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ABSTRACT

The objective of this thesis is to develop novel data extraction, feature extraction
and fault detection techniques for the task of elevator fault detection in real-world
environments. Aim of the research is to develop systems that can automatically de-
tect the elevator faults commonly present in the systems. In addition, this research
will help various predictive maintenance systems to detect false alarms, which will
in turn reduce unnecessary visits of service technicians to installation sites. The pro-
posed solutions answer two research questions: how can we detect elevator faults
efficiently and how can we detect false alarms in elevator predictive maintenance
systems?

Five publications have been developed to address these issues from various perspec-
tives. In this thesis, modern machine learning method called deep learning is applied
for elevator fault detection. The relationship between the commonly used time se-
ries representations for elevator movement and the target fault event labels are highly
complex. Deep learning methods such as deep autoencoder and multilayer percep-
tron utilize a layered structure of units to extract features from the given vibration
input with increased abstraction at each layer. This increases the network’s capacity
to efficiently learn the highly complex relationship between the elevator movement
and the target fault event labels. This research shows that the proposed deep autoen-
coder and multilayer perceptron approaches perform significantly better than the
established classifying techniques for elevator fault detection such as Random forest
algorithm.

An off-line profile extraction algorithm is also developed based on low-pass filtering
and peak detection to extract elevator start and stop events from sensor data. These
profiles are used to calculate motion and vibration related features, which is called
here existing features. Profile extraction algorithm and deep autoencoder model are
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combined to calculate new deep features from the data to improve the results in terms
of elevator fault detection. The approaches in this research provided nearly 100% ac-
curacy in fault detection and also in the case of analyzing false positives with new
extracted deep features. The results support the goal of this research of developing
generic models which can be used in other machine systems for fault detection.
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1 INTRODUCTION

Elevators (see Figure 1.1) are considered as an efficient way of transportation that
allows a get on and get off facility to passengers at the floor specified. There are 12
million elevators in the world [13], which makes it the biggest global transporta-
tion system. High-speed elevator systems required by high-rise buildings to provide
rapid access inside buildings have been built in modern cities. Remote monitoring
introduced in the 1980s only provides information about breakdowns but cannot
reduce the amount of them. In the 1990s, usage-based maintenance was introduced
and adapted by the automobile industry later on in which after a certain distance
travelled the motor oil must be changed.

 

 

   Elevator system

Elevator car

Figure 1.1 Elevator system

Elevator companies are currently focusing on these issues and finding optimal so-
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lutions. Traditional elevator maintenance service is not suitable for the current sce-
nario and needs to be improved in order to support better elevator service business.
Both horizontal and vertical transportation due to growing urbanization face trans-
port logistics problems that require intelligent transportation systems with increased
reliability, capacity and efficiency. In this thesis, the focus is on the automatic de-
tection of elevator faults in real-world environments. Methods are proposed and
developed that can be used for automatic elevator fault detection.

1.1 Research Problems

In recent years, elevator systems have been used more and more extensively in apart-
ments, commercial facilities and office buildings [V]. Nowadays 54% of the world’s
population lives in urban areas [13]. Therefore, elevator systems need proper main-
tenance and safety. The next step for improving the safety of elevator systems is
the development of predictive and pre-emptive maintenance strategies, which will
also reduce repair costs and increase the lifetime whilst maximizing the uptime of
the system [16], [15]. Elevator production and service companies are now opting
for a predictive maintenance policy to provide better service to customers. They
are remotely monitoring faults in elevators and estimating the remaining lifetime of
the components responsible for faults. Elevator systems require fault detection and
diagnosis for healthy operation [74]. Condition monitoring is a multidisciplinary
problem, which includes many engineering branches. It also required implementa-
tion of variety of complex technologies. Fault detection and diagnosis is performed
using pre-existing tools. Objective of the research was to answer two research ques-
tions with multidisciplinary approaches.

RP.I Fault Detection of Elevator System
How can elevator faults be detected efficiently?

RP.II False Alarms in Elevator Predictive Maintenance Systems
How can false alarms be reduced in elevator predictive maintenance systems?

Existing hardware and software modules have been utilized for fulfilling the re-
quirement of commercial application of outputs.
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1.1.1 RP.I: Fault Detection of Elevator System

Condition monitoring is an essential part of every machine maintenance system. El-
evators are frequently used by people nowadays, which requires proper maintenance
and safety of elevators. Fault detection and diagnosis is very important in smooth
functioning of elevator systems. Traditional methods are not very efficient in de-
tecting faults; thus this research focused on developing a deep learning model for
efficient fault detection and diagnosis. The research also addressed the challenges of
dimensionality reduction and robustness against overfitting characteristics. This re-
search includes calculation of highly informative deep features from raw sensor data
along with existing features. State of the art includes fault diagnosis methods having
feature extraction methodologies based on deep neural networks [73], [37], [6] and
convolutional neural networks [77], [31] for rotatory machines similar to elevator
systems. Fault detection methods for rotatory machines are also using support vec-
tor machines [44] and extreme learning machines [79]. However, to improve the
performance of traditional fault diagnosis methods, an intelligent deep autoencoder
model is developed for feature extraction from the data and random forest performs
the fault detection in elevator systems based on extracted features.

1.1.2 RP.II: False Alarms in Elevator Predictive Maintenance Systems

False alarms is a challenging task to handle in condition monitoring of every machine
maintenance system. Fault diagnosis methods based on deep neural networks [85],
[26] provide above 90% accuracy in fault detection, but false alarms are not consid-
ered into analysis. In this research, false alarm analysis is also considered along with
fault detection analysis. False positives are considered as evaluation parameter for
this research in addition to the accuracy, sensitivity and specificity. False alarms are
directly related to false positives in this research, which is calculated by validating
the pre-trained model with the remaining healthy data along with training and test-
ing phase. Therefore, both RPs should be considered to accomplish elevator fault
detection using deep learning approaches.
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Studies focusing on these RPs are included in this thesis. For example, RP.I and
RP.II were considered by Publication-I to Publication-V from various perspectives.

1.2 Objectives of the Thesis

The main objective of this thesis is to study and utilize the recently proposed ad-
vanced machine learning techniques in the context of elevator fault detection. These
techniques include deep autoencoders, multilayer perceptron (MLP) neural network
and off-line profile extraction algorithm. While utilizing these techniques for various
elevator fault detection tasks, we aim to develop an understanding of the working
principles of the neural networks for a specific elevator fault detection problem. The
wide range of elevator fault detection tasks that are tackled in this thesis provide a
clear idea on the scalability and the robustness of these machine learning techniques.
Lastly, the aim is to investigate the end-to-end elevator fault detection and propose
a novel method which is obtained through the hidden layer outputs of a neural net-
work.

In this thesis, the main research questions that can be asked listed as follows. Re-
search investigates whether the modern machine learning techniques such as deep
learning methods can be used to develop elevator fault detection systems with robust
performance in real-life conditions. Thesis tests the multi-label learning capabilities
of the deep learning methods for elevator fault detection in various levels. Research
investigates on which deep learning methods perform the best for a given elevator
fault detection task, and how should the model architecture be adjusted for the opti-
mal performance. Thesis analyzes the effectiveness of the established elevator fault
detection techniques, and searches for ways to make deep learning methods model
the elevator fault events directly from raw sensor signals.

1.3 The Author’s Contribution to the Publications

This section briefly explains the role of the author in each of the listed publications.

Publication I: The author developed the initial idea and developed the methods pre-
sented and the theoretical framework and the coding of the algorithms and wrote
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the paper. Dr. Tomi Krogerus has assisted for the initial idea and the data extrac-
tion code. As academic supervisor, Professor Kalevi Huhtala reviewed the paper
and made corrections and suggestions.

Publication II: The author developed the initial idea and developed the methods
presented and the theoretical framework and the coding of the algorithms and wrote
the paper. Dr. Tomi Krogerus has assisted for the initial idea and the data extraction
code. As academic supervisor, Professor Kalevi Huhtala reviewed the paper and
made corrections and suggestions.

Publication III: The author developed the initial idea and developed the methods
presented and the theoretical framework and the coding of the algorithms and wrote
the paper. M.Sc. John-Eric Saxen has assisted for the profile extraction algorithm
code. Dr. Jerker Björkqvist reviewed the paper. As academic supervisor, Professor
Kalevi Huhtala reviewed the paper and made corrections and suggestions.

Publication IV: The author developed the initial idea and developed the methods
presented and the theoretical framework and the coding of the algorithms and wrote
the paper. As academic supervisor, Professor Kalevi Huhtala reviewed the paper and
made corrections and suggestions.

Publication V: The author developed the initial idea and developed the methods
presented and the theoretical framework and the coding of the algorithms and wrote
the paper. As academic supervisor, Professor Kalevi Huhtala reviewed the paper and
made corrections and suggestions.

1.4 Outline and Structure of the Thesis

The organization of the remainder of this thesis is as follows.

The background information about elevator fault detection, and the topics of prob-
lem formulation , applications, challenges, data representations, and different datasets

19



used in the context of elevator fault detection are presented in Chapter 2.

Chapter 3 presents methodology including feature learning, machine learning, arti-
ficial neural networks, profile extraction algorithm, tree based algorithms and eval-
uation methods in the context of elevator fault detection.

Chapter 4, summary of publications includes summaries for each of the five pub-
lications. This chapter explains the connection between the thesis RPs and the pub-
lications.

Conclusions of this thesis and discussions for the current and future research on
elevator fault detection are provided in Chapter 5. This chapter is followed by the
publications, which are relevant published papers.
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2 BACKGROUND

2.1 Problem Formulation

The goal of elevator fault detection is to automatically estimate the start and end
times of the fault events present for a given collection of sensor data, and then to as-
sociate a textual label to each of these fault events. These textual labels are often called
classes. Elevator fault detection can be formulated in two stages: data pre-processing
and classification. In the data pre-processing stage, deep features are extracted for
each short time frame t in the sensor data to obtain a feature vector xt ∈�M , where
M is the number of features per frame. In the classification stage, the task is to learn a
deep model that would estimate the event presence probabilities p(yt | xt,θ) ∈ [0,1]t

for each pre-defined fault event class, where θ represents the deep model parameters
of the classifier. In the usage case, the event presence probabilities are binarized by
e.g. constant thresholding to obtain the event presence predictions yt ∈ [0,1]t. By
combining the presence predictions for consecutive time frames, one can determine
the start and end times of the fault event classes.

In the scope of this thesis, deep model parameters θ are optimized using supervised
learning (Section 2.5). There are also other learning methods to optimize the model
parameters, such as unsupervised learning (often used when target outputs are un-
available/unused) and semi-supervised learning (used when the target outputs are
available for only a portion of the data). In supervised learning for elevator fault de-
tection, the binary target outputs yt for each frame t are obtained from the reference
annotations, which include the start and end time of each fault event in the sensor
data. If the signals are obtained from the real-life environment, then the reference
annotations are often collected manually, i.e. by a human through the signals and
labeling the start and end times of the fault events that they could notice. Supervised
learning for elevator fault detection is formulated in such a way that the fault event
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classes of interest are defined beforehand. This makes the elevator fault detection
task concrete, and helps the human annotator in omitting the irrelevant fault events
and grouping different fault events under a certain class (e.g. different kinds of faults
under a single fault class as visualized in Figure 2.1). Healthy data is assigned binary
0 and faulty data 1 for machine learning classification. Data inside the time period
starting from the complaint being reported and ending when maintenance is done
are considered faulty, while all other data are considered healthy. To remove suspi-
cious data we have left out a time of two weeks before the complaints were registered
and data before that is considered healthy.

 

Healthy 
data
(N)
(0)

Faulty 
data
(N)
(1)

Sus-
picious 
(2week)

Maintenance actions recorded

Time

Figure 2.1 Data labelling

2.2 Applications

In recent years, there has been rapid growth in the use of elevator systems, mostly in
apartments, commercial facilities and office buildings. Elevators are considered an
efficient way of transportation that allows a get on and get off facility to passengers
at the floor specified. There are 12 million elevators in the world, which makes it
the biggest global transportation system. High-speed elevator systems required by
high-rise buildings to provide rapid access inside buildings have been built in modern
cities. Urban areas contain 54% of the world population, and that is continuously
increasing [13]. According to the World Health Organization (WHO), 70% of the
world’s population will live in large cities by 2050. Therefore, automatic elevator
fault detection can be utilized for aircraft subsystem solutions [9], robot transporta-
tion system [1], smart cities including smart buildings [82], satellite/climber system
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[34] and indoor navigation systems [51].

