitude 𝜎𝑎 and mean
tress 𝜎𝑚, then, as proven by Ottosen et al. [1], the linear part of the
aigh diagram holds true, i.e.

𝑎 + 𝐴𝜎𝑚 − 𝜎−1 = 0.

he amplitude 𝜎𝑎 is called a fatigue limit or the endurance limit for
ean stress 𝜎𝑚. Furthermore, it is well known that this equation is

ompatible with experimental data.
In this section, we estimate a fatigue limit 𝜎𝑒𝑙 for a fixed mean stress

𝑚 and derive its distribution. Suppose that we have a set of test pieces.
or each item, we apply a uniaxial periodic stress with amplitude 𝜎𝑎
nd mean stress 𝜎𝑚 and see whether it has a finite lifetime or not.
irst, we decide what we mean by a finite lifetime. For this, we fix
quantity 𝑁∞, called an infinite lifetime. If the failure occurs before
∞ cycles, we say that a specimen has a finite lifetime, otherwise it
as an infinite lifetime. Rabb [4] suggests 𝑁∞ = 107. Next, we choose
ground amplitude 𝜎𝑔𝑎 and a distance 𝑑. All admissible amplitudes are
f the form 𝜎𝑎 = 𝜎𝑔𝑎 ± 𝑗𝑑, 𝑗 = 0, 1, 2,… .

Now the test procedure is the following staircase method as intro-
uced by Dixon and Mood [8]. The first item is tested with amplitude
𝑎1 = 𝜎𝑔𝑎. Suppose that 𝑖th item is tested with amplitude 𝜎𝑎𝑖 . If it has
n infinite lifetime, then the next item is tested at a higher amplitude,
.e. 𝜎𝑎𝑖+1 = 𝜎𝑎𝑖 + 𝑑. Otherwise the amplitude for the next item is lower,
.e. 𝜎𝑎𝑖+1 = 𝜎𝑎𝑖 − 𝑑. After testing all the specimens, we obtain the
ollowing staircase (Fig. 3 given by Rabb [4]). There are 25 test pieces,
𝑔𝑎 = 213.8 MPa and 𝑑 = 18.3 MPa.

The probability that a test fails is

𝑖 = P(𝑁 ≤ 𝑁∞ ∣ {𝜎𝑎 = 𝜎𝑎,𝑖, 𝜎𝑚 = 0}).

ow we propose a model

𝑖 =
1

√ ∫

𝜎𝑎𝑖
exp(− (𝑡−𝜎𝑒𝑙 )2

2𝑠2
) 𝑑𝑡.
2𝜋𝑠𝑒𝑙 −∞ 𝑒𝑙

3

Fig. 3. Result of a staircase test.

Changing the integration variable, we get

𝑝𝑖 =
1

√

2𝜋 ∫

𝜎𝑎𝑖−𝜎𝑒𝑙
𝑠𝑒𝑙

−∞
exp(− 1

2 𝑢
2) 𝑑𝑢 = 𝛷

(
𝜎𝑎𝑖 − 𝜎𝑒𝑙

𝑠𝑒𝑙

)

, (6)

where 𝛷 is the cdf of the standard normal distribution 𝑁(0, 1). We see
hat if 𝜎𝑎𝑖 is big enough, then 𝑝𝑖 ≈ 1, and if it is small enough, then
𝑖 ≈ 0.

Let 𝜎𝑎𝑖 , 𝑖 = 1,… , 𝑅, be the admissible amplitudes. Note that 𝑅 as
well as 𝜎𝑎𝑖 , 𝑖 = 1,… , 𝑅, are random entities. Suppose that 𝑛𝑖 tests are
done at amplitude 𝜎𝑎𝑖 and 𝑚𝑖 tests failed. If 𝑁𝐹𝑖 denotes the number of
failed tests, then by the independence of tests and Eq. (6) we see, that
𝑁𝐹𝑖 follows a binomial distribution. Hence,

P(𝑁𝐹𝑖 = 𝑚𝑖) =
(

𝑛𝑖
𝑚𝑖

)

𝑝𝑚𝑖
𝑖 (1 − 𝑝𝑖)𝑛𝑖−𝑚𝑖 .

