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Abstract

Abstract
The topic of this thesis is discrete sizing optimization of steel frames and trusses used as load bear-
ing structures in buildings. Instead of only stress or displacement limits, steel structures should
comply with design codes and meet their requirements. Thus the resulting design optimization
problem is complemented with constraints that can be derived from steel design standards and
include fire design as well. The code-based constraints together with discrete design variables
originating from availability of steel profiles in certain sizes and types result in design problem to
which the variety of available solution approaches is limited. In this thesis, the goal is to assess
and further develop such approaches to find best performing procedure in terms of computational
cost and quality of the obtained solution.

Three types of optimization approaches are considered. Firstly the popular meta-heuristics, sec-
ondly the mixed-integer linear programming (MILP) approach and thirdly the two-phase ap-
proach. Meta-heuristics are known to be flexible and easy to implement. However, the optimality
of the obtained solution cannot be proven and convergence can be considered slow. Mixed-integer
scheme is based on strict mathematical formulation and gives guaranteed global optimum of the
problem. However, the computational effort needed for the solution becomes high. Moreover,
the strict requirement of problem mathematical properties can be restricting when code-based
resistance and stability constraints are applied. Approximations may be needed to ensure com-
pliance with the requirements. The third approach uses continuous relaxation in the first phase
after which a subset of the original discrete set around the continuous solution is searched with a
suitable method. With the two-phase approach promising results are obtained in comparison with
both meta-heuristics and MILP approach.

However, based on multiple example calculations the best approach cannot be selected with re-
spect to all criteria. It seems that choice of approach and method should be done according to
properties of the optimization problem being considered.
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Chapter 1. Introduction

1 Introduction

In design of steel frames, finding dimensions of members is a standard task for structural engi-
neers. The member dimensions have to be large enough to ensure the structure can withstand the
expected loads occurring during the expected service time of the structure. On the other hand,
unnecessarily large dimensions would mean unwanted extra investment cost for the owner of the
structure. Alternatively to manual sizing, the dimensioning task can be formulated as an opti-
mization problem and the solution to the problem can be searched with the help of computers.
With the help of optimization, (at least partly) automated design procedure can be obtained.

The special feature of steel frame or truss design optimization is that the member sections should
be chosen from a set of commercially available alternatives (Figure 1.1). This implies that the
respective optimization problem has discrete design variables instead of continuous. The second
special feature is that steel structures are typically slender and thus stability phenomena play
an important role in the design. Thirdly, steel structures as part of buildings should comply
with design codes which may contain limitations that are not necessarily easy to express with
mathematical functions. These three features make the design optimization of steel structures
mathematically challenging.

In the following, variety of optimization, structural analysis and cost calculation literature is
reviewed. On structural optimization alone, thousands of articles had been published already
in the 1990s (Cohn 1994). The review cannot thus be exhaustive and it is limited to scope of
the thesis. Optimization and structural analysis literature is considered mainly focusing on the
availability with the steel design codes and standards. The cost calculation literature review
focuses on steel structures.

Figure 1.1: Typical steel structures are constructed of commercially available set of profile sizes
and types.
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1.1. Steel design standards and optimization

a) b) c)

d) e) f)

e

e

Figure 1.2: Frame and truss. Example joints and finite element modeling. a) frame constructed
of hot-rolled I sections b) end plate joint in frame c) finite element model and ec-
centricity e at the joint d) tubular truss e) tubular truss joint f) tubular truss joint
eccentricity e. Example joint locations in structures marked with circle in subfigures
a) and d).

1.1 Steel design standards and optimization

Steel structures found in buildings are designed following standards and codes. In the standards,
guidance to ensure the resistance and stability of load bearing structures is given. In a typical steel
frame design procedure, the designer constructs a finite element model of the structure where
loads (due to self-weight, snow, wind etc.) given in design codes are applied. With the internal
forces obtained from the finite element analysis and the member dimension values chosen by the
designer, the respective resistances are calculated according to the steel design code or standard.

In European Union, the Eurocode standards are used. The most relevant Eurocode standards for
steel frame design are EN 1993-1-1, EN 1993-1-8, EN 1993-1-12 and EN 1993-1-2. They include
member (EN 1993-1-1 2006) and joint (EN 1993-1-8 2006) resistance evaluation procedure as
well as conditions on joint geometry on several different structure and joint types. Two typical
steel joint types are shown in Figure 1.2. Moreover, EN 1993-1-8 (2006) gives guidance for the
structural model used in analysis. For example in tubular trusses bending moments occurring in
the chords and conditionally the eccentricities (Figure 1.2 d-f) of the joints are taken into account.
This means that instead of truss or bar elements beam or frame elements should be used to model
the chord members.

In finite element modeling of trusses and frames, traditionally only ideally hinged or rigid joints
are considered. However, many typical joint designs are semi-rigid and their stiffness properties
should conditionally be included in the design model (EN 1993-1-8 2006).

The standard EN 1993-1-12 (2007) gives rules how to apply EN 1993-1-1 and EN 1993-1-8
with steels with yield strength higher than 460 MPa up to 700 MPa. EN 1993-1-2 (2006) gives
guidance to structural fire design and the resistance assessment at elevated temperatures.

From optimization perspective, the design codes include several challenging features. Depend-
ing on the optimization formulation, even the application of code formulas and procedures can
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Chapter 1. Introduction

be challenging. Some of the design rules include conditional function definitions, for example
flexural buckling of a member in both EN 1993-1-1 and the AISC specification (ANSI/AISC
360 16 2016). This may imply discontinuity of the functions but at least discontinuity of the
derivative of such function which may limit the usable optimization methods or require mathe-
matical treatment or approximation techniques.

In the resistance evaluation of a frame structure, stability is a fundamental issue. According to
EN 1993-1-1, stability can be taken into account by a geometrically non-linear analysis proce-
dure with initial imperfections or by the separated column approach where buckling length is
determined for each compressed member.

In an optimization procedure, the latter option seems more tempting due to considerably lower
computational effort needed for a single analysis. Thus, a methodology for obtaining the correct
buckling length or critical axial force is essential for optimization. For trusses, constant values
for buckling length factors are given in EN 1993-1-1. However, it was found by Boel (2010) and
Snijder, Boel, Hoenderkamp & Spoorenberg (2011) that the code values for tubular trusses may
be inaccurate and based on rigorous finite element analyses a simple method was given to evaluate
correct lengths. Moreover, the joint rotational stiffness for both in-plane and out-of-plane can be
determined by using the tabulated data given by Boel (2010).

In frames, the critical force of a single member is usually affected by the stiffening system of the
whole frame, stiffness of the neighbouring members and/or stiffness of the joints. To evaluate the
critical force numerous simplified methods have been presented. The method widely used is given
by Dumonteil (1992). Semi-rigid joints in member stability have been considered by Mageirou
& Gantes (2006). Enhanced method also taking into account the axial load in adjoining columns
has been proposed by Webber, Orr, Shepherd & Crothers (2015). In optimization, the usability
of a buckling assessment method is dependent of the problem formulation. In practically all
the buckling length assessment methods some information on the stiffness of the neighbouring
members is needed which may cause difficulties.

1.2 Optimization approaches

1.2.1 Classification of formulations

Typically structural optimization of truss or frame structures is classified in three categories:
sizing, geometry and topology optimization (Kirsch 1993). The features of these categories are
illustrated in Figure 1.3. In each category there are specific problem formulations and solution
procedures. In all categories, it is important to recognize the mathematical properties of the
problem formulation since the efficiency and applicability of solution techniques depend on them.

Clearly, problem considering sizing of a steel frame made of cross-sections of a commercially
available selection has discrete design variables instead of continuous (Arora, Huang & Hsieh
1994). Arguably this feature is responsible for most of the challenges in steel frame optimization.
The discrete sizing optimization of a truss with stress and displacement constraints has been
proven to be NP-hard (Yates, Templeman & Boffey 1982). This implies that the computational
effort to solve the discrete truss problem increases exponentially as the problem size increases.
The author is not aware of a mathematical proof of the NP-hardness of frame problems, however
similar behaviour is to be expected for frame optimization problems.

3



1.2. Optimization approaches

a) b) c)

x

y

x∗

y∗

Figure 1.3: Structural optimization problem types a) sizing, b) geometry, c) topology with a truss
example. In sizing problem, only member sections are chosen by optimization. In
geometry optimization, also node coordinates may be added as design variables. In
topology optimization, the structure topology is governed by the design variables.

1.2.2 Optimality criteria methods

Approaches that write a condition for optimality based on either engineering judgement or rigor-
ous mathematics are called optimality criteria methods. These type of methods became popular
in the 1970s (Kirsch 1993). The most well-known is probably the fully stressed design (FSD)
approach where the maximum allowable stress present in all members is considered the criterion
for optimality. While this holds for sizing optimization of isostatic structures with one loading
condition and it has been shown in beginning of 1900s (Michell 1904) it has also been shown to
result in suboptimal designs in hyperstatic structures (Razani 1965).

However, these methods have turned out to be very effective and they have been extended to cover
discrete design variables and displacement constraints (Patnaik, Gendy, Berke & Hopkins 1998).
In a contribution by Schevenels, McGinn, Rolvink & Coenders (2014), displacement constraints,
code-based resistance constraints and manufacturability constraints are included in this type of
approach. Still, it is acknowledged that optimality criteria methods cannot verify the optimality
of the obtained solution.

1.2.3 Mathematical programming

In majority of contributions in the field of structural optimization, general mathematical pro-
gramming methods are applied to structural optimization problems. The optimization problem is
formulated in a standard form and a suitable method is applied to it to find a optimum candidate
design.

A structural design problem can be formulated in multiple ways resulting in the same optimal
design. Kociecki & Adeli (2005) have reviewed the formulations ending up in three categories:
1. nested approach 2. simultaneous analysis and design (SAND) approach and 3. two-phase
approach. In the first category, only actual design variables are used and the structural analysis is
nested in the formulation. This implies that typically the derivatives of constraint functions can be
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Chapter 1. Introduction

only obtained numerically. In the SAND approach, state variables (displacement and/or forces)
are introduced in the optimization problem. This means that the number of variables grows but
the mathematical structure of the problem can be utilized in the solution procedure because the
constraint functions can be explicitly written in terms of the design variables. This feature is
not generally available in nested approach except for some particular structures such as isostatic
trusses. The third approach is that state variables and design variables are handled at separate
phases or sub-problems. It is shown by Kociecki & Adeli (2005) that choosing the formulation
affects the computational effort needed in the solution procedure. However, no general remarks
about the most efficient approach can be drawn from the examples presented by Kociecki & Adeli
(2005).

In nested approach, the responses of the structure (forces, displacements etc.) needed for con-
straint evaluation are solved separately, for example with finite element approach. In structural
optimization, the relevant responses are member forces q and nodal displacements u. This ”black
box” structural analysis means that q and u are in general implicit functions of design variables
x. In an optimization problem constrained by resistance and displacement, the nested problem
could be written as

min
x
f(x)

gr(q(x),x) ≤ 0 resistance (1.1)
gd(u(x)) ≤ 0 displacement

In SAND formulation, the equations of structural analysis, such as compatibility and equilibrium,
are taken into optimization problem as equality constraints and the responses are included as
state variables in the formulation. Thus the resistance and displacement constraints have explicit
mathematical structure. In this thesis, the state equations, equilibrium and compatibility, are
written separately. The previous nested problem reformulated as SAND, could be written as:

min
x,q,u

f(x)

ge(q) = 0 equilibrium
gc(x,q,u) = 0 compatibility (1.2)
gr(q,x) ≤ 0 resistance
gd(u) ≤ 0 displacement

The equilibrium constraints are in fact in many cases linear without modifications and thus the
derivatives become constant. Moreover, in an isostatic structure without limits for the displace-
ment, the compatibility constraints are not needed and they can be removed from the optimization
problem formulation.

With stress and displacement constraints and cross-sectional areas as design variables, the op-
timization problem becomes non-linear and possibly non-convex (Svanberg 1984). However,
multiple gradient based methods and approaches have been applied to the continuous design
problem.

These include for example sequential linear programming (SLP) approach (Haftka & Gürdal
1992), methods of feasible directions (Zoutendijk 1960), sequential quadratic programming (SQP)

5



1.2. Optimization approaches

b

t

r

h

Figure 1.4: For optimization of a structure with rectangular hollow section profiles, the three di-
mensions (h, b and t) would be a natural choice for design variables for each member.
In discrete problem, only certain sizes are available and a single index defining the
chosen alternative can be used.

b

tw
tfr
h

Figure 1.5: I profile dimensions and discrete sizes.

methods (Han 1976, Schittkowski 1983). SLP approaches were popular still in the 1990s owing to
the fact that reliable LP packages were available (Haftka & Gürdal 1992, p. 231) despite the fact
that SQPs have been found to have superior rate of convergence (Han 1976, Schittkowski 1983).
SQP methods have been studied widely with some steps summarized by Sargent (1997). Today
many contemporary software for spreadsheet and numerical computation have included imple-
mentations of different SQP and interior point methods to suit the needs of the user.

Many classical approaches use continuous design variables to determine the size of a section.
However, as stated before, steel frame design is a discrete design problem, and the continuous
solution candidate does not necessarily tell which discrete design choices to make. Therefore,
rounding or other techniques must be used to make the discrete selection. Rounding, however,
may result in suboptimal design as shown by textbook examples for integer programming, for
example (Wolsey 1998, p. 4).

Other possibilities of treating the transfer from continuous to discrete design are considered by
Arora & Huang (1996). Depending on the formulation, different schemes are possible. Hager
& Balling (1988) presented a two-phase procedure where in the first phase continuous problem
having larger dimension than the original sizing problem, i.e. possibly two or more continuous
sizing variables are used for each member. Hager & Balling (1988) used cross-sectional proper-
ties as design variables whereas later contributors, such as Arora & Huang (1996), used profile
dimensions (see Figure 1.4 an example for rectangular hollow sections and Figure 1.5 for I pro-
files). In the second phase, either the well-known branch-and-bound method (Land & Doig 1960)
or meta-heuristics (see Section 1.2.4) can be used with the reduced discrete search space in the
neighbourhood of the continuous solution.

By adopting the SAND approach, truss topology (and sizing) optimization problem with dis-
crete sizing variables can be formulated as mixed integer linear program (MILP) (Ghattas &
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Chapter 1. Introduction

Grossmann 1991). Probably the most important feature with MILP is that the problem can be
solved to its global optimum by branch-and-bound method or its variants such as the branch-and-
cut method (Padberg & Rinaldi 1987, Padberg & Rinaldi 1991) based on which several efficient
commercial computer software are available (Gurobi Optimization 2018, IBM 2018). Moreover,
the efficiency of MILP solution by branch-and-cut can be further enhanced with different heuris-
tics.

Also, some other possibilities of using MILP including dynamic considerations are shown by
Stolpe (2007). Mela (2014) included the EN 1993-1-1 member design constraints in tubular steel
truss MILP formulation. Moreover, Mellaert, Lombaert & Schevenels (2016) included the EN
1993-1-8 joint design rules into constraints for a statically determinate truss. Especially sizing
optimization of a tubular truss is very efficient with the MILP approach (Mela & Heinisuo 2017).
However, with the truss model and MILP approach, the EN 1993-1-1 requirement for structural
model being able to model the bending of chords cannot be taken into account accurately. The
bending is taken into account with pre-approximated bending moment values and joint eccentric-
ities (Figure 1.2 e-f) are disregarded. Therefore, the design obtained with these approaches may
need manual post-processing after optimization to ensure that the design is fully compliant with
EN 1993 rules.

The frame topology optimization problem with beam elements can be formulated as MILP simi-
larly to the approach presented for truss elements. This means that two more independent force
and two more displacement state variables are introduced for each member. This approach has
been used for finding topologies in special structures, such as structures exhibiting negative ther-
mal expansion (Hirota & Kanno 2015) and negative Poisson’s coefficient (Kureta & Kanno 2014).

1.2.4 Meta-heuristic approaches

In the last two decades, meta-heuristic optimization techniques have become popular among the
scientific community. For example, genetic algorithms (GA (Holland 1975)), particle swarm
optimization (PSO, (Kennedy & Eberhart 1995)), harmony search (HS (Degertekin 2008)), tabu
search (TS (Bennage & Dhingra 1995)), simulated annealing (SA (Balling 1991)), antcolony
optimization (ACO (Camp, Bichon & Stovall 2005)), mine blast algorithm (MBA (Sadollah,
Bahreininejad, Eskandar & Hamdi 2012)), symbiotic organisms search (SOS (Li, Huang & Liu
2009)), Big Bang–Big Crunch algorithm (BBBCA (Kaveh & Talahatari 2009)) have been shown
to be usable in various design problems. The list above is not exhaustive and, moreover, improved
versions of many of the mentioned methods have been presented in the literature.

The meta-heuristic optimization methods are typically relatively easy to implement and under-
stand and they typically pose no restraints for the problem formulation in terms of mathematical
properties of constraint and objective functions. Moreover, most of the methods can handle dis-
crete design variables. Thus code-based constraints in discrete steel frame design can be used
easily as has been done by several authors (Saka & Kameshki 1998, Jalkanen 2007, Kaveh &
Talahatari 2009).

As there are plenty of meta-heuristic methods with various versions it is of interest to know which
one to choose. When new methods are published their performance is evaluated against existing
techniques and results found in literature usually with a finding that the new or improved method
is better than the old ones.
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1.2. Optimization approaches

However, some comparative studies have been presented with inconsistent results. For example,
Jalkanen (2007) compared the performance of TS, GA, PSO, SA in tubular truss optimization
problems in his thesis with a conclusion that none of the methods was the best in all of the example
problems but overall performance imply greater efficiency for PSO and TS over SA and GA.
Degertekin (2007) compared simulated annealing and genetic algorithms with finding that genetic
algorithms converge faster but SA found better designs. Hasançebi, Çarbas, Dogăn, Erdal & Saka
(2010) compared GA, SA, evolution strategies, PSO, TS, ACO and HS. In their test problems the
difference in objective function value of best found design was quite large but different methods
seemed to success in different problems. Alberdi & Khandelwal (2015) optimized frames with
connection topology variables in addition to sizing variables using GA, HS, TS and ACO which
in a comparison seemed to perform similarly well. Thus based on the references mentioned in
this paragraph no general information about performance of the mentioned methods seems to be
available.

In contrary to mathematical programming techniques, in the meta-heuristic methods there is no
verification of optimality of the obtained design. Moreover, the convergence of such methods is
typically slow. The number of function evaluations needed for even decent results is very high
thus implying low efficiency and long computational time. Many of the methods require careful
tuning of algorithmic parameters. In problems with clear mathematical structure in which other
types of methods can be applied, considerably more efficient procedure can be obtained as shown
by Stolpe (2011). Still, it could be said that mathematical programming and meta-heuristics
should not be seen as competitors but to complement each other (Stolpe 2016).

In addition to meta-heuristic methods with relatively broad area of application presented above,
many other heuristics have been used and developed since 1950s. For example greedy and local
search algorithms for combinatorial discrete problems presented in Wolsey (1998) are said to
date at least to 1950s or 60s. These types of heuristics are specific to problem formulation and
many rely extensively on the notion of a solution neighborhood. However, this neighborhood
is typically tailored to the structure of the problem being solved. For MILP type of problem,
the relaxation induced neighbourhood search (RINS) has been proposed (Danna, Rothberg &
Pape 2005). In the variable neighbourhood search (VNS) method (Mladenovic & Hansen 1997),
the basic idea is to perform local search and to systematically vary the neighborhood in which
the local search is performed. In last two decades, multiple improvements to this basis have been
developed and proposed (Hansen, Mladenovic & Perez 2009).

The meta-heuristic approaches typically include a stochastic component in the algorithm whereas
mathematical programming methods are deterministic. This means that multiple runs need typi-
cally to be performed to obtain ”good enough” results with acceptable probability with most meta-
heuristic methods. In research, the behaviour of such methods should be evaluated with statistical
measures rather than only the best found objective function value (Le Riche & Haftka 2012).

1.2.5 Cost as objective function in optimization

From optimization perspective, structural weight is a convenient choice for objective function.
Several researchers, however, have analyzed the cost distribution of steel structures (Nethercot
1998, Carter, Murray & Thornton 2000, Evers & Maatje 2000, Salokangas 2009, Jalkanen 2007).
Although there is some variation in the figures given by the references due to different types of
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structures and differences in assumed manufacturing technologies, a general conclusion is that
not only material cost but also manufacturing cost plays an important role in the economy of steel
structures.

If only sizing optimization is performed, weight and cost optimization seem to correlate quite
well (Jalkanen 2007). However, for example when the performance of different steel grades is
compared it is clear that higher steel strength will result in lower weight but in overall economy
the benefit is not clear without the knowledge of material cost difference. Moreover, if different
topologies are compared, material cost alone becomes irrelevant, since large share of costs in steel
structures is related to manufacturing actions (welding, cutting, drilling et cetera) needed in joints.
Furthermore, some steel structures need to be designed to maintain their load bearing capacity
during fire. This may require additional protection of the steel structures. If protection is done by
intumescent coating a considerable additional cost is introduced and the cost is related to member
dimensions (Iso-Mustajärvi & Inha 1999). Thus, if manufacturing cost of a steel frame including
possible fire protection can be reliably calculated, it would serve as meaningful objective function
for optimization.

Various cost functions with varying degree of detail have been proposed in the literature (Watson,
Dallas, Van der Kreek & Main 1996, Jármai & Farkas 1999, Sarma & Adeli 2000, Jármai &
Farkas 2001, Farkas, Simões & Jármai 2005, Pavlovčič, Krajnc & Beg 2004, Haapio 2012). With
cost as objective function rather than the structural weight, the convenient mathematical proper-
ties may be lost depending on the structure and the used cost function. It turns out, however, that
with careful formulation seemingly complicated cost functions can be included in formulations.
For example, the highly detailed and mathematically complicated cost expressions proposed by
Haapio can be included effectively to cost optimization of steel trusses with a relatively restricting
MILP formulation (Mela 2013).

1.3 Outline of the study

In traditional formulations in structural optimization, the constraints are based on stress measures
or displacements. Since the resistance of steel structures is typically connected to stability phe-
nomena as well and standards governing structural design pose their restrictions to the design,
the simplified model based only stresses or other structural responses may fail to produce usable
designs.

The code-based constraints have been considered by numerous contributors in the literature.
However, in majority of those contributions meta-heuristics have been used even though these
methods are known for slow convergence and that the optimality of the obtained solution cannot
be verified.

Moreover, design optimization is in most structural engineering applications multi-objective and
multidisciplinary. Still, majority of structural optimization literature do not consider other ob-
jective functions than the structural weight. From practitioner’s point of view this may limit the
usability of an optimization approach since the typical client would be more interested in the cost
of the structure rather than the weight.

Therefore, the objective of the thesis is to find the best possible methodology for steel frame opti-
mization under code-based constraints. This is done by improving, complementing and possibly
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combining the existing frame optimization schemes found in literature. The focus is on following
aspects: i) the reliability of the solution procedure, ii) the computational effort needed to find an
optimum candidate to the problem, iii) the possibility to use code-based constraints and objective
functions alternative to structural weight. In the examples found in the literature by the author,
only one or two of the mentioned aspects can be simultaneously fulfilled.

1.3.1 Research question

The outline of the thesis can be written as the following research question:

How should discrete sizing optimization problem of a frame
structure be

1. formulated

2. attempted to be solved

taking into account

1. computational efficiency

2. quality of the solution candidate

3. flexibility to multiple types of objective functions

4. flexibility to use code-based constraints?

1.3.2 The scope of the thesis

This thesis is limited to cover sizing optimization of a steel frame structure under static deter-
ministic loadings. A frame structure is understood within the thesis as a structure consisting of
members in which both bending moments and axial forces can occur. However, the methods
considered in the thesis are generally applicable to wider range of skeletal structures, such as
pin-jointed trusses with axial force as the only internal force appearing in the members. Thus,
also truss examples are covered to some extent. The example calculations are limited to planar
structures. In structural analysis, linear models with respect to both material and geometrical be-
haviour is used. The proposed methods and approaches are tested on example problems covering
steel members and design codes.

1.3.3 Main contribution of the thesis

The main contribution can be summarized as follows:

• Cost-efficiency of high strength steel assessed in tubular trusses

• Fire design procedure of tubular trusses assessed

10



Chapter 1. Introduction

• MILP approach tested for frame sizing optimization with practical selection of profiles

• Code-based member and cross-section design procedures formulated as MILP

• Novel techniques for buckling length assessment

• Two-phase techniques tested for structural sizing optimization comparing them to MILP
and meta-heuristics
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2 Discrete optimization and code-based
constraints

As found in Chapter 1, the design optimization problems of skeletal steel structures are discrete
and mathematically challenging. Therefore, the selection of available approaches to efficiently
formulate and to find optimum candidates in such problems is limited. In this chapter, the typical
constraints in steel frames are presented when applying the Eurocode 3 standards. Moreover,
approaches of continuous relaxation are discussed.

2.1 Eurocode 3 and optimization

For steel frames, the Eurocode 3 standards include basically three types of resistance evaluation

1. Cross-section resistance evaluation

2. Member resistance evaluation (compressed members)

3. Joint resistance evaluation

In addition, depending on the problem formulation, other types of constraints may need to be
included to the problem to ensure applicability of the resistance evaluation formulas.

Moreover, in structural design also serviceability limit states need to be verified. In a static prob-
lem, they include typically displacement limits for both horizontal sway and vertical deflections.
These kind of constraints are widely applied and studied in the structural optimization literature
and do not cause additional difficulties when Eurocode or other standards are applied. In some
steel structures, the serviceability limit states connected to vertical deflections can be handled
with pre-camber in the manufacturing process and thus the displacement constraints can be left
out.

2.1.1 Cross-sectional properties and relaxation

The basis of resistance and serviceability verification is that the cross-sectional properties of
the members are known. When a discrete problem is considered, tabulated values of all the
relevant cross-sectional properties given by the material suppliers can be used. However, if in the
optimization the discrete design variables need to be relaxed as continuous, different techniques
may need to be used.
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Figure 2.1: a) The cross-sectional area A and b) second moment Iy for a cold-formed square
hollow section with external dimensions 100x100 as function of wall thickness.

For a cold-formed rectangular hollow section, the standard (EN 10219-2 2006) Annex B gives
formulas to calculate the cross-sectional properties of a section with arbitrary dimensions b, h and
t (see Figure 1.4). The corner rounding inner radius r is defined piecewise as (EN 10219-2 2006):

r (t) =





t if t ≤ 6 mm
1.5t if 6 mm < t ≤ 10 mm
2t if t > 10 mm

(2.1)

This causes the cross-sectional properties to be non-differentiable or even non-continuous func-
tions of the wall thickness t which is illustrated for cross-sectional area A and second moment Iy
in Figure 2.1.

For I or H sections (see Figure 1.5), the cross-sectional properties are given in tables that can be
obtained from the material suppliers. For continuous relaxation, multiple techniques can be used.
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Figure 2.2: Three series of European hot-rolled I sections: IPE (square), HEA (triangle) and HEB
(diamond). Strong axis second moment Iy plotted as function of cross-sectional area
A. The dependency between Iy and A can be approximated with a polynomial fit:
IPE (dash dot line), HEA (long dash), HEB (short dash), all profile types (solid line).
In the plot, third degree polynomial is used.

Classical approach is to make curve fitting with respect to cross-sectional area. This approach
according to Haftka & Gürdal (1992, p. 18) was first proposed by Moses & Onoda (1969).
However, if different types of profiles are used – for example the European HEA and IPE series
– the curve fitting scheme does not work particularly well since instead of one curve, several
curves, one for each profile type, should be used (Figure 2.2).

Another option is to use the dimensions depicted in Figure 1.5 and calculate the cross-sectional
properties directly from them. For example, the cross-sectional area of an I section can be calcu-
lated as

A = 2btf + (h− 2tf ) tw + (4− 2π) r2 (2.2)

When only certain series is used, relatively simple rules can be found for relations between di-
mensions. When relations are used in the relaxed problem the dimension of the problem reduces
as only two variables need to be used for each member instead of four shown in Figure 2.3–2.5.
With European IPE series it seems that linear approximations for relation of the dimensions fit
well with the values in the catalogue.

2.1.2 Cross-section resistance

The EN 1993-1-1 uses cross-section classification to verify whether plastic or elastic cross-section
resistance evaluation should be used. The classification is based on dimensions and strength of
the cross-section material. In classes 1 and 2, plastic bending resistance can be reached before
local buckling phenomena occur. In class 3, the stress due to bending may exceed yield limit in
some part of the cross-section but full plastic capacity cannot develop. In class 4, the stress does
not exceed the yield limit before some part of the cross-section locally buckles.
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Figure 2.3: IPE series profile dimensions and linear fit with R2 value shown in plot.
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Figure 2.5: IPE series profile dimensions and linear fit with R2 value shown in plot.

The cross-section resistance evaluation of EN 1993-1-1 in plastic cross-section classes 1 and 2
results in a set of linear constraints with respect to the internal forces NEd and MEd

NEd

NRd

+ k
MEd

MRd

≤ 1 (2.3)

MEd

MRd

≤ 1 (2.4)

NEd

NRd

≤ 1 (2.5)

where NEd and MEd are the axial force and bending moment, respectively, present in the cross-
section and NRd and MRd are the respective plastic resistances, and k is the interaction factor
and a function of cross-section dimensions. The interaction factor k is a conditionally defined
function of cross-sectional area and section dimensions. For an I section with cross-sectional
area A, width b and flange thickness tf , the k is calculated as

k = 1− 0.5

[
min

(
A− 2btf

A
; 0.5

)]
(2.6)

In cross-section class 3, elastic theory is used and the actions can be linearly combined by

NEd

NRd

+
MEd

MRd

≤ 1 (2.7)

where the resistances NRd and MRd are the elastic resistances.

The cross-section resistance evaluation based on cross-section classification thus implies discon-
tinuity in resistance constraint functions for the relaxed problem (Figure 2.6).

Three notions can be made:

1. In both cases, problem formulation as MILP does not require linearization
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2. In both cases, when a continuous relaxation in nested formulation is used, the resulting
constraint is non-linear and most likely non-convex

3. In continuous relaxation, when cross-section class is changed from 2 to 3 there is a discon-
tinuity in the constraint function (Figure 2.6)

2.1.3 Member resistance evaluation

In planar case with member not susceptible to torsion, the EN 1993-1-1 member resistance eval-
uation formulas 6.61 and 6.62 for compressed members reduce to

NEd

χyNRd

+ kyy
MEd

χLTMRd

≤ 1 (2.8)

NEd

χzNRd

≤ 1 (2.9)

where χy and χz are reduction factors taking into account the flexural buckling around y and z
axis (axis definition Figure 2.7), respectively, and kyy is the interaction factor.
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The χy is a function of member bending stiffness EIy but also a function of bending stiffness
of other members in the structure through buckling length. Moreover, kyy is a non-continuous
function of cross-section class, piecewise defined function of dimensionless slenderness λ̄ and
continuous function of design axial force NEd which in a hyperstatic structure is function of
member stiffness and their distribution in the structure. The dimensionless slenderness λ̄ is a
function of elastic buckling load Ncr, cross-sectional area and yield strength

λ̄ =

√
Ncr

fyA
(2.10)

The critical load Ncr, on the other hand, is a function of buckling length Lcr, flexural stiffness
and material’s Young’s modulus

Ncr = π2EI

L2
cr

(2.11)

In the mixed-integer formulation, the resistance evaluation in Eq. (2.8) can be shown nonlinear
with respect to force variables. It is also possibly non-convex (Tiainen, Mela & Heinisuo 2018).

When continuous relaxations in nested formulations are considered, the internal forces are not
state variables in the optimization leaving only the cross-section dimensions as design variables.
Practically regardless of continuous relaxation technique the constraints are then non-linear:

minf(x) (2.12)
NEd,i(x)

χy,i(x)NRd,i(x)
+ kyy,i(x)

MEd,i(x)

MRd,i(x)
≤ 1 (2.13)

NEd,i(x)

χz,i(x)NRd(x)
≤ 1 (2.14)

2.1.4 Joint resistance evaluation

The joint resistance evaluation formulas are heavily dependent on which type of structure is be-
ing analyzed. For hollow section welded trusses (Figure 1.2 d-f), the joint design is relatively
straightforward task. The resistance evaluation is done by checking relevant failure modes.

For example, probably the most important failure mode for K-joints (Figure 1.2 e), the chord face
failure, is calculated by (Ongelin & Valkonen 2016, EN 1993-1-8 2006)

Ni,Rd =
8.9knfy0t

2
0

sin θi

b1 + h1 + b2 + h2
4b0

√
b0
2t0

, i = 1, 2 (2.15)

where kn is a factor taking into account the compressive stress in the chord face, fy0 is the yield
strength of the chord material, t0 is the chord wall thickness, θi is the angle between chord and
brace member, bi and hi are the dimensions of the members with subscript 0 referring to chord
and 1 and 2 referring to braces.

The resulting constraint in optimization can be written as

Ni,Ed

Ni,Rd

≤ 1 (2.16)
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2.1. Eurocode 3 and optimization

Thus, it can be seen that constraint is non-linear with respect to relaxed problem design variables
bi, hi and ti, i = 0, 1, 2. Moreover, the joint resistance is function of dimensions of all connecting
members.

In frames with I and H profiles, multiple types of bolted connections are used depending on
whether pinned, rigid or semi-rigid behaviour is wanted. Typically, additional steel parts such as
welded fin plates, end plates, stiffeners and bolts are needed. To effectively include these types
of joints in the optimization the dimensions of the additional parts may need to be taken into the
optimization problem as design variables thus adding the dimension of the problem. Multiple
failure modes need typically to be evaluated. In the design optimization examples found in this
thesis, bolted connections are not considered.
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3 Optimization methods and formulations
In this Chapter, the optimization methods used in the Publications I-IV and VI are presented
briefly. Moreover, application of a specific method may need reformulation of the optimization
problem. This will also be discussed in this Chapter.

In the publications I-IV and VI, multiple type of optimization algorithms are needed. In order to
directly attemp to solve a discrete design problem of nested type, the set of available procedures
becomes limited. The metaheuristics have been widely used in this type of problems. In this
thesis, two methods, namely PSO and GA were utilized.

When an optimization approach involving a continuous relaxation, that may be nonlinear, is ap-
plied, a well-established algorithm for constrained continuous optimization is needed. In this
subproblem, the SQP method was chosen mainly for three reasons: 1) the SQP methods are
shown to have good converge characteristics 2) the SQP methods tolerate unfeasible starting
point 3) multiple SQP method implementations are available in numerical calculation computer
programs.

When a structural design problem is reformulated as MILP it would be possible to apply meta-
heuristics to the optimization problem as well. However, as the number of constraints and vari-
ables will become large this type of approach becomes practically unusable. The method called
branch-and-cut is very efficient in this problem type and can handle the large amount of con-
straints and variables involved the reformulation.

3.1 Metaheuristics

The metaheuristics used in this thesis include PSO and GA. Both rely on a set of solutions that
move or evolve in the design space. In terms of problem formulation, the methods allow different
approaches. In this thesis, when applying metaheuristics the optimization problem is formulated
as nested problem with the variable values implying an index which refers to a row in a Table to
obtain the cross-sectional properties of the members.

With metaheuristics, multiple possibilities to implement the algorithm with different variations
around the basic idea can be made. In the following subsections, the notation and equations
to describe the algorithm are mostly based on the highly cited comparison article by Elbeltagi,
Hegazy & Grierson (2005).

3.1.1 Particle swarm algorithm

The particle swarm optimization (PSO) algorithm mimics the behaviour of a bird flock or a swarm
of bees searching for food. While trying to find a good place in the design space (with low objec-
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tive function value and feasible constraint function values) the members of the swarm communi-
cate with each other. Moreover, the members of the swarm, or particles, have memory of their
locations.

For the algorithm N typically random designs are generated in the S-dimensional design space.
Three values, namely current position of the ith member (Xi), the best position it has reached
during previous rounds (Pi), and flying velocity (Vi). These are written as

Xi = (xi1, xi2, . . . , xiS) (3.1)
Pi = (pi1, pi2, . . . , piS) (3.2)
Vi = (vi1, vi2, . . . , viS) (3.3)

In each round, the position (Pg) of the best particle is calculated as the best objective function
value of all particles.

The new velocity for round j + 1 of ith particle is calculated by

V j+1
i = ωV j

i + c1 · rand1 ·
(
P j
i −Xj

i

)
+ c2 · rand2 ·

(
P j
g −Xj

i

)
(3.4)

where c1 and c2 are positive constants, rand1 and rand2 are random values in the range [0, 1] and
ω is an inertia parameter. Typical choices for the first two algorithmic parameters are c1 = c2 =
2. The operator ω balances the global search and the local search and it has been proposed to
decrease linearly as the algorithm progresses from value of 1.4 to 0.5.

The updated position is obtained by using the updated velocity by

Xj+1
i = Xj + V j+1

i (3.5)

The velocity of the particle can be limited to set values as

−Vmax ≤ Vi ≤ Vmax (3.6)

The typical algorithm implementation can be expressed by following steps (steps based on ap-
pendix D (Elbeltagi et al. 2005))

Step 1 Generate random population of N solutions (particles) and evaluate objective and con-
straint function values. Initialize weight factor ω.