Recently, elevator fault detection systems have been commercialized into automatic
alarm systems [39], propulsion controlled aircraft [71], large civil aircraft [76], small
unmanned aerial vehicle (UAV) [65], traffic analysis [67], quality evaluation system
[87] and energy recovery systems [59].

2.3 Challenges

It can be claimed that the research progress on elevator fault detection has been stag-
nant until the recent years. One of the reasons is that there are several challenges for
a robust elevator fault detection system that can operate in real-life conditions. The
challenges for elevator fault detection systems can be listed as, but not limited to, un-
structured data, missing values, feature selection, data balancing, human behaviour
and false alarms.

Unstructured Data

Unstructured data [19] is a type of data, which do not have class information. Data
labelling is an expensive process, therefore most of the real-life data do not have label
information. In this research, some maintenance records have been used to provide
the class information for machine learning algorithms.

Missing Values

Missing values [4] are also common problem in analyzing real-life data. It is often
found in data due to some data collection errors. In this study, the developed meth-
ods are capable of handling these missing values during the analysis. In addition, it
has been removed during the data pre-processing stage.

Feature Selection

Feature selection [40] is one of the most important part of data analysis. Usually,
the real-life data contain many features but it is not necessary that all of them are
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important for certain analysis. Therefore, in this research feature selection plays a
significant role in selecting suitable features for elevator fault detection.

Data Balancing

Real-life data usually do not have large amount of faulty data because in general the
faults had been repaired quickly as they reported. Therefore, to avoid the problem
of overfitting [36] data balancing is required. In this study, balanced dataset is used
for machine learning algorithms to detect faults in the elevator systems.

Human Behaviour

Human behaviour plays a significant role in fault detection analysis because it will be
a case of uncertainty while selecting healthy and faulty data based on maintenance
actions recorded. It can be a possibility that the time of actual fault is different than
the time reported because of the human behaviour, which is considered in this re-
search.

False Alarms

False alarms [80] need to be reduced in predictive maintenance systems because it
costs huge amount of money in unnecessary visits of service technicians to instal-
lation sites. In this study, false alarms are analyzed in terms of false positives as an
evaluation parameter for developed machine learning methods.

2.4 Data Representation

Sensor data for elevator fault detection [39] are obtained by digitally recording the
elevator movement in a real-life environment. The time series representation [57] of
a elevator movement is considered as the lowest level representation, since the signal
is not much processed before using it as the representation of a elevator movement.
On the other hand, this representation is quite redundant for a classifier to learn
which elevator movement it belongs to. For this reason, sensor data for elevator
fault detection are often represented by extracting certain features. Different types
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of sensor datasets are used in this research e.g. existing features sensor data, most fre-
quent floor patterns raw sensor data, profiles from acceleration signals of raw sensor
data and profiles from both acceleration and magnetic signals of raw sensor data.

Existing Features Sensor Data

Raw sensor data, mainly acceleration signals, were used to calculate elevator key
performance and ride quality features, which we call here existing features. In pub-
lications [I] and [V], 12 different existing features derived from raw sensor data de-
scribing the motion and vibration of an elevator for fault detection and diagnostics
[54] of multiple faults are utilized. These existing features (see Figure 2.2) are e.g.
peak-to-peak (PP), A95 and root-mean-square (RMS) defined by ISO standards [24].

Apr May Jun

0.
5

1.
0

1.
5

2.
0

Feature

time 

va
lu

e 

Figure 2.2 Existing features

Most Frequent Floor Patterns Raw Sensor Data
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In publication [II], data is selected from the most frequent floor patterns of the data,
i.e. floor patterns which consist of the maximum number of rides between specific
floor combinations. Only the vertical component of acceleration data is selected
in this research because it is the most informative aspect consisting of significant
changes in vibration levels [29] as compared to other components. Data is selected
based on elevator movement as shown in Figure 2.3.
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Most frequent floor patterns raw sensor data (floor:6−0)

Figure 2.3 Most frequent floor patterns raw sensor data (Acc vertical represents acceleration signals in

z-direction)

Profiles from Acceleration Signals of Raw Sensor Data

In publication [III], start and stop profiles [17] are extracted from the rides because
of the different lengths of rides for each floor combination due to the constant speed
phase, which is longer when there is longer travel. Up and down movements have
analyzed separately because the traction based elevator [41] usually produces slightly
different levels of vibration in each direction. Profiles from acceleration signals of
raw sensor data have been visualized in Figure 2.4.
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Figure 2.4 Profiles from acceleration signals of raw sensor data (Acc vertical represents acceleration

signals in z-direction)

Profiles from Magnetic Signals of Raw Sensor Data

In publication [IV], profiles from magnetic signals [42] of raw sensor data are ex-
tracted along with acceleration signals as an extension to the publication [III] . This
approach has provided more data to validate the machine learning model and ro-
bustness against overfitting characteristics [83]. Only the vertical component of the
signal is used and up and down movements have been analyzed separately similar to
the previous approaches. Profiles from magnetic signals of raw sensor data are pre-
sented in Figure 2.5.
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Figure 2.5 Profiles from magnetic signals of raw sensor data (Mag vertical represents magnetic signals

in z-direction)

2.5 Datasets

The datasets used in the experiments for this thesis are explained below in detail.

Raw Sensor Data

Raw sensor datasets are collected according to the movement of elevators. Each el-
evator has different raw sensor dataset, however each raw sensor dataset includes
three axis acceleration and magnetic field signals. In addition, raw sensor dataset
has information about floor movement of elevator system. Currently, the dataset
is not publicly available due to copyright issues. Most frequent floor patterns from
the data, i.e. floor patterns which consist of the maximum number of rides between
specific floor combinations are used in publication [II]. In publication [III], an off-
line profile extraction algorithm is developed based on low-pass filtering and peak
detection to extract elevator start and stop events from raw sensor data. The off-line
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profile extraction algorithm extracts elevator start and stop events from both accel-
eration and magnetic signals separately in publication [IV].

Existing Features Data

Existing features are calculated from the raw sensor data based on elevator move-
ment. Every movement of the elevator generates one set of existing features from
the vibration signal. In addition, each elevator usually produces around 200 rides
per day. Each ride used in analysis contains around 5000 rows of the raw sensor
data. Currently, the dataset is not publicly available due to copyright issues. In
publication [I], a generic deep autoencoder model has been proposed for automated
feature extraction from the existing features data. In publication [V], a generic mul-
tilayer perceptron (MLP) neural network model is proposed for automated feature
extraction from the existing features data for elevator fault detection.
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3 METHODOLOGY

3.1 Feature Learning for Elevator Fault Detection

Recently, most of the proposed elevator fault detection methods simply pick one
of the well-known deep feature extraction methods for sensor data, and focus on
developing a novel and better performing deep model through machine learning.
Apart from the feature extraction methods, machine learning can also be used to
learn discriminative features from low-level representations for elevator fault detec-
tion. Low-level representations may refer to time series signal, or the existing fea-
tures. The method of using machine learning for the deep feature extraction is often
called feature learning (or representation learning).

There are several feature learning methods that have been proposed for elevator fault
detection. Song et al. [68] proposed multiple kernel learning (MKL) for analysing
elevator dataset. It is using deep neural network architecture to learn the parameters
through sophisticated optimization procedures for combining the kernels. Accuracy
of 90.2% through MKL method is better than other methods used in the analysis. Li
[38] proposed three reinforcement feature learning algorithms e.g. Q-learning, Q-
value and multi-step Q-learning for elevator control system. Average waiting time
used as evaluation parameter and multi-step Q-learning algorithm performs best out
of three algorithms applied. Results prove that reinforcement algorithms are better
than classical methods for elevator control system. Kim et al. [33] designed safety
elevator monitoring system for marine elevators based on NMEA 2000 network. It
uses big data feature learning from the server to provide prediction for maintenance.
Accuracy of slope prediction model with load and platform tilt is 99% while roll
and pitch based model provides 94%. Skog et al. [66] have proposed a signal pro-
cessing scheme with a smart sensor for the Internet-of-Elevators. The sensor node
behaves like a self-contained black box unit, which supports condition monitoring
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capabilities in a cost efficient way by modernizing the conventional elevator system.
Features related to condition monitoring of elevator systems similar to ride quality
parameters are calculated by vibration versus frequency spectrum, and the vibration
versus position spectrum. Low cost sensors such as smartphones were used in ex-
periments that reduced the error in estimating the position of the elevator up to less
than 1 meter with 99.9% probability in a 43 s long travel. Wang et al. [74] pre-
sented a fault diagnosis approach for elevator braking systems using a wavelet packet
algorithm and fuzzy neural network. The wavelet packet method was used to de-
compose fault signals and to extract eight frequency components of signals, from
low to high frequency. A fault diagnosis model was designed using a fuzzy neural
network along with B-spline, and the model input included eight obtained eigenval-
ues. According to the authors the method provides 100% accuracy in brake fault
recognition and 87% for fault type identification. Zhang et al. [84] applied intelli-
gent feature learning agent technology to the traditional fault diagnosis method in
fault diagnosis systems. A belief-desire-intention (BDI) agent based fault diagnosis
system was constructed using an elevator door multi-agent system (MAS). The au-
thors argue that the advantages of the system are autonomy of the diagnosis process,
the reusability of diagnostic resources (knowledge diagnosis, diagnostic agent, etc.)
and the scalability of the system. Zhao et al. [88] studied fault detection in elevator
systems using feature learning. Their research explains the types of faults occurring
in elevator systems as well as the reasons for their occurrence, and also proposed a
method for fault detection.

3.2 Machine Learning for Elevator Fault Detection

Machine learning [7] is a field of computer science that aims to design machines
(or software) that are able to learn directly from the given data. Machine learning
systems are especially useful for certain tasks for whom the solutions are very chal-
lenging to implement as an algorithm by a human engineer. Elevator fault detection
[78] can be given as an example for such tasks. Due to the challenges explained in
Section 2.3, it is difficult to come up with an engineered algorithm that could map
sensor signals with their corresponding fault events with satisfactory accuracy to be
utilized in real-world applications. By studying how machine learning systems for
elevator fault detection process sensor data, it may even be possible in the future to
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gain more insight about how humans perceive fault events.

Some of the earlier work on machine learning for elevator fault detection are studied
here. In [86] the structural health monitoring of elevators is performed by sensor
network data. The authors argue that wireless sensors will play an important role in
future studies, though currently wired systems still dominate. In this research, data
transmission is performed with a wired system, which is still a valid choice for a life-
long monitoring system. The authors also state that structured data, which can be
further fed to machine learning algorithms for classifying elevator health states, is dif-
ficult to produce and interpret. Li [30] studied the measurement systems and fault di-
agnosis of elevators. The author states that elevator faults are electromechanical, and
during the running phase mechanical faults have a frequency attached that can rise
randomly. Vibrations of the elevator are the main cause of these mechanical faults
attached to the running phase. The following analysis were conducted: frequency
response analysis, modal analysis, cepstrum analysis, spectrum analysis, autocorre-
lation analysis, time-domain parameter analysis and waveform analysis. Jinjin [32]
and Jian-can [27] studied the fault diagnosis of elevator systems using vibration sig-
nals. The evaluation of vibration signals included the beginning of the acceleration
process to the end of the travel, and contained starting, smooth operation and brak-
ing. Horizontal and vertical vibration signals were studied. Horizontal vibration
occurs due to the guiding system that includes wire ropes, the degree of tightness of
the guide shoes and the verticality of the guide slides in elevator cars. The driving
lift systems, including damage to the gearbox and wheel wear, are responsible for
vertical vibration. Niu et al. [53] developed a decision fusion system for intelligent
fault diagnosis to satisfy the requirement of advanced maintenance and to realize
real-time and convenient diagnosis of an elevator system. A faulty elevator motor
system was analysed using vibration and current signals. Four-fusion algorithms:
modified borda count, multi-agent, bayesian belief and majority voting were com-
pared. Support vector machine provides the best accuracy of 75% for current signal
among all the classification algorithms applied. Chen and Liu [11] proposed a me-
chanical fault diagnosis method using autoregressive (AR) dual spectrum. Nonlinear
coupling described by AR bispectrum was used for gaussian noise elimination and
retaining of phase information. Vibration signals produced by a running elevator
were used to establish an AR time series model for analysis and diagnosis of elevator
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faults. Based on the study, the elevator has different dual spectral in normal and fault
situations that can be easily distinguished. Qifeng et al. [60] studied a wavelet multi-
threshold de-noising method for fault detection and diagnosis of elevators. Fault
characteristic information was extracted from the vibration signal by de-noising it
first. The method uses a correlation coefficient, signal to noise ratio (SNR) and root
mean square (RMS) error of the original signal, and includes three methods: wavelet
packet multi-threshold analysis, wavelet packet analysis and wavelet analysis. Chen
and Liu [10] presented a fault diagnosis method for elevator systems using empiri-
cal mode decomposition (EMD) and box dimension. Interplanetary magnetic field
(IMF) components are produced due to the decomposition of acceleration signals in
normal and fault conditions by EMD in elevator systems. The calculation of IMF
components and signals were performed by box dimension after the removal of noise
and background signals from the recombined signal. Effective discriminations and
ranges are produced by box dimension between normal and failure conditions, as
shown in this research. Yaman et al. [78] developed an image-processing system for
elevators to detect wear on guide-rail surfaces. Cameras were used in this research to
monitor real-time conditions using a built-in system. Images were captured via four
digital cameras of elevator guide-rail surfaces fixed onto the elevator cab. Detection
of wear on the surface of the guide-rails was done by analysing the images captured
by the cameras using image-processing methods.