Let us denote the parameter vector and the data vectors by

𝜽 =
[

𝜎𝑒𝑙
𝑠𝑒𝑙

]

, 𝐱 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛1
⋮
𝑛𝑅
𝑚1
⋮
𝑚𝑅

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐲 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅
𝜎𝑎1
⋮
𝜎𝑎𝑅

⎤

⎥

⎥

⎥

⎥

⎦

.

Since tests are independent, we have the likelihood function

𝐿(𝜽 ∣ 𝐱) =
𝑅
∏

𝑖=1

(

𝑛𝑖
𝑚𝑖

)

𝑝𝑚𝑖
𝑖 (1 − 𝑝𝑖)𝑛𝑖−𝑚𝑖 = 𝐾

𝑅
∏

𝑖=1
𝑝𝑚𝑖
𝑖 (1 − 𝑝𝑖)𝑛𝑖−𝑚𝑖 ,

where 𝐾 does not contain model parameters. After discarding the
constant term ln(𝐾), the log-likelihood function looks like

𝑙(𝜽 ∣ 𝐱) = ln(𝐿(𝜽 ∣ 𝐱)) =
𝑅
∑

𝑖=1
𝑚𝑖 ln(𝑝𝑖) + (𝑛𝑖 − 𝑚𝑖) ln(1 − 𝑝𝑖). (7)

The maximum likelihood estimate 𝜽̂ of 𝜽 is obtained as we maximize
the log-likelihood function 𝑙(𝜽 ∣ 𝐱) with respect to 𝜽. The problem
has no analytic solution, so we have solve it numerically. Fortunately,
any decent book on optimization gives plenty of algorithms for solving
the problem. The most popular are the Levenberg–Marquardt and trust
region methods.

Theorem 4.1. Let 𝜽̂ be a maximum likelihood estimator of the parameter
vector 𝜽. Then under fairly general conditions

𝜽̂ ≈ 𝑁(𝜽, 𝐼−1),
𝜽
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where 𝐼𝜽 = −E𝜽(𝑙′′(𝜽 ∣ 𝐱)) is the Fischer information matrix. Here 𝑙′′

enotes the Hessian of 𝑙 with respect to 𝜽 and the expectation is applied
o 𝐱 with model parameters given by 𝜽.

roof. For the exact formulation of the theorem, its proof and discus-
ion about the loose version given here, see Ferguson [9]. □

Computing the partial derivatives of log-likelihood function (7) and
aking the expectations, we get

𝜽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

E𝐲

( 𝑅
∑

𝑖=1

E𝐱∣𝐲(𝑛𝑖)
𝑝𝑖(1 − 𝑝𝑖)

(

𝜕𝑝𝑖
𝜕𝜎𝑒𝑙

)2
)

E𝐲

( 𝑅
∑

𝑖=1

E𝐱∣𝐲(𝑛𝑖)
𝑝𝑖(1 − 𝑝𝑖)

𝜕𝑝𝑖
𝜕𝜎𝑒𝑙

𝜕𝑝𝑖
𝜕𝑠𝑒𝑙

)

E𝐲

( 𝑅
∑

𝑖=1

E𝐱∣𝐲(𝑛𝑖)
𝑝𝑖(1 − 𝑝𝑖)

𝜕𝑝𝑖
𝜕𝜎𝑒𝑙

𝜕𝑝𝑖
𝜕𝑠𝑒𝑙

)

E𝐲

( 𝑅
∑

𝑖=1

E𝐱∣𝐲(𝑛𝑖)
𝑝𝑖(1 − 𝑝𝑖)

(

𝜕𝑝𝑖
𝜕𝑠𝑒𝑙

)2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where by Eq. (6)
𝜕𝑝𝑖
𝜕𝜎𝑒𝑙

= − 1
𝜎𝑒𝑙

𝜙(
𝜎𝑎𝑖 − 𝜎𝑒𝑙

𝑠𝑒𝑙
) and

𝜕𝑝𝑖
𝜕𝑠𝑒𝑙

= −
𝜎𝑎𝑖 − 𝜎𝑒𝑙

𝑠2𝑒𝑙
𝜙(

𝜎𝑎𝑖 − 𝜎𝑒𝑙
𝑠𝑒𝑙

)

and 𝜙 is the pdf of 𝑁(0, 1). Here E𝐱∣𝐲 denotes the conditional expectation
ith respect to 𝐱 as 𝐲 is fixed and E𝐲 denotes the expectation with

espect to 𝐲.
For detailed computations, see Silvey [10]. Substituting 𝜽̂ for 𝜽, and

eplacing the expectations by terms computed with observed values, we
btain an approximation 𝐼𝜽 of the Fisher information matrix.