Step 2 For each particle;
Set pBest as the best position of particle i;
If fitness(i) is better than pBest;

pBest(i)=fitness (i);
End;
Set gBest as the best fitness of all particles;

Step 3 For each particle;
Calculate particle velocity according to (3.4);
Update particle position according to (3.5);
End;
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Step 4 Update the value of the weight factor, ω;

Step 5 Check termination criteria. If true, go to Step 6, else go to step 2.

Step 6 Algorithm completed

Stopping criterion can be based on improvement of the best found design or when the number of
iterations reaches the maximum value given by the user.

The method does not include mechanism to check the convergence against any mathematical
optimality criteria. Thus, the quality of the obtained solution cannot be assessed.

Together with randomness involved within the algorithm it can be difficult to choose the parameter
values c1, c2 and ω in best possible way. However, the method is relatively easy to implement and
ready implementations are available in numerical calculation software.

3.1.2 Genetic algorithm

The genetic algorithm mimics the evolutionary principle among a population of individuals. Ran-
domly generated set of designs is evaluated for objective and constraint function values. Based
on their fitness, some of the individuals are chosen to produce offspring. The design variable
values are coded as strings of genomes and the genomes of the offspring are combined from the
genomes of the parents following algorithm rules for crossover. Alternatively, the process may
also include mutation in which some part or parts of the string are altered randomly.

The algorithm can be implemented by completing following steps (steps based on appendix D
(Elbeltagi et al. 2005))

Step 1 Generate random population of P solutions (chromosomes) and calculate their fitness (i)

Step 2 Select an operation (crossover and/or mutation);

If crossover;
Select two parents at random ia and ib;
Generate on offspring ic=crossover(ia and ib);
Else If mutation;
Select one chromosome i at random;
Generate an offspring ic=mutate(i);
End if;

Step 3 Calculate the fitness of the offspring ic;

If ic is better than the worst chromosome then replace the worst chromosome by ic;

Step 4 Check termination criteria. If true, go to Step 2, else go to step 5.

Step 5 Algorithm completed

Within the genetic algorithm there are multiple tunable parameters and choices that must be made
within the implementation of the method such as
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• Number of individuals in the population

• Number of cross-over points

• Method of choosing the parent chromosomes

• Rule for mutation

• Binary coding vs. other type of coding

• Termination criteria

As it is the case with the PSO method, with randomness involved within the genetic algorithm
it is very difficult to choose the parameter values in best possible way. However, the method is
relatively easy to implement and ready implementations are available in numerical calculation
software.

Moreover, similarly to the PSO method, there is no information available on the quality of the
optimum candidate obtained with the genetic algorithm.

3.2 Branch-and-cut

Branch-and-cut method is used to solve convex mixed-integer programs. With the formulation
described by Ghattas & Grossmann (1991) discrete binary variables are used for choosing the
profile alternative. Nodal forces and displacements are continuous state variables. This type of
formulation can be linear. As linear problem is always convex the mixed-integer linear program
(MILP) can be solved to its global optimum.

The mixed-integer linear formulation can be written as

min
x,y

aTx + bTy (3.7)

Ax = c (3.8)
Cy = d (3.9)

where in case of structural optimization formulations typically, a = 0, b, c and d are constant
vectors, A and C, are constant matrices, x is the vector of continuous variables (forces and
displacements), and y is the vector of binary variables.

A problem formulated as MILP can be solved using branch-and-bound approach. When the LP
relaxation is complemented with additional cuts, the algorithm is called branch-and-cut. The
branch-and-cut algorithm can be summarized by following steps (based on flowchart in (Wolsey
1998, page 158))

Step 1 Add the initial MILP to L, the list of active problems

Step 2 Set y = null and f ∗ =∞

Step 3 Continue step if L is not empty
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1. Select and remove (de-queue) a problem from L

2. Solve the LP relaxation of the problem.

3. If the solution is infeasible, go back to Step 3. Otherwise denote the solution by y
with objective value f .

4. If f ≥ f ∗, go back to Step 3.

5. If y is integer, set f ∗ ← f, y∗ ← y and go back to Step 3.

6. If desired, search for cutting planes that are violated by y. If any are found, add them
to the LP relaxation and return to Step 3.2.

7. Branch to partition the problem into new problems with restricted feasible regions.
Add these problem to L and go back to Step 3

Step 4 Algorithm completed.

In addition to different type of cuts, the problem solving philosophy differs to that of branch-
and-bound such that any other aids to solve the subproblem are welcome and utilized by the
commercial solvers. These include heuristics (Wolsey 1998, section 2.6 and chapter 12), for
example feasibility pump (Fischetti, Glover & Lodi 2005) and relaxation induced neigbourhood
search (RINS) (Danna et al. 2005). Typically the utilization of such methods and branching
strategy can be set by the user.

In this type of problem formulation, the matrices and vectors have typically a very large dimen-
sion. Thus programmable procedures are needed to 1) generate the matrices and vectors and 2)
obtain for example the actual profile choices proposed by the procedure from the result data.

3.3 Sequential quadratic programming

Sequential quadratic programming (SQP) methods have been developed since 1970s (Belegundu
& Chandrupatla 1999, p. 183) and have various versions of which an overview can be obtained
from (Nocedal & Wright 2006a, chapter 18). They rely on quadratic approximation of the La-
grangian of the design problem. The problem can be formulated in well-known nested procedure
(see Eq. 1.1). The SQP method is used for problems with continuous design variables, thus in
the context of structural steel design optimization with typically discrete variables it can be used
only for solving relaxed continuous subproblem.

The problem Lagrangian is written (notation following (Belegundu & Chandrupatla 1999))

L = f +
m∑

i=1

µigi +
l∑

j=1

λjhj (3.10)

and the quadratic direction finding subproblem can be written as

min
d

1

2
dTBd +∇fTd (3.11)

∇gTi d + gki ≤ 0 i ∈ I1 (3.12)

∇hTi d + hki ≤ 0 i ∈ I2 (3.13)

xL ≤ xk + d ≤ xU (3.14)
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where d is the direction vector, B is the (approximation of) Hessian matrix of problem Lagrangian
(Eq. (3.10)), gki is inequality constraint function i evaluated at xk, hki is equality constraint func-
tion i evaluated at xk,∇f ,∇g and∇h are gradient vectors evaluated at xk, xL and xU are vectors
of lower and upper bounds, respectively, for problem design variables and I1 and I2”active sets”
including problem active constraints.

When the direction is found, line search is performed to find the correct step length.

The stopping criterion can be based on optimality

‖d‖ ≤ εKKT (3.15)

where εKKT is tolerance for direction vector length, or improvement of the solution candidate in
terms of objective function value f

‖fk − fk−n‖ ≤ εf (3.16)

where n is number of consecutive iterations to which the objective function value is compared
and εf is the desired tolerance. Belegundu & Chandrupatla (1999, p. 186) recommends value
n = 3.

The algorithm can be summarized by following steps (steps based on (Belegundu & Chandrupatla
1999, p. 183–187))

Step 1 Set k = 1

Step 2 Solve the QP subproblem described on Eq. (3.11) to determine dk.

Step 3 Compute the step length αk and set xk+1 = xk + αkdk.

Step 4 Compute Bk+1.

Step 5 If stopping criterion is satisfied, continue, otherwise, go to step 2.

Step 6 Algorithm completed.

It should be noted, however, that some SQP algorithms use identity matrix instead of (approxi-
mation of) Hessian. Thus in those SQP versions, the step 4 is not needed.

The SQP methods converge to local minimum of a constrained optimization problem. The re-
quirement for proven convergence is the C1 continuity of the objective and constraint functions.
If the problem is convex and C1 continuity holds the optimum candidate given by the method is
the global optimum of the problem. However, as discussed within the Chapter the given condi-
tions are rarely fulfilled for structural design problems.

In this thesis, the SQP method was chosen after set of test runs on practical problems with high
non-linearity and discontinuities present in the constraint functions. The interior point methods,
another well-established type of methods (Nocedal & Wright 2006b, Chapter 19), suitable for
constrained continuous optimization, seemed to fail in the test runs more frequently than SQP
type of method.
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4 Discussion

4.1 Contribution of the publications

The Publications I and II consider a tubular truss where geometry is modeled including eccentric-
ity of the joints and all the relevant requirements of EN 1993-1-1 and EN 1993-1-8 are included
as constraints. The main scope of Publication I was to assess two design approaches when fire
protection design is included in the problem. In optimization this means slightly longer for a sin-
gle function evalution due to critical temperature assessment. Since metaheuristic PSO method
was applied, no theoretical obstacles to include the fire design were present.

In Publication II, the main scope was to find out whether or not it is economical to use higher
strength steel than the widely used S355 (with yield strength fy = 355 MPa).

In both Publications I and II, the cost of the structure is needed for comparison instead of weight.

The Publication I demonstrates by a calculation example that fire design and protection increase
the cost of a tubular truss considerably and that the design of the truss itself remarkably affects the
cost of the fire protection. The widely used approach to design the structure in room temperature
after which fire protection is considered results in more expensive structures than a more holistic
approach where fire design is included in the optimization problem.

In Publication II, it is demonstrated that in many cases using high strength steel reduces the total
cost of the structure. Hybrid solutions with high strength steel in chords and lower strength steel
in braces seem very promising in particular.

When fire protection needs to be applied the benefit of high strength steel is not clear without
further calculations as the protection adds the total cost considerably. As the profiles are likely
to become lighter and smaller, the outer surface area to be covered with the intumescent paint
is likely to diminish but in the same time smaller wall thickness leads to thicker and thus more
expensive intumescent coating. The scenario with both high strength steel and fire protection thus
is an interesting topic for further research.

Regarding optimization in Publications I and II, several major findings can be made: 1) all the
relevant Eurocode design formulas can be included in a truss design optimization problem 2) cost
of such a structure can be optimized even with fire design constraints and protective coating 3)
the approach allows direct optimization with given total height (from lower surface of bottom
chord to the top surface of top chord) of the truss 4) eccentricities in the joints can be taken into
account. Typically in structural optimization literature the height is based on mid-lines of the truss
members and eccentricities are omitted. It can also be said that to obtain the results, a relatively
large amount of computational effort was needed. Thus, the PSO method seems inefficient in the
discrete truss design problem with code-based constraints.
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In Publication III, a completely different optimization approach is adopted. The mixed-integer
formulation previously used in the literature with truss structures and special frame structures is
applied to a frame design problem with stress and displacement constraints. In the paper, general
framework for applying MILP in building frame sizing is given. Moreover, the performance is
compared to genetic algorithm, a popular method for similar frame optimization problems. Rather
than a code-based resistance evaluation straightforward stress and displacement constraints are
applied.

Three findings can be addressed. It seems that with a practical catalogue of profiles, the size of
optimized frame is limited to modest size of structures due to high computational effort needed
and, in comparison with the MILP, the genetic algorithm seems to be more efficient option. How-
ever, it should be noted that optimal design itself is found in a relatively short time and most of the
computational effort is spent on proving the optimality of the design. Secondly, numerical prob-
lems are possible with the MILP implementation. Thirdly, the method is not easy to implement
since existing finite element codes cannot be used at least directly.

During implementation and test runs it turned out that MILP problems are prone to numerical
problems. It happened for example that two commercial programs (Gurobi Optimization 2018,
IBM 2018) gave slightly different results claiming them to be the global optimum of the same
problem. Also, another problem for which a solution could be found was claimed infeasible when
more profile options were added. The numerical problems may originate from several sources.
Firstly, big-M technique used in compatibility constraint requires user-defined large value and
incorrect value may have been used. Secondly, the scaling of the variables and constraints is dif-
ficult due to multiple dimensions found in structural analysis and design equations. For example,
rotational displacement, translational displacement, axial force and bending moment have their
own dimension and the choice of unit system for example is strongly related to scaling.

In Publication IV, it is demonstrated that the EN 1993-1-1 member design rules can be linearized
to fit the MILP scheme implying that guaranteed global optimum of the design problem can be
obtained. However, the buckling length assessment methods presented in the literature cannot be
included in the MILP scheme. The buckling length problem is tackled by a sequential approach
in which the change in buckling length is handled by performing sequentially optimization and
buckling analysis. In the numerical examples, it is demonstrated that this approach results in
finding the global optimum for example structures of small size. However, as found out in Pub-
lication III, the practical problem size is limited with the MILP approach. When applying the
proposed sequential approach the MILP has to be solved multiple times during one optimization
making the computational effort needed even greater. Moreover, sequential technique requires
a programmable procedure for buckling assessment. In the article, however, the lowest positive
eigenmode was used as a conservative approximation.

Publication V considers the buckling length problem arisen in Publication IV. In Publication V,
two rather simple but efficient and robust methods for assessing the buckling length factors are
presented. Both approaches rely on the well-known finite element discretization. The first ap-
proach uses geometric stiffness matrix only in elements belonging to the member being assessed.
The second approach is based on strain energy measure. Both of the methods are general in the
sense that they can be used for many kinds of skeletal structures including tapered beams and/or
semi-rigid connections.

However, both methods lack generality in other ways. The one based on local geometric stiffness
matrix has limited application range such that only braced frames (or frames with horizontal sup-
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ports) can be handled. The strain energy based approach includes an important tunable parameter
that governs which eigenmode is chosen. Value for this parameter resulting in correct buckling
mode in all possible design scenarios has - however - not been found.

Although the programmable procedures proposed in Publication V were created with applicabil-
ity in optimization in mind, they can be applied for any design problem and procedure with or
without optimization. Implementation requires some knowledge of finite element programming
and possibility to add own procedures in collecting the geometrical stiffness matrix.

In Publications I-IV, the direct application of metaheuristics or MILP reformulation were found to
be inefficient. Therefore in Publication VI, alternatively, a two-phase technique using continuous
relaxation of discrete design variables in the first phase and limited discrete design space in the
second phase is utilized.

Theoretically, when utilizing deterministic gradient-based optimization methods in the first phase
the relaxation should be differentiable and continuous for guaranteed convergence. However,
these properties are not necessarily available (see Chapter 2) when code-based constraints are
used. Based on the example calculations, it seems however, that this methodology can be used
for solving such problems.

Even fairly simple continuous sizing problems with only stress constraints may be non-convex
(Svanberg 1984). This feature was seen in the examples in a way that the continuous search
converged into several different designs within the set of runs performed with random initial
designs.

In the two-phase procedure, multiple possibilities to relax the discrete design variables continuous
are available (see also Chapter 2). The type is preferably chosen to meet the problem features as
is done in the examples found in the Publication VI. In many cases, the relaxation of discrete
design variables can be performed without adding the dimension of the problem.

The performance of the two-phase approach is evaluated in several examples. The first one is the
3x3 example used also in the Publication III. It is found that the two-phase approach outperforms
both MILP and direct application of GA in terms of computational efficiency. In this example,
the relaxation is based on one variable, namely the height of the profile. Other cross-sectional
properties are expressed as continuous and differentiable functions of the profile height.

In the second example, a benchmark problem studied widely by researchers on metaheuristic
methods, a 52-member truss, is optimized with stress constraints. In the relaxation, the cross-
sectional areas can be used directly. The problem can be solved to its global optimum by the
MILP approach. However, this is computationally a very demanding task. With the two-phase
approach, a design with slightly lower objective function value than designs produced by alterna-
tive methods in the literature is found.

In the third example problem, a tubular truss similar to those found in Publications I and II is
optimized with relevant EN 1993-1-1 and EN 1993-1-8 based constraints. It is found that results
are obtained with less computational effort and with less deviation. Thus, lower number of shorter
computer runs are needed for similar results.

In the fourth example, a 24-story 3-bay frame is considered. The constraints are based on the
AISC design code. With the two-phase approach, a better design is found than with state-of-the-
art metaheuristics. However, the metaheuristics converge in the examples with low amount of
function evaluations. On the other hand, in the tests performed by the author the GA found worse
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Table 4.1: Features of different approaches in frame sizing problems.

Feature MILP metaheuristic two-phase

Cost as objective possibly yes yes
Member design rules approximate exact exact
Buckling assessment approximate exact exact

Joint design rules in some cases yes yes
Semi-rigid joints possibly yes yes
Calculation time long long moderate
Implementation difficult easy moderate

Verification of optimality yes no no

design with higher computational effort than the two-phase approach. Thus it would be of interest
to try the performance of the newest metaheuristics in the second phase.

4.2 Summary of the main results

In the original Publications I-VI three types of frame optimization techniques are used:

1. Direct application of metaheuristic approaches

2. Mixed-integer linear programming (MILP) approach

3. Two-phase approach

Based on the publications and the work done within the topics, features of different approaches
are described in qualitative fashion (Table 4.1). All of the aspects, such as semi-rigid joints, are
not covered in the Publications I-VI included in the thesis but this feature has been tested by the
author. The aspect of cost as objective has been considered in contributions related to tubular
trusses (Publications I and II) but not in the others.

In the original publications, the ease of implementation is not considered directly. All of the
methods have multiple tunable parameters. They were run with default values with commercial
computer programs and with parameter values selected based on literature when university-made
codes were used. The effect of varying the tunable parameters were thus not covered by the
thesis. However, it should be acknowledged that performance of some methods may be sensitive
to parameter choices.

It seems thus, that none of the approaches presented is better than others with respect to all crite-
ria mentioned in Table 4.1. This implies that optimization approach should be chosen according
to features needed in the specific application at hand. Possibly parallel or sequential use of the
approaches would be beneficial. Based on performance in numerical examples in the publica-
tions I-IV and VI, however, the two-phase approach can be considered best performing of the
considered optimization approaches.

The MILP approach has been found to be effective in roof truss optimization (Mela 2013). How-
ever, in truss sizing optimization problem in Publication VI the MILP approach seems to be very
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time consuming. That is also the case in Publication III and IV in which moderately sized frames
are optimized. This may be due to fact that in the roof truss topologies considered by Mela con-
straints were added to prevent bracing members to cross each other to ensure manufacturability
of the truss. While it has not been rigorously proven that those constraints result in a statically
determinate design it has been noted that all the resulting topologies were statically determinate.
Thus, the compatibility constraints can be considered inessential. In the truss in Publication VI
and frames in Publications III and IV, the structures are statically indeterminate to a high degree
meaning that compatibility constraints are needed. If MILP truss sizing optimization is com-
plemented with a displacement constraint when using software described by Mela, Alinikula,
Tiainen, Heinisuo & Sorsa (2015) the solution slows down considerably. These findings may
imply that the computational difficulty is located in the compatibility constraints.

4.3 Future work on the topic

As implied by Table 4.1, several paths are open for future research in the area of discrete code-
based based steel frame optimization. The semi-rigid nature of joints could be incorporated to
MILP, but it would be meaningful only if the cost of the joints could be incorporated to the
scheme as well. This maybe possible through a database of different joints for which resistance,
stiffness and cost would be evaluated. The approximate cost could then be obtained through
suitable response surface in resistance-stiffness space. Similar work has been carried out by
Díaz, Victoria, Querin & Martí (2012).

In the thesis, only planar structures were considered. Theoretically, there are no obstacles on
moving to 3D structures. However, 3D structures involve complicated 3D stability issues, more
complicated resistance assessment and more degrees of freedom in the analysis model. The first
two points may mean challenges in implementation of the optimization and the last one means
increased computational effort.

When moving to 3D problem, the buckling length assessment becomes more complicated. The
methods proposed in Publication V need to be generalized to recognize in-plane and out-of-plane
eigenmodes from 3D analysis. Moreover, the methods in Publication V could be generalized to
include lateral torsion buckling modes. This, however, would require the use of finite element
that includes warping as degree of freedom. Suitable element has been proposed by Barsoum &
Gallagher (1970).

Also, the effect of fire protection and improved steel strength on structure cost could be studied
on other structures than tubular trusses as well. Requirement for this is clearly a well suited
formulation and cost assessment and a robust optimization procedure.

The two-phase approach was originally proposed around thirty years ago. However, for some rea-
son it has not been used widely during that time but different metaheuristics have been developed.
It seems, however, that the two-phase approach might be usable in structural optimization and,
even though the performance is demonstrated in Publication VI in some numerical examples, the
full potential of the approach is not yet exploited.
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5 Conclusions
Motivation for this study is to find an optimization approach for discrete sizing optimization under
code-based constraints. The approaches found in the literature seem to have issues with regard
to computational efficiency and/or the quality of solution. In some optimization approaches, the
code-based constraints may be unusable due to their mathematical structure.

Within this thesis, three kinds of approaches have been adopted: direct applying of metaheuristics,
direct applying of mixed-integer reformulations, and applying a two-phase approach in which the
problem is relaxed continuous in the first phase and either mixed-integer or metaheuristics are
used in the second phase with limited discrete design space. All of the approaches seem to have
some advantages and drawbacks when compared to each other.

The results obtained in the thesis imply that the most promising branch for further development
is the two-phase approach. Even though the optimality cannot usually be proven, the compu-
tational efficiency in comparison to directly applying metaheuristics seems high. Theoretically
the relaxed problems should have certain mathematical properties but based on test in example
problems it did not matter even if they did not possess those properties. Thus when comparing
to MILP reformulations, the two-phase approach does not seem to have as strict limitations for
mathematical properties of the objective and constraint functions.

Moreover, even though the member resistance evaluation of EN 1993-1-1 could be linearized to
fit MILP scheme, it seems that computational efficiency of this approach is low compared to other
approaches. Still, the MILP approach possesses the good feature of being able to give guaranteed
optimum of the problem. Thus, it could be used for scientific purposes for finding the global
optimum of benchmark problems and to help to verify the performance of other approaches.

Within the thesis, some knowledge is obtained from the structural design itself. Based on the
work done with cost optimization, it can be said that truss design approach should be such that
it includes the fire design assessment in some degree even if the actual fire protection design
would be completed by an expert in the field of fire protection. Moreover, when considering
roof structures with no requirement for fire protection with intumescent paint, for example due
to automatic fire extinction system, the high strength steels or hybrid solutions can be a tempting
option.
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Optimization of tubular trusses using intumescent coating
in fire

Timo Jokinen, Kristo Mela, Teemu Tiainen1 and Markku Heinisuo

Summary. In steel structures, the cost of fire protection can be significant. They are typically
designed to resist loads at room temperature after which the fire protection is considered. This
widely used approach may result in expensive and unpractical solutions. On the other hand,
automatic design systems utilizing optimization allow taking fire design aspects into account
simultaneously. In this research, these two approaches are compared in a tubular roof truss
case where intumescent coating is used as fire protection. The results show clearly the benefits
of combined structural and fire engineering design. Design with Finnish national and ETA
approvals of intumescent coating are compared for 30 and 60 minutes resistance to standard
fire. It is shown, that ETA-approved rules indicate increased costs to tubular structures for
60 minutes fire. For 30 minutes the difference between the two approval systems were less
significant.
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Introduction

Tubular welded trusses are widely used in buildings due to their aesthetically pleasing
appearance, good load bearing capacity and cost effectiveness. An essential property of
a truss is its fire resistance, because all buildings have to fulfill local fire regulations. The
fire scenario is defined for each given project, and typically either ISO-834 fire or natural
fire is employed. The resistance of the structure in fire can be accomplished without
any additional protection, or by using either passive or active fire protection. These
approaches can also be combined such that appropriate structural performance in fire is
achieved by increasing the member sizes as well as applying fire protection. As different
methods for attaining a suitable fire resistance are available, the designer is faced with
the task of finding the most economical approach for the structure at hand.

The purpose of the present study is to assess the economy of welded single span tubu-
lar roof trusses under ISO-834 fire when intumescent paint is employed as fire protection
(Fig. 1). Two design approaches are compared. The first approach emulates a ”conven-
tional” engineering practice, where the truss is first designed in room temperature and
the required paint thickness in fire conditions is determined in a second design phase. In
the second approach, member sizing and determination of paint thickness are performed

1Corresponding author. teemu.tiainen@tut.fi
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Figure 1. Considered case.

simultaneously such that the total cost of the truss is minimized. This more advanced
approach relies on iterative optimization methods as finding the minimum cost design
requires a compromise between minimizing the member sizes and minimizing the amount
of paint.

The design of trusses is governed by the Eurocode EN 1993. For fire design, EN
1993-1-2 [5] is employed. The standard enables the use of various approaches for showing
sufficient structural safety in fire conditions. In this study, the method of the critical
temperature is adopted. The idea is to determine the (critical) temperature at which the
structure collapses under the loads of fire situation. The paint producers provide tables
that give the required intumescent coating thickness for given critical temperature at and
cross-section section factor at specific time.

The method for the intumescent design in Finland is moving from nationally ap-
proved certified product declarations from the Finnish Constructional Steelwork Asso-
ciation (FCSA) to European Technical Approval (ETA) specifications. This affects the
testing method and ultimately the required fire paint thickness. In this study, the ETA
approved intumescent FIRETEX FX2002 is used [14]. This is compared with the older
FIRETEX FX2000 which is approved by FCSA [2] in R30-R60 (valid until June 1st 2016).
Requirements R30 and R60 mean that structure is supposed to withstand loads for 30
and 60 minutes, respectively, after the beginning of fire. As the range of validity and the
thickness of the intumescent coating is different for the two approvals, it is interesting to
examine the influence of the newer ETA system on the total cost of the truss, compared
with the older FCSA approval. This comparison is included in the present study.

For minimizing the cost of the truss, the costs of the different fabrication phases need
to be evaluated. Several methods for estimating the fabrication costs of steel structures
have been presented in the literature [20, 11, 17, 15, 13, 7]. In this study, a feature-based
costing method [8] adopted. The cost of material, blasting, sawing, welding, painting and
intumescent painting are included in the cost function. The unit costs and fabrication
times are estimated based on discussions with local workshops.

In order to minimize the costs, the truss design task must be formulated as a math-
ematical programming problem with clearly defined design variables, objective and con-
straints functions. The cost minimization problem of tubular trusses in fire conditions
according to the Eurocode leads to a nonlinear discrete optimization problem where some
of the functions are known only implicitly with respect to the design variables. For such
problems, the variety of applicable solution methods is rather limited. In this study,
a meta-heuristic population-based Particle Swarm Optimization (PSO) method is em-
ployed. This method has been found reliable for discrete truss optimization in previous
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Figure 2. Advanced approach and engineering approach for truss design in fire conditions.

research [10].
The paper is organized as follows. Firstly, the two approaches for truss design in fire

conditions considered in this study are described. Then, the cost optimization problem is
presented, including details of structural modelling and design according to the Eurocode.
The results of optimization are treated in detail, and finally, the implications of the study
are discussed.

Tubular truss design in fire conditions

Designing trusses for fire safety using intumescent coating involves determining the mem-
ber profiles and the thickness of the coating. The required amount of the fire paint
depends on the dimensions of the cross-section. For tubular profiles, the key factor is the
wall thickness, i.e. for thicker profiles, less paint is required. Consequently, the minimum
cost design is a compromise between reducing the member sizes and the amount of intu-
mescent paint. In general, this is not a simple task to be solved relying only on experience
and engineering skills.

In this study, two approaches for truss design in fire conditions are considered. The
first approach emulates a conventional engineering process, whereas in the second the
cost minimization task is treated more comprehensively. In both approaches, the design
is governed by the Eurocodes EN 1993-1-1 [4], EN 1993-1-8 [6] for members and joints in
ambient conditions, and EN 1993-1-2 [5] for fire design. In this study, the recommended
values of all parameters are used, i.e. no national annexes are employed.

The two approaches are schematically illustrated in Fig. 2.

Engineering approach

A typical design procedure is to first design the truss in ambient conditions (room temper-
ature), and then to determine the required fire paint thickness for the obtained member
profiles.

162



The design of the truss in ambient conditions is carried out by applying an optimization
procedure. This emulates a seasoned engineer, who conventionally tries to find the most
economical solution based on experience and judgment.

Advanced approach

It is clear the the engineering approach might lead to relatively thick intumescent coating,
because the member profiles are made a small as possible in ambient conditions. In order
to obtain more economical solution, sizing of the member profiles should be coupled
with the determination of the coating thickness. The method of critical temperature
is employed along with manufacturer’s tables for finding the required intumescent paint
thickness.

The minimum cost design is determined using a similar optimization procedure as for
the engineering approach. The main difference is that now the cost of the intumescent
paint is included in the cost function, whereas for the engineering approach, the cost of
the paint is calculated only after the optimization has been terminated.

Cost minimization

Both approaches to truss design in fire conditions rely on optimization. Consequently,
the truss design task must be formulated as an optimization problem, which includes the
definition of design variables, objective function and constraints. This is described in
the following along with details on structural modelling and fire design according to the
Eurocode.

Structural modelling and design

For evaluating the performance of the truss in elevated temperature, structural analysis
in fire conditions must be performed. The truss considered in this study is globally
statically determinate truss of Fig. 1. Due to the structural analysis model used in this
study the truss is internally statically indeterminate, but is has been shown that when
the global support conditions are statically determinate, linear analysis predicts rather
well the ultimate situation of the truss in fire [1]. This is especially true when dealing
with the stress resultants of the truss.

The resistance of members and joints is verified in the Ultimate Limit State (ULS)
in fire. The deflections are handled with pre-cambering, and they are not included in
the analysis. The height of truss is L/10 (L = 36 m is the span) at mid-span and it is
measured from the bottom of the bottom chord to the top of the top chord. The slope of
the top chord is 1:20. The truss consists of K-joints, with the gap of 50 mm at each joint.
The joints are located evenly at the chords.

The design load in ambient conditions is a uniform load 23.5 kN/m at the top chord
and in fire conditions the load is approximated as 0.4 · 23.5 kN/m.

The gaps and profile dimensions induce eccentricities at the joints, which cause sec-
ondary bending moments in the members. This is taken into account by introducing rigid
eccentricity elements at the joints (Fig. 3). An eccentricity element is created between the
mid-line of the chord and the intersection of the mid-lines of the connecting braces such
that the element is perpendicular to the chord. The location of the nodes of the eccentric-
ity element is calculated from the member profile dimensions, gap size and angles of the
braces. Such structural model based on the accurate geometry is an important feature for
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Figure 3. Local structural models of K-joints following EN 1993-1-8.

structural analysis and optimization according to the Eurocode, when the joint design is
included in the procedure, because the details of the joints have an impact on the global
structural model and therefore on the internal forces of the members.

The chords are modelled as continuous beams and diagonals are hinged at both ends.
Euler-Bernoulli beam elements are used for the members and for the local models of the
joints [10]. The buckling length of each member is 0.9 times the system length, which is
defined as in [3], see also [9].

Fire design of members is performed using the method of critical temperatures of EN
1993-1-2 and calculating the minimum required intumescent thickness for each member.
For compressed members the critical temperature is dependent on the elastic modulus
temperature reduction in addition to yield strength reduction. This means that the
critical temperature method is not directly applicable for compressed members, unless
some iteration is performed. Three iterations for each compressed member proved to be
sufficient to get the critical temperatures within 1◦C accuracy.

The critical temperature θa,cr (◦C) is calculated as

θa,cr = 39.19 · ln

(
1

0.9674µ3.833
0

− 1

)
+ 482, µ0 ≥ 0.013 (1)

where µ0 is the degree of utilization of the member in fire. When the µ0 of the member
is known the critical temperature of the member can be calculated using Eq. (1). For
square tubes the section factor value A/V ≈ 1/t can be used (see EN 1993-1-2). In this
expression t is the wall thickness of the tube in meters. When the critical temperature
θa,cr and the section factor A/V are known the required intumescent cover thickness is
retrieved from the tables of the coating fabricators.

The method for the intumescent design in Finland is moving from nationally ap-
proved certified product declarations from the Finnish Constructional Steelwork Asso-
ciation (FCSA) to European Technical Approval (ETA) specifications. This affects the
testing method and ultimately the required fire paint thickness. In this study, the ETA
approved intumescent FIRETEX FX2002 is used [14]. This is compared with the older
FIRETEX FX2000 which is approved by FCSA [2] in R30-R60 (valid until June 1st 2016).
Different calculation methods are employed for ETA and for FCSA. The ETA gives tables
for paint thicknesses when critical temperatures are known and FCSA gives formulas for
temperatures when the paint thickness is known. For a straightforward comparison, the
intumescent coating thickness tables are calculated also for the FCSA tables using the
same system as for the ETA, see Table 10 and Table 11. Neither FCSA product decla-
rations nor ETA specifications give separate rules for profiles in tension, thus values for

164



columns are used for all truss members. The paint thickness tables have values up to 5
mm, but in reality over 2 mm paint thicknesses often pose difficulties to transportation
and installation. However, these practical limitations are not considered here.

If Table 10 and Table 11 are compared with the corresponding tables for FIRETEX
FX2002 [14], it can be seen that the FCSA-approved values are valid for a wider range
of section factors and temperatures. With lower critical temperatures or higher section
factors the ETA produces significantly greater paint thicknesses. Alternatively, when
the critical temperature is high and the section factor relatively low, the difference is
quite small. For example, consider a tube with 8 mm wall thickness (A/V ≈ 125) with
650 ◦C critical temperature in R60 fire. The required intumescent paint thickness is
0.986 mm with FCSA and 1.208 mm with ETA. For 5 mm wall thickness (A/V ≈ 200),
the corresponding values are 1.578 mm and 3.290 mm, respectively. These significant
differences in required paint thicknesses probably originate from different paint testing
methods used by FCSA and ETA, but the exact reasons have not yet been fully explored.

The method of the critical temperature is also applied to joint design in fire. The
geometrical requirements for the joints are the same for ambient and fire conditions. The
resistance checks of welded tubular K-joints includes checks for 7 failure modes with axial
loads of the braces (Figure 7.3 of EN 1993-1-8): chord face failure, chord side wall failure,
chord shear failure, punching shear failure, brace failure, local buckling of the brace, and
local buckling of the chord. The resistance of the joint with respect to each failure mode
is expressed as the allowable member axial force.

Denote by Ni,Ed and Ni,Rd the axial force and the resistance of brace i in ambient
conditions, respectively. As linear structural analysis is performed, the axial force in
fire conditions is Ni,Ed,t0 = 0.40Ni,Ed. The resistance Ni,Rd,t0 is calculated at t = 0 for
each member of the joint using the limiting failure mode acting on that member. The
utilization ratios µ0 = Ni,Ed,t0/Ni,Rd,t0 can be then calculated for each member. The
process is very much similar as in normal member fire design.

In this study, the gas temperature follows the ISO-834 standard curve. It is recog-
nized by the authors that this choice places rather strict requirement for the structures.
Switching to natural fire design could often produce much more economical structures
regardless of the design approach used. However, as the scope of this paper is to compare
the two design approaches rather than to find the most realistic fire scenario, the widely
used ISO-834 curve is adopted.

Optimization

Sizing of the truss members is carried out by an optimization procedure, which requires
a careful definition the corresponding optimization problem. In this study, the member
profiles are taken as the discrete design variables. The profile catalogue is shown in
Table 1. It consists of cold-formed square tubes fabricated by SSAB [18]. The objective
is the fabrication cost of the truss, and the constraints are derived from EN 1993.

The fabrication costs include material, blasting, sawing, welding, painting and costs
of the intumescent paint. The material cost for S420 steel is 1 e/kg, and the cost of the
intumescent paint is 40 e/m2 per 1 mm coating thickness. If the thickness of the coating
is smaller or larger than 1 mm then the linear extrapolation is used. The amount of steel
and the surface area to be painted are calculated using the exact geometrical form of
the truss. Blasting, sawing and welding costs are calculated by a featured-based costing
method [8].
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Table 1. Catalogue of square hollow sections. The tube dimensions are given in form h × t, where h is
the outer dimension (width or height) in millimeters and t is the wall thickness in millimeters.

25x3 70x4 100x5 140x6 180x8
30x3 70x5 100x6 140x8 180x10
40x3 80x3 100x8 150x5 200x8
40x4 80x4 110x4 150x6 200x10
50x3 80x5 110x5 150x8 200x12.5
50x4 80x6 120x4 150x10 250x6
50x5 90x3 120x5 150x12.5 250x8
60x3 90x4 120x6 160x6 250x10
60x4 90x5 120x8 160x8 250x12.5
60x5 90x6 120x10 160x10 300x10
70x3 100x4 140x5 180x6 300x12.5

The numerical values of the different cost factors are very much dependent on the
country, contractor and other issues. However, in order to compare different solutions
these values must be estimated. In this study the costs mentioned above have been
obtained from discussions with contractors in Finland. Transport and erection costs on
site are not taken into account in this analysis, because they do not play an important
role in this comparison. In the engineering approach the cost of the intumescent paint is
not included in the objective function. The cost of fire protection is added to the other
fabrication costs of the truss after optimization.

The constraints are derived from the Eurocodes. For members this implies axial force,
shear force and bending moment resistances in ambient conditions. Flexural buckling and
beam-column behaviour of compression members are taken into account using EN 1993-
1-1, Method B. The corresponding resistances are also verified in fire conditions using EN
1993-1-2.

The K-joints (not at support and at the ridge) are checked in ambient conditions ac-
cording to EN 1993-1-8 and in fire by EN 1993-1-2. The joint constraints include the joint
resistance checks and the geometrical conditions which define the range of applicability of
the resistance rules. Full strength welds are used at the joints. This implies that for S420
members, the weld size is 1.4t where t is the wall thickness of the connected brace. In fire
condition the resistance of the welds is not considered. The details of the optimization
problem can be found in [19].

Sizing optimization is performed using the metaheuristic Particle Swarm Optimization
(PSO) method. PSO cannot guarantee the optimality of the solution, but with sufficiently
large swarm size and using proper parameters, satisfactory results can be obtained. The
details of PSO can be found in [12] and the applied constraint handling mechanism is
described in [16]. The algorithm is run with the following key parameters: population
size 250, iterations 120, number of runs 40.