3.3 Artificial Neural Networks

An artificial neural network (ANN) is a type of machine learning method, which is
similar to human brain in terms of information processing. Neurons are the main
constituting elements of human brain, which can be up to 15-20 billion in a single
human brain. These are inter-connected nodes stimulated by various electrochemi-
cal signals [58]. Each type of signals e.g. visual, audio or sensory etc. has their own
path of neurons, which require a set of neurons to process their information inside
the brain. Every human brain has its own speciality for processing certain type of
signals, which always improves with time to create a mapping between certain input
signals to its output representation. Deep learning, or deep neural networks (DNN)
is also a type of artificial neural network with more than one hidden layer. This re-
search investigates the application of deep neural network with feed-forward neural
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network having multiple hidden layers on elevator fault detection. Deep learning
[85], [26], [I] has also been found in many state-of-the-art methods for rotatory ma-
chine fault detection similar to elevator systems.

3.3.1 Feed-forward Neural Networks

Feed-forward neural network (FNN) (see Figure 3.1) is a type of neural network,
which has fully connected neurons as a set of sequential layers.

Feed-forward neural networks

Input
layer

Output 
layer

Hidden 
layers

Figure 3.1 Feed-forward neural network

Input for all the neurons in one layer come as output of each neuron from previous
layer. Feed-forward neural network [35] has no feedback connection for the neuron
outputs i.e. layer outputs are calculated through a forward pass. The feed-forward
neural networks [20]with multiple hidden layers, called as deep neural networks are
often utilized for rotatory machine fault detection similar to elevator systems. Deep
neural networks can learn high level representations in several layers of abstraction
for modeling the complex input - target output relationships. Research [6], [56] and
[II] provide examples of deep neural networks proposed for rotatory machine fault
detection similar to elevator systems.
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3.3.2 Deep Autoencoder Neural Networks

Deep autoencoder has been successfully used in various applications, which makes
it a popular deep learning model [70]. In this research, deep autoencoder feature
learning method is proposed for elevator fault diagnosis. A three-layer network in-
cluding an encoder and a decoder is called an autoencoder. The encoder maps the
high-dimensional input data into low-dimensional codes, while reconstruction of
input data from these codes are performed by decoder [81]. A five layer deep au-
toencoder (see Figure 3.2) used in this study, which is a different approach than in
[28], [72].

 

Deep autoencoder

Encoder Decoder
Input 
layer

Output 
layer

Representation

Figure 3.2 Deep autoencoder neural network

The encoder transforms the input x into corrupted input data x’ using hidden repre-
sentation H through nonlinear mapping

H = f (W 1x ’+ b ) (3.1)

where f(.) is a nonlinear activation function as the sigmoid function, W 1 ∈ �k*m

is the weight matrix and b ∈�k the bias vector to be optimized in encoding with k
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nodes in the hidden layer [72]. Then, with parameters W 2 ∈�m*k and c ∈�m, the
decoder uses nonlinear transformation to map hidden representation H to a recon-
structed vector x” at the output layer

x” = g (W 2H + c) (3.2)

where g(.) is again nonlinear function (sigmoid function). In this study, the weight
matrix is W2=W1

T , which is tied weights for better learning performance [25].

3.3.3 Multilayer Perceptron Neural Networks

Multilayer perceptron learns a non-linear function approximator, which is a super-
vised learning algorithm [21]. Non-linear layers called as hidden layers are existing
between the input and the output layer. Multilayer perceptron is different from
other algorithm, which can have one or more hidden layers (see Figure 3.3). Mul-
tilayer perceptron is a type of feedforward neural network, which can distinguish
nonlinearly separable patterns. Multilayer perceptron includes several nodes called
as neurons, those are arranged as a directed graph in multiple layers. Multilayer
perceptron is a type of fully connected neural network, which is also known as uni-
versal approximators. Multilayer perceptron with one hidden layer having enough
neurons can approximate any given continuous function [50].

At first, preparing the training dataset D = {(xi, yi)}ni=1, xi ∈ �m*l, yi ∈ � .
Where, n is the number of samples. xi(i = 1,2, ..., n) is m-dimensional phased feature
vector I i(i = 1,2, ..., m) as the input of multilayer perceptron. yi is the label of fault
and the weighted input of j node in the hidden layer can be expressed as [18]:

h j =
m∑

i=1

W ij ∗ I i+ b j (3.3)

Where Wij is the connection weight which from the input layer i node to the hidden
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Figure 3.3 Multilayer perceptron neural network

layer j node, bj is bias for the corresponding node, the output of the j node in the
hidden layer is Hj .

H j = t anh(h j) (3.4)

After several iterations, the input ok of output layer k note from hidden layers is

ok =
J∑

j=1

W jk ∗H j+ b k (3.5)

Where output layer contains K notes ( k=1,2,...,K ). The output Ok of the k node in
the output layer corresponding to different activation functions.
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3.4 Profile Extraction Algorithm

The algorithm consists of two stages. First stage includes signal pre-processing and
normalization. After this low-pass filter is applied to reduce noise spikes. Peak de-
tection uses the low-pass filtered signal, which corresponding to acceleration and
deceleration (start and stop) events, detects a local minimum and maximum for each
elevator travel (see Figure 3.4).

Second stage includes alignment and collection of equal length profiles. It is based
on dividing the acceleration signal in many windows near the peak events. Raw ac-
celeration signal is used in this stage instead of the filtered signal. State of the art
includes various time domain alignment methods. Commonly used method is dy-
namic time warping (DTW), e.g. in speech recognition [14]. Research [62] studied
various alignment techniques for sensor data.

The off-line profile extraction algorithm is described as following.

 

Profile extraction algorithm

Start 
profile

Stop 
profile

Figure 3.4 Profile extraction algorithm

Off-line profile extraction algorithm
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Pre-procession

1. Read a vector of raw acceleration data containing k elevator travels. Define the
zero mean transformed dataset as X.

2. Perform low-pass filtering on X and obtain denoised dataset Y.

Initialization

3. Define parameters for reference profile. Set the approximated maximum win-
dow length to m samples and height h to the 99th percentile of the low-pass fil-
tered dataset.

4. Define alignment window size a and set k=1.

Iteration

5. From Y(k), detect peak acceleration points ymin and ymax

6. Align reference profile P against raw dataset X in the vicinity of detected peaks
by minimizing the L2 norm according to

mi n
a/2∑

i=−a/2

m∑
j=1

[−p j− xmin+i+j]
2 (3.6)

mi n
a/2∑

i=−a/2

m∑
j=1

[p j− xmax+i+j]
2 (3.7)

7. Add aligned data points from X(k) as rows into an n×m profile matrix, alter-
natively separate matrices according to direction of travel (min/max).

8. Set travel window k = k + 1 and repeat steps 5–7 until end of dataset.

9. Update reference profile P with the signal-averaged profile obtained from the
column-wise mean of the new profile matrix.

10. Reduce window length m by s samples, where s is the number of elements in
P that satisfy

p ≤ ε, p ∈ P (3.8)
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where ε is a close to zero number indicating no acceleration.

11. Set k = 1 and continue with new batch iterations by repeating steps 5–8.

3.5 Tree Based Algorithms

Different tree based algorithms have been tested in this research and found random
forest as the best classifier among all. Random forest is type of ensemble classifier
selecting a subset of training samples and variables randomly to produce multiple de-
cision trees [5]. High data dimensionality and multicollinearity can be handled by a
RF classifier while imbalanced data affect the results of the RF classifier. It can also be
used for sample proximity analysis, i.e. outlier detection and removal in train set [2].
The final classification accuracy of RF is calculated by averaging the probabilities of
assigning classes related to all produced trees (e). Testing data (d) that is unknown to
all the decision trees is used for evaluation by voting method. Selection of the class
is based on the maximum number of votes (see Figure 3.5). Random forest classifier
provides variable importance measurement that helps in reducing the dimensions of
hyperspectral data in order to identify the most relevant features of data, and helps
in selecting the most suitable reason for classification of a certain target class.

Specifically, let sensor data value vl
e have training sample lth in the arrived leaf node

of the decision tree e ∈ E , where l ∈ [1, ..., Le] and the number of training samples
is Le in the current arrived leaf node of decision tree e. The final prediction result is
given by [23]:

μ=

∑
e∈E
∑

l∈[1,...,Le]
v l

e

∑
e∈E Le

(3.9)

All classification trees providing a final decision by voting method are given by [43]:

H (a) = argmax yj

∑
i∈[1,2,...,Z]

I (h i(a) = y j) (3.10)
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Figure 3.5 Classification phase of RF classifier

where j= 1,2,...,C and the combination model is H(a) , the number of training subsets
are Z depending on which decision tree model is hi(a) , i ∈ [1,2, ...,Z] while output
or labels of the P classes are yj , j= 1,2,...,P and combined strategy is I(.) defined as:

I (x) =

⎧⎨
⎩

1, h i(a) = y j

0, otherwise
(3.11)

where output of the decision tree is hi(a) and ith class label of the P classes is yj, j=
1,2,...,P .

3.6 Evaluation of Elevator Fault Detection Methods

In order to effectively measure the improvements offered by a proposed scientific
method, systematic evaluation is crucial. The evaluation parameters in this research
are accuracy, sensitivity and specificity for the machine learning algorithm. The
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number of true negatives (TN), false negatives (FN), true positives (TP) and false
positives (FP) can compute the efficiency of the classifier [64]. Statistical measure-
ments of the tests are sensitivity and specificity. There are four possible outcomes
for binary choice prediction (see Table 3.1):

• True Positive - Positive instance correctly classified as positive

• False Positive - Negative instance incorrectly classified as positive

• True Negative - Negative instance correctly classified as negative

• False Negative - Positive instance incorrectly classified as negative

Table 3.1 Confusion matrix.

Predicted (P) (N)

Actual (P) True positive (TP) False negative (FN)

(N) False positive (FP) True negative (TN)

The rate of positive test result is sensitivity,

Sens i t i vi t y =
T P

T P + F N
∗ 100% (3.12)

The ratio of a negative test result is specificity,

S pec i f i c i t y =
T N

T N + F P
∗ 100% (3.13)

The overall measure is accuracy,

Acc u racy =
T P +T N

T P + F P +T N + F N
∗ 100% (3.14)
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4 SUMMARY OF PUBLICATIONS

This chapter summarizes each publication of this thesis, and answering the research
problems were the primary aim of these publications. As previously addressed, there
were two main variations of test datasets. The publication [I] and publication [V]
addressed the existing features data for elevator fault detection, and publication [II],
publication [III] and publication [IV] addressed the raw sensor data for elevator fault
detection.