Now let 𝜈2 be the (1,1) element of the matrix 𝐼−1𝜽 . Then by Theo-
em 4.1 we get an approximate distribution of a maximum likelihood
stimator of endurance limit

𝜎𝑒𝑙 ≈ 𝑁(𝜎𝑒𝑙 , 𝜈2)

nd consequently approximate confidence intervals for 𝜎𝑒𝑙.

emark 4.2. Suppose we have 𝑁 test items. Let 𝐚𝑖 be a random
ariable denoting the applied amplitude and 𝑝(𝜎𝑎) = 𝛷( 𝜎𝑎−𝜎𝑒𝑙𝑠𝑒𝑙

). By the
est procedure we have

(𝐚𝑖+1 = 𝑢 ∣ 𝐚𝑖 = 𝑣) =

⎧

⎪

⎨

⎪

⎩

𝑝(𝑣), if 𝑢 = 𝑣 − 𝑑
1 − 𝑝(𝑣), if 𝑢 = 𝑣 + 𝑑
0, otherwise.

These transition probabilities with initial condition 𝐚1 = 𝜎𝑔𝑎 define
a Markov chain. Now the applied amplitudes are a realization of the
Markov chain. Moreover

𝑅 = range{𝐚1,… , 𝐚𝑁}

= the number of distinct values in the set {𝐚1,… , 𝐚𝑁}.

With this formulation, the stochastic process controlling the selec-
tion of amplitudes is a random walk in random environments, RWRE
for short. RWRE is quite a new area of research in the theory of
stochastic processes. For more information, see Peterson [11] and
Zeitouni [12].

4.3. Random fatigue limit model

In the staircase method, it is assumed that the fatigue limit is
a material constant. As pointed out by Nelson [2], a more realistic
approach is to assume that every specimen has its own fatigue limit.
In this spirit, Pascual and Meeker [13] introduced a random fatigue
limit model (RFLM for short)

ln(𝑁) = 𝛽0 + 𝛽1 ln(𝜎𝑎 − 𝛾) + 𝜖, 𝛾 < 𝜎𝑎, (8)

where 𝑁 is lifetime, 𝜎𝑎 is stress amplitude and 𝛾 denotes the fatigue
limit. Note that there are two random variables: 𝛾, the random fatigue
limit, and 𝜖, which describes the variability of the lifetime of specimens
with the same fatigue limit. The limitation of RFLM is that it fits
on a Wöhler curve only locally. To solve these problems, there are
4

more complicated models (see e.g. [6]). But as a method to study
distributions for amplitudes 𝛾 < 𝜎𝑎, the model is useful.

Denote 𝑊 = ln(𝑁), 𝑉 = ln(𝛾) and 𝑥 = ln(𝜎𝑎). Then RFLM includes
the following distributional assumptions.

𝑓𝑉 (𝑣 ∣ 𝜽) = 1
𝜎𝛾

𝜙𝑉

(𝑣 − 𝜇𝛾
𝜎𝛾

)

,

where 𝜇𝛾 and 𝜎𝛾 are location and scale parameters, and

𝑓𝑊 ∣𝑉 (𝑤 ∣ 𝑣, 𝑥,𝜽) = 1
𝜈
𝜙𝑊 ∣𝑉

(

𝑤 − 𝛽0 − 𝛽1 ln(exp(𝑥) − exp(𝑣))
𝜈

)

, 𝑣 < 𝑥.

Here, the location parameter is 𝜇(𝑣, 𝑥,𝜽) = 𝛽0+𝛽1 ln(exp(𝑥)−exp(𝑣)), the
scale parameter is 𝜈 and

𝜽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛽0
𝛽1
𝜈
𝜇𝛾
𝜎𝛾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

In addition, 𝜙𝑉 , and respectively 𝜙𝑊 ∣𝑉 , is either the standardized
smallest extreme value pdf 𝜙𝑠𝑒𝑣 or standardized normal pdf 𝜙𝑛. Recall
that

𝜙𝑠𝑒𝑣(𝑢) = exp(𝑢 − exp(𝑢)).