In the engineering approach the truss is optimized in ambient conditions. To exclude
impractically thin profiles for fire design, the minimum wall thickness of 5 mm is pre-
scribed. This limitation is not needed in advanced approach due to the more holistic
nature of the method.

After optimization, the required intumescent thicknesses are calculated using the crit-
ical temperatures for the members and for the joints. If the critical temperature and
section factor combination is outside the range of the intumescent paint, the thickness
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Figure 4. Member labels.

Table 2. Results of optimization. Best found member profiles. The member labels correspond to Fig. 4.
TC and BC refer to top and bottom chords, respectively.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

TC 180x10 180x10 180x10 180x10 180x10 180x10 180x10 180x10
BC 120x8 120x8 120x8 120x8 120x8 150x10 120x8 120x10
B1 50x5 50x5 50x5 50x5 50x3 80x6 80x4 50x4
B2 70x5 70x5 70x5 70x5 70x3 80x6 70x4 80x4
B3 90x5 90x5 90x5 90x5 110x4 120x6 90x5 80x6
B4 70x5 70x5 70x5 70x5 80x3 100x6 70x4 70x5
B5 100x5 100x6 100x5 100x5 100x5 150x6 100x5 100x6
B6 70x5 70x5 70x5 70x5 70x4 100x6 70x4 80x6
B7 120x5 120x6 120x5 120x5 120x5 140x8 120x5 120x6
B8 90x5 90x5 90x5 90x5 90x4 120x6 90x6 80x6

of the member is increased for the next possible. Altogether four different intumescent
coating thicknesses are allowed in the truss: one for the top chord, one for the bottom
chord and two for the braces. This reflects the fact that at employing individual coating
thicknesses at the workshop is time-consuming and prone to errors. In the engineering
approach the grouping of the braces is done after the intumescent coating thickness is
defined to all members separately. In the advanced approach this sorting is done during
the optimization.

Results

The member profiles obtained by PSO are listed in Table 2 for different fire cases and for
the two approaches described above. As can be expected, the profiles obtained by the
engineering approach are nearly identical in all four cases. Only the braces B5 and B7
needed to be changed in R60 fire using ETA. In the advanced approach the member sizes
vary considerably depending on the case. Only the top chord profile remains constant
among the different cases.

The fire paint thicknesses for the optimized designs are shown in Table 3. For R30,
the paint thicknesses are nearly identical for both approaches and ETA and FCSA tables.
On the other hand, for R60, substantial differences can be observed. Using the advanced
approach clearly leads to thinner coating, especially when ETA approval is adopted. For
example, using the ETA approval, the engineering approach leads to paint thickness
of 1.949 mm for the bottom chord, whereas only 0.506 mm layer is required when the
advanced approach is utilized. Similar ratio applies for the braces as well, but for the
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Table 3. Fire paint thicknesses (mm).

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

Top Chord 0.462 0.980 0.325 0.885 0.462 0.987 0.325 0.885
Bottom Chord 0.462 1.949 0.427 1.166 0.462 0.506 0.427 0.879

B1 0.462 2.846 0.500 1.494 0.462 1.062 0.435 1.091
B2 0.462 2.846 0.500 1.494 0.462 1.062 0.435 1.091
B3 0.462 3.813 0.742 1.968 0.462 0.768 0.742 1.584
B4 0.462 2.846 0.500 1.494 0.462 0.768 0.435 1.091
B5 0.522 3.813 0.742 1.968 0.523 0.768 0.742 1.584
B6 0.522 2.846 0.500 1.494 0.523 0.768 0.742 1.091
B7 0.522 3.813 0.742 1.968 0.523 1.062 0.742 1.584
B8 0.522 3.813 0.742 1.968 0.523 1.062 0.435 1.584

Table 4. Minimum costs, the corresponding weights and costs distributions.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

Weight (kg) 1651 1670 1651 1651 1607 2105 1650 1764
Cost (e) 2569 4273 2543 3411 2499 3746 2534 3327

Material 1651 1670 1651 1651 1607 2105 1650 1764
Welding 146 165 146 146 108 297 139 176
Sawing 97 98 97 97 97 103 97 97
Blasting 22 22 22 22 22 22 22 22
Painting 128 127 128 128 130 147 130 127

Fire Paint 525 2191 499 1367 535 1071 496 1140

top chord, the paint thickness is virtually identical for both approaches. When the paint
thickness is determined according to FCSA, the difference between the two approaches
is smaller. The engineering approach leads to 25–36% greater paint thickness, except for
the top chord.

The costs and weights of the obtained designs are given in Table 4. The advanced
approach leads to slightly more economical designs with ETA in R30 and FCSA in R60.
There is practically no difference in cost using FCSA in R30. However, in R60 with ETA,
the advanced approach gives 12 % from the solution obtained by the engineering approach.
Note that in this case, the weight of the more economical solution is 26% greater than
the weight of the less economical design.

The cost distributions of the solutions, shown in Table 4, illustrate the fact that in
R60 the cost of the intumescent coating can be as great as (or greater than) the cost of
steel when engineering approach is employed. Using the advanced approach the cost of
the fire paint is always smaller than the material cost. Note that with the adopted unit
costs, the cost of fire paint is greater than the other fabrication costs combined.
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Table 5. Utilities of members with respect to the resistances.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

B1 0.01 0.01 0.01 0.01 0.01 0 0 0.01
B2 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01
B3 0.60 0.60 0.60 0.60 0.43 0.25 0.60 0.73
B4 0.26 0.26 0.26 0.26 0.36 0.15 0.32 0.26
B5 0.89 0.77 0.89 0.89 0.89 0.31 0.89 0.77
B6 0.58 0.58 0.58 0.58 0.70 0.33 0.70 0.42
B7 0.93 0.80 0.93 0.93 0.93 0.46 0.93 0.80
B8 0.71 0.71 0.71 0.71 0.86 0.44 0.60 0.69

TC1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
TC2 0.82 0.81 0.82 0.82 0.81 0.82 0.82 0.81
TC3 0.64 0.63 0.64 0.64 0.63 0.63 0.63 0.63
TC4 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
BC1 0.80 0.80 0.80 0.80 0.79 0.52 0.80 0.66
BC2 0.87 0.87 0.87 0.87 0.89 0.56 0.87 0.72
BC3 0.72 0.72 0.72 0.72 0.73 0.49 0.72 0.61
BC4 0.99 0.99 0.99 0.99 0.99 0.59 0.99 0.80

In order to evaluate the performance of PSO in this problem the utilization ratios of
members and joints with respect to the resistances are given in Table 5 and Table 6. The
”utilities” with respect to the geometrical properties of the joints are given in Table 7, and
the maximum utilization ratios for all members, including member and joint resistances
and the geometrical ”utilities” are given in Table 8. It can be seen, that very high
utilization ratios (values near 1.00) are obtained in all cases, which implies excellent
performance of the designs.

The sensitivity of the solutions with respect to the initial cost data is examined by
re-optimizing the structures using the steel material cost 0.8 e/kg instead of 1.0 e/kg.
The obtained costs and the corresponding weights are given in Table 9.

Table 6. Utilities of joints with respect to the resistance.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

B1-BC-B2 0.88 0.88 0.88 0.88 0.88 0.57 0.88 0.73
B2-TC-B3 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
B3-BC-B4 0.89 0.89 0.89 0.89 0.89 0.57 0.89 0.74
B4-TC-B5 0.58 0.59 0.58 0.58 0.53 0.44 0.58 0.6
B5-BC-B6 0.82 0.82 0.82 0.82 0.82 0.52 0.82 0.66
B6-TC-B7 0.81 0.81 0.81 0.81 0.81 0.58 0.82 0.75
B7-BC-B8 0.95 0.95 0.95 0.95 0.95 0.5 0.95 0.79
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Table 7. ”Utilities” of geometrical constraints at joints.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

B1-BC-B2 0.84 0.84 0.84 0.84 0.84 0.70 0.74 0.84
B2-TC-B3 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00
B3-BC-B4 0.83 0.83 0.83 0.83 0.92 0.83 0.83 0.74
B4-TC-B5 0.95 0.95 0.95 0.95 0.90 0.83 0.95 0.95
B5-BC-B6 0.95 0.95 0.95 0.95 0.95 1.00 0.95 0.90
B6-TC-B7 0.90 0.90 0.90 0.90 0.90 0.78 0.90 0.80
B7-BC-B8 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00

Table 8. Combined utilities.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

B1 0.88 0.88 0.88 0.88 0.88 0.70 0.88 0.84
B2 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00
B3 1.00 1.00 1.00 1.00 0.92 0.90 1.00 1.00
B4 0.95 0.95 0.95 0.95 0.92 0.83 0.95 0.95
B5 0.95 0.95 0.95 0.95 0.95 1.00 0.95 0.95
B6 0.95 0.95 0.95 0.95 0.95 1.00 0.95 0.90
B7 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00
B8 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00

TC1 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00
TC2 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00
TC3 0.95 0.95 0.95 0.95 0.90 0.83 0.95 0.95
TC4 0.90 0.90 0.90 0.90 0.90 0.78 0.90 0.80
BC1 0.88 0.88 0.88 0.88 0.88 0.70 0.88 0.84
BC2 0.89 0.89 0.89 0.89 0.92 0.83 0.89 0.84
BC3 0.95 0.95 0.95 0.95 0.95 1.00 0.95 0.90
BC4 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00

As the material unit cost is decreased, the advanced approach leads to greater savings
than in the first scenario, where the unit cost of steel was 1.0e/kg. Using ETA in R60,
the advanced approach gives 23 % more economical design than the engineering approach.
For the other cases, from 4 % to 8 % savings can be achieved by the advanced approach.

Conclusions

The findings of the present study indicate that the proposed ”advanced approach” should
be employed in fire design of tubular trusses in all cases. Especially when the fire resistance
requirement is high traditional method of finding the least weight solution does not seem
to produce the most economical solution. The single drawback of the advanced approach
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Table 9. Costs and weights of optimal cases using the steel material cost 0.8 e/kg.

Method Engineering Advanced

Paint ETA FCSA ETA FCSA

Fire R30 R60 R30 R60 R30 R60 R30 R60

Cost (e) 2317 4303 2292 3286 2197 3315 2210 3020
Weight (kg) 1630 1640 1630 1630 1619 1977 1643 1824

is that it requires unit costs for steel, intumescent paint and other fabrication phases. In
order to provide the designer with the best possible tools for finding the most economical
structures, the authors recommend that the workshops and steel producers make this
data available. This can be done, for example, in a closed design software, that enables
cost optimization but does not reveal all sensitive cost data.

In this study the particle swarm optimization method was employed, but the auto-
mated member sizing can be performed by other means as well, including sophisticated
mathematical programming methods, and ad hoc engineering rules. The most important
feature of advanced approach is the combined sizing and intumescent paint thickness de-
termination which are done simultaneously in order to find the most economical designs.

Finally, it should be noted that it is the experience of the authors that the discrete
optimization problem resulting from detailed structural modelling and constraints derived
from the Eurocode is very difficult to solve, and possibly a combination of heuristic
methods and mathematical programming algorithms leads to a suitable solution strategy.
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Appendix: FIRETEX FX2000 coating thickness tables

The coating thickness values are calculated using procedure described in [2]. The unit
system in the Tables is: Intumescent thickness [mm], Critical temperature T [◦C], Section
factor A/V [1/m].
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Table 10. FIRETEX FX2000, RHS, R30.

A/V
T

350 400 450 500 550 600 650 700 750 800 850

70 0.759 0.558 0.431 0.346 0.300 0.300 0.300 0.300 0.300 0.300 0.300
75 0.813 0.598 0.462 0.371 0.305 0.300 0.300 0.300 0.300 0.300 0.300
80 0.867 0.638 0.493 0.396 0.326 0.300 0.300 0.300 0.300 0.300 0.300
85 0.921 0.678 0.523 0.421 0.346 0.300 0.300 0.300 0.300 0.300 0.300
90 0.976 0.718 0.554 0.445 0.366 0.304 0.300 0.300 0.300 0.300 0.300
95 1.030 0.757 0.585 0.470 0.387 0.321 0.300 0.300 0.300 0.300 0.300
100 1.084 0.797 0.616 0.495 0.407 0.338 0.300 0.300 0.300 0.300 0.300
105 1.138 0.837 0.647 0.520 0.427 0.354 0.300 0.300 0.300 0.300 0.300
110 1.192 0.877 0.677 0.544 0.448 0.371 0.307 0.300 0.300 0.300 0.300
115 1.247 0.917 0.708 0.569 0.468 0.388 0.321 0.300 0.300 0.300 0.300
120 1.301 0.957 0.739 0.594 0.489 0.405 0.335 0.300 0.300 0.300 0.300
125 1.355 0.997 0.770 0.619 0.509 0.422 0.349 0.300 0.300 0.300 0.300
130 1.409 1.037 0.801 0.643 0.529 0.439 0.363 0.300 0.300 0.300 0.300
135 1.463 1.076 0.831 0.668 0.550 0.456 0.376 0.306 0.300 0.300 0.300
140 1.518 1.116 0.862 0.693 0.570 0.473 0.390 0.318 0.300 0.300 0.300
145 1.572 1.156 0.893 0.717 0.590 0.489 0.404 0.329 0.300 0.300 0.300
150 1.626 1.196 0.924 0.742 0.611 0.506 0.418 0.341 0.300 0.300 0.300
155 1.680 1.236 0.955 0.767 0.631 0.523 0.432 0.352 0.300 0.300 0.300
160 1.734 1.276 0.985 0.792 0.651 0.540 0.446 0.363 0.300 0.300 0.300
165 1.789 1.316 1.016 0.816 0.672 0.557 0.460 0.375 0.300 0.300 0.300
170 1.843 1.355 1.047 0.841 0.692 0.574 0.474 0.386 0.300 0.300 0.300
175 1.897 1.395 1.078 0.866 0.712 0.591 0.488 0.397 0.309 0.300 0.300
180 1.951 1.435 1.109 0.891 0.733 0.608 0.502 0.409 0.318 0.300 0.300
185 2.005 1.475 1.139 0.915 0.753 0.624 0.516 0.420 0.327 0.300 0.300
190 2.060 1.515 1.170 0.940 0.774 0.641 0.530 0.431 0.336 0.300 0.300
195 2.114 1.555 1.201 0.965 0.794 0.658 0.544 0.443 0.345 0.300 0.300
200 2.168 1.595 1.232 0.990 0.814 0.675 0.558 0.454 0.353 0.300 0.300
205 2.222 1.635 1.263 1.014 0.835 0.692 0.572 0.465 0.362 0.300 0.300
210 2.276 1.674 1.293 1.039 0.855 0.709 0.586 0.477 0.371 0.300 0.300
215 2.331 1.714 1.324 1.064 0.875 0.726 0.600 0.488 0.380 0.300 0.300
220 2.385 1.754 1.355 1.089 0.896 0.743 0.614 0.499 0.389 0.300 0.300
225 2.439 1.794 1.386 1.113 0.916 0.759 0.627 0.511 0.398 0.300 0.300
230 2.493 1.834 1.417 1.138 0.936 0.776 0.641 0.522 0.406 0.300 0.300
235 2.547 1.874 1.447 1.163 0.957 0.793 0.655 0.533 0.415 0.300 0.300
240 2.602 1.914 1.478 1.188 0.977 0.810 0.669 0.545 0.424 0.300 0.300
245 2.656 1.953 1.509 1.212 0.997 0.827 0.683 0.556 0.433 0.300 0.300
250 2.710 1.993 1.540 1.237 1.018 0.844 0.697 0.568 0.442 0.300 0.300
255 2.764 2.033 1.570 1.262 1.038 0.861 0.711 0.579 0.451 0.300 0.300
260 2.818 2.073 1.601 1.286 1.059 0.878 0.725 0.590 0.460 0.306 0.300
265 2.873 2.113 1.632 1.311 1.079 0.894 0.739 0.602 0.468 0.312 0.300
270 2.927 2.153 1.663 1.336 1.099 0.911 0.753 0.613 0.477 0.318 0.300
275 2.981 2.193 1.694 1.361 1.120 0.928 0.767 0.624 0.486 0.323 0.300
280 2.233 1.724 1.385 1.140 0.945 0.781 0.636 0.495 0.329 0.300
285 2.272 1.755 1.410 1.160 0.962 0.795 0.647 0.504 0.335 0.300
290 2.312 1.786 1.435 1.181 0.979 0.809 0.658 0.513 0.341 0.300
295 2.352 1.817 1.460 1.201 0.996 0.823 0.670 0.521 0.347 0.300
300 2.392 1.848 1.484 1.221 1.013 0.837 0.681 0.530 0.353 0.300

174



Table 11. FIRETEX FX2000, RHS, R60.

A/V
T

350 400 450 500 550 600 650 700 750 800 850

70 1.465 1.187 0.993 0.847 0.730 0.634 0.552 0.479 0.409 0.339 0.300
75 1.569 1.272 1.064 0.908 0.782 0.679 0.592 0.513 0.438 0.363 0.300
80 1.674 1.357 1.135 0.968 0.835 0.725 0.631 0.547 0.467 0.387 0.305
85 1.778 1.442 1.206 1.029 0.887 0.770 0.671 0.581 0.496 0.412 0.324
90 1.883 1.526 1.277 1.089 0.939 0.815 0.710 0.616 0.526 0.436 0.343
95 1.988 1.611 1.348 1.150 0.991 0.861 0.750 0.650 0.555 0.460 0.362
100 2.092 1.696 1.419 1.210 1.043 0.906 0.789 0.684 0.584 0.484 0.381
105 2.197 1.781 1.490 1.271 1.095 0.951 0.829 0.718 0.613 0.509 0.400
110 2.302 1.866 1.561 1.331 1.148 0.997 0.868 0.753 0.642 0.533 0.419
115 2.406 1.950 1.632 1.392 1.200 1.042 0.907 0.787 0.672 0.557 0.439
120 2.511 2.035 1.703 1.452 1.252 1.087 0.947 0.821 0.701 0.581 0.458
125 2.615 2.120 1.774 1.513 1.304 1.132 0.986 0.855 0.730 0.605 0.477
130 2.720 2.205 1.845 1.573 1.356 1.178 1.026 0.889 0.759 0.630 0.496
135 2.825 2.290 1.916 1.634 1.408 1.223 1.065 0.924 0.788 0.654 0.515
140 2.929 2.374 1.987 1.694 1.461 1.268 1.105 0.958 0.818 0.678 0.534
145 2.459 2.058 1.755 1.513 1.314 1.144 0.992 0.847 0.702 0.553
150 2.544 2.129 1.815 1.565 1.359 1.184 1.026 0.876 0.726 0.572
155 2.629 2.200 1.876 1.617 1.404 1.223 1.060 0.905 0.751 0.591
160 2.713 2.271 1.936 1.669 1.450 1.263 1.095 0.934 0.775 0.610
165 2.798 2.342 1.997 1.721 1.495 1.302 1.129 0.964 0.799 0.629
170 2.883 2.413 2.057 1.774 1.540 1.341 1.163 0.993 0.823 0.648
175 2.968 2.484 2.118 1.826 1.585 1.381 1.197 1.022 0.848 0.667
180 2.555 2.178 1.878 1.631 1.420 1.231 1.051 0.872 0.686
185 2.626 2.239 1.930 1.676 1.460 1.266 1.081 0.896 0.705
190 2.697 2.299 1.982 1.721 1.499 1.300 1.110 0.920 0.724
195 2.768 2.360 2.034 1.767 1.539 1.334 1.139 0.944 0.744
200 2.839 2.420 2.087 1.812 1.578 1.368 1.168 0.969 0.763
205 2.910 2.481 2.139 1.857 1.618 1.402 1.197 0.993 0.782
210 2.981 2.541 2.191 1.903 1.657 1.437 1.227 1.017 0.801
215 2.602 2.243 1.948 1.697 1.471 1.256 1.041 0.820
220 2.662 2.295 1.993 1.736 1.505 1.285 1.065 0.839
225 2.723 2.347 2.038 1.775 1.539 1.314 1.090 0.858
230 2.784 2.399 2.084 1.815 1.573 1.343 1.114 0.877
235 2.844 2.452 2.129 1.854 1.608 1.373 1.138 0.896
240 2.905 2.504 2.174 1.894 1.642 1.402 1.162 0.915
245 2.965 2.556 2.220 1.933 1.676 1.431 1.187 0.934
250 2.608 2.265 1.973 1.710 1.460 1.211 0.953
255 2.660 2.310 2.012 1.744 1.489 1.235 0.972
260 2.712 2.356 2.052 1.779 1.519 1.259 0.991
265 2.765 2.401 2.091 1.813 1.548 1.283 1.010
270 2.817 2.446 2.131 1.847 1.577 1.308 1.029
275 2.869 2.491 2.170 1.881 1.606 1.332 1.049
280 2.921 2.537 2.209 1.915 1.635 1.356 1.068
285 2.973 2.582 2.249 1.950 1.665 1.380 1.087
290 2.627 2.288 1.984 1.694 1.404 1.106
295 2.673 2.328 2.018 1.723 1.429 1.125
300 2.718 2.367 2.052 1.752 1.453 1.144
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Teemu Tiainen, Kristo Mela, Timo Jokinen, Markku Heinisuo

Abstract

In this paper, the effect of steel grade in weight and cost of Warren-type welded tubular
roof trusses is considered. For unbiased comparison, best truss designs are obtained with
optimization. Steel strength ranges from S355 to S960. Costs are calculated based on fea-
tures of the trusses. The starting point is the exact geometry of the truss from which the
finite element analysis model is derived. This approach allows the resistance and other re-
quirements of design standards for both for the members and the joints to be included as
constraints in the optimization problem. Design variables are the height of the truss, the
locations of the joints, gap width at the joints and the member sections using a catalogue of
cold-formed square tubes. Unlike with the optimization formulations found in the literature,
the resulting design using this formulation is fully compliant with relevant standards without
post-processing steps. In this case the Eurocode 3 standards were applied. The results of
the comparison imply a significant saving in weight when using high strength steel. Cost
reduction is smaller but existent. The results motivate the use and further research of high
strength steels in building products.

1 Introduction

In contemporary automotive applications, high strength steels (HSS) are widely employed but in
buildings the prevailing steel grade is S355. Progress in manufacturing technologies has made
HSS readily available also for structural applications. Increased strength of the material im-
plies lighter structures, which makes HSS appealing for the designer. However, the material and
fabrication costs of HSS are still somewhat higher compared to milder steels. Moreover, cer-
tain rules of the Eurocodes impose tighter restrictions on HSS than on S355. For example, the
bounds cross-section classes become tighter for HSS as the ε =

√
235/fy becomes smaller for

increasing yield strength.

Consequently, assessing the economic performance of HSS in relation to milder steels is not a
straightforward task. Presumably the actual benefits of HSS depend on the application and in
practice on the skills of the designer, and general statements on the matter are difficult to obtain.
In this study, the performance of HSS in tubular roof trusses is evaluated. These structures are
widely employed when longer spans are required and when precamber can be used to control
deflections, the higher strength of the material can be utilised.

The approach of the study is to find minimum cost and minimum weight designs of typical
roof trusses for different steel grades. The cost calculation is performed by a general feature-
based costing method (Haapio 2012) that adopted for tubular trusses. This approach provides
unbiased and quantified data on potential cost and weight savings of HSS compared to S355.
In the literature the economical benefits of high strength steel have been presented for bridges
(Günther 2005) and sports arenas (Cederfeldt & Sperle 2012). In these studies, the costs are
approximated based on the structural weight and unit costs. The ecological benefits of HSS have
also been treated (Stroetmann 2012).

Several researches have analysed the cost distribution of steel structures (Nethercot 1998, Carter,
Murray & Thornton 2000, Evers & Maatje 2000, Salokangas 2009, Jalkanen 2007). Although
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there is some variation in the figures, a general conclusion is that manufacturing cost plays an im-
portant role in the economy of steel structures. Therefore, the cost function used in optimisation
should include the manufacturing costs. Various cost functions of varying degree of detail have
been proposed in the literature (Watson, Dallas, Van der Kreek & Main 1996, Jármai & Farkas
1999, Sarma & Adeli 2000, Jármai & Farkas 2001, Farkas, Simões & Jármai 2005, Pavlovčič,
Krajnc & Beg 2004). The feature-based costing method (Haapio 2012) employed in the present
study aims at highly detailed expressions of all relevant factors contributing to the total cost of
the structure. For tubular trusses, these factors include material, blasting, sawing, welding and
painting. Transport and erecting of the truss could also be included, but as these costs are not
essentially affected by the results of optimisation, they are omitted.

An essential part of the present study is formulating the tubular truss design task a mathematical
optimisation problem to which suitable numerical methods can be applied. The problem formula-
tion should reflect the actual design situation as accurately as possible, because if certain design
aspects are omitted from optimisation, the results can be inapplicable in practice. This would
distort the comparison of steel grades. In the present study, shape optimisation of the truss is
considered, which means that in addition to optimal member profiles, also the optimal joint loca-
tions are determined. Member cross-sections are chosen from a catalogue of predefined alterna-
tives. The constraints are derived from the Eurocode 3 (CEN 2006a, CEN 2006c, CEN 2006b),
and they include member and joint resistance checks as well as conditions on joint geometry.
The structural model is also in accordance with EN 1993 such that bending of the chords and
eccentricities of the joints are taken into account. Actual geometry of the joints is utilised in
constructing the structural model for determining the internal forces.

The resulting optimisation problem includes discrete and continuous variables and highly nonlin-
ear constraints. Moreover, the constraints are evaluated by a separate structural analysis module
such that the mathematical structure of the optimisation problem cannot be effectively utilised.
Such optimisation problems can be treated by a limited number of methods. In this study, Particle
Swarm Optimisation (PSO) method (Kennedy & Eberhart 1995), which is a stochastic optimisa-
tion algorithm capable of treating problems with discrete design variables and constraints derived
from design rules. The choice of algorithm is based on previous investigations (Jalkanen 2007).

The structures considered are two Warren-type trusses (with and without verticals). The layouts
are based on a preliminary study (Bzdawka & Heinisuo 2012).

The paper is organized as follows. In the Section 2, the basis of the optimisation problem is
presented. This include structural modelling of the truss as well as derivation of the constraints
and description of the cost evaluation. Next, in Section 3, the optimization procedure and the
results are presented. Finally, the findings of the study are discussed in Section 4.

2 Truss evaluation

In order to study the behaviour of trusses using optimization an automatic parametric truss eval-
uation is obligatory. In this study, the automatic truss evaluation is implemented in Matlab
(Mat 2011) and it checks the constraints of a given tubular steel truss with given uniform load
at the top chord. The flow chart of the evaluation module is shown in Fig. 1. The constraints
are derived from requirements of EN 1993-1-1 (CEN 2006a) for members and of EN 1993-1-8
(CEN 2006c) for the joints. These standards cover steel grades up to yield strength 460 MPa. For
higher strength, the standard EN 1993-1-12 (CEN 2006b) is applied. The scope of EN 1993-1-12
is limited to yield strength 700. In this paper, when S960 steel performance is evaluated, the rules
given by EN 1993-1-12 were applied.

The truss evaluation output are the scaled values of constraints when the input parameters of the
truss are given. The truss is feasible following EN-standards, if the constraint value is in the
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Figure 1: Truss evaluation flow chart.

Figure 2: Layouts of the Warren trusses considered.

range [0, 1]. The truss module is made for two topologies of Warren type trusses: with vertical
members (Type 1) and without verticals (Type 2), see Fig. 2. The trusses are typical one span
symmetric roof trusses with fixed roof inclination 1:20 and span of L = 36 m. The trusses
are tubular trusses with welded gap joints. Eccentricities at the joints are taken into account as
described later.

The used library of cold-formed tubular member profiles is shown in Table 1. Only cross-sections
with the minimal wall thickness 3 mm are considered due to limitations in the joint design of EN
1993-1-8. The material combinations examined in this paper are shown in Table 2.

The design loads are uniform 23.5 and 47 kN/m at the top chord. These are the loads in the
ultimate limit state. Deflections are not considered, because they are compensated typically in
these trusses by the pre-camber.

2.1 Truss geometry

The geometry of the truss is defined with 23 (KT-truss) or 19 (K-truss) design variables:
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Table 1: The list of available cold formed square hollow section profiles. B is the width, H the
height and t the wall thickness.

Number BxHxt [mm] Number BxHxt [mm] Number BxHxt [mm]
1 25x25x3 19 90x90x4 37 150x150x6
2 30x30x3 20 90x90x5 38 150x150x8
3 40x40x3 21 90x90x6 39 150x150x10
4 40x40x4 22 100x100x4 40 150x150x12.5
5 50x50x3 23 100x100x5 41 160x160x6
6 50x50x4 24 100x100x6 42 160x160x8
7 50x50x5 25 100x100x8 43 160x160x10
8 60x60x3 26 110x110x4 44 180x180x6
9 60x60x4 27 110x110x5 45 180x180x8
10 60x60x5 28 120x120x4 46 180x180x10
11 70x70x3 29 120x120x5 47 200x200x8
12 70x70x4 30 120x120x6 48 200x200x10
13 70x70x5 31 120x120x8 49 200x200x12.5
14 80x80x3 32 120x120x10 50 250x250x6
15 80x80x4 33 140x140x5 51 250x250x8
16 80x80x5 34 140x140x6 52 250x250x10
17 80x80x6 35 140x140x8 53 250x250x12.5
18 90x90x3 36 150x150x5 54 300x300x10

55 300x300x12.5

Table 2: The material combinations examined.
Chords Braces
S355 S355
S500 S500
S700 S700
S500 S355
S700 S355
S700 S500
S960 S960
S960 S355
S960 S500
S960 S700

• Distances a1, a2, . . . , a7 between the joints starting from the mid span, range 0.5 - 5 m, see
Fig. 3;

• Height H of the truss at the mid span, range 0.5 - 5 m;

• Gap g at the joints, range 10 - 50 mm, step 1 mm.

• Chord member sizes (2 variables, 55 possible sizes seen in Table 1)

• Diagonal brace member sizes (8 variables)

• Vertical brace member sizes (4 variables, present only in type 1 truss)

The shape of the truss is altered by variables ai and H . The variables ai control the position of
the joints along the span, whereas H is the total height of the truss measured from the top of the
top chord to bottom of lower chord as shown in Fig. 4.

The definition of distances ai is illustrated in Fig. 3. In type 1 truss (with verticals) the ai are the
distances along the horizontal axis between the midpoints of a given vertical and the next gap (or
vice versa). In type 2 truss the ai are measured between the midpoints of two consecutive gaps.
The gap with is depicted in Figs. 3–5.

The structural analysis model generation should start from the geometrical model of the structure
(Heinisuo, Möttönen, Paloniemi & Nevalainen 1991, Heinisuo, Laasonen, Ronni & Anttila 2010,
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Figure 3: Dimensions ai and distinction between geometrical and finite element models.

Wardenier, Packer, Zhao & van der Vegte 2010). In this study, the geometrical model is defined
by the design variables and it can be seen in Fig. 3 with bold continuous line. The finite element
analysis model has the same diagonal member directions but they are extended to the point where
two braces next to each other meet. From this point an eccentricity element is needed to connect
braces to the chord. The finite element model is seen in Fig. 3 with dashed line. Cross-sectional
properties of the eccentricity elements are supposed very rigid (same as HEB 600). If the length
of the eccentricity element is smaller than 1 mm then it is not present in the global model. Chords
are modeled as continuous beams and braces as hinged members. End support prevents vertical
displacement. The eccentricities at the joints between braces and chords are taken into account
both at the top chord and at the bottom chord to avoid the constraints given in EN 1993-1-8,
clause 5.1.5(5).

At the support the diagonal brace is connected to the support with a hinge without eccentricity
(see Fig. 3). In the FE analysis model the elements verticals are not necessary vertical, but the
real members are. By these means we avoid the use of inclined eccentricity elements at KT joints,
as is done in (Heinisuo et al. 1991). The joint at the support and the joint at the top chord next
to the mid-span are not checked in this study, because they are typically designed case by case.
Instead, all other K, KT and T joints between braces and chords are considered.

To generate the geometrical model starting from the parameters of the truss module consider
Fig. 4. The angle βi seen in Fig. 4 can be calculated by first calculating the angle βh from
distances y and x by

βh = arctan
y

x
(1)

Distances x and y for the particular diagonal member seen in Fig. 4, they can written as

x = ai − gi cosα− gi+1

2
(2)

and
y = H − hbc −

huc
cosα

− gi sinα (3)

The solution of βi is based on solution of second order polynomial expression:

(h2
i − y2)

1

sinβi
2 − 2hi cosβh

√
x2 + y2

1

sinβi
+ x2 + y2 = 0 (4)

By shortening
b = −2hi cosβh

√
x2 + y2 (5)
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Figure 4: Dimensions for defining the inclination of a brace member.

Figure 5: Eccentricities in the joint.

the solution becomes

1

sinβi
=
−b±

√
b2 − 4

(
h2
i − y2

)
(x2 + y2)

2
(
h2
i − y2

) (6)

from which βi > βh is chosen.

Consider Fig. 5. Eccentricity in direction perpendicular to chord can be calculated as (Ongelin
& Valkonen 2012)

ex =

(
h1

2 sinβ1
+

h2

2 sinβ2
+ g

)
sinβ1 sinβ2

sinβ1 + β2
− h0

2
(7)

and in the direction of the chord as

ey =
ex + h0

tanβ2
− g

2
− h2

2 sinβ2
(8)

or with vertical member present

ey =
ex + h0

tanβ2
− g +

hv
2
− h2

2 sinβ2
(9)

where h0 is the height of the chord, hv is the height of the vertical, h1 and h2 the heights of the
diagonals and β1 and β2 the angles of respective diagonal braces.

2.2 Constraints

Constraints are derived from requirements described in Eurocode steel design standards (CEN
2006a, CEN 2006c). For high strength steels, the standard (CEN 2006b) is also taken into ac-
count. Constraints for the resistances of the members and the joints are called as utilities. The
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members are checked for the interaction of the axial force and the bending moment and for shear.
For the interaction of the axial force and the moment the EN 1993-1-1, method 2 is used with the
recommended material factors γM0 = γM1 = 1.0 and the imperfection factor in buckling is α =
0.49. The factor Cmy = 1.0 is used for all members, but not for the top chord. The equation used
is (EN 1993-1-3 clause 6.3.3(4)):

NEd
χyAfy
γM1

+
kyyMy,Ed

Wpl,yfy
γM1

≤ 1 (10)

where

• χy is the reduction factor for the relevant buckling curve c;

• A is the cross-section area of the member;

• fy is the yield strength of the member;

• γM1 is the partial factor 1.0 in this case;

• kyy is the interaction factor;

• Wpl,y is the plastic section modulus.

Eq. 10 can also be written in shortened form by marking

NEd
χyAfy
γM1

= ny,
kyyMy,Ed

Wpl,yfy
γM1

= my (11)

⇒ ny +my ≤ 1 (12)

The left hand side of Eq. 10 is the utility of the member for the interaction of the axial force and
the moment. The interaction factor kyy is in this case for the top chord (plastic cross-sectional
properties)

kyy = Cmy min[1 + (λ̄y − 0.2)ny; 1 + 0.8ny] (13)

where factor Cmy is

Cmy = 0.1 + 0.8
Mspan

Msupport
(14)

and

λ̄y =

√
Afy
Ncr,y

(15)

and the buckling load Ncr,y is:

Ncr,y =
π2EIy
L2
cr,y

(16)

where buckling lengths Lcr,y are 0.9 times the member lengths in the analysis model and E =
210000 MPa. When calculating the cross-sectional property values A, Wpl,y and Iy the corner
radius of the profile shall be taken into account. The radii are defined following the standard EN
10219-2 (EN 10219-2 2006). They are:

• If the tube wall thickness t is smaller or equal to 6 mm then the outer radius r of the corner
is 2 times the wall thickness.

• If the wall thickness is larger than 10 mm then the outer radius is 3 times the wall thickness.

• In between it is 2.5 times the wall thickness.
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The effect of shear to resistances of the members is checked using EN 1993-1-1 clauses 6.2.6
and 6.2.8.

The utilities of K-joints are calculated as:

• Utility of brace:
Ni,Ed

Ni,Rd
≤ 1, i = 1, 2 (17)

• Utility of chord:
N0,Ed

N0,gap,Rd
≤ 1, i = 1, 2 (18)

The resistances of braces at K-joints are:

• Chord face failure:

Ni,Rd =
8.9knfy0t

2
0
√
γ

sin θi
β, i = 1, 2 (19)

• Chord shear:
Ni,Rd =

fy0Av0√
3 sin θi

, i = 1, 2 (20)

• Chord face punching shear if β ≤ (1− 1/γ):

Ni,Rd =
fy0t0√
3 sin θi

(
2hi

sin θi
+ bi + be.p

)
, i = 1, 2 (21)

• Brace failure:
Ni,Rd = fyiti(2hi − 4ti + bi + beff ), i = 1, 2 (22)

The resistance of the chord including the effect of shear in the gap area is:

N0,gap,Rd = (A0 −Av0)fy0 +Av0fy0

√
1−

(
VEd
Vpl,Rd

)2

(23)

The values for M0,Ed are taken as maximum values at both sides of the joint. The axial force
N0,Ed is the axial force from the tension diagonal side. The value for VEd is calculated as
maximum of [cos θiNi,Ed, cos θi+1Ni+1,Ed] where θi is the angle between the brace and the
chord and Ni,Ed is the axial force of the brace. All notations follow EN 1993-1-8. KT-joints
are checked using the same equations as K-joints but the resistance of the chord is checked as a
series of two K-joints. At T-joints the chord side wall failure is checked as well.