4.1 Publication 1: Deep Autoencoder Feature Extraction for

Fault Detection of Elevator Systems

In publication [I], a generic deep autoencoder model for automated feature extrac-
tion from the elevator sensor data has been proposed for elevator fault detection.
Almost one year of the data from seven traction elevators are used in this research.
Deep autoencoder offers an exceptional 100% accuracy in fault detection based on
new extracted deep features, which outperform the results using existing features
with the conventional random forest classifier for the task of elevator fault detec-
tion. In addition, nearly 100% accuracy is achieved for avoiding false positives i.e.
reducing false alarms in elevator predictive maintenance solutions.

4.2 Publication 2: Fault Detection of Elevator Systems

Using Deep Autoencoder Feature Extraction

In publication [II], raw sensor data is used for calculation of new deep features with
a generic deep autoencoder model. Most frequent floor patterns from the data, i.e.
floor patterns which consist of the maximum number of rides between specific floor
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combinations are used for data extraction. In addition, almost one week of the data
from one traction elevator is used in this research. Existing features were calculated
from the same raw sensor dataset. Aim of the research was to compare the results
from both features in terms of elevator fault detection. Fault detection accuracy is
same for both features, while deep features outperform existing features in terms of
avoiding false positives i.e. reducing false alarms in elevator predictive maintenance
solutions.

4.3 Publication 3: Fault Detection of Elevator System Using

Profile Extraction and Deep Autoencoder Feature

Extraction

In publication [III], an off-line profile extraction algorithm is developed based on
low-pass filtering and peak detection to extract elevator start and stop events from
raw sensor data. Data is extracted from all the floor combinations available in the
raw sensor data of one traction elevator. Furthermore, almost two weeks of the
data is analyzed from one traction elevator in this research. The capability of profile
extraction algorithm to extract elevator start and stop events from raw sensor data
is combined with the capability of deep autoencoder model to calculate new deep
features from extracted profiles. This combined approach outperforms state-of-the-
art method by a considerable margin.

4.4 Publication 4: Elevator Fault Detection Using Profile

Extraction and Deep Autoencoder Feature Extraction for

Acceleration and Magnetic Signals

Research approach used in publication [III] is extended in publication [IV] for valida-
tion of the proposed method over bigger dataset. Furthermore, almost two months
of the data from five traction elevators are used in this research as an extension to
one elevator in publication [III]. The off-line profile extraction algorithm extracts
elevator start and stop events from both acceleration and magnetic signals separately.
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Profiles are combined as a vector from all five traction elevators before feature extrac-
tion. This combined approach outperforms state-of-the-art method by a consider-
able margin.

4.5 Publication 5: Fault Detection of Elevator Systems

Using Multilayer Perceptron Neural Network

In publication [V], a generic multilayer perceptron (MLP) neural network model is
proposed for automated feature extraction from the elevator sensor data for elevator
fault detection. Almost one year of the data from seven traction elevators are used
in this research. Multilayer perceptron offers 99% accuracy in fault detection based
on new extracted deep features, which outperform the results using existing features
with the conventional random forest classifier for the task of elevator fault detection.
In addition, an exceptional 100% accuracy is achieved for avoiding false positives i.e.
reducing false alarms in elevator predictive maintenance solutions.
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5 CONCLUSIONS AND DISCUSSIONS

5.1 Conclusions

This thesis investigates the effectiveness of neural networks methods for various ele-
vator fault detection tasks. These tasks can be identified from different types of data
e.g. raw sensor data and existing feature data.

To the author’s knowledge, publication [I] is the first work that proposes utilizing
deep autoencoder random forest for elevator fault detection. Publication [I] focuses
on the health monitoring of elevator systems using a novel fault detection technique.
The goal of this research was to develop a generic model for automated feature ex-
traction and fault detection in the health state monitoring of elevator systems. The
approach in this research provided nearly 100% accuracy in fault detection and also
in the case of analyzing false positives with new extracted deep features. The results
support the goal of this research of developing a generic model which can be used in
other machine systems for fault detection. Almost one year of the data from seven
traction elevators were used in this research, which proves the generalisation capa-
bility of this approach. The results outperform the existing features calculated from
the raw sensor dataset of the same elevators.

In publication [II], aim was to investigate whether proposed deep autoencoder ran-
dom forest approach in publication[I] is also suitable for elevator fault detection
based on raw sensor data. The goal of the research was to develop a generic model
for automated feature extraction and fault detection in the health state monitoring
of elevator systems. Most frequent floor patterns from the data, i.e. floor patterns
which consist of the maximum number of rides between specific floor combinations
are used for data extraction. The approach provided 100% accuracy in the fault de-
tection and in analyzing false positives for new extracted deep features. The model
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outperforms because of new deep features extracted from the dataset as compared to
existing features calculated from the raw sensor dataset of the same elevator.

The profile extraction method proposed in publication [III] provided state-of-the-art
results for elevator fault detection, beating the previous state-of-the-art by a consid-
erable margin. The goal of this research was to develop generic models for profile
extraction and automated feature extraction for fault detection in the health state
monitoring of elevator systems. The approach in this research provided nearly 100%
accuracy in fault detection and also in the case of analyzing false positives for all floor
combinations with new extracted deep features. The models outperform because of
new deep features extracted from the dataset as compared to existing features calcu-
lated from the same raw sensor dataset.

Publication [IV] focuses on the health monitoring of elevator systems using a novel
fault detection technique. The goal of this research was to develop generic mod-
els for profile extraction and automated feature extraction for fault detection in the
health state monitoring of elevator systems. The approach in this research provided
above 90% accuracy in fault detection and in the case of analyzing false positives for
all floor combinations with new extracted deep features from sensor data including
both acceleration and magnetic signals. The results support the goal of this research
of developing generic models which can be used in other machine systems for fault
detection. The results are useful in terms of detecting false alarms in elevator pre-
dictive maintenance. Visualization of the extracted profiles and features support the
goal of developing generic models for profile and feature extraction for fault detec-
tion.

In publication [V], a generic multilayer perceptron (MLP) neural network model has
been proposed based on deep learning algorithm for automatic calculation of highly
informative deep features from the elevator time series data and based on extracted
deep features faults are detected. The approach in this research provided nearly 100%
accuracy in the fault detection and also in the case of analyzing false positives for new
extracted deep features. The results support the goal in this research of developing
a generic model which can be used to other machine systems for automated feature
extraction and fault detection. Almost one year of data from seven traction elevators
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have been used in this research, which proves the generalization capability of the ap-
proach. The results are useful in terms of detecting false alarms in elevator predictive
maintenance.

In summary this thesis successfully answered the two research questions RP.I and
RP.II with the help of publications [I] to [V] mentioned in this thesis. RP.I mainly
focused on elevator fault detection problem which have been answered through the
"Accuracy" evaluation parameter used in the results section of publications [I] to
[V]. Deep neural networks developed in this thesis provided nearly 100% accuracy
in the elevator fault detection which also answered RP.I. RP.II mainly focused on re-
ducing number of false alarms problem in elevator predictive maintenance systems
which have been answered through the "False positives" evaluation parameter used
in the results section of publications [I] to [V]. Deep neural networks developed in
this thesis provided nearly 100% accuracy in reducing number of false alarms which
also answered RP.II.

5.2 Discussions

In publication [I] and [II], a generic deep autoencoder model has been proposed for
elevator fault detection on realistic machine operations. Fault events often occur
simultaneously in real-world environments. Therefore, fault events are essential to
get a robust elevator fault detection system that would provide high performance in
complex machine operations such as real-world environments.

Fault diagnosis methods based on deep neural networks [85], [26], [6] and convo-
lutional neural networks [77], [31] feature extraction methodology are presented as
state of the art for rotatory machines similar to elevator systems. Support vector
machines [44] and extreme learning machines [79] are also used as fault detection
methods for rotatory machines. However, in publication [I] an intelligent deep au-
toencoder random forest based feature extraction methodology has been developed
for fault detection in elevator systems to improve the performance of traditional fault
diagnosis methods.

The state-of-the-art results obtained with deep autoencoder random forest for ele-
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vator fault detection in publication [I] has shown that it is worth investigating deep
learning methods in various ways for fault detection in elevator systems. Follow-
ing this idea, in publication [II], raw sensor data is used for calculation of new deep
features with a generic deep autoencoder model. Most frequent floor patterns from
the data, i.e. floor patterns which consist of the maximum number of rides between
specific floor combinations are used for data extraction. Existing features were cal-
culated from the same raw sensor dataset. Aim of the research was to compare the
results from both features in terms of elevator fault detection.

The methods that are proposed in publication [III] and [IV] are profile extraction
algorithm for various elevator fault detection tasks based on raw acceleration signal,
and both acceleration and magnetic signals profile extraction respectively. While
the framework for the methods in these works is the almost similar, there are several
variations between the methods mainly due to the difference between datasets used
for publication [III] and [IV].

Acceleration profile extraction for health monitoring is a major issue in automated
industrial applications like elevator system, computer numerical control, machin-
ery and robotics [55]. Although rotating machine have been running for decades,
but acceleration profiles extraction and processing methods are not widely available
[8]. Acceleration profile extraction methods have applied in electric vehicles [3],
computer numerical control systems [52] and horizontal planes [69]. Kalman filter
[75] is one of the methods being used for acceleration profile extraction. However,
in publication [III] an off-line profile extraction algorithm (see Section 3.4) has been
developed based on low-pass filtering and peak detection to extract elevator start and
stop events from raw sensor data.

The main motivation for publication [IV] is to apply the successful profile extraction
method (see Section 3.4) proposed in publication [III] on the both acceleration and
magnetic signals profile extraction for elevator fault detection. In publication [III],
only acceleration signal have been used, which represents vibration related features.
In this research, the approach have been extended to include magnetic signals, which
represents position related features. This will validate the goal of this research to
develop generic models for profile extraction and automated feature extraction for
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fault detection in the health state monitoring of elevator systems. In addition, al-
most two months of the data from five traction elevators have been analyzed in this
research as an extension to one elevator in publication [III]. Each elevator usually
produces around 200 rides per day. Each ride used in analysis contains around 5000
rows of the data, which proves robustness of the algorithms over large dataset.

Linear discriminant analysis [22], [12], artificial neural networks [61] and kalman
filter [63] are used as fault detection methods for rotatory machines similar to el-
evator systems. However, in publication [V] an intelligent multilayer perceptron
neural network model has been developed based on deep learning feature extraction
methodology for fault detection in elevator systems to improve the performance of
traditional fault diagnosis methods.
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Abstract. In this research, we propose a generic deep autoencoder model for
automated feature extraction from the elevator sensor data. Extracted deep features
are classified with random forest algorithm for fault detection. Sensor data are
labelled as healthy or faulty based on the maintenance actions recorded. In our
research, we have included all fault types present for each elevator. The remaining
healthy data is used for validation of the model to prove its efficacy in terms of
avoiding false positives. We have achieved nearly 100% accuracy in fault
detection along with avoiding false positives based on new extracted deep features,
which outperform the results using existing features.

1 Introduction

    In recent years, elevator systems have been used more and more extensively in
apartments, commercial facilities and office buildings. Nowadays 54% of the world’s
population is living in urban areas [1]. Elevators transport 325 million passengers
every day in the United States and Canada alone [2]. Therefore, elevator systems need
proper maintenance and safety. The next step for improving the safety of elevator
systems is the development of predictive and pre-emptive maintenance strategies,
which will also reduce repair costs and increase the lifetime whilst maximizing the
uptime. Modern elevator systems require intelligent fault monitoring and diagnosis.
    Fault diagnosis methods based on deep neural networks [3] and convolutional
neural networks [4] feature extraction methodology are presented as state of the art
for rotatory machines similar to elevator systems. However, we have developed an
intelligent deep autoencoder based feature extraction methodology for fault detection
in elevator systems to improve the performance of traditional fault diagnosis methods.
    In the last decade, neural networks [5] have extracted highly meaningful statistical
patterns from large-scale and high-dimensional datasets. A deep learning network can
self-learn the relevant features from multiple signals [6]. Autoencoding is a process
for nonlinear dimension reduction with natural transformation architecture using
feedforward neural network [7]. Autoencoders can increase the generalization ability
of machine learning models by extracting features of high interest as well as making
possible its application to sensor data [8]. Autoencoders were first introduced by
LeCun [9], and have been studied for decades. Traditionally, feature learning and
dimensionality reduction are the two main features of autoencoders. Recently,
autoencoders have been considered as one of the most compelling subspace analysis
techniques because of the existing theoretical relations between autoencoders and
latent variable models [10]. Autoencoders have been used for feature extraction from
the data in systems like localization [11] and wind turbines [12], different from
elevator systems as in our research.
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    In our previous research, raw sensor data, mainly acceleration signals, were used to
calculate elevator key performance and ride quality features, which we call here
existing features. Random forest was used for fault detection based on these existing
features. Existing domain specific features were calculated from raw sensor data, but
that requires expert knowledge of the domain and results in a loss of information to
some extent. To avoid these implications, we have developed a deep autoencoder
random forest approach for automated feature extraction from elevator sensor data,
and based on these deep features, faults are detected. In this paper, section 2 presents
the methodology, section 3 includes the results and discussion, and section 4 provides
the conclusions of our research.