Theorem 4.3. If the pdf of a random variable 𝑋 is given by

𝑓𝑋 (𝑥) =
1
𝜎
𝜙𝑠𝑒𝑣

(𝑥 − 𝜇
𝜎

)

,

then the random variable 𝑌 = exp(𝑋) is Weibull distributed with parameters
𝜂 = exp(𝜇) and 𝛽 = 1∕𝜎.

roof. Since 𝑦 = 𝑔(𝑥) = exp(𝑥) is a bijection from R onto R+, then

𝑌 (𝑦) = 𝑓𝑋 (𝑔−1(𝑦))
|

|

|

(𝑔−1)′(𝑦)||
|

= 1
𝜎𝑦

𝜙𝑠𝑒𝑣

(

ln(𝑦) − 𝜇
𝜎

)

= 1
𝜎𝑦

exp
((

ln(𝑦) − 𝜇
𝜎

)

− exp
(

ln(𝑦) − 𝜇
𝜎

))

, 𝑦 > 0.

fter simplification, we obtain

𝑌 (𝑦) =
1

𝜎 exp(𝜇)

(

𝑦
exp(𝜇)

)
1
𝜎 −1

exp
⎛

⎜

⎜

⎝

−
(

𝑦
exp(𝜇)

)
1
𝜎 ⎞
⎟

⎟

⎠

, 𝑦 > 0,

which completes the proof. □

We see that Weibull distribution can be written as

𝑓𝑌 (𝑦) =
1
𝜎𝑦

𝜙𝑠𝑒𝑣

(

ln(𝑦) − 𝜇
𝜎

)

, 𝑦 > 0.

rom this form, it directly follows that the pdf of 𝑋 = ln(𝑌 ) is given by

𝑋 (𝑥) =
1
𝜎
𝜙𝑠𝑒𝑣

(𝑥 − 𝜇
𝜎

)

, 𝑥 ∈ R.

For more information on this topic see Meeker and Escobar [14].
Now we have

𝑓𝑊 (𝑤 ∣ 𝑥,𝜽) = ∫ 𝑓𝑊 ∣𝑉 (𝑤 ∣ 𝑣, 𝑥,𝜽)𝑓𝑉 (𝑣 ∣ 𝜽) 𝑑𝑣

= ∫

𝑥

−∞

1
𝜈𝜎𝛾

𝜙𝑊 ∣𝑉

(

𝑤 − 𝜇(𝑣, 𝑥,𝜽)
𝜈

)

𝜙𝑉

(𝑣 − 𝜇𝛾
𝜎𝛾

)

𝑑𝑣.

Integrating with respect to 𝑤 and changing the order of integration
gives

𝐹𝑊 (𝑤 ∣ 𝑥,𝜽) = ∫

𝑥

−∞

1
𝜎𝛾

𝛷𝑊 ∣𝑉

(

𝑤 − 𝜇(𝑣, 𝑥,𝜽)
𝜈

)

𝜙𝑉

(𝑣 − 𝜇𝛾
𝜎𝛾

)

𝑑𝑣,

where 𝛷𝑊 ∣𝑉 is the cdf of 𝑊 ∣ 𝑉 . Using this distribution, Pascual and
Meeker [13] constructed design curves under different distributional
combinations. Design curves are constructed as quantiles of fatigue life
at constant log-stresses 𝑥.
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Parameters are estimated as usual by maximizing the likelihood
unction

(𝜽) =
𝑛
∏

𝑖=1
𝑓𝑊 (𝑤𝑖 ∣ 𝑥𝑖,𝜽)𝛿𝑖 (1 − 𝐹𝑊 (𝑤𝑖 ∣ 𝑥𝑖,𝜽))1−𝛿𝑖 ,

here

𝑖 =

{

1, if 𝑁𝑖 < 𝑁∞,
0, if 𝑁𝑖 ≥ 𝑁∞,

r equivalently the log-likelihood function 𝑙(𝜽) = ln(𝐿(𝜽)).
Recently, Pollak and Palazotto [15] discussed a different kind of

rocedure for obtaining the design curves for fatigue limit. First, they
stimated the shape of the S-N curve and then fitted a Weibull distri-
ution to the residual stresses.