When using S500 and S700 steel the resistances of the joints should be multiplied by 0.8 (CEN
2006b). For S960 same values are used. Full strength welds are used at all joints. The weld
throat thickness are shown in Table 3.

Other constraints in K-joints deal with:

• Angles between braces and chords

θi ≥ 30 ◦ ⇒ 30 ◦

θi
≤ 1 (24)

• Cross-section classes of both chords and compressed braces should be 1 or 2 ;
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Table 3: Fillet weld throat thickness a for different material grades for full strength welds con-
necting tubular members as function of wall thickness t.

Material a

S355 1.11t
S500 1.61t
S700 1.65t
S960 1.68t

• Geometrical constraints

bi
b0
≤ 1, i = 1, 2 (25)

β ≤ 1 (26)

g ≥ t1 + t2 ⇒
t1 + t2
g

≤ 1 (27)

g

b0
≥ 0.5(1− β)⇒ 0.5(1− β)

g/b0
≤ 1 (28)

g

b0
≤ 1.5(1− β)⇒ g/b0

1.5(1− β)
≤ 1 (29)

hi
ti
≤ 35⇒ hi

35ti
≤ 1 (30)

h0

t0
≤ 35⇒ h0

35t0
≤ 1 (31)

If g/b0 ≥ 1.5(1− β) and g ≥ t1 + t2 then the K-joint is treated as two separate T-joints.

The length of the last part a8 is calculated from the span Lspan and sum of 7 other parts (see also
Fig. 3)

a8 = Lspan −
7∑

i=1

ai (32)

With large values of a1, a2 . . . , a7 it would be possible to have negative a8 which would not make
sense. Therefore, a8 is restricted to interval 0.5, . . . , 5 m. This is written as constraints

∑7
i=1 ai

Lspan − 0.5
≤ 1 (33)

Lspan − 5∑7
i=1 ai

≤ 1 (34)

For Type 2 truss constraints are:

• Interaction of axial force and bending moment, 4 elements at both chords, 8 member at
braces, 16 constraints;

• Shear resistance checks of the elements, 16 constraints;

• Resistance checks of K-joints, 7 joints, 7 · 2 + 7 · 1 = 21;

• Angles 16 constraints, checked also support and top joints;

• Cross-section class checks, 3x7 = 21;

• Gaps, dimensions and geometrical constraints 13x7 = 91;

9



Total amount for type 2 truss is thus 183 constraints. For Type 1 truss there are 259 constraints.
It should be noted that some of the constraints can be formed in linear form. Depending on
optimization method linearity is a highly sought after property. In this case when PSO is used
the constraints are normalized to have values at similar range and the linearity is not exploited.

2.3 Fabrication cost of a truss

As described in the introduction fabrication cost of a truss can be approximated in many ways.
In this study the feature based approach proposed by Haapio (2012) was adopted. The approach
is very general and requires a lot of input parameters and data of the fabrication process. In
the following, the method proposed by Haapio is applied to tubular trusses mainly following
his notation and parameter values presented in his thesis. The fabrication cost CT of a truss is
calculated as

CT = CSM +
∑

CB +
∑

CS +
∑

CW + CP [e] (35)

where CSM is material cost, CB is member blasting cost, CS is member sawing cost, CW is
member welding cost and CP is truss painting cost. Material cost is

CSM =
n∑

i=1

kgrade,i0.8WM,i [e] (36)

where kgrade,i is the material factor for ith member, WM,i [kg] is the weight of the member i and
n is the number of member in the truss.

The costs related to work shop action or a cost centre k can be expressed by

Ck =
(TNk + TPk) (cLk + cEqk + cMk + cREk + cSek)

uk
+ TPk (cCk + cEnk) + CCk (37)

where TNk is the non-productive time, TPk is the productive time, cLk is the labour unit cost,
cEqk is the equipment investment unit cost, cMk is the equipment maintenance unit cost, cREk is
the real estate investment unit cost, cSek is the real estate maintenance unit cost, cCk is the unit
cost of time related consumables, cEnk is the unit cost of energy needed, CCk is the total cost of
non-time-related consumables used, and uk is the utilization rate of the cost centre.

The utilization rate is assumed 1 in all workshop actions in this article. Values of other cost
factors need to be calculated according to space requirement, equipment, labour etc. needed by
the cost centres.

Real estate as well as equipment investment cost can be calculated as

cinv =
pinv
aw

i · (1 + i)n

i · (1 + i)n − 1
[e/min]; (38)

where pinv is the price for the real estate or equipment, i is the interest rate, aw is the work year
in minutes (120960 min) and n is the investment time in years. In real estate cost, the price is
supposed to be proportional to area of the cost centre. With assumed 5 % interest rate, 900 e/m2

unit price, area of A and 50 year investment time this becomes

cRE,i = 4.08 · 10−4A [e/min] (39)

The cost data used in this article can be seen in Table 4. The values are based on (Haapio 2012).

2.3.1 Blasting

The productive time used in blasting of a member with length L is defined by

TB =
L

vc
(40)

where vc is the conveyor speed. In this article vc = 3000 mm/min.
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Table 4: Assumed unit cost data. If a symbol instead of a numerical value is present, the value
is dependent on the assembly or member properties. If a − sign is present, the cost factor is not
relevant in the cost centre.

Action cL cEqk cMk cRek cSek cCk cEnk Cck
Blasting 0.46 0.13 0.01 0.16 0.24 0.02 0.07 -
Cutting 0.46 0.21 0.01 0.21 0.31 - 0.02 -
Welding 0.46 0.01 0 cReW cSeW cCW 0.01 -
Painting 0.46 0 0 0.03 0.04 - 0 CcP

2.3.2 Sawing

The productive time in sawing for one cut

TPSi =

h(
0.0328 ·

(
t

cos θi

)2
− 3.1794 · t

cos θi
+ 115.6

)
0.9

+
Ahi
8800

[min];

where h [mm] is the profile height, t [mm] is the profile wall thickness, θi [◦] is the sawing angle,
and Ah [mm2] is the area of horizontal part of the profile.

Total time of sawing one member takes two cuts.

The non-productive time in sawing (saw angle adjustment and conveyor roll) can be calculated
as

TNS = 6.5 + LS/20000[min] (41)

where LS is the length of the member to be sawn.

Cost of consumables (wear of saw blade) for one cut can be calculated as

CCSi =
100

TPSi
· Ati(
−1.188 ·

(
t

cos θi

)2
+ 188892 · t

cos θi
+ 4414608

)

[e/min];

where Ati total sawing area for the cut.

2.3.3 Welding

The welding time for one connection between brace and chord as a fillet weld can be calculated
as

TPWW =
LW
1000

·
(
0.4988 · a2 − 0.0005 · a+ 0.0021

)

where LW is the length of the weld and a is the throat thickness. The throat thickness for full
strength is dependent on material grade. The values used in this article are shown in Table 3.

Weld assembly preparation time consists of tack welding which is assumed 1,59 min/member.

Area requirement for real estate cost is assumed

AW = (Ltruss + 2)(Htruss + 2) [m2] (42)

This means that the real estate cost is dependent of the truss height which is also a design variable
in optimization.
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Table 5: Cost factors for different material grades.
Steel Material Sawing Welding
S355 1 1 1
S500 1.15 1.15 1.25
S700 1.30 1.30 1.50
S960 1.6 1.5 2

2.3.4 Painting

Both painting time and paint cost are proportional to painted area Ap. Painting time with alkyd
paint system AK 160/3 - FeSa21

2 can be calculated as

TPP = (0.513/900000)Ap [min] (43)

and paint cost as
CCP = 3.87 · 10−6Ap (44)

2.3.5 Material grade effect

Certain actions are more costly if the material yield strength is higher than S355. Those actions
in this paper are sawing and welding. In sawing, according to saw blade manufacturers lower
feeding speeds must be used and blade wear is greater. In welding, the welding wire is more
expensive and heat input limits defined by steel suppliers lower the maximum possible welding
speed. Also the high strength steel tubes are typically more expensive than S355. In the cal-
culations presented in this paper, coefficients shown in Table 5 were used to approximate these
higher costs.

3 Optimization

3.1 Optimization problem statement

The truss optimization problem can be written as

min
x∈Ω

f(x)

such that gJoint,jn(x) ≤ 0, j = 1, . . . , nj , n = 1, . . . , njn
gInteraction,i(x) ≤ 0, i = 1, . . . , ne
gShear,i(x) ≤ 0, i = 1, . . . , ne
gGeometry,jl(x) ≤ 0, i = 1, . . . , nj , l = 1, . . . , nc
gAngles,m(x) ≤ 0, m = 1, . . . 16
ga8,ub(x) ≤ 0
ga8,lb(x) ≤ 0

(45)

where f is the objective function (weight or cost) and x is the vector of design variables (see
Table 6). gJoint,jn is the joint utility constraint for nth brace in joint number j, nj is the num-
ber of joints, njn is the number of braces in joint j, gInteraction,i is the axial force - moment
interaction utility constraint of element i, gShear,i shear utility of element i, ne is the number of
member elements in the FE model, gGeometry,jl is the utility constraint of geometry check l in
joint number j, gAngles,m angle constraint value of angle m and ga8,ub and ga8,lb are the utilities
of upper and lower bound constraints of length a8 stated by Eqs. (33) and (34).
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Table 6: Design Variables in optimization. Variables 20–23 only present in type 1 truss.
Variable Description Values

xi ai i = 1, 2, . . . , 7 [0.5, 5] [m]
x8 Height H [0.5, 5] [m]
x9 Top Chord profile 1, 2, . . . , 55
x10 Bottom Chord profile 1, 2, . . . , 55
x11 Brace 1 profile 1, 2, . . . , 55
x12 Brace 2 profile 1, 2, . . . , 55
x13 Brace 3 profile 1, 2, . . . , 55
x14 Brace 4 profile 1, 2, . . . , 55
x15 Brace 5 profile 1, 2, . . . , 55
x16 Brace 6 profile 1, 2, . . . , 55
x17 Brace 7 profile 1, 2, . . . , 55
x18 Brace 8 profile 1, 2, . . . , 55
x19 Gap 10, 11, . . . , 50 [mm]
x20 Vertical 1 profile 1, 2, . . . , 55
x21 Vertical 2 profile 1, 2, . . . , 55
x22 Vertical 3 profile 1, 2, . . . , 55
x23 Vertical 4 profile 1, 2, . . . , 55

The objective function is either the structural weight or the total cost of the truss. The structural
weight is written as

W (x) = ρs

nm∑

i=1

Ai(x)Li,g(x) (46)

where ρs is the density of steel, and Ai and Li,g are the cross-sectional area and the length of
member i, respectively.

The expression of the total cost of the truss is

C(x) = CSM (x) +

nm∑

i=1

(CB(x) + CS(x) + CW (x)) + CP (x) (47)

As the problem includes both continuous and discrete variables and the constraints are non-linear,
it can be concluded that the problem is a mixed-integer nonlinear program (MINLP).

3.2 Optimization method and parameters

In optimization, the PSO method (Kennedy & Eberhart 1995) was used. It is a stochastic heuristic
method relying on a swarm of individuals moving in the design space. The solution the method
produces is usually good but convergence to local nor global optimum can not be proved.

Optimization runs were done using following PSO parameters:

• Inertia: 1.4;

• Factor to reduce the inertia: 0.8;

• Number of iterations without best found value enhancement to change the inertia: 3;

• Penalty factor: 2

There are many approaches in handling constraints in PSO. In the implementation used, a penalty
function approach was used. The standard problem

min f(x) (48)

s.t. g(x) ≤ 0
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Table 7: PSO run parameters.
Truss type Population Iterations Runs

KT 400 225 75
K 400 200 100

is replaced with unconstrained problem in which the criterion function is

f∗(x) = f(x)


1 +

∑

gi(x>0)

Pgi(x)


 (49)

where P is the penalty factor. This approach can lead to a situation in which the best found
solution is no longer feasible. Therefore, best found feasible solution is also kept in memory.

First, in order to study convergence characteristics and to find out suitable values, the number
of populations and iterations were varied. Consider Type 2 truss which is made of S355 steel
grade with the load 23.5 kN/m. Using the truss evaluation module, or using special software
developed for the design of tubular trusses, the designer can solve sizing problem rather quickly
if the geometry of the truss is fixed. Engineers natural choise would be an evenly distributed
design, meaning variables ai having values ai = 2.25 m. For truss height commonly used value
is H = L/10 which is 36/10 m = 3.6 m in this case. Gap was fixed at g = 50 mm.

When evaluating different designs manually it was found that all the constraints, especially deal-
ing with the geometrical entities, were extremely difficult to fulfil. E.g. by allowing different
(smaller) gap at the first joint from the support, better solutions were found. At the first joint
two rather large braces are joined to the bottom chord and then using large gap the eccentricity
at the joint is large increasing the bending moment at the bottom chord. Also, the maximum
allowed gap 50 mm was clearly too small in some cases. It could be seen that in the best found
solution the gap was at this limit, meaning that allowing larger gaps perhaps better solutions can
be found in some cases. The reason to use constant gap are the truss manufacturers. They do not
like variable gaps at manual fabrication lines. Perhaps through more automation in the future the
the use of many gap values in one truss will be allowed. In many cases the number of sections
in different brace members is also an issue. In this study was allowed that all braces may have
different sizes. These difficulties reflect to the PSO runs, as well.

3.3 Results

The results for cases were calculated with rather extensive computer runs (Table 7). One function
evaluation takes about 0.05 seconds and thus one run takes from one to one-and-half hour with a
contemporary pc. The results for Type 1 are given in Table 8 and the results for Type 2 are given
in Table Table 9.

The design variable values corresponding to best found structures are shown in Tables 10–13. If
the minimum weight and minimum cost designs are different, minimum cost design is shown.
The geometry optimization seems to drive towards solutions where compression members be-
come shorter which reduces buckling lengths. The span–height ratio is in average 10.4 for K
trusses and 10.8 for KT trusses.

It can be seen that the gap is at the upper bound (50 mm) in many cases. This may imply that
allowing larger gaps better solutions can be found. The mean of height of the truss is L/10.7 for
type 1 and L/10.4 for type 2.

In the Figs. 6–7 graphical illustration of the performance of different steel grades can be seen.

The Table 14 shows relative cost and weight values of best found designs.
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Table 8: Best found results for type 1 truss. If a value is marked with * minimum weight and
minimum cost designs were different.

Material Load [kN/m] Weight optimization Cost optimization Best overall
Chords Braces Cost [e] Weight [kg] Cost [e] Weight [kg] Cost [e] Weight [kg]

355 355 23.5 3406 3270 3422 3288 3406 3270
500 500 23.5 3417 2642 3549 2726 3417 2642
500 355 23.5 3200 2678 3288 2764 3200 2678
700 700 23.5 3269 2150 3237 2163 3237* 2150*
700 355 23.5 3125 2343 3184 2397 3125 2343
700 500 23.5 3147 2199 3311 2285 3147 2199
960 960 23.5 3416 1803 3724 2015 3416 1803
960 355 23.5 3390 2196 3391 2213 3390 2196
960 500 23.5 3642 2109 3535 2057 3535 2057
960 700 23.5 3494 1924 3392 1873 3392 1873
355 355 47 6711 6551 6682 6702 6682* 6551*
500 500 47 5866 4738 6080 5121 5866 4738
500 355 47 5631 5000 5597 5030 5597* 5000*
700 700 47 5401 3700 5165 3563 5165 3563
700 355 47 5502 4424 5533 4458 5502 4424
700 500 47 5575 3996 5700 4222 5575 3996
960 960 47 5384 2971 5344 3015 5344* 2971*
960 355 47 5631 3857 5672 3867 5631 3857
960 500 47 6026 3678 5883 3593 5883 3593
960 700 47 5491 3152 5301 3107 5301 3107

Table 9: Best found results for type 2 truss. If a value is marked with * minimum weight and
minimum cost designs were different.

Material Load [kN/m] Weight optimization Cost optimization Best overall
Chords Braces Cost [e] Weight [kg] Cost [e] Weight [kg] Cost [e] Weight [kg]

355 355 23.5 3212 3146 3221 3244 3212 3146
500 500 23.5 3357 2753 3352 2736 3352 2736
500 355 23.5 3028 2633 3031 2632 3028* 2632*
700 700 23.5 3024 2165 3215 2318 3024 2165
700 355 23.5 2910 2272 2881 2253 2881 2253
700 500 23.5 3051 2233 3102 2277 3051 2233
960 960 23.5 3478 1987 3565 2088 3478 1987
960 355 23.5 3225 2125 3348 2195 3225 2125
960 500 23.5 3446 2132 3510 2162 3446 2132
960 700 23.5 3369 2026 3434 2046 3369 2026
355 355 47 5795 5981 5885 6086 5795 5981
500 500 47 5426 4407 5301 4600 5301* 4407*
500 355 47 5165 4633 5024 4557 5024 4557
700 700 47 4992 3697 5150 3782 4992 3697
700 355 47 4799 3881 4590 3718 4590 3718
700 500 47 5008 3800 5156 3918 5008 3800
960 960 47 5321 3173 5356 3192 5321 3173
960 355 47 5002 3463 5453 3769 5002 3463
960 500 47 5528 3439 5805 3695 5528 3439
960 700 47 5169 3218 5223 3231 5169 3218
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Table 10: Design variable values for best found trusses of type 1, load 23.5 kNm
Chords 355 500 500 700 700 700 960 960 960 960
Braces 355 500 355 700 355 500 960 355 500 700

UC 160x8 160x6 150x6 140x6 150x6 140x6 120x6 120x8 120x6 120x6
BC 150x10 150x8 150x8 120x8 140x6 120x8 120x6 120x6 120x6 120x6
Br1 110x4 60x3 110x4 100x4 50x3 50x3 50x3 50x3 50x3 50x3
Br2 110x4 60x3 60x3 50x3 70x3 50x3 50x3 90x3 110x4 100x4
Br3 110x4 70x3 70x3 60x3 90x3 90x3 60x3 80x3 90x3 70x3
Br4 70x3 60x3 70x3 60x3 80x3 50x3 50x3 50x3 50x3 50x3
Br5 100x4 90x3 90x4 100x4 100x4 90x4 90x4 100x4 110x4 90x4
Br6 90x3 110x4 120x4 70x3 90x3 60x3 50x3 90x3 80x3 60x3
Br7 100x6 120x4 140x5 100x4 120x4 120x4 100x5 120x5 120x4 100x4
Br8 100x5 110x4 120x4 100x4 110x5 100x4 70x4 90x5 80x5 90x4
V1 90x3 60x3 90x3 70x3 90x3 60x3 60x3 90x3 70x3 60x3
V2 70x3 60x3 70x3 50x3 70x3 60x3 50x3 50x3 70x3 60x3
V3 70x3 110x4 60x3 50x3 110x4 50x3 50x3 50x4 90x3 90x4
V4 70x3 110x4 90x3 70x3 100x4 60x3 70x4 60x3 70x3 60x3

Gap [mm] 50 50 47 47 46 50 50 32 50 50
H [m] 3.23 3.44 3.46 2.96 3.43 3.52 3.02 3.41 3.84 2.99
L/H 11.14 10.46 10.40 12.18 10.51 10.22 11.94 10.56 9.38 12.04
a1 2.38 2.72 1.25 2.20 2.76 1.60 2.18 2.29 2.49 1.82
a2 2.04 2.00 2.30 2.25 2.27 2.72 2.13 2.79 2.44 2.13
a3 1.77 1.57 2.13 1.70 2.15 1.95 1.73 1.97 2.27 2.17
a4 2.39 2.09 2.43 2.40 1.45 2.79 2.20 2.01 2.10 2.17
a5 2.39 0.75 1.91 2.74 1.06 1.53 2.52 2.10 1.59 2.17
a6 1.76 2.54 2.31 1.47 2.44 1.46 2.37 1.73 2.60 2.40
a7 1.96 2.35 1.98 1.84 1.66 2.48 1.86 2.17 0.76 1.88

Table 11: Design variable values for best found trusses of type 1, load 47.0 kNm.
Chords 355 500 500 700 700 700 960 960 960 960
Braces 355 500 355 700 355 500 960 355 500 700

UC 200x12.5 180x10 180x10 160x8 160x10 180x8 150x8 180x10 160x8 160x8
BC 250x12.5 200x10 200x12.5 160x10 200x8 180x8 160x8 160x8 160x8 160x8
Br1 180x6 120x4 70x3 150x6 90x3 120x4 70x4 60x3 70x3 70x3
Br2 180x6 90x3 150x5 70x3 110x4 90x3 60x3 90x3 60x3 70x3
Br3 180x6 110x4 150x5 90x4 150x5 120x4 90x4 90x3 150x5 70x4
Br4 180x6 180x6 70x3 70x3 80x4 90x3 60x3 90x3 70x3 60x3
Br5 180x6 140x5 150x5 110x5 150x5 120x4 110x5 150x5 140x5 120x5
Br6 180x6 100x4 80x5 80x4 120x4 150x5 70x4 90x6 120x4 80x4
Br7 180x6 160x6 160x6 140x6 160x8 180x6 120x6 150x5 160x6 140x6
Br8 180x6 150x5 180x6 100x6 150x5 140x5 100x5 150x6 150x5 120x5
V1 90x3 90x3 100x4 70x3 100x4 90x3 60x3 90x3 90x3 60x3
V2 100x4 70x3 110x4 70x3 110x4 80x3 60x3 80x3 70x3 70x3
V3 90x3 140x5 100x4 60x3 90x3 150x5 60x3 60x3 110x4 60x3
V4 110x4 70x3 90x3 100x4 120x4 80x3 90x4 90x3 90x4 90x4

Gap [mm] 50 50 50 48 50 42 50 50 50 50
H [m] 3.21 3.30 3.59 3.62 4.05 3.86 3.18 3.76 4.32 3.14
L/H 11.2 10.9 10.0 9.9 8.9 9.3 11.3 9.6 8.3 11.5
a1 1.92 1.01 2.65 1.92 2.72 2.97 2.09 2.17 3.25 1.35
a2 1.65 2.10 2.05 2.20 1.68 1.04 2.16 1.57 1.23 1.67
a3 2.02 2.26 1.80 2.19 2.70 1.58 2.31 1.58 1.75 2.48
a4 2.04 1.52 1.53 2.30 2.56 2.17 2.28 3.35 1.79 2.55
a5 2.35 2.34 1.90 1.46 1.31 1.89 2.13 1.79 2.00 2.80
a6 1.66 2.80 1.40 2.00 1.71 2.34 2.66 2.33 2.35 2.00
a7 2.68 3.31 2.55 2.29 2.60 3.03 1.94 1.59 1.38 2.03
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Table 12: Design variable values for best found trusses of type 2, load 23.5 kNm
Chords 355 500 500 700 700 700 960 960 960 960
Braces 355 500 355 700 355 500 960 355 500 700

UC 180x8 180x8 160x8 160x8 150x8 160x8 150x8 150x8 150x8 150x8
BC 140x8 140x6 140x6 110x5 120x5 120x5 90x5 100x5 110x5 100x5
Br1 90x3 50x3 50x3 40x3 50x3 50x3 40x3 40x3 40x3 40x3
Br2 70x3 110x4 90x3 60x3 60x3 60x3 60x3 90x3 60x3 70x3
Br3 90x3 70x3 110x4 70x3 90x3 70x3 70x4 80x3 80x3 70x3
Br4 110x4 70x3 70x3 60x3 70x3 60x3 60x3 60x3 60x3 60x3
Br5 110x4 110x4 90x4 90x4 100x4 90x3 90x4 100x4 90x5 100x4
Br6 140x5 100x4 80x3 60x3 70x3 70x3 70x4 90x3 60x3 70x3
Br7 140x5 120x4 140x5 100x4 120x5 110x4 90x5 100x6 110x4 100x4
Br8 110x4 120x4 120x4 90x4 110x4 100x5 70x4 100x5 100x4 90x4

Gap [mm] 50 47 50 50 50 50 50 50 50 50
H [m] 3.53 3.29 3.82 3.56 3.74 3.36 3.31 3.25 3.57 3.18
H/L 10.2 10.9 9.4 10.1 9.6 10.7 10.9 11.1 10.1 11.3
a1 [m] 2.17 2.07 2.28 2.34 2.44 1.42 2.61 1.94 1.78 2.34
a2 [m] 1.58 1.16 1.77 1.56 1.66 2.80 1.52 2.15 2.51 1.70
a3 [m] 2.37 1.98 1.41 1.37 1.86 1.39 2.12 1.81 0.50 1.82
a4 [m] 1.53 1.92 2.65 2.25 2.27 2.50 1.83 2.34 3.83 2.16
a5 [m] 2.55 2.81 0.97 1.66 2.12 1.43 1.90 2.19 2.20 2.09
a6 [m] 2.13 2.29 3.51 3.20 2.17 2.95 2.55 2.50 1.88 2.49
a7 [m] 2.78 1.93 1.75 1.41 1.86 1.52 1.55 1.53 1.58 1.65

Table 13: Design variable values for best found trusses of type 2, load 47.0 kNm
Chords 355 500 500 700 700 700 960 960 960 960
Braces 355 500 355 700 355 500 960 355 500 700

UC 250x12.5 200x12.5 200x10 200x10 200x8 200x10 180x10 180x8 180x8 180x10
BC 200x10 160x10 180x8 140x8 160x8 160x8 120x8 160x8 160x8 120x8
Br1 70x3 90x3 140x5 50x3 60x3 60x3 50x3 80x3 110x4 50x3
Br2 180x6 100x4 120x4 100x4 70x3 90x3 70x4 90x3 70x3 70x3
Br3 120x4 100x4 120x4 100x4 140x5 110x4 90x5 100x4 110x4 100x4
Br4 180x6 90x3 120x4 80x4 70x3 90x3 70x4 90x3 100x4 70x3
Br5 140x5 120x5 140x5 120x5 140x5 110x4 100x5 140x5 120x5 110x5
Br6 160x6 100x4 150x5 90x4 150x5 110x4 70x4 100x4 100x4 80x4
Br7 150x6 160x6 160x6 140x6 160x6 140x5 120x6 150x6 150x5 120x6
Br8 180x6 140x5 160x6 110x5 160x6 160x6 90x5 160x6 100x8 110x5

Gap [mm] 50 50 42 50 50 50 50 50 50 50
H [m] 3.57 3.63 4.39 3.66 3.98 3.21 3.59 4.04 4.13 3.57
L/H 10.1 9.9 8.2 9.8 9.0 11.2 10.0 8.9 8.7 10.1
a1 3.44 2.70 2.52 2.27 3.42 2.30 2.34 2.39 2.73 1.59
a2 1.53 1.61 1.84 2.23 0.67 1.75 1.83 1.57 1.31 2.55
a3 1.48 2.11 2.12 2.22 1.76 2.76 1.97 1.75 2.13 2.02
a4 1.95 2.21 2.18 2.20 2.38 1.30 2.23 2.30 1.95 2.08
a5 2.24 1.96 1.29 2.05 0.96 1.11 1.40 2.72 1.29 2.00
a6 1.56 2.35 2.49 1.68 3.52 3.36 2.90 1.97 3.27 2.79
a7 1.54 2.11 1.61 1.94 0.78 1.68 1.24 1.27 1.29 1.59

17



Figure 6: Truss cost. Best found among all the result data.

Figure 7: Truss weight. Best found among all the result data.

Table 14: Truss relative cost and weight. Compared to best found S355.
Cost Weight

K KT K KT K KT K KT
Material 23.5 kN/m 47 kN/m 23.5 kN/m 47 kN/m

S355/S355 100 % 106 % 100 % 115 % 100 % 104 % 100 % 110 %
S500/S500 104 % 106 % 91 % 101 % 87 % 84 % 74 % 79 %
S500/S355 94 % 100 % 87 % 97 % 84 % 85 % 76 % 84 %
S700/S700 94 % 101 % 86 % 89 % 69 % 68 % 62 % 60 %
S700/S355 90 % 97 % 79 % 95 % 72 % 74 % 62 % 74 %
S700/S500 95 % 98 % 86 % 96 % 71 % 70 % 64 % 67 %
S960/S960 108 % 106 % 92 % 92 % 63 % 57 % 53 % 50 %
S960/S355 100 % 106 % 86 % 97 % 68 % 70 % 58 % 64 %
S960/S500 107 % 110 % 95 % 102 % 68 % 65 % 58 % 60 %
S960/S700 105 % 106 % 89 % 91 % 64 % 60 % 54 % 52 %
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3.4 Sizing optimization vs. shape optimization

To consider effect of including shape variables in the optimization problem the truss was also
optimized with fixed geometry and by allowing only the height of the truss to change. The
results of this comparison (Table 15) implies that it is beneficial to let the geometry vary. For
fixed geometry, the number of iterations was 150.

The results imply a 10–15 % higher cost and weight for fixed geometry solution against the
solution where geometry is allowed to vary.

Table 15: Truss relative cost and weight with fixed or partly fixed geometry. OG = optimized
geometry, FG = fixed geometry (H = L/10), FN = fixed nodes, varying height.

Material OG FG FN OG FG FN
Relative cost Relative weight

S355/S355 1.00 0.99 0.98 1.00 1.01 0.97
S500/S500 1.00 1.19 1.02 1.00 1.19 1.06
S500/S355 1.00 1.14 1.01 1.00 1.15 1.03
S700/S700 1.00 1.12 1.02 1.00 1.15 1.02
S700/S355 1.00 1.14 1.06 1.00 1.17 1.06
S700/S500 1.00 1.10 1.02 1.00 1.13 1.01
S960/S960 1.00 1.15 1.12 1.00 1.14 1.09
S960/S355 1.00 1.14 1.09 1.00 1.14 1.10
S960/S500 1.00 1.09 1.07 1.00 1.11 1.05
S960/S700 1.00 1.15 1.11 1.00 1.13 1.10

3.5 PSO reliability

When applying stochastic methods multiple runs are needed for reliable results. Even multiple
runs may fail capturing the global optimum for the problem. The results shown above were ob-
tained with large number of optimization runs resulting in long computational time that is prob-
ably not practical for designer. To see the stochastic nature of the PSO method, some statistical
evaluation is presented in the following.

For each material combination some statistical figures from the sets of runs are shown in Table 16
and Table 17. It seems, that when dealing with convergence characteristics, there is little or no
difference in the performance of optimization regardless of material, objective function or truss
type. Only exception is the 355/355 runs when the higher load is applied. In type 1 the deviation
is very small and in type 2 on the other hand relatively high. Reason for this behaviour is not
known.

Consider histograms in Fig. 8. In the figure, the case of S355 KT truss with the higher load, 47
kN/m, represents a low deviation case, same strength and load but K truss represents the high
deviation and the S500 K truss represents the typical deviation.

To consider a practical number of runs expectation value for best found design is calculated based
on the sample of 100 runs. The expectation value was created by randomly taking subsets from
the set of 100 results. This was done for sets from 1 to 99 elements. The resulting curve can
be seen in Fig. 9. The curve implies that if an error of 2% can be accepted, around 25 runs
should be enough which means significant reduction to computational time. This should only be
understood as a schematic figure, since the sample of 100 runs might be to small to draw solid
conclusions.
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Table 16: Stastical figures of optimization in type 1 trusses. Figures compared to best found
values. 5 % and 10 % is refer to percentages of solutions within 5 or 10 % away from the best
found.

Chords Braces Objective Load Median Average Std deviation 5 % 10 %
355 355 c 23.5 1.19 1.18 0.16 0.11 0.27
500 355 c 23.5 1.16 1.14 0.09 0.08 0.28
500 500 c 23.5 1.17 1.14 0.11 0.11 0.32
700 355 c 23.5 1.15 1.14 0.09 0.11 0.27
700 500 c 23.5 1.21 1.19 0.12 0.08 0.13
700 700 c 23.5 1.17 1.15 0.10 0.09 0.25
960 355 c 23.5 1.22 1.21 0.14 0.11 0.27
960 500 c 23.5 1.21 1.14 0.18 0.11 0.36
960 700 c 23.5 1.17 1.14 0.12 0.08 0.24
960 960 c 23.5 1.16 1.13 0.09 0.05 0.24
355 355 c 47 1.03 1.02 0.03 0.76 0.97
500 355 c 47 1.14 1.10 0.10 0.17 0.49
500 500 c 47 1.21 1.13 0.17 0.15 0.31
700 355 c 47 1.12 1.11 0.09 0.13 0.43
700 500 c 47 1.20 1.19 0.10 0.03 0.15
700 700 c 47 1.20 1.18 0.12 0.07 0.25
960 355 c 47 1.21 1.21 0.11 0.04 0.07
960 500 c 47 1.21 1.21 0.11 0.04 0.15
960 700 c 47 1.18 1.17 0.10 0.04 0.31
960 960 c 47 1.14 1.12 0.09 0.13 0.37
355 355 w 23.5 1.16 1.15 0.07 0.07 0.24
500 355 w 23.5 1.22 1.21 0.08 0.01 0.05
500 500 w 23.5 1.18 1.17 0.08 0.08 0.17
700 355 w 23.5 1.18 1.17 0.09 0.04 0.16
700 500 w 23.5 1.19 1.17 0.11 0.04 0.21
700 700 w 23.5 1.15 1.14 0.11 0.19 0.40
960 355 w 23.5 1.17 1.12 0.13 0.12 0.41
960 500 w 23.5 1.12 1.10 0.09 0.12 0.47
960 700 w 23.5 1.17 1.15 0.11 0.04 0.15
960 960 w 23.5 1.22 1.21 0.09 0.01 0.04
355 355 w 47 1.05 1.04 0.02 0.64 0.96
500 355 w 47 1.10 1.09 0.05 0.11 0.56
500 500 w 47 1.12 1.10 0.07 0.11 0.49
700 355 w 47 1.10 1.11 0.05 0.16 0.43
700 500 w 47 1.15 1.15 0.05 0.03 0.20
700 700 w 47 1.14 1.14 0.06 0.05 0.16
960 355 w 47 1.17 1.17 0.06 0.01 0.12
960 500 w 47 1.12 1.12 0.06 0.13 0.37
960 700 w 47 1.10 1.10 0.07 0.27 0.48
960 960 w 47 1.13 1.11 0.07 0.08 0.39

Figure 8: Histograms of the results of all runs in three cases. From left: S355 47 kN/m KT truss,
objective: cost; S355 47 kN/m K truss objective: weight; S500 23.5 kN/m K truss, objective:
weight.
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Table 17: Stastical figures of optimization in type 2 trusses. Figures compared to best found
values. 5 % and 10 % is refer to percentages of solutions within 5 or 10 % away from the best
found.

Chords Braces Objective Load Median Average Std deviation 5 % 10 %
355 355 c 23.5 1.12 1.11 0.07 0.15 0.43
500 355 c 23.5 1.18 1.15 0.11 0.09 0.26
500 500 c 23.5 1.19 1.15 0.11 0.06 0.23
700 355 c 23.5 1.20 1.17 0.12 0.07 0.19
700 500 c 23.5 1.19 1.16 0.13 0.10 0.24
700 700 c 23.5 1.21 1.18 0.12 0.01 0.14
960 355 c 23.5 1.18 1.12 0.14 0.10 0.31
960 500 c 23.5 1.17 1.12 0.16 0.23 0.43
960 700 c 23.5 1.15 1.11 0.12 0.13 0.44
960 960 c 23.5 1.17 1.13 0.14 0.13 0.35
355 355 c 47 1.39 1.45 0.16 0.03 0.05
500 355 c 47 1.20 1.18 0.09 0.05 0.09
500 500 c 47 1.23 1.21 0.10 0.04 0.08
700 355 c 47 1.21 1.24 0.13 0.10 0.25
700 500 c 47 1.22 1.18 0.13 0.03 0.17
700 700 c 47 1.22 1.15 0.17 0.12 0.30
960 355 c 47 1.12 1.12 0.07 0.14 0.39
960 500 c 47 1.14 1.12 0.12 0.21 0.45
960 700 c 47 1.15 1.12 0.10 0.04 0.35
960 960 c 47 1.26 1.23 0.18 0.07 0.19
355 355 w 23.5 1.15 1.13 0.10 0.11 0.31
500 355 w 23.5 1.20 1.19 0.11 0.05 0.19
500 500 w 23.5 1.14 1.14 0.08 0.17 0.32
700 355 w 23.5 1.19 1.17 0.12 0.10 0.19
700 500 w 23.5 1.19 1.15 0.14 0.11 0.21
700 700 w 23.5 1.16 1.16 0.10 0.09 0.27
960 355 w 23.5 1.20 1.15 0.16 0.09 0.24
960 500 w 23.5 1.13 1.10 0.12 0.20 0.50
960 700 w 23.5 1.15 1.10 0.13 0.10 0.50
960 960 w 23.5 1.16 1.10 0.14 0.08 0.47
355 355 w 47 1.37 1.42 0.16 0.05 0.07
500 355 w 47 1.17 1.16 0.08 0.08 0.13
500 500 w 47 1.20 1.21 0.07 0.04 0.08
700 355 w 47 1.22 1.25 0.13 0.09 0.21
700 500 w 47 1.19 1.19 0.11 0.14 0.33
700 700 w 47 1.19 1.14 0.14 0.17 0.37
960 355 w 47 1.18 1.16 0.09 0.02 0.08
960 500 w 47 1.16 1.14 0.12 0.07 0.31
960 700 w 47 1.18 1.17 0.11 0.02 0.15
960 960 w 47 1.17 1.15 0.10 0.04 0.31

Figure 9: Expectation value based on the results of 100 runs.