2 Methodology

    We have developed an automatic feature extraction technique in this research as an
extension to the work of our previous research to compare the results using new
extracted deep features. Figure 1(a) shows the fault detection approach used in this
paper, which includes elevator sensor data extracted based on time periods provided
by the maintenance data. We have analysed almost one year of the data from seven
traction elevators in this research. Each elevator produces around 200 rides per day.
Every movement of the elevator generates existing features from the vibration signal.
Data collected from an elevator system is fed to a deep autoencoder model for new
feature extraction and then random forest performs the fault detection task based on
extracted deep features.
    The deep autoencoder model is based on deep learning autoencoder feature
extraction methodology. A basic autoencoder is a fully connected three-layer
feedforward neural network with one hidden layer. Typically, the autoencoder has the
same number of neurons in the input and the output layer and reproduces the input as
its output. We use a five layer deep autoencoder (see Fig. 1(b)) including input,
output, encoder, decoder and representation layers.

(a)

(b)

Existing features Deep autoencoder

Encoder Decoder
Input
layer

Output
layer

Representation

Feature vector

n

2

1

Deep
features

   Elevator system
Maintenance

data

Elevator car
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autoencoder

Sensor data

Feature
extraction

Random
forest

Fault
detection

Data
selection

Fig. 1: (a) Fault detection approach (b) Deep autoencoder feature extraction approach.

    In our approach, we first feed the elevator sensor data from each elevator
movement in up and down directions separately in the deep autoencoder model to
extract new deep features from the data. Then we apply random forest as a classifier
for fault detection based on new deep features extracted from the data. The encoder
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transforms the input x  into corrupted input data 'x  using hidden representation h
through nonlinear mapping

( )1 'h f W x b                   (1)

    where ·f  is a nonlinear activation function as the sigmoid function, *
1

k mW  is

the weight matrix and b
k the bias vector to be optimized in encoding with k

nodes in the hidden layer [13]. Then, with parameters *
2

m k
W and m

c , the
decoder uses nonlinear transformation to map hidden representation h  to a
reconstructed vector "x at the output layer

" )2(x g chW                            (2)

    where ·g is again nonlinear function (sigmoid function). In this study, the weight

matrix is 12
TW W , which is tied weights for better learning performance [14].

    Random forest includes an additional layer of randomness to bagging. It uses
different bootstrap samples of the data for constructing each tree [15]. The best subset
of predictors is used to split each node in random forest. This counterintuitive strategy
is the best feature of random forest, which makes it different from other classifiers as
well as robust against overfitting. It is one of the most user-friendly classifiers
because it consists of only two parameters: the number of variables and number of
trees. However, it is not usually very sensitive to their values [16]. The final
classification accuracy of random forest is calculated by averaging, i.e. arithmetic
mean the probabilities of assigning classes related to all the produced trees. Testing
data that is unknown to all the decision trees is used for evaluation by the voting
method. Specifically, let sensor data value tvl have training sample thl in the arrived
leaf node of the decision tree t T , where {1,..., }l Lt and the number of training
samples is Lt in the current arrived leaf node of decision tree t . The final prediction
result is given by [17]:

{( ) ( )/1,..., }l Lt
tv Ltt T t Tl (3)

    All classification trees providing a final decision by voting method are given by:
( ) arg max ( ( ) )[1,2,..., ]H a I h a yy i ji Zj 1,2,...,j C     (4)

    where the combination model is ( )H a , the number of training subsets are Z
depending on which decision tree model is ( )h ai , [1,2,..., ]i Z  while output or labels of
the P  classes are y j , 1,2,...,j P  and combined strategy is ·I  defined as

( ) 1I x       If ( )h a yi j     else ( ) 0I x                   (5)
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    where output of the decision tree is ( )h ai  and thi  class label of the P classes is y j ,
1,2,...,j P .

3 Results and discussion

    In this research, we first selected the faulty data based on time periods provided by
the maintenance data. In the next step, an equal amount of healthy data was also
selected and labelled as class 0 for healthy, with class 1 for faulty data. Finally, the
deep autoencoder model is used for feature extraction from the data.
    We have analysed up and down movements separately because the traction based
elevator usually produces slightly different levels of vibration in each direction.
Healthy and faulty data with class labels are fed to the deep autoencoder model and
the generated deep features are shown in Fig. 2 (a). In Fig. 2 (a), we can see that both
features with class labels are perfectly separated, which results in better fault
detection. These are called deep features or latent features in deep autoencoder
terminology, which shows hidden representations of the data. The extracted deep
features are fed to the random forest algorithm for classification and the results
provide 100% accuracy in fault detection, as shown in Table 1 (a). We have also
calculated accuracy in terms of avoiding false positives from both features and found
that the new deep features generated in this research outperform the existing features.
We have used the rest of the healthy data to analyse the number of false positives.
This healthy data is labelled as class 0 and fed to the deep autoencoder to extract new
deep features from the data, as presented in Fig. 2 (b).

(a)

(b)
Fig. 2: Up (a) Extracted deep autoencoder features (visualization of the features w.r.t class

variable) (b) Extracted deep features (only healthy data).
    These new deep features are then classified with the pre-trained deep autoencoder
random forest model to test the efficacy of the model in terms of false positives. For
downward motion (see Fig. 3 (a, b)), just as in the case of up movement, we feed both
healthy and faulty data with class labels to the deep autoencoder model for the
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extraction of new deep features. The new extracted deep features are classified with
random forest model. After this, the rest of the healthy data with class label 0 is used
to analyze the number of false positives and the results are shown in Table 1 (b).

(a)

(b)
Fig. 3: Down (a) Extracted deep features (b) Extracted deep features (only healthy data).

(a) (b)

Deep features Existing features
Accuracy 1 0.65

False positives 1 0.61

Deep features Existing features
Accuracy 1 0.62

False positives 0.95 0.58

Table 1: (a) Fault detection analysis- up (false positives field related to analyzing the rest of the
healthy data after the training and testing phase) (b) Fault detection analysis- down.

4 Conclusion

    This research focuses on the health monitoring of elevator systems using a novel
fault detection technique. The goal of this research was to develop a generic model for
automated feature extraction and fault detection in the health state monitoring of
elevator systems. Our approach in this research provided nearly 100% accuracy in
fault detection and also in the case of analyzing false positives with new extracted
deep features. The results support the goal of this research of developing a generic
model which can be used in other machine systems for fault detection. We have used
almost one year of data from seven traction elevators in this research, which proves
the generalisation capability of our approach. The results are useful in terms of
detecting false alarms in elevator predictive maintenance. The approach will also
reduce unnecessary visits of maintenance personnel to installation sites if the analysis
results are utilized to allocate maintenance resources. Our developed model can also
be used for different predictive maintenance solutions to automatically generate
highly informative deep features for solving diagnostics problems. The results
outperform the existing features calculated from the raw sensor dataset of the same
elevators. The automated feature extraction approach does not require any prior
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domain knowledge. It also provides dimensionality reduction and is robust against
overfitting characteristics. The experimental results show the feasibility of our generic
model, which will increase the safety of passengers as well as serve the public
interest. We have tested the robustness of our model in the case of a large dataset,
which proves the efficacy of our model.
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Abstract—In this research, we propose a generic deep au-
toencoder model for automated feature extraction from the raw
sensor data. Extracted deep features are classified with random
forest algorithm for fault detection. Sensor data are labelled as
healthy and faulty based on the maintenance actions recorded.
The remaining healthy data is used for validation of the model
to prove its efficacy in terms of avoiding false positives. We have
achieved 100% accuracy in fault detection along with avoiding
false positives based on new extracted deep features, which
outperform the results using existing features. Existing features
are also classified with random forest to compare results. Deep
autoencoder random forest provides better results due to the
new deep features extracted from the dataset when compared to
existing features. Our model provides good classification and is
robust against overfitting characteristics. This research will help
various predictive maintenance systems to detect false alarms,
which will reduce unnecessary visits of service technicians to
installation sites.

Index Terms—Elevator System, Deep Autoencoder, Fault De-
tection, Feature Extraction, Random Forest

I. INTRODUCTION

In recent years, elevator systems have been used more
and more extensively in apartments, commercial facilities and
office buildings. Nowadays 54% of the worlds population lives
in urban areas [1]. Elevators transport 325 million passengers
every day in the United States and Canada alone [2]. There-
fore, elevator systems need proper maintenance and safety.
The next step for improving the safety of elevator systems is
the development of predictive and pre-emptive maintenance
strategies, which will also reduce repair costs and increase the
lifetime whilst maximizing the uptime of the system [3], [4].
Elevator production and service companies are now opting for
a predictive maintenance policy to provide better service to
customers. They are remotely monitoring faults in elevators
and estimating the remaining lifetime of the components
responsible for faults. Elevator systems require fault detection
and diagnosis for healthy operation [5].

Fault diagnosis methods based on deep neural networks
[6], [7], [8] and convolutional neural networks [9], [10]
feature extraction methodology are presented as state of the
art for rotatory machines similar to elevator systems. Linear
discriminant analysis [11], [12], artificial neural networks [13]
and kalman filter [14] are also used as fault detection methods

for rotatory machines. However, we have developed an intelli-
gent deep autoencoder random forest based feature extraction
methodology for fault detection in elevator systems to improve
the performance of traditional fault diagnosis methods.

In the last decade, neural networks [15] have extracted
highly meaningful statistical patterns from large-scale and
high-dimensional datasets. A deep learning network can self-
learn the relevant features from multiple signals [16]. Deep
learning algorithms [17] are frequently used in areas such as
natural language processing, signal processing, speech recog-
nition, computer vision and image classication. Deep learning
algorithms have also been used in various applications e.g.
biotechnology [18], sentiment analysis [19], survival analysis
[20] and information systems [21]. Autoencoding is a process
for nonlinear dimension reduction with natural transformation
architecture using feedforward neural network [22]. Autoen-
coders have proven powerful as nonlinear feature extractors
[23]. Autoencoders can increase the generalization ability of
machine learning models by extracting features of high interest
as well as making possible its application to sensor data [24].
Autoencoders were first introduced by LeCun [25], and have
been studied for decades. Traditionally, feature learning and
dimensionality reduction are the two main features of autoen-
coders. Recently, autoencoders have been considered one of
the most compelling subspace analysis techniques because of
the existing theoretical relations between autoencoders and
latent variable models [26]. Autoencoders have been used
for feature extraction from the data in systems like industrial
processes [27], induction motor [28] and wind turbines [29],
different from elevator systems as in our research.

In our previous research, raw sensor data, mainly accel-
eration signals, were used to calculate elevator key perfor-
mance and ride quality features, which we call here existing
features. Random forest was used for fault detection based
on these existing features. Existing domain specific features
were calculated from raw sensor data, but that requires expert
knowledge of the domain and results in a loss of information to
some extent. To avoid these implications, we have developed
a deep autoencoder random forest approach for automated
feature extraction from raw sensor data, and based on these
deep features, faults are detected. The rest of this paper is
organized as follows. Section II presents the methodology



of the paper including deep autoencoder and random forest
algorithms. Then, section III includes the details of experi-
ments performed, results and discussion. Finally, section IV
concludes the paper and presents the future work.

II. METHODOLOGY

We have developed an automatic feature extraction tech-
nique in this research as an extension to the work of our pre-
vious research [30] to compare the results using new extracted
deep features. Fig. 1 shows the fault detection approach used in
this paper, which includes raw sensor data extracted based on
time periods provided by the maintenance data. Data collected
from an elevator system is fed to the deep autoencoder model
for feature extraction and then random forest performs the fault
detection task based on extracted deep features.