We propose a modification of RFLM called a modified RFML (MR-
LM for short). Now confidence curves are estimated directly from
onditional distribution 𝑓𝑉 ∣𝑊 . Since 𝑓𝑉 ∣𝑊 𝑓𝑊 = 𝑓𝑉 ,𝑊 = 𝑓𝑊 ∣𝑉 𝑓𝑉 , we
ave

𝑉 ∣𝑊 (𝑣 ∣ 𝑤, 𝑥,𝜽) =
𝑓𝑊 ∣𝑉 (𝑤 ∣ 𝑣, 𝑥,𝜽)𝑓𝑉 (𝑣 ∣ 𝜽)

𝑓𝑊 (𝑤 ∣ 𝑥,𝜽)

=
𝜙𝑊 ∣𝑉

(

𝑤−𝜇(𝑣,𝑥,𝜽)
𝜈

)

𝜙𝑉

(

𝑣−𝜇𝛾
𝜎𝛾

)

∫ 𝑥
−∞ 𝜙𝑊 ∣𝑉

(

𝑤−𝜇(𝑣,𝑥,𝜽)
𝜈

)

𝜙𝑉

(

𝑣−𝜇𝛾
𝜎𝛾

)

𝑑𝑣
, 𝑣 < 𝑥.

Now suppose that we select a set of logarithmic stress amplitudes
𝑥𝑖 = ln(𝜎𝑎𝑖 ), 𝑖 = 1,… , 𝑟, each one with equal probability. Then by total
probability theorem

𝑓𝑉 ∣𝑊 (𝑣 ∣ 𝑤,𝜽) = 1
𝑟

𝑟
∑

𝑖=1
𝑓𝑉 ∣𝑊 (𝑣 ∣ 𝑤, 𝑥𝑖,𝜽).

It follows that

𝐹𝑉 ∣𝑊 (𝑧 ∣ 𝑤,𝜽) = P(𝑉 ≤ 𝑧 ∣ 𝑤,𝜽) = 1
𝑟

𝑟
∑

𝑖=1
∫

𝑧

−∞
𝑓𝑉 ∣𝑊 (𝑣 ∣ 𝑤, 𝑥𝑖,𝜽) 𝑑𝑣

nd

𝑧

−∞
𝑓𝑉 ∣𝑊 (𝑣 ∣ 𝑤, 𝑥𝑖,𝜽) 𝑑𝑣 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ 𝑧
−∞ 𝜙𝑊 ∣𝑉

( 𝑤−𝜇(𝑥𝑖,𝑣,𝜽)
𝜈

)

𝜙𝑉

(

𝑣−𝜇𝛾
𝜎𝛾

)

𝑑𝑣

∫ 𝑥𝑖
−∞ 𝜙𝑊 ∣𝑉

( 𝑤−𝜇(𝑥𝑖,𝑣,𝜽)
𝜈

)

𝜙𝑉

(

𝑣−𝜇𝛾
𝜎𝛾

)

𝑑𝑣
, if 𝑧 ≤ 𝑥𝑖,

1, if 𝑧 > 𝑥𝑖.

f 𝑤 is fixed, then also 𝑁 is fixed and we have the cdf

𝛾 ∣𝑁 (𝜎𝑎 ∣ 𝑁,𝜽) = P(𝛾 ≤ 𝜎𝑎 ∣ 𝑁,𝜽) = P(𝑉 ≤ ln(𝜎𝑎) ∣ 𝑤,𝜽)

= 𝐹𝑉 ∣𝑊 (ln(𝜎𝑎) ∣ 𝑤,𝜽),

rom which we are able to compute confidence intervals for 𝛾 ∣ 𝑁 .