21



4 Discussion

The main idea of used optimization formulation is that the starting point is the exact geome-
try of truss including gaps and eccentricities in joints. The FE analysis model is derived from
the geometrical model using nearly rigid eccentricity elements. In this type of approach all the
requirements presented in relevant design standards can be checked and the resulting design is
fully compliant with the chosen design standard. The approach, however, results in a fairly large
amount of constraints even in a relatively simple structure such as Warren type truss. This causes
difficulties in finding feasible solutions and reflects to the convergence of PSO. Especially deal-
ing with geometrical entities originating from requirements of joints from EN 1993-1-8 causes
difficulties.

The main scope of this study was to find out if it is economically efficient to use high strength
steel in a Warren type truss. The found weight reductions compared to S355 trusses were for
around 15–20 % for S500, 30–40 % for S700 and 40–50 % for S960 the higher loading implying
higher savings. The cost reductions were smaller and in some cases there was no benefit using
higher steel strength. The hybrid solutions seem attractive in cost comparison. The S700/355 K
truss with the higher load is around 20 % less costly than the reference truss (S355).

The use of S960 steel does not seem to make extra cost savings in comparison to S700 steel.

Generally, the first span from the support tends to be longer than other spans. This is a natural
result when thinking about stress resultants at the top chord. In elements closer to midspan the
axial force is weaker than in elements closer to midspan meaning that a longer buckling length
can be allowed. The mean height in Type 1 was L/10.8 and in Type 2 L/10.4 which are in line
with previous studies (Bzdawka & Heinisuo 2012, Tiainen, Heinisuo, Jokinen & Salminen 2012)
and with Wardenier et al. who proposed L/16 . . . L/10 (Wardenier et al. 2010). The large
eccentricity at the first joint at the bottom chord (near the support) caused large moments to the
first element of the bottom chord, but this element was not critical typically. The joint locations
seemed to seek to values that shorten compressed member thus reducing buckling length meaning
increased strength.

Using same gap width at each joint does not seem a good choice. The first joint at the bottom
chord near the support should be smaller than others. At this joint two typically rather large
members are joined and the axial forces are large. If gap is large the joint will be classified as
two T-joints meaning lower strength. Still, for other joints large gap seems favourable. The upper
bound 50 mm seemed to be too small since optimization lead to the upper bound in most cases.
Allowing every gap to be design variable, the problem size also grows meaning that swarm size
and number of iterations should be larger. Also the use of rectangular members together with
square members may lead to better solutions but it also makes a substantial growth in problem
size as the variety of available sections grows.

The environmental impact of S700 is only 5 - 10 % higher than that of S355 depending on
indicator (Stroetmann 2012, Sperle 2012). This means that achieved weight reductions lead to
more ecological structures.

The reliability of the results using stochastic optimization method with no convergence check
possibility is always an issue. In this paper, the results were generated with a rather large number
of extensive optimization runs. For every material combination, same parameter values were
used. Thus, it seems fair to state that the results can be considered reliable. Even if the best
found solutions are not actual optima of the problems fair comparison between the performance
of different steel materials in a tubular truss can be made.

Convergence of a single run might be poor and thus multiple runs are needed. As computational
time of even a single run is quite long, it seems that optimization approach used in this research
paper is not applicable in practical design work without improvement.
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Many research questions remain still open. The approach presented could be used in other types
of trusses as well. Also, in order to get full economical benefit of HSS, the design rules should be
checked thoroughly and updated where needed. Present rules either do not include any guidance
or the formulas are very conservative. For example the full strength welds are very large and
thus expensive using HSS. Also, the strength factor of 0.8 for HSS joints should be checked. In
addition, in some research work it has been found that HSS products could use more favourable
buckling curves than proposed by current Eurocode (Rasmussen & Hancock 1994, Ban, Shi, Shi
& Bradford 2013).

5 Conclusions

Starting point of the optimization should be the geometrical presentation of the truss in order to
check all requirements, such as geometrical rules of codes and correct structural analysis model
with eccentricities. In sizing and shape optimization this will result in non-linear mixed-integer
optimization for which heuristic methods can used as shown in the paper. As the problems are
very demanding and the method does not include checks for optimality, the result might be in
some cases sub-optimal. However, by using the proposed optimization technique, the weight of
the manually designed solution including evenly distributed joints could be reduced over 10 %
allowing joint locations change during optimization.

Weight reductions compared to S355 trusses were for around 15–20 % for S500, 30–40 % for
S700 and 40–50 % S960. The cost reduction seems to be effected on the truss type Warren type
truss without verticals performing better, at around 10–20 % in comparison to S355 solution.
Reductions for hybrid trusses were between these numbers, but for S700/S500 (chords S700,
braces S500) the reductions were about the same as for S700/S700 trusses. Hybrid solutions,
especially S700/355, seem attractive when considering both weight and cost savings.

The results imply that the use of HSS is economical in tubular trusses applying the design rules
of the present Eurocodes even though some of the rules ”penalize” high strength steels. These
issues should be solved in the future and the fabrication costs of HSS tubular trusses can be
reduced and more savings achieved.

Acknowledgements

This research has been completed in RFCS project RUOSTE. Funding of RFCS is gratefully
acknowledged.

References

Ban, H., Shi, G., Shi, Y. & Bradford, M. A. (2013), ‘Experimental investigation of the overall buckling
behaviour of 960 MPa high strength steel columns’, Journal of constructional steel research 88, 256–
266.

Bzdawka, K. & Heinisuo, M. (2012), Optimization of Planar Tubular Truss with Eccentric Joint, Tampere
University of Technology. Research Report 157.

Carter, C. J., Murray, T. M. & Thornton, W. A. (2000), ‘Cost-effective steel building design’, Progress in
structural engineering and materials 2, 16–25.

Cederfeldt, L. & Sperle, J.-O. (2012), High strength steel in the roof of Swedbank arena savings in weight,
cost and environmental impact, in ‘Proceedings of Nordic Steel Construction Conference’, Oslo.

CEN (2006a), EN-1993-1-1. Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for
buildings.

23



CEN (2006b), EN-1993-1-12. Eurocode 3: Design of steel structures. Part 1-12: General - High strength
steels.

CEN (2006c), EN-1993-1-8. Eurocode 3: Design of steel structures. Part 1-8: Design of joints.

EN 10219-2 (2006), Cold formed welded structural hollow sections of non-alloy and fine grain steels.
Part 2: Tolerances, dimensions and sectional properties, CEN.

Evers, H. G. A. & Maatje, I. F. (2000), Cost based engineering and production of steel constructions, in
‘Connections in steel structures IV’, Roanoke, Virginia, USA, pp. 14–22.

Farkas, J., Simões, L. M. C. & Jármai, K. (2005), ‘Minimum cost design of a welded stiffened square
plate loaded by biaxial compression’, Structural and Multidisciplinary Optimization 29, 298–303.

Günther, H.-P. (2005), Use and Application of High-Performance Steels for Steel Structures, IABSE.

Haapio, J. (2012), Feature-Based Costing Method for Skeletal Steel Structures based on the Process Ap-
proach, Phd thesis, Tampere University of Technology.

Heinisuo, M., Laasonen, M., Ronni, H. & Anttila, T. (2010), Integration of joint design of steel structures
using product model, in W. T., ed., ‘Proceedings of The International Conference: Computing in
Civil and Building Engineering’, Nottingham, pp. 323–324.

Heinisuo, M., Möttönen, A., Paloniemi, T. & Nevalainen, P. (1991), Automatic design of steel frames in a
cad-system, in ‘Proceedings of the 4th Finnish Mechanics days’, Lappeenranta.

Jalkanen, J. (2007), Tubular Truss Optimization Using Heuristic Algorithms, Phd thesis, Tampere Univer-
sity of Technology.

Jármai, K. & Farkas, J. (1999), ‘Cost calculation and optimisation of welded steel structures’, Journal of
Constructional Steel Research 50, 115–135.

Jármai, K. & Farkas, J. (2001), ‘Optimum cost design of welded box beams with longitudinal stiffeners
using advanced backtrack method’, Structural and Multidisciplinary Optimization 21, 52–59.

Kennedy, J. & Eberhart, R. (1995), Particle swarm optimization, in ‘IEEE International Conference on
Neural Networks, Vol. 4’, pp. 1942–1948.

Mat (2011), Matlab R2011a.

Nethercot, D. A. (1998), ‘Towards a standardization of the design and detailing of connections’, Journal
of constructional Steel Research 46, 3–4.

Ongelin, P. & Valkonen, I. (2012), Rakenneputket, Rautaruukki Oyj. in Finnish.
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List of Symbols

M set of all member indices

Ci profile catalog for member i

yij binary decision variable selecting profile j for

member i

cij cost for member i a

f nodal load vector b

u nodal displacement vector

Kij element stiffness matrix for member i a

Bi binary location matrix mapping system dofs

to element dofs for member i

Ti transformation matrix accounting for the ori-

entation of member i

Ri matrix relating six dependent member end forces

to three independent member end forces for

member i b

qij member end forces for member i a,b

q̄′
ij,

¯
q′
ij artificial upper/lower bounds for qij

dij displacements of member i a,c

Di displacement shape functions for member i b,c

d̃ij displacements of member i in clamped-clamped

conditions a,c

d̄ij,
¯
dij maximum/minimum allowed values for dij

c

d̄′
ij, ¯

d′
ij artificial upper/lower bounds for dij

c

sij stresses in member i a,c

Sij stress shape functions for member i a,b,c

s̃ij stresses in member i in clamped-clamped con-

ditions a,c

s̄ij,
¯
sij maximum/minimum allowed values for sij

c

s̄′ij, ¯
s′ij artificial upper/lower bounds for sij

c

a assuming that profile j is selected.
b assuming that non-nodal loads are replaced with equiv-

alent nodal loads.
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c these matrices and vectors refer to displacements or

stresses at a limited number of prescribed output loca-

tions along member i.

1 Introduction

In structural optimization, the problem formulation plays

a fundamental role. The mathematical structure of the

optimization problem determines which solution meth-

ods can be applied, and how difficult it is to find the
optimal solution. From the designer’s perspective, the

problem should include the necessary requirements of

design, manufacture and economy [1] such that the re-

sults of optimization are applicable in practice. In gen-
eral, the problem formulation is a compromise between

meeting the needs of the designer and the capabilities

of contemporary solution procedures.

In practical optimization of frame structures, the

member profiles must be chosen from a catalog of com-
mercially available sections. When this feature is cou-

pled with conventional formulations based on elastic

structural analysis, the problem is not only nonlinear

[2], but it also contains discrete design variables. The re-
sulting mixed-integer nonlinear programming (MINLP)

problem can be treated by several optimization meth-

ods that have been proposed in the literature on dis-

crete structural design of frames (for reviews, see [3–

6]). However, these methods have in common that they
cannot guarantee that the global optimum is found.

In a detailed review, Arora [6] discusses various meth-

ods for structural optimization with discrete variables.

These include branch-and-bound for nonlinear prob-
lems, sequential linearization, dynamic rounding-off,

penalty approach and various stochastic methods, among

others. Some of the more recent approaches include the

discrete Lagrangian-based algorithm [7], and a scheme

based on the optimality criteria method [8].
Currently, stochastic algorithms are widely used for

solving discrete frame optimization problems. These

methods include genetic algorithms [9–12], ant colony

optimization [13,14], firefly algorithm [15,16], harmony
search algorithm [17], particle swarm optimization [18],

guided stochastic search heuristic [19], eagle strategy

with differential evolution [20], and teaching-learning

based optimization [21]. The general idea is to explore

the design space in a random fashion, thereby using in-
formation collected from previous analyses to gradually

improve the design. These algorithms owe their popu-

larity to the fact that they are easy to understand and

to implement. They can cope with discrete parameters
and are able to take into account complex constraints.

However, stochastic algorithms converge slowly, involve

algorithmic parameters that require careful tuning, and

global optimality cannot be guaranteed since no conclu-

sive convergence checks can be made.

In this paper, global discrete sizing optimization

of frame structures is considered. The weight of the

structure is minimized, taking into account stress and
displacement constraints. The optimization problem is

reformulated into a mixed-integer linear programming

(MILP) problem. In the classical approach for struc-

tural optimization the nested analysis and design (NAND)
approach is employed [22]: in every iteration a finite

element analysis is performed in order to obtain the

state variables (the structural nodal displacements and

the member end forces). In order to facilitate the re-

formulation of the optimization problem as an MILP,
the simultaneous analysis and design (SAND) approach

[22] is adopted in this study: the state variables are

considered as additional design variables and the state

equations (the equilibrium equations and member stiff-
ness relations) are enforced by means of additional con-

straints. In addition, a set of binary decision variables is

introduced for each member of the structure to select a

profile from the catalog given by the designer. The ob-

tained MILP can be solved for global optimality with
well-established algorithms such as branch-and-bound

methods [23,24].

The MILP formulation approach has originally been

proposed by Ghattas et al. [25] and Grossmann et al.
[26] for discrete topology optimization of trusses, later

studied by Rasmussen et al. [27], Faustino et al. [28],

and Kanno et al. [29]. Mela [30] included member

strength and buckling constraints specified by the Eu-

rocode in the truss topology design problem. Van Mel-
laert et al. [31] included both the member and the joint

constraints for sizing optimization of statically determi-

nate trusses. Stolpe [32] proposed a mixed-integer lin-

ear programming reformulation approach to solve con-
tinuum topology optimization problems. Kureta et al.

[33] developed a mixed integer programming approach

for topology optimization of periodic frame structures

with negative Poisson’s ratio, and Hirota et al. [34] de-

veloped a mixed integer programming approach for the
optimal design of periodic frame structures with nega-

tive thermal expansion.

The main differences in the mixed-integer linear pro-

gramming problem between frames and trusses are re-

lated to structural analysis and member resistance con-
straints. In truss analysis, the only stress resultant is the

normal force, which is constant in the member. Thus,

for each member, a single state variable is required. For

frames modeled with beam elements, shear forces and
bending moments in addition to normal forces must be

included in the analysis. Moreover, nodal rotations need

to be considered in addition to displacements. Conse-
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quently, the number of state variables and constraints

related to structural analysis increases when the mixed-

integer formulation is extended from trusses to frames.

The member resistance and deflection constraints

for trusses are imposed by simply limiting the normal
force and nodal displacement variables, respectively. For

members of frames, the stress resultants typically vary

along the member, which implies that resistance con-

straints must be considered at several locations and not

only at member ends. This applies also for deflection
constraints. Furthermore, the interaction of stress re-

sultants should be taken into account, which means

that the resistance constraints become more compli-

cated than simple bounds on the state variables.

This study focuses on the computational efficiency
of the mixed-integer linear programming approach for

the discrete sizing optimization of frames. The MILP

formulation for topology optimization presented in [32–

34] is adopted for sizing optimization. However, the for-
mulation is extended to take into account non-nodal

loads. In addition, catalogs consisting of 9 to 24 avail-

able profiles are adopted, instead of the smaller cata-

logs consisting of 3 profiles adopted for the MILP frame

problems presented in the literature.

The paper is organized as follows. In Section 2, the

mixed-integer linear programming problem for frame

optimization is presented: the design variables as well

as the constraints are described in detail. In Section 3,

the formulation is applied to three example problems:
a simple portal frame with an inclined roof, a two-story

frame with three load cases, and a three-bay three-story

frame. In addition, the performance of the MILP re-

formulation method is compared with the performance
of a genetic algorithm by solving several multiple-bay

multiple-story frame problems. Section 4 summarizes

the main findings of this study.

2 Mixed-integer linear programming

formulation

This section describes the mixed-integer linear program-

ming formulation for the discrete sizing optimization of

frame structures. The formulation is written for plane

frames with prismatic members analyzed by the theory

of linear elasticity. For simplicity, it is assumed that all
members are made of the same material. Moreover, only

a single load case is considered, but the formulation can

easily be extended to multiple load cases. Non-nodal

loads are replaced with equivalent nodal loads in the
formulation of the problem. The joints are assumed to

be rigid, although hinged connections can be incorpo-

rated into the formulation.

Consider a frame structure defined by nm mem-

bers and nn nodes with ndof degrees of freedom. The

number of profile alternatives is ns. Denote by M =

{1, 2, . . . , nm} and C = {1, 2, . . . , ns} the index sets for

members and profiles. Each member may have its own
set of profile alternatives. The index set of profiles of

member i is denoted by Ci ⊆ C.

2.1 Design variables

The design variables include a vector of binary decision

variables y, a vector of continuous nodal displacement

variables u (including translations and rotations), and

a vector of continuous member end forces q (caused

by the equivalent nodal loads). The binary variables
are employed to select member profiles from the set of

available alternatives. For member i, profile j is selected

when the corresponding variable yij = 1. Profile j is not

selected for member i when the corresponding variable
yij = 0. For each member i and for each section j a

set of three independent member end forces is defined,

including the normal end force N1,ij , and the bending

moment end forces M1,ij and M2,ij as shown in Fig. 1.

The member end forces for each member i and for each
section j are collected in the vector qij :

qij =
[
N1,ij M1,ij M2,ij

]T
(1)

Fig. 1: Member end forces.

The vector with the design variables x is given by:

x =
[
yT uT qT

]T
, y ∈ Bnb ,u ∈ Rndof ,q ∈ R3nb (2)

The total number of binary decision variables is denoted

by nb =
∑nm

i=1 nsi, where nm is the total number of

members in the structure, and nsi is the total number

of available sections for member i. The total number of

degrees of freedom is denoted by ndof. The total number
of force variables is 3nb. The total number of design

variables is calculated as ndv = ndof + 4nb.

2.2 Problem statement

The mixed-integer linear programming problem for a
frame structure is given by Eqs. (3) through (9):
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min
x

∑

i∈M

∑

j∈Ci

cijyij (3)

such that
∑

j∈Ci

yij = 1 ∀ i ∈ M (4)

∑

i∈M

∑

j∈Ci

BT
i T

T
i Riqij = f (5)

(1− yij)
¯
q′
ij 6 KijTiBiu− qij6 (1− yij)q̄

′
ij ∀ i ∈ M, ∀ j ∈ Ci (6)

yij
¯
q′
ij 6 qij 6 yij q̄

′
ij ∀ i ∈ M, ∀ j ∈ Ci (7)

¯
d′
ij + yij(

¯
dij −

¯
d′
ij) 6 DiTiBiu+ d̃ij 6 d̄′

ij + yij(d̄ij − d̄′
ij) ∀ i ∈ M, ∀ j ∈ Ci (8)

¯
s′ij + yij(

¯
sij −

¯
s′ij) 6 SijTiBiu+ s̃ij 6 s̄′ij + yij(s̄ij − s̄′ij) ∀ i ∈ M, ∀ j ∈ Ci (9)

The objective function is given by Eq. (3), where cij
is the cost of profile j for member i. When the struc-
tural weight is taken as the objective function, cij is

the weight of member i with profile j, and it can be

written as cij = ρLiAij , where ρ is the density of the

material, Li is the length of member i, and Aij is the
section area of profile j for member i. Alternatively, cij
can be written as cij = Liwij , where wij = ρijAij is

the weight per unit length of profile j for member i.

This expression can be used, if multiple materials are

included in the problem.

The subsequent equations are the constraints of the

optimization problem. Eq. (4) ensures that a single pro-

file j is chosen from the catalog Ci for member i. The
equilibrium equations and the member stiffness rela-

tions are given by Eqs. (5) and (6), respectively. Eq. (7)

ensures that if profile j is not selected for member i, the

corresponding force variables become zero, i.e. qij = 0.

The derivation of Eqs. (3-7) is given in Appendix A. The
displacements and stresses at predefined locations of

member i are limited by the constraints of Eqs. (8) and

(9), respectively. The derivation of these constraints is

given in the subsequent sections. A list of symbols is
provided at the beginning of the paper.

It is possible to take into account multiple load cases

by introducing additional nodal displacement and force
variables and constraints of Eqs. (5) to (9) for each load

case [30].

2.3 Displacements along elements

Constraints on deflections along the members are ex-

pressed in terms of nodal values using interpolation

with shape functions. The idea is that the designer de-
fines a priori the locations where chosen displacement

components are restricted.

The displacement along the local x-axis as defined

in Fig. 2 at location x ∈ [0, Li] of member i for profile
j is calculated as:

uij(x) = Du
i (x)TiBiu+ ũij(x) (10)

where ũij(x) is the displacement at location x of mem-

ber i due to the element loads, assuming that profile j
is selected and that the member ends are clamped. This

term compensates for the fact that non-nodal loads are

replaced by equivalent nodal loads in the formulation of

the problem. The displacements along the local y-axis

vij(x), and the rotation ϕij(x) are calculated in the
same way. The shape function vectors Du

i (x), Dv
i (x)

and Dϕ
i (x) are given by Eqs. (44) to (46) in section

A.3.

The constrained displacement components of ele-

ment i with profile j at the locations xk of interest are

collected in the vector dij . For example, if the trans-

verse displacement vi of element i is to be constrained
at the locations x1, x2, and x3, the vector dij is given

by:

dij =



vij(x1)

vij(x2)

vij(x3)


 (11)

This vector is obtained as follows:

dij = DiTiBiu+ d̃ij (12)

Fig. 2: Local displacements
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where the matrix Di and the vector d̃ij are (in this

case):

Di =



Dv

i (x1)

Dv
i (x2)

Dv
i (x3)


 d̃ij =



ṽij(x1)

ṽij(x2)
ṽij(x3)


 (13)

In order to limit the relevant displacement com-
ponents at all predefined locations of member i, the

constraints given by Eq. (8) are introduced, where
¯
dij

and d̄ij are the prescribed minimum and maximum al-

lowed value of displacements, respectively. The artificial
bounds

¯
d′
ij and d̄′

ij ensure that when profile j is not

selected for member i, the constraints Eq. (8) do not

impose any limits on the nodal displacements u. When

profile j is selected for member i (yij = 1), Eq. (8) be-

comes
¯
dij 6 DiTiBiu+ d̃ij 6 d̄ij and the appropriate

displacement components are constrained. When profile

j is not selected for member i (yij = 0), Eq. (8) reduces

to
¯
d′
ij 6 DiTiBiu+ d̃ij 6 d̄′

ij . The bounds ¯
d′
ij and d̄′

ij

are calculated similarly to
¯
q′
ij and q̄′

ij (Eqs. (42) and

(43)) for each row k of matrix Di and vector d̃ij as:

¯
d′k,ij = min

u
Dk,iTiBiu+ d̃k,ij (14)

s.t. u 6 u 6 u

d̄′k,ij = max
u

Dk,iTiBiu+ d̃k,ij (15)

s.t. u 6 u 6 u

where u and u are the minimum and maximum allowed
nodal displacements, respectively.

When only nodal displacements are limited, the con-

straints given by Eq. (8) can be substituted by the fol-

lowing constraints:

u 6 u 6 u (16)

2.4 Stresses

The resistance of cross-sections subjected to shear forces,

normal forces, and bending moments is checked at pre-

defined locations along the members. For elastic design,
the resistance constraints can be written in terms of

stresses as:

σmin 6 σt,ij (x) 6 σmax (17)

where σt,ij (x) is the normal stress at the top fiber of
the cross-section of member i for profile j at location

x. The normal stress at the bottom fiber of the cross-

section σb,ij (x), and the maximum shear stress τij(x)

Fig. 3: Internal forces of member i for profile j at loca-

tion x

of member i for profile j at location x are limited in the

same way. These stresses are calculated as

σt,ij(x) =
Nij(x)

Aij
+

Mij(x)

Wt,ij
(18)

σb,ij(x) =
Nij(x)

Aij
− Mij(x)

Wb,ij
(19)

τij(x) =
Vij(x)Sij

Iijbij
(20)

where Wt,ij and Wb,ij are the section moduli with re-

spect to the top and bottom fibers of the cross-section,

respectively, Iij is the second moment of area, Sij is the
first moment of area, and bij is the width of the profile

at the point where the maximum shear stress occurs.

Nij(x), Vij(x), and Mij(x) are, respectively, the normal

force, shear force, and bending moment at location x as

given by Fig. 3. For plastic design, similar constraints
related to the stress resultants can be formulated.

The stress σt,ij(x) at location x of member i for
profile j is calculated as:

σt,ij(x) = Sσt

ij (x)TiBiu+ σ̃t,ij(x) (21)

where σ̃t,ij(x) is the stress of the beam at location x due

to the element loads, assuming that profile j is selected

and that the member ends are clamped, calculated in a
similar way as given by Eq. (18). The stresses σb,ij(x)

and τij(x) are calculated in the same was as in Eq. (21).

The stresses can be calculated from the nodal dis-

placements u using the vectors Sσt

i (x), Sσb
i (x) and Sτ

i (x),

which are given by Eqs. (47) to (49) in section A.4.

Stress constraints have been treated similarly in the lit-
erature [33,34], but only for point loads located at the

element nodes. The proposed formulation of Eq. (21)

takes into account distributed loads and point loads

not located at the nodes.

The constrained stress components σt,ij , σb,ij and/or

τij of element i with profile j at locations xk are col-

lected in the vector sij . For example, if the normal stress
at the top of element i is to be constrained at locations

x1, x2, and x3, the vector sij is given by:

sij =



σt,ij(x1)

σt,ij(x2)
σt,ij(x3)


 (22)
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This vector is obtained as follows:

sij = SijTiBiu+ s̃ij (23)

where Sij and s̃ij are in this case

Sij =



Sσt

ij (x1)

Sσt

ij (x2)

Sσt

ij (x3)


 s̃ij =



σ̃t,ij(x1)

σ̃t,ij(x2)

σ̃t,ij(x3)


 (24)

In general, the stress constraints at predefined lo-
cations along the members are written in the form of

Eq. (9), where s̃ij is a vector containing the selected

stress components at the predefined locations of the

beam with clamped-clamped boundary conditions sub-

jected to the element loads of member i for profile j,
and

¯
sij and s̄ij are the prescribed minimum and maxi-

mum allowed stresses. The artificial bounds
¯
s′ij and s̄′ij

serve the same purpose as the bounds
¯
d′
ij and

¯
d′
ij , i.e.

they ensure that if profile j is not selected for member i,
the nodal displacements are not constrained by Eq. (9).

They are computed analogously to Eqs. (14) and (15),

using s̃ij instead of d̃ij .

3 Test problems and optimization results

In this Section, the mixed-integer linear programming

formulation presented above is applied to three test

problems. Firstly, a simple portal frame with an in-

clined roof subjected to a distributed load is considered.
This problem is employed to verify the method because

it can also be solved by complete enumeration. Sec-

ondly, a two-story frame benchmark problem reported

in the literature is treated. Finally, a three-bay three-

story frame is considered. This problem represents a
case where the optimum design is not easy to find by

enumeration.

All test problems are solved by the commercial soft-

ware Gurobi [37]. The software employs the branch-

and-cut method [23], where cutting planes and other en-

hancements are incorporated in the general branch-and-
bound framework in order to reduce the computational

time. Several parameters for controlling the details of

the algorithm are available. In this study, the default

values of these parameters are used, except for feasibil-
ity and integer tolerances, respectively, which are set to

values given below. Thus, the crucial decisions of the

branch-and-cut algorithm, e.g. branching strategy and

cutting plane selection, are governed by the software.

According to the principle of branch-and-bound, in

each iteration, a lower bound of the objective func-
tion, fLB, is computed by solving a linear program-

ming relaxation of the problem, where integer variables

are treated as continuous. This lower bound increases

Fig. 4: Schematic of the portal frame. The displace-

ments are constrained at the locations indicated by a
triangle (△), the stresses are constrained at the loca-

tions indicated by a cross (×).

over the iterations, whereas the upper bound of the op-

timum, fUB, decreases as better feasible solutions are

found. At any time, the optimality gap, defined by

Gap =
fUB − fLB

fUB
(25)

can be calculated to measure the quality of the solution.

When the optimality gap becomes 0, the global optimal-

ity of the solution is verified. For numerical purposes, a
small positive value is employed.

3.1 Portal frame

Fig. 4 shows a portal frame structure with four mem-
bers. The height of the frame is h1 = 4m and h2 = 2m,

the span of the frame is w = 10 m, the value of the

distributed load is p = 25 kN/m.

The objective of the optimization problem is to min-
imize the weight of the structure. The members are

made of steel, and the profiles are chosen from a catalog

with 24 HEA alternatives (Table 1). The Young’s mod-

ulus is 210GPa, the density is 7850 kg/m3, and the yield
strength is fy = 235MPa. The allowable normal stress is

fy, while the allowable shear stress is fy/
√
3 = 136MPa.

For members 1 and 4 all stress components are limited

at three equidistant locations including the end points

of the members. For members 2 and 3 all stress compo-
nents are limited at five equidistant locations including

the end points of the members (see Fig. 4). The stress

constraints are given by Eq. (9). For determining the

components of the vector s̃ij included in this equation,
the normal force Ñi(x), shear force Ṽi(x) and bending

moment M̃i(x) of a beam representing member i with

clamped-clamped boundary conditions subjected to the
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element loads are required. For member 2 they are cal-

culated as:

Ñ2(x) = sin(α2) cos(α2)px− sin(α2)
pw

4
(26)

Ṽ2(x) = cos2(α2)px− cos(α2)
pw

4
(27)

M̃2(x) = cos2(α2)
px2

2
− cos(α2)

pw

4
x+

p

12

(w
2

)2

(28)

where α2 = tan−1 (h2/(w/2)) is the angle of inclination

of member 2. The normal stresses σ̃t,2j(x) and σ̃b,2j(x)

at the top and bottom of member 2 for profile j at

location x, respectively, and the shear stresses τ̃2j(x) at
the neutral axis of member 2 for profile j at location

x are then obtained by substituting Ñ2(x), Ṽ2(x), and

M̃2(x) in Eqs. (18) to (20).

For member 3, the normal force Ñ3(x), shear force
Ṽ3(x) and bending moment M̃3(x) are calculated as:

Ñ3(x) = − sin(α3) cos(α3)px+ sin(α3)
pw

4
(29)

Ṽ3(x) = cos2(α3)px− cos(α3)
pw

4
(30)

M̃3(x) = − cos2(α3)
px2

2
+ cos(α3)

pw

4
x+

p

12

(w
2

)2

(31)

The stresses of the beam with clamped-clamped bound-

ary conditions subjected to the element loads at loca-

tion x of member 3 for profile j are calculated similarly

as for member 2.

The maximum allowed displacement is umax = 0.05m.
For member 2, the vertical displacement component is

limited at x1 = L2/2 and x2 = L2, and for mem-

ber 3 the vertical displacement component is limited

at x1 = L3/2. The displacement constraints are given
by Eq. (8). The vector containing the vertical displace-

ments of member 2 at the predefined locations x1 and

x2 is in this case given by:

d2j =

[
u2j(x1) sinα2 + v2j(x1) cosα2

u2j(x2) sinα2 + v2j(x2) cosα2

]
(32)

where u2j (xk) and v2j (xk) are the displacements along

the local x- and y-axes, respectively, of member 2 at

location xk for profile j. The matrix D2 is:

D2 =

[
Du

2 (x1) sinα2 +Dv
2(x1) cosα2

Du
2 (x2) sinα2 +Dv

2(x2) cosα2

]
(33)

and the vector d̃2j is:

d̃2j =

[
ũ2j(x1) sinα2 + ṽ2j(x1) cosα2

ũ2j(x2) sinα2 + ṽ2j(x2) cosα2

]
(34)

where ũ2j(x) and ṽ2j(x) are derived from the consti-

tutive relations between stress and strain according to

Table 1: HEA profile catalog

Index Section Index Section
1 HEA 100 13 HEA 340
2 HEA 120 14 HEA 360
3 HEA 140 15 HEA 400
4 HEA 160 16 HEA 450
5 HEA 180 17 HEA 500
6 HEA 200 18 HEA 550
7 HEA 220 19 HEA 600
8 HEA 240 20 HEA 650
9 HEA 260 21 HEA 700
10 HEA 280 22 HEA 800
11 HEA 300 23 HEA 900
12 HEA 320 24 HEA 1000

the Euler-Bernoulli beam theory:

ũ2j(x) =
sin (α2) cos (α2) p

2EA2j
x2 − sin (α2) pw

4EA2j
x (35)

ṽ2j(x) = −cos2 (α2) p

24EI2j
x4 +

cos (α2) pw

24EI2j
x3 − pw2

96EI2j
x2

(36)

The vector containing the vertical displacements of mem-

ber 3 at the predefined location x1 is:

d3j =
[
u3j(x1) sinα3 + v3j(x1) cosα3

]
(37)

where u3j (x1) and v3j (x1) are the displacements along

the local x- and y-axes, respectively, of member 3 at

x1 for profile j, and α3 = − tan−1 (h2/(w/2)) is the

angle of inclination of member 3. The matrix D3, the
vector d̃3j , and the displacement components ũ3j(x)

and ṽ3j(x) are composed in the same way as for member

2.

The sizing optimization problem is defined by Eqs.
(3) to (9). The total number of members is nm = 4,

and for each member the number of available profiles

is ns = 24. Thus there are altogether nb = 96 bi-

nary decision variables, and 3nb = 288 force variables,

whereas the number of degrees of freedom is ndof = 9.
Consequently, the problem consists of 393 design vari-

ables and 4765 constraints, and the constraint coeffi-

cient matrix contains 24000 nonzero elements. There

are 4 equality constraints to ensure that only one profile
is selected for each member (Eq. (4)), 9 nodal equilib-

rium equality constraints (Eq. (5)), 1152 member stiff-

ness relation inequality constraints (Eq. (6)), 1152 force

inequality constraints (Eq. (7)), 144 displacement in-

equality constraints (Eq. (8)), and 2304 stress inequal-
ity constraints (Eq. (9)). The number of profile com-

binations is 244 = 331776. The problem is solved by

Gurobi (version 6.0.2) on a computer with an Intel Core

i7-5600U processor (2.6 GHz clock frequency) and 8 GB
RAM. The feasibility tolerance is set to 10−9, the inte-

ger feasibility tolerance is set to 10−9, and the optimal-

ity gap (defined as the relative difference between the
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Fig. 5: Schematic of the two-story frame. The three load

cases are indicated by (1), (2), and (3).

lower and upper objective bound) is set to 5 × 10−3.

The optimization problem is solved in 26 seconds, and
10510 nodes of the branch-and-bound tree are explored.

The optimum design is obtained by assigning the

profile HEA 240 for all members. This can be explained

by inspecting the force diagrams (Fig. 11). The crit-

ical cross-sections of all members have approximately
equal normal forces and bending moments. This sug-

gests that the same profile for all members produces

approximately equal normal stresses at all critical cross-

sections, which implies that a single profile for the en-
tire frame should yield the minimum weight design as

long as the normal stress constraints are decisive. In

this case, the shear stress constraints and the displace-

ment constraints are not critical. The total weight of

the structure is 1131.63 kg. It is verified by full enu-
meration of all possible designs that this is indeed the

global optimum.

Detailed results for this test problem are given in B,

where the deformed shape of the frame, internal force
diagrams and constraint margins evaluated at the op-

timum design are presented.

3.2 Two-story frame

Fig. 5 shows a two-story frame under three load cases.
Sizing optimization of this structure has been consid-

ered in the literature by Chai et al. [38], Jivotovski [39],

and Juang et al. [40]. The horizontal displacements of

nodes 2 and 3 are limited to 2.54 cm, whereas the al-
lowable normal stress in all members is 163860 kN/cm2.

The Young’s modulus of the material is 206.88GPa, and

the density is 76999.34N/cm3. The members are divided

Table 2: Profile catalog for the two-story frame

Index Section area
[cm2]

Section modulus [cm3] First moment
of area [cm4]

1 118.39 1690.2 41623
2 144.92 2290.9 62435
3 167.34 2842.5 83246
4 187.10 3360.3 104058
5 204.96 3852.7 124869
6 221.37 4324.9 145681
7 236.66 4780.5 166492
8 251.02 5222.0 187304
9 264.59 5651.4 208115

in 4 groups: the columns of the same story must have

the same profile, the beams are designed independently.

The catalog of available sections is given in Table 2.

The mixed-integer linear programming formulation

is adopted for multiple load cases by including nodal

displacement and member force variables for each load

case. Moreover, the constraints of Eqs. (5) through (9)
are written for each load case. Altogether, the sizing

optimization problem of Eqs. (3) through (9) contains

576 variables (54 binary, 522 continuous) and 5268 con-

straints.

The MILP problem is solved by Gurobi (version 6.5)

on a computer with an Intel Core i5-3470 processor (3.2

GHz clock frequency) and 16 GB RAM. The optimality

gap is set to 5 × 10−3, and default values are used for
the other parameters. The runtime of the algorithm is 7

seconds, and 1461 nodes of the branch-and-bound tree

are explored. At termination, the global optimality of

the solution is verified. The weight of the solution is

42.53 kN. Profile number 5 is assigned to members 1
and 5, profile number 2 is assigned to members 2, 3,

and 4, and profile number 7 is assigned to member 6

(see Table 1). This solution is the same as the solution

reported by Juang and Chang, who have carried out a
complete enumeration to verify that 42.53 kN is indeed

the global optimum.