Fig. 1. Fault detection approach

A. Deep Autoencoder

The deep autoencoder model is based on deep learning
autoencoder feature extraction methodology. A basic autoen-
coder is a fully connected three-layer feedforward neural
network with one hidden layer. Typically, the autoencoder
has the same number of neurons in the input and output
layer and reproduces its inputs as its output. We are using
a five layer deep autoencoder (see Fig. 2) including input,
output, encoder, decoder and representation layers, which is a
different approach than in [29], [31]. In our approach, we first
analyze the data to find the most frequent floor pattern and
then feed the segmented raw sensor data windows in up and
down directions separately to the deep autoencoder model to
extract new deep features from the raw data. Lastly, we apply
random forest as a classifier for fault detection based on new
deep features extracted from the data.

The encoder transforms the input x into corrupted input data
x’ using hidden representation h through nonlinear mapping

h = f(W 1x
’ + b) (1)

where f(.) is a nonlinear activation function as the sigmoid
function, W1∈ R

k*m is the weight matrix and b∈ R
k the

bias vector to be optimized in encoding with k nodes in

Fig. 2. Deep autoencoder feature extraction approach

the hidden layer [31]. Then, with parameters W2∈ R
m*k and

c∈ R
m, the decoder uses nonlinear transformation to map

hidden representation h to a reconstructed vector x” at the
output layer

x” = g(W 2h+ c) (2)

where g(.) is again nonlinear function (sigmoid function).
In this study, the weight matrix is W2=W1

T , which is tied
weights for better learning performance [32].

B. Random Forest

Random forest includes an additional layer of randomness
to bagging. It uses different bootstrap samples of the data for
constructing each tree [33]. The best subset of predictors is
used to split each node in random forest. This counterintuitive
strategy is the best feature of random forest, which makes
it different from other classifiers as well as robust against
overfitting. It is one of the most user-friendly classifiers
because it consists of only two parameters: the number of
variables and number of trees. However, it is not usually very
sensitive to their values [34]. The final classification accuracy
of random forest is calculated by averaging, i.e. arithmetic
mean of the probabilities of assigning classes related to all
the produced trees (t). Testing data (d) that is unknown to all
the decision trees is used for evaluation by the voting method
(see Fig. 3).

Specifically, let sensor data value vl
t have training sample

lth in the arrived leaf node of the decision tree t∈ T , where
l∈ [1, ..., Lt] and the number of training samples is Lt in the
current arrived leaf node of decision tree t. The final prediction
result is given by [35]:

μ =

∑
t∈T

∑
l∈[1,...,Lt]

vl
t∑

t∈T Lt
(3)

All classification trees providing a final decision by voting
method are given by [36]:

H(a) = argmax yj

∑
i∈[1,2,...,Z]

I(hi(a) = yj) (4)

where j= 1,2,...,C and the combination model is H(a) , the
number of training subsets are Z depending on which decision
tree model is hi(a) , i∈ [1, 2, ..., Z] while output or labels of
the P classes are yj , j= 1,2,...,P and combined strategy is I(.)
defined as:



Fig. 3. Classification phase of random forest classifier

I(x) =

{
1, hi(a) = yj

0, otherwise
(5)

where output of the decision tree is hi(a) and ith class label
of the P classes is yj, j= 1,2,...,P .

C. Evaluation Parameters

Evaluation parameters used in this research are defined with
the confusion matrix in Table I.

TABLE I
CONFUSION MATRIX

Predicted (P) (N)

Actual (P) True positive (TP) False negative (FN)
(N) False positive (FP) True negative (TN)

The rate of positive test result is sensitivity,

Sensitivity =
TP

TP + FN
∗ 100% (6)

The ratio of a negative test result is specificity,

Specificity =
TN

TN + FP
∗ 100% (7)

The overall measure is accuracy,

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100% (8)

III. RESULTS AND DISCUSSION

In this research, first, we selected the most frequent floor
patterns from the data, i.e. floor patterns which consist of the
maximum number of rides between specific floor combina-
tions. The next step includes the selection of faulty data from
the most frequent floor patterns based on time periods provided
by the maintenance data. An equal amount of healthy data is
also selected and labelled as class 0 for healthy, with class 1 for
faulty data. Only the vertical component of acceleration data
is selected in this research because it is the most informative
aspect consisting of significant changes in vibration levels as
compared to other components. A combined version of healthy
and faulty data is used for feature extraction with the deep
autoencoder model.

A. Up Movement
We have analyzed up and down movements separately

because the traction based elevator usually produces slightly
different levels of vibration in each direction. First, we have
selected the floor patterns 0 to 6 and faulty data based on
time periods provided by the maintenance data as shown in
Fig. 4. Each ride used in analysis contains around 5000 rows
of the data, which proves robustness of the algorithm over
large dataset.

Fig. 4. Rides from faulty data

Then, we have selected an equal number of rides for healthy
data, as shown in Fig. 5. The next step is to label both the
healthy and faulty data with class labels 0 and 1 respectively.
Healthy and faulty data with class labels are fed to the
deep autoencoder model and the generated deep features are
shown in Fig. 6. These are called as deep features or latent
features in deep autoencoder terminology, which shows hidden
representations of the data.



Fig. 5. Rides from healthy data

Fig. 6. Extracted deep autoencoder features. (Visualization of the features
w.r.t class variable)

The extracted deep features are fed to the random forest
algorithm for classification and the results provide 100%
accuracy in fault detection, as shown in Table II. We have also
calculated accuracy in terms of avoiding false positives from
both features and found that the new deep features generated
in this research outperform the existing features. We have
used the rest of the healthy data similar as Fig. 5 to analyze

the number of false positives. This healthy data is labelled
as class 0 and fed to the deep autoencoder to extract new
deep features from the data, as presented in Fig. 7. These
new deep features are then classified with the pre-trained deep
autoencoder random forest model to test the efficacy of the
model in terms of false positives.

Fig. 7. Extracted deep features (only healthy rides)

Table II presents the results for upward movement of the
elevator in terms of accuracy, sensitivity and specificity. We
have also included the accuracy of avoiding false positives
as evaluation parameters for this research. The results show
that the new deep features provide better accuracy in terms
of avoiding false positives from the data, which is helpful
in detecting false alarms for elevator predictive maintenance
strategies. It is extremely helpful in reducing the unnecessary
visits of maintenance personnel to installation sites.

TABLE II
FAULT DETECTION ANALYSIS (FALSE POSITIVES FIELD RELATED TO
ANALYZING REST OF THE HEALTHY DATA AFTER THE TRAINING AND

TESTING PHASE)

Deep features Existing features

Accuracy 1 1
Sensitivity 1 1
Specificity 1 1

False positives 1 0.90

B. Down Movement

For downward motion, we have repeated the same analysis
procedure as in the case of upward motion. We feed both
healthy and faulty data with class labels to the deep autoen-



coder model for the extraction of new deep features, as shown
in Fig. 8.

Fig. 8. Extracted deep features. (Visualization of the features w.r.t class
variable).

Finally, the new extracted deep features are classified with
random forest model, and the results are shown in Table III.
After this, the rest of the healthy data with class label 0 is
used to analyze the number of false positives. The extracted
deep features are presented in Fig. 9. Table III presents the

Fig. 9. Extracted deep features (only healthy rides)

results for fault detection with deep autoencoder random forest
model in the downward direction. The results are similar to the
upward direction, but we can see significant change in terms
of accuracy when analyzing the number of false positives with
new deep features.

TABLE III
FAULT DETECTION ANALYSIS

Deep features Existing features

Accuracy 1 1
Sensitivity 1 1
Specificity 1 1

False positives 1 0.55

IV. CONCLUSIONS AND FUTURE WORK

This research focuses on the health monitoring of elevator
systems using a novel fault detection technique. The goal
of the research was to develop a generic model for auto-
mated feature extraction and fault detection in the health
state monitoring of elevator systems. Our approach provided
100% accuracy in the fault detection and in analyzing false
positives for new extracted deep features. The results support
our goal in this research of developing a generic model which
can be used to other machine systems for automated feature
extraction and fault detection. The results are useful in terms of
detecting false alarms in elevator predictive maintenance. The
approach will also reduce unnecessary visits of maintenance
personnel to installation sites if the analysis results are utilized
to allocate maintenance resources. Our developed model can
also be used for different predictive maintenance solutions
to automatically generate highly informative deep features
for solving diagnostics problems. Our model outperforms
because of new deep features extracted from the dataset as
compared to existing features calculated from the raw sensor
dataset of the same elevator. The automated feature extraction
approach does not require any prior domain knowledge. It
also provides dimensionality reduction and is robust against
overfitting characteristics. The experimental results show the
feasibility of our generic model, which will increase the safety
of passengers as well as serve the public interest. We have
tested the robustness of our model in the case of a large dataset,
which proves the efficacy of our model.

In future work, we will extend our approach on more
elevators including multiple floor patterns and real-world big
data cases to validate its potential for other applications and
improve its efficacy.
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ABSTRACT

In this paper, we propose a new algorithm for data ex-
traction from time series data, and furthermore auto-
matic calculation of highly informative deep features
to be used in fault detection. In data extraction ele-
vator start and stop events are extracted from sensor
data, and a generic deep autoencoder model is also de-
veloped for automated feature extraction from the ex-
tracted profiles. After this, extracted deep features are
classified with random forest algorithm for fault detec-
tion. Sensor data are labelled as healthy and faulty
based on the maintenance actions recorded. The rest
of the healthy data are used for validation of the model
to prove its efficacy in terms of avoiding false positives.
We have achieved nearly 100% accuracy in fault detec-
tion along with avoiding false positives based on new
extracted deep features, which outperforms results us-
ing existing features. Existing features are also classified
with random forest to compare results. Our developed
algorithm provides better results due to the new deep
features extracted from the dataset when compared to
existing features. This research will help various predic-
tive maintenance systems to detect false alarms, which
will in turn reduce unnecessary visits of service techni-
cians to installation sites.

INTRODUCTION

In recent years, elevator systems have been used more
and more extensively in apartments, commercial facili-
ties and office buildings. Nowadays 54% of the world’s
population lives in urban areas (Desa 2014). Therefore,
elevator systems need proper maintenance and safety.
Fault diagnosis methods based on deep neural networks
(Jia et al. 2016) and convolutional neural networks (Xia
et al. 2018) feature extraction methodology are pre-
sented as state of the art for rotatory machines similar to
elevator systems. Support vector machines (Mart́ınez-
Rego et al. 2011) and extreme learning machines (Yang

and Zhang 2016) are also used as fault detection meth-
ods for rotatory machines. However, we have developed
an intelligent deep autoencoder random forest based fea-
ture extraction methodology for fault detection in ele-
vator systems to improve the performance of traditional
fault diagnosis methods.

Acceleration profile extraction methods have applied in
electric vehicles (Bingham et al. 2012) and horizontal
planes (Soyka et al. 2011). Kalman filter (Wang et al.
2015) is one of the methods being used for acceleration
profile extraction. However, we have developed an off-
line profile extraction algorithm based on low-pass fil-
tering and peak detection to extract elevator start and
stop events from sensor data.

Autoencoders were first introduced by LeCun
(Fogelman-Soulie et al. 1987), and have been stud-
ied for decades. Traditionally, feature learning and
dimensionality reduction are the two main features
of autoencoders. Recently, autoencoders have been
considered one of the most compelling subspace analysis
techniques because of the existing theoretical relations
between autoencoders and latent variable models.
Autoencoders have been used for feature extraction
from the data in systems like induction motor (Sun
et al. 2016) and wind turbines (Jiang et al. 2018) for
fault detection, different from elevator systems as in
our research.

In our previous research, raw sensor data, mainly accel-
eration signals, were used to calculate elevator key per-
formance and ride quality features, which we call here
existing features. Random forest was used for fault de-
tection based on these existing features. Existing do-
main specific features are calculated from raw sensor
data, but that requires expert knowledge of the domain
and results in a loss of information to some extent. To
avoid these implications, we have developed an algo-
rithm for profile extraction from the raw sensor data
rides and a generic algorithm with deep autoencoder
random forest approach for automated feature extrac-
tion from raw sensor data profiles for fault detection in
elevator systems. The rest of this paper is organized
as follows. The next section presents the methodology
of the paper including profile extraction, deep autoen-
coder and random forest algorithms. This is followed



by section that includes the details of experiments per-
formed, results and discussion. Finally, the last section
concludes the paper and presents the future work.