Example 4.4. As an example, Pollak and Palazetto [15] used a data
set of 68 items of dual-phase Ti-6Al-4V titanium alloy. They estimated
parameters of two models of their own, say PP1 and PP2, and for
comparison parameters of RFLM. For 𝑉 and 𝑊 ∣ 𝑉 , they selected a sev-
normal model. Pascual and Meeker [13] compared different models.
They showed among other things that with the Akaike information
criterion, the sev–sev model was the worst. For the other three models,
the results were coincident. We will use the estimates obtained by Pol-
lak and Palazetto. However, they estimated Weibull parameters instead
of sev-parameters. When we make the pertinent changes allowed by
Theorem 4.3, we get

𝜽̂ =

⎡

⎢

⎢

⎢

⎢

⎢

4.950
−2.110
0.16
6.004

⎤

⎥

⎥

⎥

⎥

⎥

.

⎣
0.056

⎦
(

5

Table 1
Comparison of fatigue strengths at 𝑁∞ = 109.
Fatigue strength RFLM PP1 PP2 MRFLM

Median 398 413 410 382
90% lower bound 359 388 380 348
95% lower bound 344 378 369 343
99% lower bound 315 356 343 340

As an example, we selected 200 logarithmic amplitudes uniformly
on interval [ln(340), ln(430)]. The confidence bounds of different models
are given in Table 1. We see that MRFLM gives the shortest confidence
region.

5. Distribution of model parameters

In this section, we study the statistical properties of model param-
eters 𝐴, 𝜎−1, 𝐶, 𝐾 and 𝐿. Recall that since the test specimens are
different, the observed lifetimes 𝑁 (𝑖)

exp are values of independent random
variables. Consequently, the model parameters are random entities.

5.1. Distributions for 𝐴 and 𝜎−1

To compute parameters 𝐴 and 𝜎−1 from the equation 𝜎𝑎+𝐴𝜎𝑚−𝜎−1 =
0, we need two points (0, 𝜎𝑎,1) and (𝜎𝑚,2, 𝜎𝑎,2) from the Haigh diagram.
We assume that

𝜎𝑎,1 ∼ 𝑁(𝜇1, 𝜈21 ) and 𝜎𝑎,2 ∼ 𝑁(𝜇2, 𝜈22 )

are independent. Hence,
[

𝜎𝑎,1
𝜎𝑎,2

]

∼ 𝑁(𝜇,𝜮),

where

𝝁 =
[

𝜇1
𝜇2

]

and 𝜮 =
[

𝜈21 0
0 𝜈22

]

.

Since 𝐴 is the negative of the slope of the linear part in the Haigh
diagram, we may write the parameter vector 𝑈 as

𝑈 =
[

𝐴
𝜎−1

]

= 𝐵
[

𝜎𝑎,1
𝜎𝑎,2

]

,

where

𝐵 =

[ 1
𝜎𝑚,2

− 1
𝜎𝑚,2

1 0

]

.

Using properties of multidimensional normal distributions, see Mardia,
Kent and Bibby [16], we obtain
[

𝐴
𝜎−1

]

∼ 𝑁(𝐵𝝁, 𝐵𝜮𝐵𝑇 ).

Since

𝐵𝝁 =

[ 𝜇1−𝜇2
𝜎𝑚,2
𝜇1

]

and 𝐵𝜮𝐵𝑇 =

⎡

⎢

⎢

⎢

⎣

𝜈21+𝜈
2
2

𝜎𝑚,2

𝜈21
𝜎𝑚,2

𝜈21
𝜎𝑚,2

𝜈21

⎤

⎥

⎥

⎥

⎦

we see that 𝐴 and 𝜎−1 are correlated and hence dependent. Writing
𝐴 =

[

1 0
]

𝑈 as above, we get

𝐴 ∼ 𝑁( 𝜇1−𝜇2𝜎𝑚,2
,
𝜈21+𝜈

2
2

𝜎𝑚,2
) and 𝜎−1 ∼ 𝑁(𝜇1, 𝜈21 ), respectively.

xample 5.1. Experimental values of the lifetime for S45C carbon steel
as given in [17]. We selected those amplitudes 𝜎𝑎 for which 𝑁 = 107

nd either 𝜎𝑚 = 0 or 𝜎𝑚 = 209.45. A Haigh diagram was constructed as
linear fit to these points. The following figure illustrates the situation

see Fig. 4). This gives us 𝐴 = 0.2475 and 𝜎 = 222.33. Furthermore, we
−1
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Fig. 4. Haigh diagram for S45C steel.

asily compute 𝜈21 = 30.33 and 𝜈22 = 219, which yields an approximate
covariance matrix for 𝑈
[

1.1904 0.1448
0.1448 30.3333

]

.