3.3 Three-bay three-story frame

Fig. 6 shows a three-bay three-story frame with 21 mem-
bers. The height of each story is h = 3.5m, the width of

each bay is w = 6m, the value of the horizontal load is

F = 22.05 kN, and the value of the distributed vertical

load is p = 50.1kN/m. The members are divided in seven

groups, and in each group, all members must have the
same profile. The beams (members 13 to 21) form one

group, whereas, the columns are organized in six groups

such that for each story, two groups are generated: the

outer columns (members 1 and 4, 5 and 8, and 9 and 12)
and inner columns (members 2 and 3, 6 and 7, and 10

and 11). Among group members, identical profiles are

enforced by introducing additional linear constraints in
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Fig. 6: Schematic of the three-bay three-story frame.

terms of the profile selection variables, yij . For example,

the profiles of columns 1 and 4 are set to be identical

by the following constraints:

y1j = y4j ∀ j ∈ C (38)

The objective of the optimization problem is to min-
imize the structural weight. In order to reduce the com-

putation time, a limited set of available profiles is used:

15 profile alternatives ranging from HEA 100 to HEA

400 (Table 1) are included in the catalog. The material

properties and allowed stresses are as in the previous ex-
ample. For each member, all stress components are lim-

ited at three equidistant locations x1 = 0, x2 = Li/2,

and x3 = Li. For each column, the interstory drift, △u,

is limited by h/300 = 0.0117m. For example, the inter-
story drift constraint of column 5 is

−△u 6 u9 − u5 6 △u (39)

where u9, and u5 are the horizontal displacements of

nodes 9 and 5, respectively. The other interstory drift

constraints are composed similarly. For each beam, the
vertical deflection is limited at location x1 = Li/2 by

w/200 = 0.03 m.

The minimum weight problem is given by Eqs. (3)

through (9). The total number of members is nm =

21, and for each member the number of available pro-

files is ns = 15, resulting in nb = 315 binary deci-
sion variables. The number of force variables is 3nb =

945, and the number of degrees of freedom is ndof =

36. The MILP consists of 1296 design variables, 13791

constraints, and the constraint coefficient matrix has

64195 nonzero elements. The number of design combi-
nations is 157 = 171 × 106. There are 21 equality con-

straints to ensure that only one profile is selected for

each member (Eq. (4)), 36 nodal equilibrium equality

constraints (Eq. (5)), 3780 member stiffness relation in-
equality constraints (Eq. (6)), 3780 force inequality con-

straints (Eq. (7)), 270 deflection constraints (Eq. (8)),

5670 stress inequality constraints (Eq. (9)), and 210

Fig. 7: Optimal design of the three-bay three-story

frame

grouping constraints. The interstory drift constraints
are imposed by limiting the difference of the horizon-

tal nodal displacements at the top and bottom of each

column. Consequently, there are 24 interstory drift con-

straints.

The MILP is solved by Gurobi (version 6.5) on the

same computer as the first example problem. The opti-
mality gap is set to 5× 10−3, the feasibility tolerance is

set to 10−6, and default values are used for the other pa-

rameters. The runtime of the algorithm is 19249 seconds

(5.3 hours), and 140066 nodes of the branch-and-bound

tree are explored. At termination, the global optimality
of the solution is verified.

The convergence of the algorithm is illustrated in
Fig. 8. The progress of the upper and lower bound,

respectively, are shown by the two curves. It can be

seen that feasible solutions close to the global optimum

are found quickly.

The optimum design is shown in Fig. 7. The weight

of the frame is 6131.87kg. Detailed results for this test
problem are given in C, where the deformed shape of the

frame, internal force diagrams and constraint margins

evaluated at the optimum design are presented.

The deflections of the beams (Table 5) are small

and not decisive for the optimal design. As can be seen

from Table 6, the utilization ratio of the interstory drift
constraints ranges from 0.90 to 1.00 for the bottom two

rows of columns. This means that the interstory drift

is decisive for the optimal design.

Stresses in the members vary significantly through-

out the frame (Table 7). The utilization ratios of the

stress constraints range from 0.65 to 0.96 for the beams,
and from 0.38 to 0.96 for the columns. Highest utiliza-

tion ratios appear in the members of the first story.

As interstory drift and profile grouping constraints are

enforced, a fully stressed design is not obtained.
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(a) Two-bay two-story frame
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(b) Three-bay three-story frame
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(c) Four-bay four-story frame

Fig. 10: Performance measured for the objective function value of the MILP reformulation approach (solid line)
and genetic algorithm (dotted line) solving the two-bay two-story, three-bay three-story, and four-bay four-story

frame problems.

Fig. 8: Convergence curves of the optimization. After

exploring 140066 nodes of the branch-and-bound tree,

an optimality gap of 0.5% is reached in point A and

the optimization is terminated.

3.4 Comparison with a genetic algorithm

It is interesting to compare the performance of the

mixed-integer linear programming approach with meta-

heuristic methods in order to assess the computational
cost that comes with the ability of the MILP formula-

tion to find and verify the global optimum.

In this paper, the genetic algorithm (GA) function

from the Matlab 2015 Global Optimization Toolbox is

chosen as the metaheuristic solution method. Now the

problem formulation follows the conventional nested

analysis and design approach, where only member cross-
sections are taken as design variables, and the values of

the internal forces and displacements used in constraint

evaluation are computed by the finite element method

for given cross-sections. Default stopping criteria and
parameter values are used, except for the constraint

tolerance, which is set to 10−6 instead of the using the

default value of 10−3 to make a fair comparison.

Fig. 9: Performance of the genetic algorithm. The mean

objective function value of 100 runs in each generation
is represented by the black curve. The gray region de-

limits the highest and lowest obtained objective func-

tion value in each generation. The global optimum is

indicated by the dotted line.

The three-bay three-story frame problem is solved
by performing 100 different runs of the genetic algo-

rithm with a population size of 70 for each generation.

The results are shown in Fig. 9. The mean objective

function value of all runs in each generation is repre-
sented by the solid black curve. The mean value of all

solutions is 6210.5 kg, which is 1.3% greater than the

global optimum. The gray region delimits the highest

and lowest obtained objective function value in each

generation. The global optimum is indicated by the dot-
ted line. For 32% of the runs, the global optimum is

reached. 54% of all runs reach a solution which is heav-

ier than the mean objective function value. The weight

of the heaviest solution is 6335.7 kg (3.3% greater than
the global optimum). The computation time to perform

100 runs is 9.7 hours, giving an average of 350 seconds

for 1 run.
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This analysis depicts the typical stochastic nature

of the genetic algorithm. For the majority of the runs,

the global optimum is not obtained, although the so-

lution deviates by only few percents, and the results

of the genetic algorithm are satisfactory. On the other
hand, during the computations, the quality of the so-

lution cannot be assessed with the genetic algorithm,

and eventually, the algorithm is simply stopped when

no better solution is found, or when the maximum num-
ber of iterations has been reached. On the contrary, the

solution process of the MILP ends precisely when the

global optimality of the solution is verified. If global

optimality of the solution is not required, the branch-

and-cut method can be terminated when the optimality
gap has become sufficiently small.

Therefore, in addition, a comparison of the perfor-

mance obtained by setting a limit on the computation

time is made. The performance measured for the objec-
tive function value is illustrated by optimizing a two-

bay two-story, three-bay three-story, and four-bay four-

story frame imposing the same dimensions, loads, and

constraints of the three-bay three-story frame exam-

ple problem discussed in the previous section. For each
case, multiple optimization problems are solved using

a different subset of 5 available profiles. The different

subsets are composed by dividing the catalog consist-

ing of 15 profile alternatives ranging from HEA 100 to
HEA 400 (Table 1) in five equidistant intervals, and

randomly selecting a section from each interval.

For the two-bay two-story, three-bay three-story, and

four-bay four-story frame a time limit of respectively

5, 50, and 500 seconds is set for each optimization.
For each example case, 100 different optimization prob-

lems are solved. The performance profiles [41,42] of the

MILP reformulation method and the genetic algorithm

are shown in Fig. 10. In this figure, the x-axis represents

the parameter τ which is the relative ratio of the ob-
jective function value and the best obtained objective

function value using the same subset of sections. The y-

axis represents the percentage of optimization problems

reaching an objective function value that is at most τ -
times higher than the best obtained objective function

value. The intersection of the plotted curves with the

y-axis indicates the percentage of winning solutions. It

can be seen that the MILP reformulation method per-

forms better for the two-bay two-story (Fig. 10a) and
three-bay three-story frame (Fig. 10b). In these cases,

the winning solution is obtained with the MILP ap-

proach for respectively 96 % and 80 % of the optimiza-

tion problems. For 80 % of the problems, the genetic
algorithm yields solutions with an objective function

value that is at most respectively 10 % and 5 % higher

than the solution obtained with the MILP approach.

In the case of the four-bay four-story frame (Fig. 10c),

the winning solution is obtained with the genetic algo-

rithm for 75 % of the optimization problems, and for 80

% of the problems the MILP method yields solutions

with an objective function value that is at most 6 %
higher than the solution obtained with the genetic algo-

rithm. In this case, the genetic algorithm performs bet-

ter. Due to the simplicity of implementing the genetic

algorithm, adopting this approach might be preferable
for practitioners. However, the quality of the solution

can only be assessed by means of the optimality gap

provided by the MILP approach. Therefore, the com-

putation time can be reduced when adopting the MILP

approach by terminating the optimization when the op-
timality gap is sufficiently small, say 5 % to 10 %. In

addition, the method can be used to benchmark the

efficiency of other methods.

4 Conclusion

This paper addresses a mixed-integer linear program-

ming approach for discrete sizing optimization of frame

structures using commercial profile catalogs. The per-
formance of the method is compared with the perfor-

mance of a genetic algorithm. The main benefit of the

MILP formulation is that it allows for finding the global

optimum of frames using well-established determinis-
tic solution methods such as branch-and-bound. The

formulation can be adopted for various materials and

applications. In order to make the approach more rele-

vant for practical applications, constraints derived from

design codes can be included. In extending the formu-
lation presented in this paper, the linearity of the prob-

lem should be preserved, because otherwise a large-scale

nonlinear mixed-integer problem needs to be solved,

which implies a substantial increase of computational
burden.

The critical point of the mixed-integer formulation

is the problem size. The problem includes hundreds of

variables and thousands of constraints even for modest

design tasks. The problem size increases rapidly as more
members and profiles as well as additional load cases

are introduced, which, due to the nature of MILP prob-

lems, implies that the computational time will grow sig-

nificantly. The multiple-bay multiple-story frame gives

some indication of this. In some cases the genetic al-
gorithm appears to be more efficient than the MILP

approach. However, even if the computational time for

finding and verifying the global optimum becomes pro-

hibitively large, the MILP formulation can still be used
for finding good designs. Moreover, the branch-and-

bound method provides the optimality gap throughout

the iterations. This information can be used to reduce
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the computational time by terminating the algorithm

when the optimality gap becomes sufficiently small.

In order to draw definitive conclusions on the appli-

cability of the MILP approach to practical design prob-

lems, the capabilities of the branch-and-cut method
should be thoroughly studied in order to reduce the

computational times. The convergence behavior depicted

in Fig. 8 shows that while contemporary branch-and-

cut algorithms are able to find feasible solutions (includ-

ing the global optimum) relatively quickly, the improve-
ment of the lower bound is rather slow. Consequently,

further research efforts should be targeted at producing

tighter relaxations of the MILP problem in order to ob-

tain greater lower bounds more quickly. For this task,
special-purpose cutting planes that efficiently exploit

the specific mathematical structure of the MILP prob-

lem should be considered. Additionally, various case

studies of actual design tasks should be treated. For a

given design problem, engineering judgment and problem-
specific additional constraints can often be employed to

improve the solution process.

A Mixed-integer linear programming problem

A.1 Equilibrium equations

The nodal equilibrium is imposed by the equality constraints
of Eq. (5). In this equation, Bi is a 6 × ndof binary location
matrix that maps the system degrees of freedom to the ele-
ment degrees of freedom, Ti is a 6×6 transformation matrix
that accounts for the orientation of the element [35], and f is
the ndof × 1 nodal load vector. Element loads are taken into
account as equivalent nodal loads in the nodal load vector f .
Ri is a 6×3 matrix giving the relation between the six mem-
ber end forces as shown in Fig. 1, and the three independent
force variables qij (see Eq. (1)) as follows:




N1,ij

V1,ij

M1,ij

N2,ij

V2,ij

M2,ij



=




1 0 0
0 1

Li

1
Li

0 1 0
−1 0 0
0 − 1

Li
− 1

Li

0 0 1






N1,ij

M1,ij

M2,ij


 (40)

A.2 Member stiffness relations

In addition to nodal equilibrium, the material law and com-
patibility conditions are needed in structural analysis. For
trusses, Hooke’s law and compatibility conditions can be writ-
ten as a single equation, because the normal force is the
only stress resultant appearing in the members [27]. As frame
members have three (6 in 3D) stress resultants in each node,
altogether six (12 in 3D) force-displacement relations are needed.
Thus, the relation between the member end forces and the
nodal displacements can be written as:

qij = yijKijTiBiu ∀ i ∈ M, ∀ j ∈ Ci (41)

where the matrix Kij assembles the first, third and sixth row
of the element stiffness matrix:

Kij =




EAij

Li
0 0 −EAij

Li
0 0

0
6EIij

L2
i

4EIij

Li
0 −6EIij

L2
i

2EIij

Li

0
6EIij

L2
i

2EIij

Li
0 −6EIij

L2
i

4EIij

Li




where E is the Young’s modulus of the material, Li is the
length of member i, and Aij and Iij are the section area and
second moment of area of profile j for member i, respectively.

Eq. (41) ensures that the force variables qij become zero
when profile j is not selected for member i (yij = 0) and
qij = KijTiBiu when profile j is selected for member i
(yij = 1).

In a regular finite element analysis, the global stiffness
matrix K is assembled by replacing qij in Eq. (5) with the
expression given by Eq. (41). The resulting equilibrium equa-
tion can not be reformulated as a linear system of equations
in terms of the design variables since the global stiffness ma-
trix depends on the binary decision variables. Therefore, the
linear nodal equilibrium, Eq. (5), and the member stiffness
relation, Eq. (41), are adopted as separate constraints.

The member stiffness relation in Eq. (41) is nonlinear in
terms of the design variables but it can be equivalently re-
formulated as a set of linear inequality constraints by intro-
ducing artificial upper and lower bounds [27] of Eq. (6).In
this equation, the force variables become equal to qij =
KijTiBiu when profile j is selected for member i (yij =
1). When profile j is not selected for member i (yij = 0),
the force variables do not become zero but are bounded by
KijTiBiu − q̄′

ij 6 qij 6 KijTiBiu −
¯
q′
ij . In order to en-

sure that the force variables become zero when profile j is not
selected for member i, additional constraints given by Eq. (7)
are introduced.

The artificial upper and lower bounds q̄′
ij and

¯
q′
ij ensure

that, when profile j is not selected for member i, the nodal
displacements are not bounded by Eq. (6). Each element k of
the artificial bound vectors is calculated as follows [36]:

¯
q′k,ij = min

u
kr,ijTiBiu (42)

s.t. u 6 u 6 u

q̄′k,ij = max
u

kr,ijTiBiu (43)

s.t. u 6 u 6 u

where kr,ij represents row r ∈ [1, 3, 6] of the element stiffness
matrix Kij , and u and u are the prescribed minimum and
maximum allowed nodal displacements, respectively. Eqs. (42)
and (43) are linear optimization problems with bound con-
straints, that can be solved without effort [36].

A.3 Displacement vectors

Du
i (x) =

[
1− x

Li
0 0 x

Li
0 0

]
(44)

Dv
i (x) =

[
0 1− 3x2

L2
i

+ 2x3

L3
i

x
(
1− x

Li

)2
· · ·

0 3x2

L2
i

− 2x3

L3
i

x
(
− x

Li
+ x2

L2
i

) ]
(45)

Dϕ
i (x) =

[
0 −6x

L2
i

+ 6x2

L3
i

1 − 4x
Li

+ 3x2

L2
i

· · ·

0 6x
L2

i

− 6x2

L3
i

−2x
Li

+ 3x2

L2
i

]
(46)
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A.4 Stress vectors

Sσt

ij (x) =
[
− E

Li

6EIij

L2
i
Wt,ij

− 12xEIij

L3
i
Wt,ij

4EIij

LiWt,ij
− 6xEIij

L2
i
Wt,ij

· · ·
E
Li

12xEIij

L3
i
Wt,ij

− 6EIij

L2
i
Wt,ij

2EIij

LiWt,ij
− 6xEIij

L2
i
Wt,ij

]
(47)

Sσb
ij (x) =

[
− E

Li

12xEIij

L3
i
Wb,ij

− 6EIij

L2
i
Wb,ij

6xEIij

L2
i
Wb,ij

− 4EIij

LiWb,ij
· · ·

E
Li

6EIij

L2
i
Wb,ij

− 12xEIij

L3
i
Wb,ij

6xEIij

L2
i
Wb,ij

− 2EIij

LiWb,ij

]
(48)

Sτ
ij(x) =

[
0 −12ESij

L3
i
bij

−6ESij

L2
i
bij

0
12ESij

L3
i
bij

−6ESij

L2
i
bij

]

(49)

B Detailed results for the portal frame

Table 3: Constrained displacements evaluated at the

optimum design

Member Location v [m] |v|
vmax

2 L/2 -0.0223 0.45
2 L -0.0348 0.70
3 L/2 -0.0223 0.45

(a) Deformed frame.

-125

-103
-57

(b) Normal forces [kN].

62 -93

-23

-62

9323

(c) Shear forces [kN].

-109

137
-53

-65
137

(d) Bending moments [kNm].

Fig. 11: Deformation and internal force diagrams at the

optimum design.

Table 4: Constrained stresses evaluated at the optimum

design

Member Location σt [MPa] |σt|
σmax

σb [MPa] |σb|
σmax

τ [MPa] |τ|
τmax

1 0 -178.64 0.76 146.08 0.62 64.79 0.28
1 L/2 3.79 0.02 -36.34 0.15 64.79 0.28
1 L 186.21 0.79 -218.76 0.93 64.79 0.28
2 0 188.99 0.80 -215.97 0.92 -98.06 0.42
2 L/4 33.60 0.14 -57.55 0.24 -67.53 0.29
2 L/2 -63.94 0.27 43.01 0.18 -37.00 0.16
2 3L/4 -103.62 0.44 85.71 0.36 -6.47 0.03
2 L -85.43 0.36 70.54 0.30 24.06 0.10
3 0 -85.43 0.36 70.54 0.30 -24.06 0.10
3 L/4 -103.62 0.44 85.71 0.36 6.47 0.03
3 L/2 -63.94 0.27 43.01 0.18 37.00 0.16
3 3L/4 33.60 0.14 -57.55 0.24 67.53 0.29
3 L 188.99 0.80 -215.97 0.92 98.06 0.42
4 0 -178.64 0.76 146.08 0.62 64.79 0.28
4 L/2 3.79 0.02 -36.34 0.15 64.79 0.28
4 L 186.21 0.79 -218.76 0.93 64.79 0.28

C Detailed results for the three-bay three-story

frame

(a) Deformed frame.

-362

-242

117

-953

-642

-326

-958

-645

-337

-433

-276

-122

(b) Normal forces [kN].

180
176
184

170
161
158

157
153
122

(c) Shear forces [kN].

-97
-100

-131

-76
-75

-58

-91
-85

-138

192

(d) Bending moments [kNm].

Fig. 12: Deformation and internal force diagrams at the
optimum design.

Table 5: Constrained deflections evaluated at the opti-

mum design

Member Location v [m] |v|
vmax

13 L/2 -0.0097 0.19
14 L/2 -0.0070 0.14
15 L/2 -0.0103 0.21
16 L/2 -0.0116 0.23
17 L/2 -0.0090 0.18
18 L/2 -0.0105 0.21
19 L/2 -0.0166 0.33
20 L/2 -0.0072 0.14
21 L/2 -0.0185 0.37
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Table 6: Constrained interstory drifts evaluated at the

optimum design

Member ∆u [m] |∆u|
△umax

1 0.0112 0.96
2 0.0112 0.96
3 0.0114 0.98
4 0.0117 1.00
5 0.0115 0.99
6 0.0113 0.97
7 0.0110 0.94
8 0.0105 0.90
9 0.0097 0.83
10 0.0098 0.84
11 0.0099 0.85
12 0.0102 0.87
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1. Abstract
In structural optimization of trusses and frames, the member profiles have to be selected from material suppliers
selection. This means that the optimization problem becomes discrete. The discrete frame optimization problem
can be formulated as mixed-integer linear program (MILP) and thus solved for global optimality using well-
known deterministic methods such as branch-and-cut. Within the formulation it is possible to include member
buckling constraints. When using design standards as basis for member buckling resistance evaluation, the critical
forces or buckling lengths of the members are required. Buckling length can be determined using many methods,
both numerical and analytical. Regardless of the method, buckling length of a single member is dependent on
surrounding members stiffness which makes it practically impossible to include the correct buckling lengths in
MILP formulation directly. In general, the question of buckling length in frame optimization has rarely been
discussed in the structural optimization literature. Therefore, in this paper, an iterative approach to determine the
correct buckling lengths is presented. In this approach, the MILP optimization is run several times. Linear stability
analysis is performed between MILP runs to update buckling length data. The performance of the proposed method
is illustrated in example calculations. The example structures are steel frames and Eurocode 3 is used as basis for
member resistance constraints. In the examples, the method converges with a relatively low number of iterations.
2.Keywords:global optimization, frames, stability constraints

3. Introduction
In frame or truss design, the respective optimization problem is typically discrete meaning the sections must be
chosen from a set of profiles given by steel supplier. On the other hand, the design is not only limited by stress or
displacement as found in classical structural optimization literature but more complex constraints of design codes
and standards. These documents typically present ways to handle local and global instabilities as well as stress
measures. In optimization, the design rules can easily result in non-linear, non-convex and even non-continuous
constraint functions depending on formulation.
When adopting the SAND (simultaneous analysis and design) approach and discrete design variables the truss
design problem can be formulated as MILP (mixed integer linear program) [1]. Recently, the similar approach
has also been used in topology optimization of frames [2, 3]. This type of optimization problem can be solved
to verified global optimum with well-known branch-and-cut method. Moreover, since internal forces are state
variables in optimization, the SAND approach seems tempting since steel design code formulas typically constrain
forces rather than stresses.
When applying the design codes as basis for design, the buckling length or critical force for each member is needed.
In EN 1993-1-1 [4] for certain structures, such as tubular trusses, straight-forward coefficients multiplying member
length are given as constant values. This has been utilized in MILP approach of trusses [5]. In frames, however, the
buckling length or critical force is dependent of support conditions and surrounding members’ stiffness which are
typically dependent on the design variables in optimization. Therefore, the stability analysis should somehow be
included in the optimization to properly take the stability into account. The well-known linear stability eigenvalue
analysis or analytical approaches (for example [6]) have been presented in the literature but within MILP the use
of both of these approaches would require very large amount of constraints.
The mathematical properties of the constraint functions or discrete design variables do not cause problems if meta-
heuristic optimization approach such as genetic algorithm (GA), particle swarm optimization (PSO) and harmony
search (HS) – among many others – is adopted. For example, harmony search has been used in frame design
examples with AISC based design constraints using approximate effective lengths with a finding that HS performs
better than GA [7]. When using these approaches, however, the optimality of the obtained solution cannot typically
be verified.
Therefore in this paper, an approach to use the MILP scheme by sequentially updating parameter values needed
in design code buckling analysis according to EN 1993-1-1 is presented. The formulas are presented for planar
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frame made of European standard hot-rolled I sections. Paper is organized as follows: In next section, the MILP
formulation is presented, after that EN 1993-1-1 member design formulas are formulated and – when needed
– linearized to fit the MILP scheme. In following section a sequential procedure to handle buckling constraint
related parameter values is proposed. The convergence of proposed procedure is verified in numerical examples.

4. MILP in frame structures
The mixed integer linear scheme was introduced to beam elements was written by [2]. However, the work aims
for topology optimization of special structures under special consideration and involves only one possible size for
each existing member. For a plane frame found in buildings, the weight minimization with displacement and stress
constraints can be written as ([8], notation follows the reference):

min
x ∑

i∈M
∑
j∈Ci

ci jyi j (1)

such that ∑
j∈Ci

yi j = 1 ∀ i ∈M (2)

∑
i∈M

∑
j∈Ci

BT
i T

T
i qi j = f (3)

(1− yi j)
¯
q′i j 6Ki jTiBiu−qi j 6 (1− yi j)q̄′i j ∀ i ∈M , ∀ j ∈ Ci (4)

¯
q′i jyi j 6 qi j 6 q̄′i jyi j ∀ i ∈M , ∀ j ∈ Ci (5)

¯
d′i j+(

¯
di j− ¯

d′i j)yi j 6 DiTiBiu+ d̃i j 6 d̄′i j+(d̄i j− d̄′i j)yi j ∀ i ∈M , ∀ j ∈ Ci (6)

¯
s′i j+(

¯
si j− ¯

s′i j)yi j 6 Si jTiBiu+ s̃i j 6 s̄′i j+(s̄i j− s̄′i j)yi j ∀ i ∈M , ∀ j ∈ Ci (7)

The stress constraints are found in structural optimization literature, but design codes focus on member resistances.
Thus, in the following section the EN 1993-1-1 member design rules are written within the MILP scheme.

5. MILP and Eurocode
Consider a planar steel frame with support conditions such that lateral torsion buckling is restricted. Moreover,
hot-rolled I or H profiles are used. The respective EN 1993-1-1 member design constraints are as follows. In
cross-section check, the bending moment resistance is lowered to take into account the axial force as (EN 1993-1-
1, clause 6.2.9.1(5)):

My,Ed ≤MN,y,Rd =Mpl,y,Rd min
{

1−n
1−0.5a

;1
}

(8)

where

n=
|N|

Npl,Rd
(9)

and

a= min
{
A−2bt f

A
;0.5

}
(10)

The cross-section dimensions and local axes are shown in Figure 1.
This can be written as six linear constraints for each member, profile choice and location where the check is needed
as:

N
NRd

+

(
1− Nn

NRd

)
M
MRd

≤ 1 (11)

− N
NRd

+

(
1− Nn

NRd

)
M
MRd

≤ 1 (12)

N
NRd
−
(

1− Nn

NRd

)
M
MRd

≤ 1 (13)

− N
NRd
−
(

1− Nn

NRd

)
M
MRd

≤ 1 (14)

M
MRd

≤ 1 (15)

− M
MRd

≤ 1 (16)
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Figure 1: Dimensions and local axes of hot-rolled I section.

where

Nn = 0.5min
{
A−2bt f

A
;0.5

}
A fy (17)

The EN 1993-1-1 member stability or compression-bending interaction formulas are:

NEd

χyNRd
+ kyy

My,Ed

χLTMy,Rd
+ kyz

Mz,Ed

Mz,Rd
≤ 1 (18)

and
NEd

χzNRd
+ kzy

My,Ed

χLTMy,Rd
+ kzz

Mz,Ed

Mz,Rd
≤ 1 (19)

in which χy is the reduction factor in buckling in plane and χz is the reduction factor in buckling out of plane and
χLT is the reduction factor in lateral torsion buckling. The factors ki j are interaction factors.
Members are assumed not susceptible to lateral torsion buckling, and thus χLT = 1. Moreover, kzy = 0 (EN 1993-
1-1 table B1) and obviously Mz,Ed = 0. Thus, the interaction formulas are reduced to

NEd

χyNRd
+ kyy

My,Ed

My,Rd
≤ 1 (20)

and
NEd

χzNRd
≤ 1 (21)

Interaction factor kyy is a function of both axial force and bending moment. For hot-rolled I-profile in cross-section
class 1 or 2 according to method 2 in EN 1993-1-1 annex B

kyy =Cmy min
(

1+(λy−0.2)
NEd

χyNRd
;1+0.8

NEd

χyNRd

)
(22)

where Cmy is the equivalent moment factor. For columns with no distributed transverse loads only end bending
moments need to be considered and the EN 1993-1-1 annex B table gives formula

Cmy = max{0.4;0.6+0.4ψ} (23)

where
ψ =

M1

M2
if |M2|> |M1| else ψ =

M2

M1
(24)

where M1 and M2 are the member end bending moments.
Reduction factor χy is calculated by

χy = min


 1

φy+
√

φ 2
y − λ̄ 2

y

,1


 (25)
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where
φy = 0.5

[
1+αy

(
λ̄y−0.2

)
+ λ̄ 2

y
]

(26)

and

λ̄y =

√
fyA
Ncr,y

(27)

where αy is the imperfection factor and Ncr,y the critical load of the column in buckling about y-axis. Critical load
is calculated as

Ncr,y =
π2EIy
L2
cr,y

=
π2EIy

(kyLsys)
2 (28)

where Lcr,y is the buckling length of the member, ky is the buckling length factor and Lsys is the member system
length in the model.
χz is calculated similarly but by using values Ncr,z and αz.
Thus, it is evident that stability constraints in MILP are non-linear. However, by assuming constant values forCmy,
ky and kz a linear approximation of the non-linear constraint can be made.
Consider that the evaluation formula Eq. (20) is relevant only for compression (N ≤ 0) and abbreviate n = − N

NRd

and m= MEd
MRd

. By considering Eq. (20) as an equality, and solving for m as a function of n yields

m= m(n) =
1+

n
χy

Cmy

(
1−λ

n
χy

) (29)

The curve is linearized at point n= nl . The derivative of m(n) is

m′(n) =
1+λ

Cmyχy

(
1−λ

n
χy

)2 (30)

The linearization or first order Taylor approximation can be written

mlin(n) = m(nl)+m′(nl)(n−nl) (31)

The point nl is chosen as the mid point of decisive buckling strength nb = min(χz,χy) and intersection point plastic
interaction and compression-bending interaction curves or zero if the inter-section point nc is positive.

nl =
min(0,nc)

2
+

nb
2

(32)

The relevant plastic interaction (acting in when n< 0 and M > 0) is defined by

m(n) =
1+n
1−n0

(33)

where n0 is largest absolute value of n when bending moment resistance is not affected by axial force which can
be calculated as

n0 =
Nn

NRd
(34)

The compression bending interaction is defined by Eq. (29). The intersection of the curves is defined by a second
degree polynomial

−Cmyλ
χy

n2 +

[
−Cmyλ

χy
+Cmy−

1
χy

+
n0

χy

]
n+Cmy−1+n0 = 0 (35)

By marking

A=−Cmyλ
χy

(36)

B=−Cmyλ
χy

+Cmy−
1
χy

+
n0

χy
(37)

C =Cmy−1+n0 (38)
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the solution can be written

nc =
−B±

√
B2−4AC

2A
(39)

From ± the subtraction is chosen.
The linear constraint thus obtained can be written as

m(nl)+m′(nl)(n−nl)≤ m (40)

for positive bending moment and
−m(nl)−m′(nl)(n−nl)≥ m (41)

for negative bending moment.
In total, linearized EN 1993-1-1 member design requirements considering stability expressed in N,M space (N < 0
compression):

N
NRd
≥−χz (42)

k
N
NRd
− M

MRd
≤ c (43)

−k N
NRd
− M

MRd
≤ c (44)

(45)

where

k = m′(nl) =
1+λ

Cmyχy

(
1−λ

nl
χy

)2 (46)

c=
1+

nl
χy

Cmy

(
1− λnl

χy

) − 1+λ

Cmyχy

(
1−λ

nl
χy

)2 nl (47)

The linearization is clearly an approximation and introduces some error. The error made by linearization of Eq. (20)
is dependent of both buckling length factors ky and kz and equivalent moment factorCmy. For three sets of parameter
values the error is visualized in Figure 2. It seems that high values of ky and Cmy contribute to high curvature of
the interaction and thus high error at the ends. In all cases the error is conservative. With buckling length close
to system length the error can be considered to be at acceptable level. With high out-of-plane buckling length in
comparison to in-plane buckling length, the design might be limited only by plastic resistance of the cross-section
and out-of-plane buckling. Obviously, the choice of the linearization point affects the error. The choice presented
above seems to produce a balanced and usable result.

6. Problem formulation with Eurocode 3 member design constraints
The problem formulation with linearized Eurocode 3 member design constraints can be written as:

min
x ∑

i∈M
∑
j∈Ci

ci jyi j (48)

such that ∑
j∈Ci

yi j = 1 ∀ i ∈M (49)

∑
i∈M

∑
j∈Ci

BT
i T

T
i qi j = f (50)

(1− yi j)
¯
q′i j 6Ki jTiBiu−qi j 6 (1− yi j)q̄′i j ∀ i ∈M , ∀ j ∈ Ci (51)

¯
q′i jyi j 6 qi j 6 q̄′i jyi j ∀ i ∈M , ∀ j ∈ Ci (52)

¯
d′i j+(

¯
di j− ¯

d′i j)yi j 6 DikTiBiu+ d̃i j 6 d̄′i j+(d̄i j− d̄′i j)yi j ∀ i ∈M , ∀ j ∈ Ci k ∈Di (53)

ci jl,cbqi j+bi jl,cbyi j 6 ci j,cb ∀ i ∈M , ∀ j ∈ Ci l ∈ Ei (54)
ci jl,plqi j+bi jl,plyi j 6 1 ∀ i ∈M , ∀ j ∈ Ci l ∈ Ei (55)
ci jl,Mqi j+bi jl,Myi j 6 1 ∀ i ∈M , ∀ j ∈ Ci l ∈ Ei (56)

ci j,oqi j 6 1 ∀ i ∈M , ∀ j ∈ Ci (57)
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Figure 2: Three different scenarios for linearization with 2500 mm long HEA 200 member. Cross section resistance
solid black line, linearization dashed line, compression and bending interaction solid grey line and out-of-plane
buckling dash dot line. Left: ky = 2, kz = 1, Cmy = 0.9, middle: ky = 1, kz = 1, Cmy = 0.9, right: ky = 1, kz = 1,
Cmy = 0.5.

where constraints 49 - 52 are similar to those shown in Section 2 and the original reference. In the displacement
constraint (Eq. (53)), index k is added to emphasize that displacement is constrained in finite number of points
along the member. The stress constraint found in the original formulation is replaced with constraints including
the compression bending interaction in plane (Eq. (54)), plastic cross-sectional resistance (Eq. (55) and Eq. (56))
and compression including the effect of out-of-plane buckling (Eq. (57)).
The constant vectors and scalars found in Eqs 54-57 are

ci j,cb =
[ −ki j,cb
Ni j,Rd,pl

xlLi
Mi j,Rd,pl

−1
Mi j,Rd,pl

0 0 0
]ᵀ
∈ R6 (58)

bi j,cb =−
pi (xlLi)

2

2Mi j,Rd,pl
(59)

ci j,cb =
1+

nl,i j
χy

Cmy

(
1− λnl,i j

χy

) − 1+λ

Cmyχy

(
1−λ

nl,i j
χy

)2 nl,i j (60)

ci j,pl =
[ −1
Ni j,Rd,pl

km,i jxlLi
Mi j,Rd,pl

−km,i j
Mi j,Rd,pl

0 0 0
]ᵀ
∈ R6 (61)

bi jk,pl =−
km,i jpi (xlLi)

2

2Mi j,Rd,pl
(62)

ci j,M =

[
0

xlLi
Mi j,Rd,pl

−km,i j
Mi j,Rd,pl

0 0 0
]ᵀ
∈ R6 (63)

bi j,M =− pi (xlLi)
2

2Mi j,Rd,pl
(64)

ci j,o =
[ −1

χz,i jNi j,Rd,pl
0 0 0 0 0

]ᵀ
∈ R6 (65)

where km,i j = 1− n0,i j (see Eq. (33)), xl is the coordinate along the element in which the resistance is evaluated,
pi is the transverse distributed loading on element i and ki j,cb is calculated using Eq. (46) and nl,i j is the point of
linearization (see Eq. (32)).

7. Buckling length factors
When calculating the reduction factors χy and χz, the respective critical forces, buckling lengths or buckling length
factors are needed. Both buckling lengths are dependent on joint type and surrounding member stiffness. They can
be calculated by linear eigenvalue analysis or analytical methods but both approaches are practically impossible to
be included in the MILP approach as the number of constraints for each member would be very high (for example,
with 15 possible profiles and six connecting members the number of combinations is 157 ≈ 1.5 ·109).
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By using the global linear stability (eigenproblem) analysis solution the buckling length can be calculated as

Lcr,y =

√
π2EIy
λiN

(66)

where λi is the eigenvalue of the eigenmode connected buckling of member under inspection and N is the absolute
value of axial force present in the member. Note, that λi is not necessarily the lowest positive eigenvalue (αcr in EN
1993-1-1 notation), especially in a complicated structure, but the lowest value can be used as a safe approximation
for all members.

8. Sequential approach for handling stability parameter values
In last section it was assumed for Cmy, ky and kz to be independent of optimization design or state variables. This
assumption is known to be incorrect and the values of the named parameters may depend on them. To ensure they
have correct values in the optimization a sequential approach is proposed. First, initial values are introduced for
compressed members in structure. Then the structure is optimized with these values. For the obtained design full
analysis including global linear stability analysis is performed. By the results from this calculation, the parameter
values are updated. The procedure flow chart is seen in Figure 3.