METHODOLOGY

In this study, we have utilised 12 different existing fea-
tures derived from raw sensor data describing the mo-
tion and vibration of an elevator for fault detection and
diagnostics of multiple faults. We have developed an
automated feature extraction technique for raw sensor
data in this research as an extension to the work of our
previous research (Mishra et al. 2019) to compare the
results using new extracted deep features. We only ex-
tract start and stop profiles from the rides because of
the different lengths of rides for each floor combination
due to the constant speed phase, which is longer when
there is longer travel.

Profile extraction algorithm

The algorithm works in two stages. In the first stage,
the signal is pre-processed and normalized, followed by
low-pass filtering in order to reduce noise spikes. The
low-pass filtered signal is used for peak detection, which
for each elevator travel detects a local minimum and
maximum, corresponding to acceleration and decelera-
tion (start and stop) events.
In the second stage, alignment and collection of equal
length profiles is performed based on windowing of the
acceleration signal near the peak events. In this stage,
the raw acceleration signal is used instead of the filtered
signal. A number of time domain alignment methods
have been proposed in the literature. Dynamic time
warping (DTW) has been commonly applied, e.g. in
speech recognition (Di Martino 1985), whereas various
alignment techniques for sensor data have been pre-
sented in (Rhudy 2014). Here, alignment is performed
against a reference profile, which is initialized to the
known approximate length of the acceleration and decel-
eration windows. The reference profile is aligned against
the raw data in the window of the detected peaks. The
criterion for optimal alignment was defined as the align-
ment that minimizes the sum of the Euclidean or L2

norm. The output from this operation is an n×m ma-
trix of aligned profiles describing n acceleration and de-
celeration events of length m.
In order to improve the alignment accuracy, the refer-
ence profile is updated iteratively following each run.
Each sequence in the profile matrix is of the same sam-
ple size and closely synchronized in time and can hence
be considered a repetition of the same signal. Using sig-
nal averaging, the new reference profile is calculated as
the mean of the n extracted profiles. This both main-
tains the main characteristics of the signal and reduces
the noise. Assuming white noise and perfect synchro-
nization, signal averaging improves the signal-to-noise

ratio (SNR) by a factor of
√
n. The reference profile is

updated on-line during the alignment stage or in batch
mode by multiple iterations through the same dataset.
The off-line profile extraction algorithm is described as
follows.

Off-line profile extraction algorithm
Pre-procession
1. Read a vector of raw acceleration data containing
k elevator travels. Define the zero mean transformed
dataset as X.
2. Perform low-pass filtering on X and obtain denoised
dataset Y.
Initialization
3. Define parameters for reference profile. Set window
length to m samples and height h to the 99th percentile
of the low-pass filtered dataset.
4. Set threshold limit t for triggering peak detection as
a fraction of h.
5. Define alignment window size a and set k=1.
Iteration
6. From Y(k), detect peak acceleration points ymin and
ymax satisfying abs(ymin,max) ≥t
7. Align reference profile R against raw dataset X in the
vicinity of detected peaks by minimizing the L2 norm
according to

min

a/2∑
i=−a/2

m∑
j=1

[−rj − xmin+i+j]
2 (1)

min

a/2∑
i=−a/2

m∑
j=1

[rj − xmax+i+j]
2 (2)

8. Add aligned data points from X(k) as rows into an
n×m profile matrix, alternatively separate matrices ac-
cording to direction of travel (min/max).
9. Set travel window k=k+1 and repeat steps 6-8 until
end of dataset.
10. Update reference profile with the signal-averaged
profile obtained from the column-wise mean of the new
profile matrix. Set k=1 and continue with new batch
iterations by repeating steps 6-9.

Deep autoencoder

We are using a five layer deep autoencoder (see Figure
1) including input, output, encoder, decoder and rep-
resentation layers, which is a different approach than
in (Jiang et al. 2018), (Vincent et al. 2008). In our ap-
proach, we first analyze the data to find all floor patterns
and then feed the segmented raw sensor data windows
in up and down directions separately to the algorithm
for profile extraction. Extracted profiles are fed to the
deep autoencoder model for extracting new deep fea-
tures. Lastly, we apply random forest as a classifier for



Figure 1: Off-line profile extraction and deep autoen-
coder feature extraction approach.

fault detection based on new deep features extracted
from the profiles.

The encoder transforms the input x into corrupted input
data x’ using hidden representation H through nonlinear
mapping

H = f(W 1x
’ + b) (3)

where f(.) is a nonlinear activation function as the sig-
moid function, W 1 ∈ Rk*m is the weight matrix and
b ∈ Rk the bias vector to be optimized in encoding with
k nodes in the hidden layer (Vincent et al. 2008). Then,
with parameters W 2 ∈ Rm*k and c ∈ Rm, the decoder
uses nonlinear transformation to map hidden represen-
tation H to a reconstructed vector x” at the output
layer

x” = g(W 2H + c) (4)

where g(.) is again nonlinear function (sigmoid func-
tion). In this study, the weight matrix is W2=W1

T ,
which is tied weights for better learning performance.

Random forest

The final classification accuracy of random forest is cal-
culated by averaging, i.e. arithmetic mean of the prob-
abilities of assigning classes related to all the produced
trees (e). Testing data (d) that is unknown to all the de-
cision trees is used for evaluation by the voting method.

Specifically, let sensor data value vl
e have training sam-

ple lth in the arrived leaf node of the decision tree e ∈ E
, where l ∈ [1, ..., Le] and the number of training sam-
ples is Le in the current arrived leaf node of decision tree
e. The final prediction result is given by (Huynh et al.
2016):

μ =

∑
e∈E

∑
l∈[1,...,Le]

vl
e∑

e∈E Le
(5)

All classification trees providing a final decision by vot-
ing method are given by:

H(a) = argmax yj

∑
i∈[1,2,...,Z]

I(hi(a) = yj) (6)

where j= 1,2,...,C and the combination model is H(a)
, the number of training subsets are Z depending on
which decision tree model is hi(a) , i ∈ [1, 2, ..., Z] while
output or labels of the P classes are yj , j= 1,2,...,P and
combined strategy is I(.) defined as:

I(x) =

{
1, hi(a) = yj

0, otherwise
(7)

where output of the decision tree is hi(a) and ith class
label of the P classes is yj, j= 1,2,...,P.

RESULTS AND DISCUSSION

In this research, we first selected all floor patterns like
floor 2-5, 3-8 and so on from the data, some of which
are shown in Table 1.

Table 1: Floor patterns.

Start floor Stop floor
0 1
2 5
3 8
4 6

The next step includes the selection of faulty rides from
all floor patterns based on time periods provided by the
maintenance data. An equal amount of healthy rides
are also selected. Only the vertical component of ac-
celeration data is selected in this research because it
is the most informative aspect, consisting of significant
changes in vibration levels as compared to other compo-
nents. Healthy and faulty rides are fed to the algorithm
for profile extraction separately. Start and stop profiles
are of equal length, irrespective of floor combination.

Up movement

We have analyzed up and down movements separately
because the traction based elevator usually produces
slightly different levels of vibration in each direction.
First, we have selected faulty rides based on time pe-
riods provided by the maintenance data, including all
floor patterns, which is fed to the algorithm for profile
extraction, as shown in Figure 2.
Then we have selected an equal number of rides for
healthy data, similar to Figure 2. The next step is to
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Figure 2: Profiles from faulty rides (Acc represents ac-
celeration signal).

label both the healthy and faulty profiles with class la-
bels 0 and 1 respectively. Healthy and faulty profiles
with class labels are fed to the deep autoencoder model
and the generated deep features are shown in Figure 3.
These are called deep features or latent features in deep
autoencoder terminology, which shows hidden represen-
tations of the data.
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Figure 3: Extracted deep autoencoder features (visual-
ization of the features w.r.t class variable).

Extracted deep features are fed to the random forest al-
gorithm for classification, and the results provide 100%
accuracy in fault detection in Table 2. We have com-
pared accuracy in terms of avoiding false positives from
both features and found that new deep features gen-
erated in this research outperform the existing features.
We have used the rest of the healthy rides for extracting
profiles to analyze the number of false positives. These
healthy profiles are labelled as class 0 and fed to the
deep autoencoder to extract new deep features from the
profiles.

These new deep features are then classified with the pre-
trained deep autoencoder random forest model to test
the efficacy of the model in terms of false positives. Ta-
ble 2 presents the results for upward movement of the
elevator in terms of accuracy, sensitivity and specificity.
We have also included the accuracy of avoiding false pos-
itives as an evaluation parameter for this research. The
results show that the new deep features provide better
accuracy in terms of fault detection and avoiding false
positives from the data, which is helpful in detecting
false alarms for elevator predictive maintenance strate-
gies. It is extremely helpful in reducing unnecessary
visits by maintenance personnel to installation sites.

Table 2: Fault detection analysis (False positives field
related to analyzing rest of the healthy profiles after the
training and testing phase).

Deep features Existing features
Accuracy 1 0.55
Sensitivity 1 0.33
Specificity 1 0.80

False positives 1 0.48

Down movement

For downward motion, we have repeated the same anal-
ysis procedure as in the case of upward motion. Table 3
presents the results for fault detection with deep autoen-
coder random forest model in the downward direction.
The results are similar to the upward direction but we
can see significant change in terms of accuracy of fault
detection and when analyzing the number of false posi-
tives with new deep features.

CONCLUSIONS AND FUTURE WORK

This research focuses on the health monitoring of ele-
vator systems using a novel fault detection technique.
The goal of this research was to develop generic mod-
els for profile extraction and automated feature extrac-



Table 3: Fault detection analysis.

Deep features Existing features
Accuracy 1 0.78
Sensitivity 1 0.60
Specificity 1 1

False positives 0.98 0.66

tion for fault detection in the health state monitoring
of elevator systems. Our approach in this research pro-
vided nearly 100% accuracy in fault detection and also
in the case of analyzing false positives for all floor com-
binations with new extracted deep features. The results
support the goal of this research of developing generic
models which can be used in other machine systems for
fault detection. Our models outperform others because
of new deep features extracted from the dataset as com-
pared to existing features calculated from the same raw
sensor dataset. The automated feature extraction ap-
proach does not require any prior domain knowledge.
It also provides dimensionality reduction and is robust
against overfitting characteristics.
In future work, we will extend our approach on more
elevators and real-world big data cases to validate its
potential for other applications and improve its efficacy.
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Abstract: In this paper, we propose a new algorithm for data extraction from time-series data, and
furthermore automatic calculation of highly informative deep features to be used in fault detection.
In data extraction, elevator start and stop events are extracted from sensor data including both
acceleration and magnetic signals. In addition, a generic deep autoencoder model is also developed
for automated feature extraction from the extracted profiles. After this, extracted deep features are
classified with random forest algorithm for fault detection. Sensor data are labelled as healthy and
faulty based on the maintenance actions recorded. The remaining healthy data are used for validation
of the model to prove its efficacy in terms of avoiding false positives. We have achieved above 90%
accuracy in fault detection along with avoiding false positives based on new extracted deep features,
which outperforms results using existing features. Existing features are also classified with random
forest to compare results. Our developed algorithm provides better results due to the new deep
features extracted from the dataset when compared to existing features. This research will help
various predictive maintenance systems to detect false alarms, which will in turn reduce unnecessary
visits of service technicians to installation sites.

Keywords: elevator system; deep autoencoder; fault detection; feature extraction; random forest;
profile extraction

1. Introduction

In recent years, elevator systems have been used increasingly extensively in apartments,
commercial facilities, and office buildings. Presently 54% of the world’s population lives in urban
areas [1]. Therefore, elevator systems need proper maintenance and safety. The next step for improving
the safety of elevator systems is the development of predictive and pre-emptive maintenance strategies,
which will also reduce repair costs and increase the lifetime while maximizing the uptime of the
system [2,3]. Elevator production and service companies are now opting for a predictive maintenance
policy to provide better service to customers. They are remotely monitoring faults in elevators and
estimating the remaining lifetime of the components responsible for faults. Elevator systems require
fault detection and diagnosis for healthy operation [4].