Remark 5.2. Parameter estimates for 𝜇𝑖, 𝜈2𝑖 , 𝑖 = 1, 2 can be obtained as
follows. Run the procedure given in Section 4.2 say 𝑝 times with mean
stress 𝜎𝑚 = 0. Then the mean and sample variance provide estimates 𝜇1
and 𝜈21 . Similarly 𝜇2 and 𝜈22 are obtained when the test procedures are
executed with mean stress 𝜎𝑚,2.

5.2. Distributions for 𝐶, 𝐾 and 𝐿

This case is theoretically and practically more complicated, be-
ause the parameters come from the estimation procedure explained
n Section 2.

Assume that 𝐱𝑖 are the amplitude-mean stress pairs corresponding
to the lifetime measurements 𝑁 (𝑖)

exp, 𝑖 = 1,… , 𝑛. We denote

𝑖 =
[

𝜎𝑎,𝑖
𝜎𝑚,𝑖

]

∈ R2 and 𝜽 =
⎡

⎢

⎢

⎣

𝐶
𝐾
𝐿

⎤

⎥

⎥

⎦

∈ R3.

emark 5.3. The experimental cycle numbers are obtained as follows.
set of properly prepared test specimens are selected. Each specimen

s subjected to a sinusoidal stress until it breaks. Thus we obtain an
xperimental lifetime. The procedure, as described for instance in [18]
nd [19], is expensive and demands a lot of expertise. Since specimens
re different, then the random variables 𝑁 (𝑖)

exp are independent.
For theoretical lifetimes 𝑁 (𝑖) we proceed as follows. Since a Wöhler

urve is an ordinary function, see [20,21], we assume that our model,
ith true parameter values, gives us a value of that function.

Consequently, with fixed parameter values, we may take as an input
stress 𝜎(𝑡) = 𝜎𝑚 + 𝜎𝑎 sin(𝑡), solve differential Eqs. (3) and (4) until the

damage variable 𝐷 equals to 1. Thus we obtain a lifetime 𝑡𝑓 and hence
a point on the Wöhler curve. However, with sinusoidal stress Ottosen
et al. [1] gave an explicit formula (5) for a cycle number 𝑁 .

Then, the number of cycles given by the HCF model is given by

(𝑖)
𝑁 (𝜽) = 𝑁(𝐱𝑖;𝜽), 𝑖 = 1,… , 𝑛.

6

Table 2
Parameters of continuum fatigue model for 20Mn structural steel.

Material A 𝜎−1 C K L

20 Mn steel 0.3214 740 4.3078 ⋅ 10−4 9.0232 ⋅ 10−6 5.1690

Let

𝐍 =

⎡

⎢

⎢

⎢

⎣

ln𝑁 (1)
exp

⋮
ln𝑁 (𝑛)

exp

⎤

⎥

⎥

⎥

⎦

and 𝑀(𝜽) =
⎡

⎢

⎢

⎣

ln𝑁(𝐱1;𝜽)
⋮

ln𝑁(𝐱𝑛;𝜽)

⎤

⎥

⎥

⎦

.

or statistical considerations, we propose the model

= 𝑀(𝜽⋆) + 𝝐,

here 𝜽⋆ is the true value of parameter vector 𝜽 and 𝝐 ∼ 𝑁(𝟎, 𝜎2𝐼). An
stimator 𝜽̂ of 𝜽⋆ is obtained by minimizing the residual sum of squares

(𝜽) =
𝑛
∑

𝑖=1

(

ln𝑁 (𝑖)
exp − ln𝑁 (𝑖))2 = ‖𝑁 −𝑀(𝜽)‖2 .

ince 𝜽⋆ > 0 we solve a restricted least squares problem

in𝑆(𝜽) subject to 𝜽 ≥ 0.

ence, we have to solve a classical nonlinear regression problem.
onlinear regression problems are discussed extensively from different
oints of view by Seber and Wild [22].

emark 5.4. We have assumed that each component of the error
erm 𝝐 has the same variance. This assumption is also used by Paolino
t al. [3]. However, Fig. 5 suggests that the error variance may depend
n the amplitude. Still, the dataset is too small for a definitive answer.