EN 1993-1-1 resistance
evaluation incl. global
stability analysis

Design complete

MILP
optimization

Is the termination
criterion met?

No

Yes

Initial parameter
values ky, kz,Cmy

Update parameter
values

Figure 3: Flow chart of the proposed design procedure.

The iteration is terminated if the design is fully compliant with Eurocode 3. Based on previous Sections, conditions
for EN 1993-1-1 resistance evaluation for frame problem could be written as:

Uy =
NEd

χyNRd
+ kyy

My,Ed

My,Rd
≤ 1 (67)

Uz =
NEd

χzNRd
≤ 1 (68)

Upl =
My,Ed

My,Rd min
{

1−n
1−0.5a

;1
} ≤ 1 (69)

Ua =
Ny,Ed

Ny,Rd
≤ 1 (70)

Ub =
My,Ed

My,Rd
≤ 1 (71)
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Figure 4: The example frame dimensions, loads, member numbering and in-plane support conditions.

Table 1: Parameter and objective function values at each iteration for hinged frame.
Iteration Cmy ky f [kg]

1 2 3 1 2 3
0 0.5 0.5 0.5 1 1 1 721
1 0.7 0.7 0.5 1.22 1.22 1 802

The proposed update procedure for the mentioned parameter values is

kn+1
y = αkny +(1−α)k∗y (72)

Cn+1
my = αCn

my+(1−α)C∗my (73)

where superscript n+1 and n refer to values used in the MILP at iteration n+1 and n, respectively, and ∗ to values
obtained from non-linearized analysis to design obtained at iteration n. The parameter α ∈ [0,1] is used to control
the step size to alter the parameter values ky and Cmy.

9. Numerical examples
Consider a portal frame shown in Figure 4. The columns are chosen from European HEA selection and beams
from IPE selection both having 15 possible profiles ranging from HEA100 to HEA400 and IPE100 to IPE400,
respectively. The objective function is structural weight. The frame is forced to be symmetric thus leaving only
two free sizing variables. The out of plane support is supposed to result buckling length factor kz = 1. Two
instances are considered. First, the beam is connected with ideally hinged joints and in second, where beam is
connected with ideally rigid joints.
Both cases are optimized with the linearized sequential procedure described in earlier. In the MILP, the resistance
constraints are written for 21 evenly distributed points along each member. The initial parameter values are ky = 1
and Cmy = 0.5 for the frame with rigid joints and ky = 0.8 and Cmy = 0.5 for the frame with hinged joints. The
stopping criterion for the iteration is that feasible solution according to accurate EN 1993-1-1 member evaluation
is found. Therefore, the initial values for the parameters are chosen to be unconservative. The update step size
parameter value α = 0.5 is used. Displacement constraints are not used. The results and progress of the iteration
are seen in Tables 1–2.

Table 2: Parameter and objective function values at each iteration for rigid frame.
Iteration Cmy ky f [kg]

1 2 3 1 2 3
0 0.5 0.5 0.5 0.8 0.8 0.8 680
1 0.7 0.7 0.7 0.96 0.90 0.8 680
2 0.8 0.8 0.8 1.04 0.94 0.8 721
3 0.85 0.85 0.85 1.07 0.96 0.8 725
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Table 3: Parameter values and critical load factor for the exact global optima.
Case Cmy ky αcr f [kg]

1 2 3 1 2 3
Rigid 0.84 0.4 0.9 1.18 1.05 2.69 11.6 725

Hinged 0.9 0.9 0.9 1.50 1.50 7.56 6.3 802

For comparison, the global optimum of non-linearized problem is also sought by exhaustive enumeration. The
result is 725 kg for the frame with rigid joints and 802 kg for the frame with hinged joints. The buckling length
and Cmy values for the optimal designs are seen in Table 3. In the global linear buckling analysis, 10 elements for
each member is used to find the lowest positive eigenmode and eigenvalue.
Thus, it is seen that global optimum is found in both cases with the proposed procedure. However, the convergence
of the procedure is dependent of both initial parameter values and step size parameter (α in Eq. (72)) for updating
the parameter values especially with the case with rigid joints. With update procedure based only on the obtained
design (α = 1), suboptimal design ( f = 760 kg) is obtained. The design thus obtained fulfils the termination
criterion but as the design was known to be suboptimal, the iteration was continued resulting in situation where the
obtained design jumps between two designs.
In beams, the critical length in Table 3 is relatively high. This happens because the lowest positive eigenvalue that
is used on calculating the length is connected to buckling of columns rather than the beam. If the eigenmode and
eigenvalue connected to beam buckling was sought, lower values would be expected. However, since the axial
force is very low in comparison to bending moment this does not affect the design.

10. Conclusions
In this paper, the effect of buckling length in frame MILP optimization with code-based member resistance con-
straints is considered. In numerical examples it is shown that buckling length is important parameter since incorrect
value will yield that the result obtained in the optimization does not comply with the codes. Therefore, a sequen-
tial approach to include member buckling constraints to frame optimization is presented. By this approach, the
buckling length dependent on multiple design variables can be used within the MILP scheme. In the numerical
examples of small scale the procedure finds the global optima of the non-linearized sizing problem. However,
the sequential procedure presented in this paper is not robust in a sense that obtained design might be subopti-
mal depending on both initial design parameter values and parameter values connected to the solution procedure.
Therefore, more research effort is needed to find out proper values for mentioned parameters and limits for the
procedure applicability.
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Buckling length of a frame member

Teemu Tiainen1 and Markku Heinisuo

Summary. In the design of steel frames, the definition of buckling length of its members is a
basic task. Computers can be used to calculate the eigenmodes and corresponding eigenvalues
for the frame and using these the buckling length of the members can be defined by using the
well-known Euler’s equation. However, it is not always easy to say, which eigenmode should
be used for the definition of the buckling length of a specific member. Conservatively, the
lowest positive eigenvalue can be used for all members. In this paper, two methods to define
the buckling length of a specific member are presented. The first one uses geometric stiffness
matrix locally and the other one uses strain energy measures to identify members taking part
in a buckling mode. The applicability of the methods is shown in several numerical examples.
Both methods can be implemented into automated frame design, removing one big gap in the
integrated design. This is essential when optimization of frames is considered.

Key words: effective length, frame analysis, elastic buckling
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Introduction

In the code-based structural design, the buckling length (also effective length) or load of
a member is still an important design parameter. For certain structures, the design codes
and standards give values for the length factors, as is the case with tubular trusses in EN
1993-1-1 for example, but in general the task is left to the designer.

Multiple methods have been proposed for finding the effective length of a frame mem-
ber. Widely used simplified approach has been presented by Dumonteil [1]. In this
contribution, the transcendental equation is solved approximately with simplified formu-
las. Multiple extensions for this work have been carried out by several other authors. For
example, semi-rigid joints have been considered in [5]. Webber et al. [8] has proposed an
extension to cover the effect of axial force in columns adjoining the considered member
as well as the effect of axial force in other columns in the same floor. In the examples, it
is shown that this approach gives very accurate values in comparison to results given by
a finite element software.

Even if the presented simplified methods can be considered to be accurate enough to be
applicable with design codes, they do not necessarily fit well in integrated design systems.

1Corresponding author. teemu.tiainen@tut.fi
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For example, in approach proposed by Webber et al., the user needs to identify other
columns in the floor which is not always straightforward task in a complicated structure.

It should also be noted that according to standards, such as the EN 1993-1-1, the con-
cept of buckling length is not needed if geometrically non-linear analysis is employed. How-
ever, application of non-linear models will result in greater computational effort needed
for the analysis. In case of a single analysis, this is clearly not a problem with contem-
porary computational tools. However, when optimization is performed the analysis needs
to be carried out multiple – even thousands of – times.

Therefore, in this contribution, two approaches for a programmable procedure to assess
the effective length are presented. The methods cannot practically be used with hand
calculation but need a finite element code that can be altered. However, the routines
needed for the proposed methods are relatively easy to implement for an experienced user.
The paper is organized as follows. The concept of buckling length and the methods are
presented in the following sections and their performance is evaluated in three numerical
examples.

Linear stability analysis and buckling length

Typical approach using linear stability theory for elastic buckling yields the well-known
linear system of equations

f = Ku (1)

where f is the vector of nodal forces, K is the stiffness matrix, to be solved for nodal
displacements u. With the nodal displacements, respective internal forces in the elements
can be calculated

f e = keue + re (2)

where f e is the vector of internal forces in element e, ke is the stiffness matrix of element
e, ue is the vector of displacements for the element e and re is the vector of equivalent
external nodal loads.

For the linear stability analysis, the axial forces in each element are picked to form a
geometrical stiffness matrix Kg which is used for writing an eigenvalue problem

(K + λKg)q = 0 (3)

where λ is the eigenvalue and q is the respective eigenvector representing the buckling
mode.

When assessing the buckling length of a single member with the finite element approach
it should be recognized which eigenpair should be used. Let us assume it is pair with
eigenvalue λj for member i.

The critical axial force in flexural buckling by axis y is defined by

Ncr,y =
π2EIy
L2
cr,y

(4)

where E is the Young’s modulus for the material, Iy is the second moment of the section
in the plane of buckling and Lcr,y is the critical length or buckling length for buckling
about y axis. Nomenclature and axis definition follow those of EN 1993-1-1 (see Fig. 1).
From this expression, the buckling length can be solved

Lcr,y = π

√
EIy
Ncr,y

(5)
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Figure 1: Local axes definition according to EN 1993-1-1 for a) I section b) rectangular
hollow section.

P P P P

L

Lcr = 2L L 0.699L 0.5L
I II III IV

Figure 2: Euler buckling cases.

On the other hand, for member i, the buckling force can be expressed with eigenvalue
as Ncr,y,i = λj |Ni|, thus

Lcr,y = π

√
EIy
λj |Ni|

(6)

The buckling length can be best understood when it is compared to the member system
length Lsys

2. This can be assessed by formula

Lcr,y = kLsys (7)

where k is a buckling length factor for given direction of buckling (also referred to as
K-factor in literature). In the well-known Euler cases the factor gets values shown in
Tab. 2 but typical members in real frames or other structures rarely fit these support
conditions.

Proposed approach with local geometric stiffness

To help the task of choosing the correct eigenpair, the first proposed idea is to include
only the finite elements in the evaluated member in the eigenproblem

(
K + λKi

g

)
q = 0 (8)

2The system length is a concept used by EN 1993-1-1. The length means member length in the
mechanical model.
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in which
Ki

g =
∑

Ke
g (9)

in which the sum is taken over elements belonging to member i.
This implies that instead of one eigenproblem, the design engineer should solve as

many eigenproblems as there are compressed members in the structure. However, it is
very straightforward that only the lowest positive eigenvalue from each analysis is used.

Proposed approach with strain energy measure

The second proposed approach is based on strain energy. In the well-known linear finite
element framework, the element strain energy is calculated as

Ee =
1

2
qTkeq (10)

where ke is the element stiffness matrix and q is the vector of displacements. Moreover,
the member strain energy can be calculated as

Em =
1

2
qT
∑

keq (11)

Respectively, for the whole structure, the total strain energy can be calculated when
the global stiffness matrix K is used

E =
1

2
qTKq (12)

The ratio for each member in a deformed shape can be thus calculated as

Rm =
Em

E
(13)

This can be done separately for each member and each eigenmode with positive eigen-
value. The problem related to scaling of eigenvectors disappears when only the relation
to total strain energy is considered.

To judge whether a single member is taking part in a buckling mode, it is assumed
that the member will have a substantial share of the total strain energy. The share which
can be considered substantial is, however, not easily judged. The initial proposal for the
criterion is

Rm ≥
1

n
(14)

where n is number of members in the structure.
The rationale behind the proposal is purely empirical, based on manual trials on

several rectangular 2D frames. However, more rigorous testing might be needed to find
out a general criterion to suit other types of structures (frames with diagonal members et
cetera).

Numerical examples

Three numerical examples are considered. The first two are extremely simple and aca-
demic with only two members but they show some very basic features about the methods
rather nicely. The third is an example of a more realistic design situation where a tubular
steel truss is connected to columns forming a building frame.
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Figure 3: Two member truss.

Two member truss

Consider a two member truss in Fig. 3. Each member is modeled by using five Euler-
Bernoulli beam elements with element stiffness matrix

k =
E

l




A 0 0 −A 0 0
12I
l2

6I
l

0 −12I
l2

6I
l

4I 0 −6I
l

2I
A 0 0

12I
l2

−6I
l

sym 4I




(15)

and element geometric stiffness matrix

kg =
1

30l




0 0 0 0 0 0
36 3l 0 −36 3l

4l2 0 −3l −l2
0 0 0

36 −3l
sym 4l2




(16)

The ratio of measures a/b is set to 1. The buckling length is calculated with ten
values of angle α. The results are seen in Tab. 1. The local approach gives exact value
for buckling length factor with each value. The situation is illustrated for α = 40◦ in Fig.
4 where it can be seen that first three modes represent the buckling of left member and
the fourth represents the mode where the member on the right hand side buckles. The
respective shares of strain energies are shown in Tab. 2.

Clearly, both proposed methods give exact values for buckling length of both members.
The use of lowest eigenmode will result error that grows when α approaches 45◦. When
α = 45◦, there is no compressive force in the member 2 and therefore buckling force or
buckling length factor cannot be calculated.

Two member frame

Consider a two member frame in Fig. 5. Similarly to previous example, five Euler-
Bernoulli elements are used in modeling each member.
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Table 1: Buckling length factors with local approach for the two-member truss.

Local kg Lowest eigenmode
α [◦] k1 [-] k2 [-] k1 [-] k2 [-]

0 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.09
10 1.00 1.00 1.00 1.19
15 1.00 1.00 1.00 1.32
20 1.00 1.00 1.00 1.46
25 1.00 1.00 1.00 1.66
30 1.00 1.00 1.00 1.93
35 1.00 1.00 1.00 2.38
40 1.00 1.00 1.00 3.38
45 1.00 - 1.00 -

Table 2: Relative strain energy of the five lowest modes in the two-member truss example.

Mode
Member 1 2 3 4 5

Left 1.00 1.00 1.00 0.00 1.00
Right 0.00 0.00 0.00 1.00 0.00

The corresponding results as in previous example are shown for this example in Tabs.
3 and 4. In this example, the buckling of members is coupled with small α values. This
implies error for the local approach. With the energy based approach the buckling of
member with higher load is clearly correct but the buckling of the other member gets
very low buckling length values. With α = 25◦, there is not even a mode within the first
ten lowest ones which would give strain energy content of 50 % (see Eq. 14) or more.
However, in Tab. 5 it can be seen that in the third mode the strain energy content of the
member is 49 %. Thus, it seems that the rule specified in Eq. 14 is not applicable in this
example.

Truss frame

Consider a truss frame in Fig. 6. The structure is constructed from cold formed square
hollow sections with member profile dimensions shown in Tab. 6. The chosen profiles are
a result of optimization [7] with fixed values of buckling length proposed by EN 1993-1-1
for the truss members and simply 0.9L for the columns. Cross-sectional properties are
calculated following EN 10219-2 [2]. In the mechanical model, the brace-to-chord and
chord-to-column joints are hinged, chords and columns are continuous and modeled with
beam elements without hinges.

In standard [3], the buckling length factor value for chords is 0.9 and for braces 0.9
(According to Finnish national annex for EN 1993-1-1, value 0.75 can be used). For
braces, the model with ideal hinges gives length factor k = 1.0 and the value suggested
by the standard is lower. This is due to fact that in welded tubular trusses the joints are
not necessarily ideally hinged but semi-rigid.

Therefore, some rotational stiffness for the joints is approximated. Joint fixity factor
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Table 3: Buckling length factors with local approach for the two-member frame.

Local kg Energy Lowest eigenmode
α [◦] k1 [-] k2 [-] k1 [-] k2 [-] k1 [-] k2 [-]

0 0.84 0.84 1.00 0.70 1.00 1.00
5 0.84 0.84 0.96 0.73 0.96 1.05
10 0.84 0.84 0.93 0.76 0.93 1.11
15 0.84 0.84 0.91 0.79 0.91 1.20
20 0.84 0.84 0.89 0.41 0.89 1.31
25 0.84 0.84 0.88 - 0.88 1.46
30 0.84 0.84 0.87 0.41 0.87 1.68
35 0.84 0.84 0.86 0.69 0.86 2.05
40 0.84 0.84 0.85 0.72 0.85 2.90
45 0.84 - 0.84 - 0.84 -

Table 4: Relative strain energy of first five modes in the two-member frame, α = 40◦.

Mode
Member 1 2 3 4 5

Left 0.80 0.89 0.92 0.87 0.40
Right 0.20 0.11 0.08 0.13 0.60

Table 5: Relative strain energy of first five modes in the two-member frame, α = 25◦.

Mode
Member 1 2 3 4 5

Left 0.74 0.66 0.51 0.73 0.55
Right 0.26 0.33 0.49 0.27 0.44

Table 6: Truss-frame profile dimensions.

Member b [mm] t [mm]

Top Chord 150 8
Bottom Chord 150 5

Columns 180 8
Brace (20 & 33) 100 4
Brace (21 & 32) 90 3
Brace (22 & 31) 90 3
Brace (23 & 30) 60 4
Brace (24 & 29) 60 4
Brace (25 & 28) 50 3
Brace (26 & 27) 50 3
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Critical load factor 6
cr

= 9.9126 (LC 1)

(a) Mode 1.

Critical load factor 6
cr

=39.7821 (LC=1.)

(b) Mode 2.

Critical load factor 6
cr

=90.7732 (LC=1.)

(c) Mode 3.

Critical load factor 6
cr

=108.92 (LC=1.)

(d) Mode 4.

Figure 4: Four lowest buckling modes for the two member truss. Colouring shows the
used finite element division.

α [6] is defined as

α =
1

1 +
3EI

kL

(17)

where k is the rotational stiffness of the joint. Clearly, α = 0 means ideal hinge and α = 1
ideally rigid connection. The standard EN 1993-1-8 [4] specifies upper limit for ideally
hinged joint to be

k ≤ EI

2L
(18)

this means

α =
1

7
≈ 0.143 (19)

In the calculation, fixity factor value α = 0.1 is assumed for brace-to-chord joints.
Every member is modeled again with five elements. The results for relative strain energy
in ten lowest positive modes can be seen in Table 7. In this structure, the member that is
buckling exhibits over 90 % share of the total strain energy. Therefore, it is clear which
member buckles in the first ten modes. This can be verified from Fig. 7 for the eight
lowest modes.

The lowest four modes are connected to buckling of braces and the fifth one is a sway
mode connected to column buckling. Upper chord buckling is seen in mode eight. The
respective buckling length factors are seen in Table 8.

It seems that the local approach can predict the buckling length of braces (members
from 20 to 33) consistently. In the column buckling mode (Fig. 7 mode 5) both columns
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Figure 5: Two member frame.

Figure 6: Truss frame example structure, loads and member numbering.

Table 7: Relative strain energy of members of the truss frame in ten lowest positive modes.

Mode
Member 1 2 3 4 5 6 7 8 9 10

Columns 0.00 0.00 0.00 0.00 0.98 0.01 0.01 0.00 0.00 0.00
Upper chord 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.94 0.03 0.01

Brace (20 & 33) 0.00 0.00 0.00 0.00 0.02 0.98 0.98 0.00 0.00 0.00
Brace (21 & 32) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brace (22 & 31) 0.00 0.00 0.99 0.99 0.00 0.00 0.00 0.01 0.00 0.00
Brace (23 & 30) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brace (24 & 29) 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.05 0.97 0.99
Brace (25 & 28) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brace (26 & 27) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

57



Table 8: Buckling length factors of compressed members obtained with the proposed
methods and with the lowest eigenmode.

Member Local approach Energy method Lowest eigenmode

1 0.80 1.38 30.84
2 0.67 1.18 1.97
3 0.70 0.96 1.59
4 0.70 0.91 1.52
5 0.70 0.92 1.52
6 0.70 0.97 1.61
7 0.67 1.22 2.03
16 0.95 24.65 31.38
17 0.77 1.08 1.38
18 0.95 27.62 35.17
19 0.77 1.07 1.36
20 0.80 0.80 1.13
22 0.80 0.80 1.01
24 0.80 0.80 0.83
26 0.80 0.80 3.27
27 0.80 0.80 1.70
29 0.80 0.80 0.80
31 0.80 0.80 0.99
33 0.80 0.80 1.12

buckle simultaneously and the roof sways horizontally. Thus geometrical stiffness matrix
would have to be applied in both columns to capture the mode accurately. By doing this,
eigenvalue 2.691 and buckling length factor 1.07 are obtained. These values are very close
to the sway mode values.

With the energy method, members 16 and 18 have seemingly very high buckling length
factor. However, if the respective buckling forces (Eq. 4) are calculated and the member
resistance evaluated according to EN 1993-1-1, approximately 39 % utilization ratio is
obtained for members 16 and 18 whereas approximately 50 % ratio is found in members
17 and 19. Thus the high buckling length factor for members 16 and 18 does not seem to
have effect on the sizing of the column.

Discussion and conclusions

Both proposed methods are tested in three examples. The first two represent simplified
and extreme structures with only two members. In the first one, the buckling modes
are totally uncoupled. In the second one the coupling is very strong and there are some
parameter values with which the methods fail to give correct buckling length values.

The local approach seems to work well in structures where eigenmodes are not coupled
to other members’ behaviour or coupling is moderate. If a sway buckling mode is expected,
the global geometric stiffness matrix should be used or local matrix should be applied to
all columns. However, to authors’ knowledge, most of the typical structures found in
buildings are braced (no sway modes) and connected with semirigid joints. This means
that the applicability range of the method covers many typical structures. Moreover, the
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method is very straightforward to be implemented.
The approach based on energy measures can be considered very accurate but at this

stage it is not clear how to formulate a criterion for choosing the correct eigenmode
in a way that it would work with all frame structures. With the rather simple criterion
proposed in the text, good results are obtained in the third design example but the second
one reveals that the criterion is not general. Thus more research is needed for a more
general criterion.

The computational effort is an important evaluation aspect of structural analysis meth-
ods in structural optimization where the objective and constraint functions may need to
be evaluated thousands of times in a single optimization run. Of the two proposed meth-
ods, the energy based method seems more efficient since only one set of eigenpairs needs
to be solved whereas in the local approach the eigenvalue solution needs to be repeated
for each compressed member.

In the examples, prismatic members with Euler-Bernoulli beam assumptions are con-
sidered. However, both of the methods can theoretically handle also non-prismatic mem-
bers and also distributed axial loading. Moreover, other types of assumptions of beam
behaviour such as the Timoshenko beam theory and respective finite elements can be
used with these methods.

In this contribution, only planar steel frames were considered. Thus, in further studies,
extension to three dimensional structures including flexural buckling out-of-plane as well
as torsional buckling behaviour should be considered.
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(f) Mode 6.
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(h) Mode 8.

Figure 7: First eight buckling modes for truss frame.

61



132



Chapter 6. Original publications

Publication VI

Title: Two-phase approach in discrete structural sizing optimization
Authors: Teemu Tiainen and Kristo Mela
Journal: manuscript submitted for review

133



134



Manuscript

Two-phase approach in discrete structural sizing optimization1

Teemu Tiainen · Kristo Mela2

3

–4

Teemu Tiainen, Doctoral Researcher, corresponding author5

Tampere University6

PO box 601 33101 Tampere Finland7

email: teemu.tiainen@tuni.fi8

9

Kristo Mela, Assistant Professor10

Tampere university11

PO box 601 33101 Tampere Finland12

email: kristo.mela@tuni.fi13

14

Abstract15

In this study, steel frame optimization is treated. The member profiles are taken from a catalogue of16

commercially available sections, which implies a discrete optimization problem. Member resistance constraints17

are derived from prevailing design codes in order to ensure applicability of the solution. A two-phase approach18

is studied as a solution method, where the problem is solved in two stages. Firstly, a continuous relaxation19

of the discrete problem is formulated and solved. In the second phase, a subset of the discrete set of profile20

alternatives is constructed around the solution of the relaxation. The discrete problem is then solved using21

this neighborhood as the set of available profiles. The details of the two-phase procedure are described in22

this study, and the method is applied on several benchmark problems with comparison to previous studies.23

Moreover, weight minimization of tubular roof truss is considered with member and joint constraints derived24

from the European steel design code. The results indicate that the two-phase approach is a viable method for25

discrete optimization of skeletal structures.26

1 Introduction27

Optimization of steel frames and trusses leads to a discrete problem in most practical cases, because the28

member profiles must be chosen from a commercially available list of alternatives. Moreover, the problem29

is typically nonlinear, as the constraints are derived from the governing design standards, e.g. (EN 1993-30

1-1 2006) and (Ame 2016), as well as from manufacturing requirements. Although the nonlinearity of the31

problem increases its complexity, arguably the real difficulty of solving frame and truss optimization problems32

is mainly because of the discrete variables. For example, it has been shown that discrete truss optimization33

problems with stress and displacement constraints are NP-hard (Yates, Templeman & Boffey 1982), which34

implies that the computational effort to solve them increases exponentially as the problem size increases.35

Similar behaviour is to be expected for frame optimization problems, although the authors are not aware of36

a mathematical proof of the NP-hardness of frame problems.37

These inherent difficulties highlight the importance of problem formulation, as it dictates the range of38

applicable methods. If the problem formulation is based on the nested analysis and design (NAND) approach,39

the constraint functions that depend on the structural responses (internal forces, displacements) are known40

only implicitly. This renders those solution methods inapplicable that rely on the explicit mathematical41
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structure of the optimization problem. Such methods are, for example, outer approximation and cutting42

plane methods. If simultaneous analysis and design (SAND) formulation is employed, the problem becomes43

explicitly defined, which allows to use a wider range of solution methods. However, the problem is then typically44

a mixed-integer nonlinear programming (MINLP) problem (Kravanja & Zula 2010, Kravanja, Turkalj, Silih45

& Zula 2013) with a large number of variables and constraints, and such problems are often computationally46

prohibitive. For truss sizing and topology optimization and frame sizing optimization a mixed-integer linear47

(MILP) formulation can be derived (Ghattas & Grossmann 1991, Rasmussen & Stolpe 2008, Mela 2014, Kureta48

& Kanno 2014, Hirota & Kanno 2015, Van Mellaert, Mela, Tiainen, Heinisuo, Lombaert & Schevenels 2018),49

which is computationally more appealing than the MINLP formulation, but still limited to relatively small50

problems by the capacity of present solvers and computers.51

Conventional deterministic methods used in discrete structural optimization are, among others, branch-52

and-bound, sequential linear programming, and Lagrangian relaxation (Arora, Huang & Hsieh 1994, Arora &53

Huang 1996, Arora 2000). Stolpe (2016) provides a comprehensive review on truss optimization with discrete54

variables, with the valuable remark, that some of the older solution techniques should be re-examined using55

contemporary computational capabilities. Saka & Geem (2013) have reviewed methods for frame optimiza-56

tion problems, presenting the claim that for discrete problems, ”the solution techniques available among the57

mathematical programming methods for obtaining the solution of such problems are somewhat cumbersome and not58

very efficient for practical use.” While this statement was possibly the reason for seeking alternative solution59

methods, the authors of this study believe that it should be constantly challenged by developing and test-60

ing methods based on mathematical programming in conjunction with the increased computational power of61

contemporary computers.62

Since the 1990s, active research on using meta-heuristic methods to solve discrete design optimization63

problems has been carried out. These methods include genetic algorithms (GA), particle swarm optimization64

(PSO), harmony search (HS), simulated annealing (SA) and many others. The methods can be applied to65

discrete problems with black-box function evaluations, as they do not rely on gradient information or on the66

mathematical structure of the problem. Many of the methods can even be applied when the functions of the67

optimization problem are discontinuous, which may happen when constraints are derived from the design68

standards. Different meta-heuristics used in structural sizing problems have been used by Camp, Bichon &69

Stovall (2005), Kaveh & Talahatari (2009), and Kaveh & Talahatari (2013) among many others.70

One drawback of meta-heuristic methods is that they usually require a very large number of function71

evaluations without any information about the optimality of the obtained solution. The large amount of72

function evaluations becomes evident particularly when meta-heuristic methods are applied to problems that73

can also be solved by mathematical programming methods such that the two approaches can be compared74

(Stolpe 2016). Moreover, meta-heuristic methods do not utilize the mathematical structure of the optimization75

problem, which means that a great deal of information is lost during the calculations. Nevertheless, meta-76

heuristic methods are valuable for problems where other methods are not applicable.77

Among with different meta-heuristics, different types of heuristics for discrete and combinatorial problems78

have been proposed for decades (according to Wolsey (1998) oldest references date back to 1950s). Most79

heuristics can be used both alone and in conjunction with mathematically rigorous solution procedures. For80

example finding a feasible initial solution for mathematical programming algorithm can be done by heuristic81

approach. In MILP solution procedures used by commercially available contemporary solvers the branch-82

and-cut method is assisted with the relaxation induced neighbourhood search (RINS) (Danna, Rothberg &83

Pape 2005) and feasibility pump (Fischetti, Glover & Lodi 2005).84

For practical purposes, finding the global optimum is often not as important as it is to obtain a good85

design with moderate computational effort. To this end, a method that combines the effectiveness of gradient-86

based methods for continuous problems with the ability of (meta-)heuristic methods to treat discrete variables87

would be tempting. Such a two-phase approach has been proposed by Hager & Balling (1988), with discussion88

in (Arora et al. 1994, Arora & Huang 1996). The idea is to solve the discrete design optimization problem89

in two phases. In the first phase, the discrete variables are relaxed and treated as continuous variables. The90

relaxation of the discrete problem is solved by a chosen gradient-based algorithm for continuous variables. In91

the second phase, a neighborhood of the solution of the relaxation is generated. This neighborhood consists92

of discrete variable values corresponding to a subset of the available profiles. The optimum of the original93

discrete problem is sought from this neighborhood by an appropriate method.94

The central idea of the two-phase approach is that only a small subset of the complete set of profile95

alternatives is explored in the second phase. The premise is that the point generated in the first phase is close96

to the actual optimum of the original discrete problem. It is appreciated that this assumption does not hold97

in general. It is also foreseeable that if the neighborhood around the solution of the relaxation is too small, it98

may not contain any feasible designs. Also, in general there is no guarantee that the global optimum has been99



Two-phase approach in discrete structural sizing optimization 3

b

tw

tfr

h

Fig. 1 I profile dimensions in continuous relaxation and discrete sizes.

found at termination of the procedure, as only a subset of the discrete variable values is explored. Therefore,100

to have any practical value, the two-phase approach should reduce the computational effort compared to other101

methods while simultaneously producing ”good enough” designs.102

To the authors’ knowledge the first use of a two-phase approach was reported by Hager & Balling (1988).103

They used cross sectional properties (area, section modulus and moment of inertia) as independent variables.104

However, they found out that continuous optimum obtained in the first phase was typically far away from105

discrete profiles. Thus, convex hull constraints were used to direct continuous solution closer to discrete alter-106

natives. Later, Huang & Arora (1997) employed the approach with sequential quadratic programming (SQP)107

for the continuous solution in the first phase and either branch-and-bound, genetic algorithm or simulated108

annealing for the discrete problem in the second phase. The numerical examples were steel frames using Amer-109

ican standard selection of I profiles. In phase I, four dimensions of the profile (Figure 1) were used as design110

variables instead of cross-sectional properties used by Hager & Balling (1988). For the branch-and-bound to111

be applicable, the problem had an approximate convex relaxation.112

In this study, the two-phase approach is re-visited and applied to various sizing optimization problems of113

frames and trusses. A generally applicable metric is presented for the selection of profiles in the second phase.114

In the first phase, contemporary solvers are used for finding the continuous solution. The discrete subset115

of profiles is explored both by a genetic algorithm and by a branch-and-cut algorithm, and for the latter,116

a mixed-integer linear formulation is employed (Van Mellaert et al. 2018). Various design variable choices117

are explored for the relaxation in different problems. The results obtained by the two-phase approach are118

compared with solutions found in the literature on selected benchmark problems. Moreover, the method is119

applied on a tubular truss design problem that includes both member and joint design constraints derived120

from Eurocode 3. The results indicate that the two-phase approach is indeed a viable solution strategy for121

optimization of skeletal structures under constraints derived from design standards.122

2 Two-phase approach123

Consider the sizing optimization problem of a truss or a frame, written in general form as

min
x∈Ω

f(x) (1)

where f is the objective function and Ω is the feasible set including constraints for member and joint resistance,124

displacements etc. It is assumed that members are divided to n groups, representing, for example, the columns125

or beams of a particular floor in a multi-storey frame. The design variable vector x is then partitioned as126

x = {x1,x2, . . . ,xn} (2)

where xk ∈ Rmk defines the profile of the member group k. All xk are discrete variables and can take values127

appearing in the steel manufacturer’s catalogue. Moreover, if the elements of xk are the dimensions of a profile128

they are linked according to the catalogue.129

The idea of the two-phase approach is to find a solution in two distinct phases as follows:130

Phase I A continuous relaxation of the original problem is formulated and solved. In the relaxation, only131

continuous variables are used and efficient gradient-based methods can be employed.132

Phase II The discrete problem is solved in a neighbourhood of the continuous design obtained in phase I.133

This neighbourhood is a subset of the original discrete set of alternatives.134
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Fig. 2 Rectangular hollow section profile dimensions.
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Fig. 3 Two continuous designs (x1 and x2) in a two dimensional space (x1, x2) with discrete alternatives available in profile
catalogue (white dots). Discrete options can be sorted according to their distance from continuous designs x1 and x2. Dashed
circles show the distance within which three closest alternatives can be found.

In the relaxation each discrete variable is replaced with one or more continuous variables. It is important to135

notice that the variables in the relaxation can be different from the variables in the second phase. For example,136

cross-sectional properties (area, moment of inertia, etc.) of the members with approximated dependencies can137

be used as variables in the first phase, leading to a simpler problem formulation. Then, in the second phase,138

for each member an integer variable stating the index of a profile in the catalogue of available alternatives139

can be used.140

When profile dimensions are used as design variables the number of variables is dependent on the profile141

type. For example, for I profiles, the profile is defined by the four (or five if rounding r is included) dimensions142

shown in Figure 1. Similarly, for rectangular hollow sections the dimensions shown in Figure 2 can be used as143

design variables.144

In the second phase, the first task is to determine the limited search space for the discrete problem. Here,145

a discrete neighbourhood of the continuous design obtained in phase I is identified using a chosen metric.146

Various metrics can be used but a general one proposed here is the normalized Euclidean distance between147

the continuous solution x∗k (for group k) and discrete alternative j defined by148

dj,k =

√√√√
mk∑

i=1

(
xj,i − x∗k,i

xi,max − xi,min

)2

∀k = 1, 2, . . . , n (3)

where dj,k is the distance for the discrete profile j, xj,i is the value of design variable i for the profile j, x∗k,i is149

the respective design variable value obtained in phase I and xi,max and xi,min are the maximum and minimum150

values, respectively, found in the set of discrete alternatives. This idea is depicted in Figure 3.151

For each member group the profile alternatives are sorted in ascending order with respect to the distance152

calculated with Eq. (3). A predefined number of closest alternatives are chosen for the second phase. To limit153

the design space in the second phase effectively, the predefined number should be considerably lower than the154

number of alternatives in the catalogue.155

In structural optimization, many relaxed problem formulations result in non-convex problems (Svanberg156

1984, Stolpe 2016). This holds especially when the constraints are based on structural design standards or157

codes. This means that it is likely that the relaxed problem will have several local optima. In the procedure158

proposed here, multiple initial points can be employed in the first phase for solving the continuous relaxation159

to avoid local minima. If the initial designs are random, the algorithm chosen to this phase must be able to160

handle infeasible starting points, since it is likely that a random design point is infeasible.161
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Fig. 4 Flow chart of the two-phase procedure.

Constraints based on structural design standards or codes might include conditional function definitions162

which can lead to discontinuities in the constraint functions. In such cases, gradient-based optimization meth-163

ods may fail to find a feasible design in the first phase. Then, a new random starting point will be chosen. Also,164

it is possible that no feasible point is found in the second phase, for example, if the limited search space is too165

small. Also in this case, a new random starting point for the first phase is chosen. Another approach to tackle166

the problem caused by discontinuities in constraint functions would be to create continuous approximations167

that can be used in the first phase.168

The two-phase procedure is illustrated in Figure 4. Depending on the choice of initial point phase I and169

the optimization method used in phase II the procedure may include stochastics. Thus it is likely – as is the170

case for other stochastic approaches such as most of the meta-heuristic methods – that multiple runs are171

needed to ensure good results. Moreover, in general no conclusive checks for global optimality can be made in172

the second phase. The performance of the two-phase approach is then evaluated through comparison to other173

methods in various design optimization problems.174

If the problem objective and constraint functions allow, the resulting discrete problem in the second175

phase can also be solved by deterministic approaches such as the MILP reformulation. Then, obviously, the176

stochastics are limited to the random starting point in phase I.177

3 Numerical examples178

Four numerical examples are used to demonstrate the applicability of the two-phase procedure. In the first179

two examples, the behaviour of the approach is compared to a procedure resulting in global optimum of the180

problem obtained with the MILP reformulation.In the third problem, a tubular roof truss is considered under181

constraints derived from European steel standards. Finally, a plane frame with American design codes is182

optimized. For the latter two problems, the performance of the two-phase approach is compared with various183

metaheuristics.184

The two-phase approach was implemented in Matlab (version R2016a). The continuous problems of the185

first phase were solved by the active-set method included in the Matlab optimization toolbox, whereas the genetic186

algorithm in Global optimization toolbox was employed in the second phase. The discrete problems in the second187

phase were formulated using the indices of profiles in the catalogue as design variables. The algorithms were188

run with default parameter values unless otherwise noted in the problem description.189

The MILPs were solved with Gurobi software (Gurobi Optimization 2018) using optimality gap of 0.5 %.190

With the MILP approach the profile choice is made with binary variables.191
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Fig. 5 3x3 frame dimensions, loads, member group numbering and optimal design obtained with MILP by Van Mellaert et al.
(2018).