Nelson [2] studied different possibilities to model the standard devi-
tion. In conclusion, he writes that there is a need for more sophisticated
odels that do not have distributions that cross.

Under the normality assumption, a least squares estimator 𝜽̂ of 𝜽⋆ is
lso a maximum-likelihood estimator, see Seber and Wild [22]. Hence,
y Theorem 4.1, 𝜽̂ is approximately normally distributed.

Furthermore, under fairly general regularity conditions, we have

(a) for large 𝑛 𝜽̂ ≈ N(𝜽⋆, 𝜎2𝐵−1), where 𝐽 (𝜽) = 𝜕
𝜕𝜽𝑀(𝜽) ∈ R𝑛×3 is the

Jacobian of 𝑀(𝜽) and 𝐵 = 𝐽 (𝜽⋆)𝑇 𝐽 (𝜽⋆),
(b) 𝜎2 = 1

𝑛−3𝑆(𝜽̂),
(c) 𝜽̂ and 𝜎2 are independent.

Finally, we may approximate the covariance matrix of 𝜽̂ by 𝜎2𝐵−1,
where 𝐵 = 𝐽 (𝜽̂)𝑇 𝐽 (𝜽̂) and the 𝑗th column of 𝐽 (𝜽̂) is approximated by a
forward-difference approximation

𝐽 (𝜽̂)𝑗 =
𝑀(𝜽̂ + 𝜉𝑗𝒆𝑗 ) −𝑀(𝜽̂)

𝜉𝑗
, 𝑗 = 1, 2, 3. (9)

xample 5.5. We apply the model to 20Mn structural steel. For the
stimation of 𝐶, 𝐾 and 𝐿, we used data on the HCF domain given
n [19, Figure 16]. Data for 𝐴 and 𝜎−1 were obtained from [18, Figures

and 6].
Here we have 𝑛 = 11 and the residual sum of squares 𝑆𝑆𝑄 = 1.6486,

hich gives a error variance estimate 𝜎2 = 0.2061. The computed
arameter estimates are given in Table 2.

Fig. 5 gives the estimated Wöhler curve.
Applying approximation (9), we get the following approximate

ovariance matrix of 𝜽

𝜎2𝐵(𝜽̂)
−1

=
⎡

⎢

⎢

⎣

3.3573 ⋅ 10−9 6.0662 ⋅ 10−12 −3.7094 ⋅ 10−5

6.0662 ⋅ 10−12 3.0672 ⋅ 10−14 −8.0992 ⋅ 10−8

−3.7094 ⋅ 10−5 −8.0992 ⋅ 10−8 0.4200

⎤

⎥

⎥

⎦

.
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Fig. 5. Wöhler curve of 20Mn steel.

The reader should notice that the preceding algorithm produces
only one realization from a distribution, which is approximately nor-
mal. Moreover, this normal distribution includes unknown parameters
𝜽⋆ and 𝜎2𝐵−1. If we know the distributions of lifetimes, we may
simulate the distribution of 𝜽̂ as follows.

(a) Choose a set of lifetimes 𝑖, 𝑖 = 1,… , 𝑚, and parameters 𝐴 and
𝜎−1 from their joint distribution.

(b) Compute the corresponding 𝜽̂.
(c) Repeat (a) and (b) 𝑞 times. This gives a sample {𝜽̂𝑗}

𝑞
𝑗=1.

(d) Estimate the parameters of the normal distribution from the
sample.

6. Conclusions

In this paper, we have discussed the statistical properties of the HCF
model of Ottosen et al. [1]. We have studied the statistical properties
of Wöhler curves. First, we associated a lifetime distribution for each
amplitude. Then, we studied the properties of fatigue limit, both the
constant limit and the random limit. For the random limit, we proposed
a modified fatigue limit model.

Next, we showed that the parameters of the continuum-based fa-
tigue model are asymptotically normally distributed and gave the
parameters of the distributions. The topic was elucidated by examples.
Finally, we discussed how the presented theory can be used to simulate
those distributions.
7

Except lifetimes also stress history may contain random variation.
n [23] we discuss the stochastic modeling of stress history.
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