It should be noted that in some test problems the chosen relaxation results in discontinuities in derivatives192

of the objective and constraint functions. The active-set method belongs to the SQP family where the conti-193

nuity of the derivatives of the functions is needed to ensure convergence. Therefore, mathematical properties194

of the relaxed problems are discussed in each design example.195

3.1 Three-bay three-story plane frame196

Consider the 3x3 plane frame shown in Figure 5. The global optimum for this problem can be obtained by
the reformulating it as a mixed-integer linear problem (Van Mellaert et al. 2018). In the design problem, the
European hot-rolled HEA selection (Table 1) was used. The constraints were written for axial stress in both
ends and mid-span for each member. Stress on both edges of the section were considered as

−fy ≤ N

A
+
M

W
≤ fy (4)

−fy ≤ N

A
− M

W
≤ fy (5)

where N is the axial force in the member and M is the bending moment, A is the cross-sectional area and197

W is the elastic section modulus and fy is the yield strength. Moreover, inter-story drift was limited to the198

value d < H/300 = 11.7 mm. Also, the vertical deflection of the beams was limited to the value B/200 = 30199

mm. Material properties were as follows: yield strength fy = 355 MPa, Young’s modulus E = 210 GPa and200

density ρ = 7850 kg/m3. The members were grouped such that beams formed one group and inner and outer201

columns formed their own groups for each story. Thus, there is one independent beam and six column sizing202

variables making seven in total.203

The relaxation scheme in this case could include four dimensions of the I profile as suggested by Huang &
Arora (1997) and Figure 1. However, when only HEA catalogue (Table 1) is employed, a single variable, namely
the height of the profile is sufficient to define the cross-section. The cross-sectional properties are approximated
with the scheme proposed first by Moses & Onoda (1969) according to Haftka & Gürdal (1992). For the given
selection, curve fitting results in following approximations

I (h) = 0.282h3.5677 [mm4] (6)

W (h) = 0.566h2.5671 [mm3] (7)

A (h) = 1.81h1.5324 [mm2] (8)
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Table 1 Cross-sectional properties of the HEA selection used in the 3x3 frame problem.

HEA A [mm2] W [cm3] I [cm4] h [mm]

100 2124 72.8 349 96
120 2534 106.3 606 114
140 3142 155.4 1033 133
160 3877 220.1 1673 152
180 4525 294 2510 171
200 5383 389 3692 190
220 6434 515 5410 210
240 7684 675 7763 230
260 8682 836 10455 250
280 9726 1013 13673 270
300 11253 1260 18263 290
320 12437 1479 22929 310
340 13347 1678 27693 330
360 14276 1891 33090 350
400 15898 2311 45069 390

The continuous problem statement for phase I can then be written as

min
h

f (h) = ρLTA (h) (9)

−1 ≤ Nik (h)

A (hj) fy
− Mik (h)

W (hj) fy
≤ 1 j : i ∈ Gj ∀i = 1, 2, . . . , nM , k = 1, 2, 3 (10)

−1 ≤ Nik (h)

A (hj) fy
+

Mik (h)

W (hj) fy
≤ 1 j : i ∈ Gj ∀i = 1, 2, . . . , nM , k = 1, 2, 3 (11)

300dc,m (h)

H
− 1 ≤ 0 ∀m = 1, 2, 3 (12)

200db,n (h)

B
− 1 ≤ 0 ∀n = 1, 2, . . . , 9 (13)

hlb = 96 ≤ hi ≤ hub = 400 ∀i = 1, 2, . . . , 7 (14)

where index k refers to predefined location along the member, dc,m is the drift of floor m, and db,n the vertical204

displacement on mid-span of beam n.205

The constraints of Eqs. (10) and (11) include rational functions of the design variables. The internal forces206

are evaluated numerically and thus known only implicitly as functions of the design variables. Nevertheless,207

there are no discontinuities for these functions. Similarly, the displacement constraints of Eqs. (12) and (13)208

are continuous and differentiable implict functions of the design variables.209

For the second phase, three closest HEA profiles are chosen to form the discrete neighbourhood around210

the solution of the relaxation. As the dimension of the relaxed problem is reduced to contain only the height211

h of the profile the distance of (Eq. (3)) reduces to212

dj =

√(
hj − h∗

hmax − hmin

)2

=

∣∣∣∣
hj − h∗

hmax − hmin

∣∣∣∣ (15)

The original discrete problem has 157 = 170859375 possible combinations. When only 3 alternatives per each213

variable are considered, the number reduces to 37 = 2187 combinations which is only a fraction of the number214

of combinations in the original discrete problem.215

The weight of the optimum design is 6132 kg (Van Mellaert et al. 2018) and the design is seen in Fig-216

ure 5. With the MILP approach, finding the optimum and proving the optimality took reportedly 5.3 hours217

(with Intel Core i5-3470 processor 3.2 GHz and 16 GB RAM, Gurobi 6.5). As the optimization approach is218

deterministic only one run is needed.219

The results obtained with the two-phase approach and genetic algorithm are shown in Table 2. Due to220

their stochastic nature, both GA and the two-phase approach are run 50 times. Note that the two-phase221

approach is stochastic in this case only because the GA was used in the second phase. Both approaches seem222

computationally more efficient than the MILP approach and are able to find the global optimum on multiple223

runs out of 50. The two-phase approach finds the optimum 14 times and GA 16 times. In the continuous224

phase, the optimization converged to three different designs seen in Table 3 with 50 random initial designs225

as a starting point. This implies that the relaxed problem has several local optima. Additionally, the profile226

heights of the global discrete optimum are listed in Table 3. It can be seen that best of the obtained continuous227
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Table 2 Main results of the 3x3 plane frame example. MILP result reported by Van Mellaert et al. (2018)

Objective function value [kg] Time per
Method Runs Best found Mean Std. run [h]

MILP 1 6132 - - 5.3

GA 50 6132 6210 53 0.05
2-phase 50 6132 6287 125 0.02

Table 3 Phase I results and the known global optimum in the 3x3 plane frame example.

Profile height h [mm]
n [-] f∗ [kg] 1 2 3 4 5 6 Beam

17 5933 125.5 253.6 96.0 267.6 199.0 192.5 267.6
25 5939 313.8 96.0 226.2 190.1 268.5 96.0 259.2
8 6081 139.4 250.7 197.2 265.1 205.5 145.1 268.1

Discrete optimum 133 250 96 270 210 210 270

Table 4 Available profiles for the 52-bar planar truss.

No. A [mm2] No. A [mm2] No. A [mm2] No. A [mm2]

1 71.613 17 1008.385 33 2477.414 49 7419.340
2 90.968 18 1045.159 34 2496.769 50 8709.660
3 126.451 19 1161.288 35 2503.221 51 8967.724
4 161.290 20 1283.868 36 2696.769 52 9161.272
5 198.064 21 1374.191 37 2722.575 53 9999.980
6 252.258 22 1535.481 38 2896.768 54 10322.560
7 285.161 23 1690.319 39 2961.284 55 10903.204
8 363.225 24 1696.771 40 3096.768 56 12129.008
9 388.386 25 1858.061 41 3206.445 57 12838.684
10 494.193 26 1890.319 42 3303.219 58 14193.520
11 506.451 27 1993.544 43 3703.218 59 14774.164
12 641.289 28 2019.351 44 4658.055 60 15806.420
13 645.160 29 2180.641 45 5141.925 61 17096.740
14 792.256 30 2283.705 46 5503.215 62 18064.480
15 816.773 31 2290.318 47 5999.988 63 19354.800
16 939.998 32 2341.931 48 6999.986 64 21612.860

designs is close to the discrete optimum but the other locally optimal designs differ from it substantially to228

a degree that the actual discrete optimum is not included in the discrete neighbourhood with three closest229

profiles.230

3.2 52-member planar truss231

Consider the plane truss in Figure 6. This example has been treated by several previous optimization re-232

searchers (Wu & Chow 1995, Lee, Geem, Lee & Bae 2005, Kaveh & Talahatari 2009, Li, Huang & Liu 2009,233

Sadollah, Bahreininejad, Eskandar & Hamdi 2012) using different meta-heuristic approaches.234

The problem is discrete with 64 possible shapes ranging from cross-sectional area A = 71.613 mm2 to235

21612.860 mm2 (Table 4) and 52 members arranged in 12 groups (Table 5). The material properties are:236

Young’s modulus E = 207 GPa and yield stress fy = 180 MPa. The structure is modeled with truss elements237

and the constraints are mathematically rather straightforward stress constraints which means the problem238

can be reformulated as MILP and thus the verified global optimum for the problem can be found. However,239

finding the solution of the resulting MILP turned out to be computationally very demanding. After 10 days240

of calculation (with Intel Core i5-6200U 2.3 GHz and 8 GB RAM), the optimality gap (gap between the best241

found discrete design and the relaxed solution) was still 8.4 %, the best found design having the weight of242

1898 kg which is lower value than reported by the previous contributors (1902 kg by Sadollah et al. (2012)).243

The continuous relaxation for the two-phase approach is straightforward since only cross-sectional areas244

are used in the structural analysis and member resistance evaluation. Thus cross-sectional areas can be used245

directly as design variables. The members are divided into 12 groups, denoted by Gj , and one design variable246

Aj sets the cross-sectional area of the members belonging to the group j. The grouping is shown in Table 5.247
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Fig. 6 52-bar planar truss dimensions, topology, loads and member numbering.

The continuous relaxation can be formulated as248

min
A

ρLTA

such that Ni(A)−Ajfy ≤ 0, ∀ j, i ∈ Gj
−Ni(A)−Ajfy ≤ 0, ∀ j, i ∈ Gj

Alb ≤ Aj ≤ Aub, j = 1, 2, . . . , 12

(16)

where axial forces Nj are implicit functions of the variable vector A, and Alb = 71.612 mm2 and Aub =249

21612.860 mm2 are the lower and upper bounds of the cross-sectional areas, respectively. It has been shown250

by Svanberg (1984) that this kind of formulation can be non-convex which seems to be the case in this problem251

too since the active-set method converges to several different designs depending on the initial design.252

In this problem, the search was tested with discrete search space of 5, 10 and 15 closest discrete profiles253

around the continuous solution. For each case, 50 complete runs were executed. The original discrete problem254

has 6412 = 4.72 · 1021 possible combinations whereas the limited spaces have 512 = 2.33 · 108, 1012 and255

1512 = 1.30 · 1014 combinations. Clearly, with these values, total enumeration is not possible in feasible time256

span.257

The main results including those reported in the literature can be seen in Table 6. As in the previous258

problem, several locally optimal designs are obtained in the continuous phase. Moreover, it can be noted259

that in the two-phase approach, the MILP reformulation can be used with limited search space in the second260

phase. The MILP approach was tested with 5 and 10 profiles closest to the best found local optimum of the261

relaxation. Even with reduced space of ten profiles for each sizing variable, the run was manually stopped after262

five days without reaching the optimality gap stopping criterion. However, with five profiles the solution was263

obtained rather quickly. It is shown that 1913 kg is the optimum of the limited search space of five profiles.264
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Table 5 Member grouping and design variable values of the best found continuous and discrete designs for the 52-bar planar
truss.

A [mm2]
j Gj Continuous Discrete

1 1-4 4417.9 4658.1
2 5-10 1113.7 1161.3
3 11-13 241.81 506.45
4 14-17 3394.5 3303.2
5 18-23 863.89 940
6 24-26 221.46 506.45
7 27-30 2311.2 2238.7
8 31-36 956.37 1008.4
9 37-39 259.01 363.23
10 40-43 1318.3 1283.9
11 44-49 1052.8 1161.3
12 50-52 417.44 506.45

Table 6 Main results from 52-member planar truss example. The results of GA, HS, PSO and MBA reported in the literature.
nfe is the number of function evalutions.

Objective function value [kg]
Method Runs Best found Mean Std Mean nfe [-]

GA (Wu & Chow 1995) - 1970 - - -
HS (Lee et al. 2005) - 1906 - - -
PSO (Li et al. 2009) - 2230 - - 150000a

PSOPC (Li et al. 2009) - 2147 - - 150000a

HPSO (Li et al. 2009) - 1905 - - 150000a

DHPSACO (Kaveh & Talahatari 2009) - 1905 - - -
MBA (Sadollah et al. 2012) - 1902 1906 4.09 -

2-phase GA, 5 50 1913 2063 359 11603
2-phase GA, 10 50 1903 2198 652 17072
2-phase GA, 15 50 1898 1977 107 20128
2-phase MILP, 5 1 1913 n/a n/a n/a
2-phase MILP, 10 1 1902b n/a n/a n/a

MILP 1 1898b n/a n/a n/a
GA 25 1907 1986 86 27089

a calculated from set number of iterations
b with optimality gap above stopping criterion

Table 7 Number of function evaluations using the two-phase approach with different number of local search options nd.

Phase I Phase II
nd Min Mean Min Mean

5 728 1136 7801 10467
10 741 1110 6701 15961
15 718 1105 7701 19023

In this example, the two-phase approach yields the same design as the MILP reformulation, with slightly265

lower objective function value than reported in the literature. The best found design variable values are listed266

in Table 5. HS, particle swarm optimization (HPSO), discrete hybrid particle swarm ant colony optimization267

(DHPSACO) and mine-blast algorithm (MBA) seem to perform equally well in terms of objective function268

value but MBA and DHPSACO are computationally more efficient when the number of function evaluations269

is considered. In the two-phase approach, most of the function evaluations are connected to phase II (Table 7).270

This implies that using MBA or DHPSACO with the two-phase approach in the second phase instead of GA271

might be beneficial.272

This problem was also tested with direct application of GA. It was observed that the implementation of273

GA in Matlab seems to be more efficient than the implementation used by Wu & Chow (1995) and different274

PSO versions considered by Li et al. (2009).275
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Fig. 7 Truss dimensions, topology and brace numbering. The truss is symmetric with respect to midspan.

Table 8 The list of available cold-formed square hollow section profiles for the truss design problem. b is the width, h the
height and t the wall thickness.

Number bxhxt [mm] Number bxhxt [mm] Number bxhxt [mm]

1 25x25x3 20 90x90x5 39 150x150x10
2 30x30x3 21 90x90x6 40 150x150x12.5
3 40x40x3 22 100x100x4 41 160x160x6
4 40x40x4 23 100x100x5 42 160x160x8
5 50x50x3 24 100x100x6 43 160x160x10
6 50x50x4 25 100x100x8 44 180x180x6
7 50x50x5 26 110x110x4 45 180x180x8
8 60x60x3 27 110x110x5 46 180x180x10
9 60x60x4 28 120x120x4 47 200x200x8
10 60x60x5 29 120x120x5 48 200x200x10
11 70x70x3 30 120x120x6 49 200x200x12.5
12 70x70x4 31 120x120x8 50 250x250x6
13 70x70x5 32 120x120x10 51 250x250x8
14 80x80x3 33 140x140x5 52 250x250x10
15 80x80x4 34 140x140x6 53 250x250x12.5
16 80x80x5 35 140x140x8 54 300x300x10
17 80x80x6 36 150x150x5 55 300x300x12.5
18 90x90x3 37 150x150x6
19 90x90x4 38 150x150x8

a) b)
b1

θ1

b2

θ2

b0

g

e

Fig. 8 Tubular truss joint area. a) dimensions and b) schematic representation of the finite element model.

3.3 Tubular roof truss276

Consider the sizing optimization of the tubular roof truss shown in Figure 7. The member profiles are chosen277

from a set of cold-formed square hollow-sections shown in Table 8. There are in total ten sizing variables: eight278

for braces and one for each chord. The material properties are as follows: Young’s modulus E = 210 GPa,279

density ρ = 7850 kg/m3 and yield strength fy = 355 MPa. The truss is subjected to a uniform distributed280

load of 25 kN/m applied at the top chord.281

The truss is modeled with beam elements such that the bending moment of the chords can be taken into282

account. Moreover, in the joint area, the extensions of brace members do not necessarily meet at the center283

line of the chord which means that there is eccentricity in the joint. The bending moment caused by the284

eccentricity is taken into account by modeling the joint area as illustrated in Figure 8. The eccentricity is285

taken into account with very rigid short beam element and braces are connected to it with ideally hinged joint.286

The gap is in the example fixed to the value g = 50 mm. When brace width b is altered, the intersection point287

of center line extensions of the braces moves as well. This creates a rather complicated dependency between288

member profile dimensions, joint eccentricities and brace-to-chord angles. The details of joint geometry and289

finite element modeling can be found in (Tiainen, Mela, Heinisuo & Jokinen 2017).290

In the two-phase approach, each discrete sizing variable is replaced with two continuous sizing variables,291

namely the outer dimension of the member bi and the wall thickness of the member ti (see Figure 2). The292

cross-sectional properties are calculated according to standard EN 10219-2 (EN 10219-2 2006). The corner293
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outer radius is a piecewise linear function of t:294

r (t) =





2t if t ≤ 6 mm

2.5t if 6 mm < t ≤ 10 mm

3t if t ≥ 10 mm

(17)

This results in discontinuity in the functions of cross-sectional properties (A, W and I) which are found in the295

member resistance evaluation formulas and thus the related constraints. Thus, in phase I the relaxed problem296

is considered with the approximated rounding of297

r (t) = 2.5t mm (18)

The EN 1993-1-1 (2006) member design requirements in the planar case with square hollow sections reduce
to

NEd
Afy

≤ 1 (axial force) (19)

MEd

MRd
≤ 1 (bending moment) (20)

NEd
Afy

+

(
1− Nn

Afy

)
MEd

MRd
≤ 1 (combined axial force and bending) (21)

NEd
χyAfy

+ kyy
MEd

Wplyfy
≤ 1 beam-column stability, for compressed members (22)

where NEd is the axial force in the member, MEd is the in-plane bending moment, Wply is the plastic section298

modulus of the profile and Nn is defined by299

Nn = 0.5 min

{
A− 2bt

A
; 0.5

}
Afy (23)

The design requirements are clearly non-linear with respect to the design variables b and t. They can be
written as optimization constraints as

−1 ≤ N(x)

A(x)fy
≤ 1 (24)

−1 ≤ M(x)

Wply(x)fy
≤ 1 (25)

−1 ≤ N(x)

A(x)fy
+

(
1− Nn(x)

A(x)fy

)
M(x)

Wply(x)fy
≤ 1 (26)

−1 ≤ N(x)

A(x)fy
−
(

1− Nn(x)

A(x)fy

)
M(x)

Wply(x)fy
≤ 1 (27)

− N(x)

χy(x)A(x)fy
+ kyy(x)

M(x)

Wply(x)fy
≤ 1 only for compressed members (28)

− N(x)

χy(x)A(x)fy
− kyy(x)

M(x)

Wply(x)fy
≤ 1 only for compressed members (29)

These constraints are collected to member resistance constraint vector gM,i for each member i.300

The design of welded tubular joints according to EN 1993-1-8 (2006) is carried out by comparing the axial301

force of the braces with the resistance of the joints for the relevant failure modes. Additionally, to ensure that302

the joint is within the range of applicability of the design equations, a set of constraints regarding the geometry303

of the joint are provided. In general the joint resistance evaluation formulas are non-linear with respect to the304

continuous relaxation. For example, the resistance in probably the most important failure mode of a K joint305

(Figure 8), chord face yielding failure, is calculated as (EN 1993-1-8 2006, Table 7.12)306

NRd,cfy =
8.9knfy0t

2
0

sin θi

2b1 + 2b2
4b0

√
b0
2t0

(30)

where kn is a factor taking into account the compressive stress in the chord face, fy0 is the yield strength of307

the chord material, t0 is the chord wall thickness, θi is the angle between chord and brace member, bi and hi308

are the dimensions of the members with subscript 0 referring to chord and 1 and 2 referring to braces (see309
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Table 9 Results of 50 runs for tubular truss example.

Objective function value [kg] Function evaluations [-]
Approach Best found Mean Median Std Mean Std

GA 1669 2323 1950 948 22549 9573
2-phase 1584 1739 1715 88 11608 3639

also Figure 8). In continuous problem, the dimensions bi and ti are the design variables. Moreover, kn depends310

on the internal forces and the cross-sectional properties of the chord. With fixed gap g, changing the member311

profile outer dimensions results in change of angles θi as well.312

The corresponding joint resistance constraint can be formulated as313

−1 ≤ N

NRd,cfy
≤ 1 (31)

where N is the axial force in brace member. These constraints are collected to a constraint vector gR,j . Each314

joint j then has 16 resistance constraints, 8 for each brace.315

The range of validity of the design rules for welded joints induce constraints for the joint geometry and for316

the dimensions of the profiles of the connecting members (EN 1993-1-8 2006, Table 7.8). Additional constraints317

can be employed to ensure manufacturability of the joints. For example, the brace width bi should not exceed318

the chord width b0. This can be written as319

bi
b0
− 1 ≤ 0 (32)

The joint geometry constraints are collected to the vector gG,j for each joint j.320

The weight minimization problem for the tubular roof truss can be written as321

min
x

ρLTA (x)

such that gM,i (x) ≤ 0, i = 1, 2, . . . , nM

gR,j (x) ≤ 0, j = 1, 2, . . . , nJ

gG,j (x) ≤ 0, j = 1, 2, . . . , nJ

(33)

where nJ is the number of joints and nM is the number of members. For more details on joint constraints,322

see (Jokinen, Mela, Tiainen & Heinisuo 2016, Tiainen et al. 2017, EN 1993-1-8 2006).323

In the second phase, discrete neighbourhood consists of five closest profiles for each member, sorted by324

the distance (see Eq. (3))325

dj =

√(
bj − b∗

bmax − bmin

)2

+

(
tj − t∗

tmax − tmin

)2

(34)

where bj and tj are the dimensions of profile alternative j, and b∗ and t∗ the dimensions of the best found326

continuous solution.327

The tubular truss sizing optimization is performed with the two-phase approach and GA. The performance328

of both approaches is evaluated by taking the results of 50 complete runs. The main results are seen in Table 9329

and design variable values for the best found designs in Table 10. The two-phase approach found approximately330

6 % better design in terms of objective function value and the performance is better with every criterion in331

Table 9. However, the main benefit of the two-phase approach is the reduced computational effort (on average332

50 % lower number of function evaluations).333

With random initial point in the relaxed phase, the optimization fails to converge in about 9 % of the334

cases. This is probably due to the fact that some constraint functions include non-differentiable points even335

though the discontinuities related to Eq. (17) have been replaced by the approximation in Eq. (18). If the336

approximation is not used, the continuous optimization failed to converge in 60 % of cases.337

Based on the results of successful continuous runs, the design space contains multiple local optima. In338

addition, in 1 out of 50 runs the GA did not find a feasible solution in the second phase. Despite these339

findings the two-phase procedure seems to be efficient on average in comparison with GA. However, due to340

high possibility of not finding a feasible solution, the deviation in needed computational effort for one complete341

run seems high. However, the deviation in the function evaluation is considerable also when GA is applied342

directly.343
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Table 10 Design variable values for the best found designs for the tubular truss problem.

Member Continuous GA Two-phase

Top chord 214.5x6.6 200x8 200x8
Bottom chord 178.0x5.2 180x6 160x6

Brace 1 78.4x3.0 80x4 70x3
Brace 2 169.4x5.0 150x6 150x6
Brace 3 126.8x7.3 150x6 120x8
Brace 4 104.6x3.0 90x4 90x3
Brace 5 133.4x3.8 110x4 110x4
Brace 6 139.4x4.0 100x4 110x4
Brace 7 178.0x5.3 180x6 160x6
Brace 8 114.4x8.1 120x8 120x8

3.4 Three-bay twenty-four-story frame344

Consider the planar frame (Figure 9) which has been treated extensively in the literature, for example, by Saka345

& Kameshki (1998), Camp et al. (2005), Degertekin (2008), Kaveh & Talahatari (2010a), Kaveh & Talahatari346

(2010b), Kaveh & Talahatari (2012), and Kaveh & Talahatari (2013).347

The members are organized in 20 groups (the numbering is shown in Figure 9). The member profiles are
chosen from the 3rd edition AISC LRFD selection of W profiles with the beams (groups 1-4) having 267
possible shapes. The column profiles (groups 5-20) are chosen from the set of 37 W14 profiles. Constraints are
derived from AISC LRFD specification. The material properties are E = 205 GPa (29732 ksi) and fy = 230
MPa (33.4 ksi). The constraints are based on the following member design rule:

Pu
2φcPn

+
Mu

φbMn
≤ 1 for

Pu
φcPn

< 0.2 (35)

Pu
φcPn

+
8

9

Mu

φbMn
≤ 1 for

Pu
φcPn

≥ 0.2 (36)

where Pu is the required strength (tension or compression), Pn is the nominal axial strength (tension or348

compression, including flexural buckling), φc is the resistance reduction factor (for tension 0.9, for compression349

0.85), Mu is the required bending moment strength, Mn the nominal bending moment strength, and φb is the350

bending moment resistance reduction factor (0.9). Additionally, the inter-story drift limit351

dj
hj
≤ 1

300
, j = 1, 2, . . . , 24 (37)

is imposed, where dj is the lateral drift in story j and hj is the height of story j.352

These design conditions are written as constraints as follows:353

gm (x) =





Pu
2φcPn

+
Mu

φbMn
− 1 ≤ 0 for

Pu
φcPn

< 0.2

Pu
φCPn

+
8

9

Mu

φbMn
− 1 ≤ 0 for

Pu
φcPn

≥ 0.2

(38)

and354

gd (x) =
300dj
hj

− 1 ≤ 0, j = 1, 2, . . . , 24 (39)

The continuous relaxation for the two-phase approach is now implemented using four design variables for355

each profile choice as suggested in Figure 1.356

In the first phase, the cross-sectional properties are calculated without the rounding r, for example the357

second moment of the area becomes358

Iy =
bh3

12
− (b− tw)

(
h− 2tf

)3

12
(40)

represented with the chosen four design variables.359

To ensure compliance with the AISC code, relations of dimensions h, b, tw and tf need to be constrained
due to local buckling. It is recognized that the selection includes only compact cross-sections which are not
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Fig. 9 Layout, member grouping and loading for three-bay twenty-four-story frame. Frame bay width and floor height
dimensions in ft (304.8 mm). Load values W = 5, 761.85 lb, W1 = 300 lb/ft, W2 = 436 lb/ft, W3 = 474 lb/ft, and W4 =
408lb/ft.
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Fig. 10 Convex hull around W14 selection (37 alternatives marked with cross) and total W selection (267 alternatives marked
with dot) in (h,b) space. Convex hulls drawn in dashed line for total W selection and solid line for W14 selection.

susceptible to local buckling. The continuous search is guided towards such cross-sections by adding a set of
linear constraints that form a convex hull of the profile alternatives. These constraints are written as

Ajxj ≤ bj (41)

where Aj is a constant matrix, bj is a constant vector and the variable vector is360

xj =
[
bj , hj , tw,j , tf,j

]
(42)

The dimensions of Aj and bj are different for beams and columns, since the profile alternatives are differ-361

ent. The convex hull constraints are demonstrated in Figure 10. In total, there are 1060 linear convex hull362

constraints.363

Alternatively for the W14 shapes, the height of the profile, h, can be taken as the independent variable,
and the remaining dimensions can be expressed by the approximations

b (h) =

{
9.3819h− 3099, h < 372

0.3357h+ 266.7, h ≥ 372
[mm] (43)

tw (h) = 0.3347h− 109.4 [mm] (44)

tf (h) = 0.5104h− 164.9 [mm] (45)

The bilinear approximation of Eq. (43) for b as a function of h is shown in Figure 11. By using the approximate364

functions, the column profiles can be defined with single variable h instead of four variables thus reducing the365

dimension of the continuous relaxation.366

The objective function is the weight of the frame and it is written as367

f (x) = ρ

168∑

i=1

AiLi = ρ

168∑

i=1

[
2bitf,i +

(
hi − 2tf,i

)
tw,i

]
Li (46)

The objective function is clearly nonlinear and non-convex due to the bilinear terms bitf,i, hitw,i and tf,itw,i.368

The problem statement for the continuous relaxation can be written as369

min
x

f(x)

such that gm (x) ≤ 0 (for all members)

gd (x) ≤ 0 (for all floors)

Ajxj ≤ bj (for all members with convex hull constraints)

(47)

When the profile selection for each of the 20 groups is defined with four variables there are in total 80 design370

variables in the continuous problem of the first phase. If the approximate functions (Eq. (43)-Eq. (45)) are371

adopted for the columns, the dimension of the relaxed problem is reduced to 32 design variables.372
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Fig. 11 Convex hull around W14 selection in (h,b) space (solid line) and the bilinear approximation defined by Eq. (43)
(dashed line).

Table 11 Four different combinations of continuous and discrete spaces. nc is the number of continuous design variables and
nd is the number of discrete profile alternatives used in the second phase.

Case nc [-] nd [-]

1 80 5
2 80 10
3 80 15
4 32 5

Table 12 Main results from Three-bay twenty-four-story frame example.

Method Runs Best found [kg] Mean [kg] Std [kg] Mean nfe [-]

ACO (Camp et al. 2005) 100 100001 104124 2069 15500
HS (Degertekin 2008) 100 97459 100979 2631 14651

IACO(Kaveh & Talahatari 2010a) 100 98969 - - -
ICA (Kaveh & Talahatari 2010b) - 96584 - - -
CSS (Kaveh & Talahatari 2012) 50 96692 97731 1111 -
DE (Kaveh & Talahatari 2013) - 93339 - - -

2-phase case 1 50 91834 92950 1288 26709
2-phase case 2 50 92958 94960 1042 24024
2-phase case 3 50 93480 95990 1839 29120
2-phase case 4 50 91648 92360 2395 19928

In the second phase, three neighbourhoods were tested, with 5, 10 or 15 profiles closest to the solution373

from phase I for each member group. The normalized Euclidean distance (see Eq. (3)) is now374

dj =

√√√√
(

tf,j − t∗f
tf,max − tf,min

)2

+

(
tw,j − t∗w

tw,max − tw,min

)2

+

(
hj − h∗

hmax − hmin

)2

+

(
bj − b∗f

bmax − bmin

)2

(48)

where bj , hj , tw,j and tf,j are the dimensions of profile alternative j and b∗, h∗, t∗w and t∗f are the dimensions375

of the best found continuous solution.376

The two-phase approach was applied to the minimum weight problem with 80 variables (i.e. 4 variables377

for each of the 20 member groups) in the first phase and 5, 10 or 15 profile alternatives in the second phase.378

In addition, the continuous formulation with 32 design variables was employed with five profile alternatives379

in the second phase. Thus, the four cases listed in Table 11 were considered.380

The results of optimization runs as well as some results from literature are shown in Table 12. The381

two-phase approach yields better designs than reported in the literature except in case 3. Case 4 provides382

the best design having 1.8 % smaller weight than obtained by Kaveh & Talahatari (2013). However, the383

number of function evaluations is in general greater than reported in the literature. As in the 52-bar-truss384

problem, the phase II requires more function evaluations (Table 13). For the first phase, notable improvement385

in computational efficiency is observed in case 4 (with 32 variables instead of 80): the number of function386
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Table 13 Number of function evaluations using the two-phase approach.

Phase I Phase II
Case Min Mean Min Mean

1 6492 8146 6801 18563
2 6492 7999 6801 16025
3 6917 7997 8801 17169
4 719 2711 7001 17217

Table 14 The best found designs of the three-bay twenty-four-story frame.

Profiles
Member Case
group 1 2 3 4

1 W30x90 W30x90 W30x90 W30x90
2 W6x15 W8x18 W10x22 W8x18
3 W24x55 W24x55 W24x55 W24x55
4 W12x16 W10x12 W8x15 W6x8.5
5 W14x159 W14x193 W14x159 W14x145
6 W14x109 W14x99 W14x132 W14x132
7 W14x99 W14x109 W14x109 W14x99
8 W14x74 W14x74 W14x90 W14x68
9 W14x68 W14x68 W14x61 W14x74
10 W14x43 W14x68 W14x61 W14x43
11 W14x43 W14x38 W14x30 W14x30
12 W14x22 W14x22 W14x22 W14x22
13 W14x90 W14x90 W14x90 W14x99
14 W14x109 W14x109 W14x99 W14x99
15 W14x99 W14x90 W14x109 W14x99
16 W14x99 W14x99 W14x82 W14x99
17 W14x74 W14x74 W14x90 W14x68
18 W14x61 W14x48 W14x61 W14x61
19 W14x34 W14x30 W14x34 W14x38
20 W14x22 W14x26 W14x22 W14x22

evaluations is approximately at best 89 % and on average 66 % smaller than in cases 1-3. Case 4 also provides387

the best found design.388

Contrary to the previous examples, the best results are obtained with the smallest number of profile389

alternatives in the second phase. The best found designs are shown in Table 14.390

4 Conclusions391

In this study, the two-phase approach for discrete variable structural optimization was revisited with appli-392

cations to skeletal steel structures. The numerical results indicate that the two-phase approach is a viable393

procedure that performs well when compared to the popular metaheuristics in terms of the quality of the394

obtained design. Either as good or better solutions than reported in the literature were obtained in all the395

examples.396

Comparing the computational effort of the procedures is difficult as in many references only results of a397

single run are reported even though the stochastic nature of meta-heuristic methods require multiple runs for398

reliable performance assessment. By considering the average number of function evaluations the two-phase399

approach seems better option than GA. On the other hand, for ICA, IACO, DE, CSS, MBA and DHPSACO400

a lower number of function evaluations is reported for the best run. However, it cannot be said how well the401

number describes the performance on average.402

For further development of the two-phase approach, the following key points should be addressed:403

Phase I: – Initial point for the continuous solver. In this study, the initial point was chosen randomly. For404

conventional frame structures, engineering judgment or other heuristic can be employed to find a405

design that is based on approximation of internal forces. For example, the beams of the 24-storey406

frame can be considered separately as beams with fixed supports under uniform load, and the407

entire profile catalogue can be explored to find the minimum profile.408

– Problem formulation. The central idea of solving the relaxation is that only a (hopefully) good409

approximation of the optimum design for the original discrete problem is obtained with a moder-410
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ate computational effort. Therefore, finding the global optimum or including all the requirements411

from the design codes that cause discontinuities to the problem are not of primary interest. In412

order to facilitate the overall solution process, the problem formulation of the relaxation can be413

manipulated, such that it can be solved quickly by efficient gradient-based algorithms.414

Phase II: – Problem formulation. For the second phase, all the requirements of the design codes and fabri-415

cation need to be included as constraints and as allowable discrete variable values. The main416

question is, how to treat the discrete variables for selecting the member profiles. In the examples417

considered in this study, the indices of the profiles in the catalogue were taken as design variables.418

In the MILP formulation, binary variables are used for selecting the profile. Other possibilities419

for defining the discrete variables should be explored.420

– Neighbourhood of the solution of the relaxation. The Euclidean distance for choosing the subset421

of discrete profiles for the second phase is a straightforward and generally applicable metric.422

An important question is then, how many profiles per member (or member group) should be423

included in the neighbourhood. The neighbourhood should be substantially smaller than the424

original profile catalogue in order to reduce the computational effort, but large enough to include425

feasible designs.426

– Solution method. Instead of the population-based meta-heuristics that intrinsically require a sub-427

stantial amount of function evaluations, other methods applicable for discrete optimization should428

be studied. If the MILP formulation or other deterministic approaches are not available (due to429

problem size or the form of the constraints derived from the design codes), basically any heuristic430

method can be employed. If the assumption holds that the solution of the relaxation is close to431

the discrete optimum, most feasible discrete designs should be satisfying for the designer.432
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Chapter 6. Original publications

6.1 Errata in original publications

While collecting and revising the thesis some typing mistakes were found in the original publica-
tions. Those are listed in the following.

Publication I:

page 161: the sentence ”The paint producers provide tables that give the required intumescent
coating thickness for given critical temperature at and cross-section section factor at specific
time.” should read ”The paint producers provide tables that give the required intumescent coating
thickness for given critical temperature and cross-section section factor at specific time.”

page 168: the sentence ”However, in R60 with ETA, the advanced approach gives 12 % from the
solution obtained by the engineering approach.” should read ” However, in R60 with ETA, the
advanced approach gives 12 % reduction from the solution obtained by the engineering approach.”

Publication III:

Table 2: The right-most column is incorrectly named ”First moment of area”. It should read
”Second moment of area”.

Incorrect material properties are stated in the 3x3 frame example. The correct ones are: ”Material
properties are fy = 355 MPa, E = 210 GPa and ρ = 7850 kg/m3”

Publication IV:

The force values F and q are missing from the design example. The force values used are F =
37.8 kN and q = 50.1 kN/m.

Publication V:

Following Eq. 7, instead of Table 2, reference should be made to Figure 2.

Table 3: Value 0.7 in the first row should be 1.0.
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