Fault diagnosis methods based on deep neural networks [5–7] and convolutional neural
networks [8,9] feature extraction methodology are presented as state of the art for rotatory machines
similar to elevator systems. Support vector machines [10] and extreme learning machines [11] are also
used as fault detection methods for rotatory machines. However, we have developed an intelligent
deep autoencoder random forest-based feature extraction methodology for fault detection in elevator
systems to improve the performance of traditional fault diagnosis methods.

Appl. Sci. 2019, 9, 2990; doi:10.3390/app9152990 www.mdpi.com/journal/applsci
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Profile extraction for health monitoring is a major issue in automated industrial applications such
as elevator systems, computer numerical control, machinery, and robotics [12]. Although rotating
machine have been running for decades, but profile extraction and processing methods are not widely
available [13]. Profile extraction methods have applied in electric vehicles [14], computer numerical
control systems [15] and horizontal planes [16]. Kalman filter [17] is one of the methods being used
for profile extraction. However, we have developed an off-line profile extraction algorithm based
on low-pass filtering and peak detection to extract elevator start and stop events from sensor data
including both acceleration and magnetic signals.

In the last decade, neural networks [18] have extracted highly meaningful statistical patterns
from large-scale and high-dimensional datasets. Neural networks [19] has also been used to improve
elevator ride comfort via speed profile design. Neural networks [20] has been applied successfully
to nonlinear time-series modeling. A deep learning network can self-learn the relevant features from
multiple signals [21]. Deep learning algorithms are frequently used in areas such as bearing fault
diagnosis [22], machine defect detection [23], vibration signal analysis [24], computer vision [25]
and image classification [26]. Autoencoding is a process for nonlinear dimension reduction with
natural transformation architecture using feedforward neural network [27]. Autoencoders have
proven powerful as nonlinear feature extractors [28]. Autoencoders can increase the generalization
ability of machine learning models by extracting features of high interest as well as making possible
its application to sensor data [29]. Autoencoders were first introduced by LeCun [30], and have been
studied for decades. Traditionally, feature learning and dimensionality reduction are the two main
features of autoencoders. Recently, autoencoders have been considered one of the most compelling
subspace analysis techniques because of the existing theoretical relations between autoencoders and
latent variable models [31]. Autoencoders have been used for feature extraction from the data in
systems such as induction motors [32] and wind turbines [33] for fault detection, different from elevator
systems as in our research.

In our previous research, raw sensor data, mainly acceleration signals, were used to calculate
elevator key performance and ride quality features, which we call here existing features. Random forest
was used for fault detection based on these existing features. Existing domain specific features are
calculated from raw sensor data, but that requires expert knowledge of the domain and results in a
loss of information to some extent. To avoid these implications, we have developed an algorithm for
profile extraction from the raw sensor data rides including both acceleration and magnetic signals.
In addition, a generic algorithm with deep autoencoder random forest approach for automated feature
extraction from raw sensor data profiles for fault detection in elevator systems.

Our off-line profile extraction algorithm is signal-based and deep autoencoder random forest
method is model-based. First, it extracts profiles from time-series signal and then, calculates highly
informative deep features from extracted profiles. It is better than other algorithms because it provides
better results, dimensionality reduction and is robust against overfitting characteristics.

We have proposed a reliable fault detection model with above 90% accuracy in fault detection,
which will increase the safety of passengers. In addition, we have validated the efficacy of the
pre-trained model in terms of false positives with the remaining healthy rides, which is helpful in
detecting false alarms for elevator predictive maintenance strategies. It is extremely helpful in reducing
unnecessary visits by maintenance personnel to installation sites.

Figure 1 shows the fault detection approach used in this paper, which includes raw sensor data
rides extracted based on time periods provided by the maintenance data from all floor patterns.
Acceleration and magnetic signal rides collected from an elevator system are fed to the algorithm for
profile extraction separately. These extracted profiles from all five traction elevators including both
acceleration and magnetic signals are then fed to the deep autoencoder model for feature extraction,
and then random forest performs the fault detection task based on extracted deep features. We only
extract start and stop profiles from the both acceleration and magnetic signal rides because of the
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different lengths of rides for each floor combination due to the constant speed phase, which is longer
when there is longer travel.

This paper provides the following novelties. (1) We propose a new off-line profile extraction
algorithm for extracting elevator start and stop events from time-series data. (2) In addition,
we propose a new deep autoencoder model to automatically generate highly informative deep features
from sensor data for fault detection. The rest of this paper is organized as follows. Section 2 presents
the methodology of the paper including profile extraction, deep autoencoder, and random forest
algorithms. Then, Section 3 includes the details of experiments performed, results, and discussion.
Finally, Section 4 concludes the paper and presents the future work.
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Figure 1. Fault detection approach (Acc and Mag represent acceleration and magnetic signals respectively).

2. Methodology

In this study, we have used 12 different existing features derived from raw sensor data describing
the motion and vibration of an elevator for fault detection and diagnostics of multiple faults. We
have developed an automated feature extraction technique for raw sensor data in this research as
an extension to the work of our previous research to compare the results using new extracted deep
features. In our previous research [34], we have used only acceleration signal, which represents
vibration related features. In this research, we have extended our approach to include magnetic signals,
which represents position related features. This will validate our goal of this research to develop
generic models for profile extraction and automated feature extraction for fault detection in the health
state monitoring of elevator systems. In addition, we have analyzed almost two months of the data
from five traction elevators in this research as an extension to one elevator in our previous research.
Each elevator usually produces around 200 rides per day. Each ride used in analysis contains around
5000 rows of the data, which proves robustness of the algorithms over large dataset. We have excluded
around 20 rides before and after the time period of faulty rides in selecting healthy rides, which will
help us to remove suspicious data from the analysis with our algorithm. We have used 70% of the data
for training and rest 30% for testing.

2.1. Profile Extraction Algorithm

Raw sensor data collected from elevator systems typically encompass a large collection of data
points sampled at high frequency. In order to feed large sensor data to cloud-based applications, it is
often desirable to pre-process the data and perform compression before transmission, for example in
the form of edge computing performed in the device end. Here we assume that raw data is in the form
of a one-dimensional time-series vector with equidistant sampling times. The goal of the proposed
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method is to compress the raw time series obtained from machinery while maintaining the information
about key events, and secondly, to make the data more applicable for machine learning.

The algorithm works in two stages. In the first stage, the signal is pre-processed and normalized,
followed by low-pass filtering. The low-pass filtered signal is used for peak detection, which for each
elevator travel detects a local minimum and maximum corresponding to acceleration and deceleration
(start and stop) events. The algorithm uses crude low-pass filtering with a low cut-off frequency
for peak detection, which ensures that a sustained period of acceleration is required for a peak
to be registered. This prevents short bursts of noise from being detected as a movement window.
Low-pass filtering is applied to ensure that only a sustained acceleration or deceleration event is
registered as a peak as opposed to noise.

Low-pass filter is used to avoid noise spikes being detected as peaks. From low-pass filter signal,
the algorithm cannot detect the precise magnitude or timing of peaks, but it will detect the approximate
region in which to align the event profiles. Unfiltered data is then used for profile alignment.

In the second stage, alignment and collection of equal length profiles is performed based on
windowing of the acceleration signal near the peak events. In this stage, the raw acceleration
signal is used instead of the filtered signal. A number of time domain alignment methods have been
proposed in the literature. Dynamic time warping (DTW) has been commonly applied, e.g., in speech
recognition [35], whereas various alignment techniques for sensor data have been presented in [36].
Here alignment is performed against a reference profile. The reference profile is aligned against
the raw data in the window of the detected peaks. The length of the initial profile window m is
selected empirically based on the sample frequency and the maximum estimated length of the elevator
acceleration events. The criterion for optimal alignment was defined as the alignment that minimizes
the sum of the Euclidean or L2 norm. The output from this operation is an n×m matrix of aligned
profiles describing n acceleration and deceleration events of length m.

To improve the alignment accuracy, the reference profile is updated iteratively following each
batch run. Each sequence in the profile matrix is closely synchronized in time and can hence be
considered a repetition of the same signal. Using signal averaging, the new reference profile is
calculated as the mean of the n extracted profiles. This both maintains the main characteristics of the
signal and reduces the noise. Assuming white noise and perfect synchronization, signal averaging
improves the signal-to-noise ratio (SNR) by a factor of

√
n.

Information in the obtained reference profile can be used to update the window size m. Assuming
an overestimated size of the event window, the averaged reference profile will contain superfluous
close to zero values corresponding to no acceleration. The number of elements s below this threshold
in the reference profile can be used to estimate the optimal window length by reducing the window
length m by s for the following iteration.

The off-line profile extraction algorithm is described as following.
Off-line profile extraction algorithm
Pre-procession
1. Read a vector of raw acceleration data containing k elevator travels. Define the zero mean

transformed dataset as X.
2. Perform low-pass filtering on X and obtain denoised dataset Y.
Initialization
3. Define parameters for reference profile. Set the approximated maximum window length to m

samples and height h to the 99th percentile of the low-pass filtered dataset.
4. Define alignment window size a and set k = 1.
Iteration
5. From Y(k), detect peak acceleration points ymin and ymax

6. Align reference profile P against raw dataset X in the vicinity of detected peaks by minimizing
the L2 norm according to
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min
a/2

∑
i=−a/2

m

∑
j=1

[−pj − xmin+i+j]
2 (1)

min
a/2

∑
i=−a/2

m

∑
j=1

[pj − xmax+i+j]
2 (2)

7. Add aligned data points from X(k) as rows into an n × m profile matrix, alternatively separate
matrices according to direction of travel (min/max).

8. Set travel window k = k + 1 and repeat steps 5–7 until end of dataset.
9. Update reference profile P with the signal-averaged profile obtained from the column-wise

mean of the new profile matrix.
10. Reduce window length m by s samples, where s is the number of elements in P that satisfy

p ≤ ε, p ∈ P (3)

where ε is a close to zero number indicating no acceleration.
11. Set k = 1 and continue with new batch iterations by repeating steps 5–8.

2.2. Deep Autoencoder

The deep autoencoder model is based on deep learning autoencoder feature extraction
methodology. A basic autoencoder is a fully connected three-layer feedforward neural network
with one hidden layer. Typically, the autoencoder has the same number of neurons in the input and
output layer and reproduces its inputs as its output. We are using a five-layer deep autoencoder
(see Figure 2) including input, output, encoder, decoder, and representation layers, which is a different
approach than in [33,37]. In our approach, we first analyze the data to find all floor patterns and then
feed the segmented raw sensor data windows in up and down directions separately to the algorithm
for profile extraction. Extracted profiles from both acceleration and magnetic signals are fed to the deep
autoencoder model for extracting new deep features. Lastly, we apply random forest as a classifier for
fault detection based on new deep features extracted from the profiles. We have combined healthy
and faulty profiles as a vector from all five traction elevators including both acceleration and magnetic
signals before feature extraction.
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Figure 2. Off-line profile extraction and deep autoencoder feature extraction approach.

The encoder transforms the input x into corrupted input data x’ using hidden representation H
through nonlinear mapping

H = f (W1x’ + b) (4)
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where f (.) is a nonlinear activation function as the sigmoid function, W1 ∈ R
k*m is the weight

matrix and b ∈ R
k the bias vector to be optimized in encoding with k nodes in the hidden layer [37].

Then, with parameters W2 ∈ R
m*k and c ∈ R

m, the decoder uses nonlinear transformation to map
hidden representation H to a reconstructed vector x” at the output layer.

x” = g(W2H + c) (5)

where g(.) is again nonlinear function (sigmoid function). In this study, the weight matrix is W2 = W1
T,

which is tied weights for better learning performance [38]. Among multiple input variables the use
of nonlinear activation functions provides us better opportunity to capture nonlinear relationships.
Effective fault detection is a challenge due to nonlinearity of elevator systems and as a result, time-series
data will have temporal dependencies. Our proposed approach can capture nonlinear relationships
among multiple sensor variables, which has improved the performance in terms of fault detection.

2.3. Random Forest

Random forest includes an additional layer of randomness to bagging. It uses different bootstrap
samples of the data for constructing each tree [39]. The best subset of predictors is used to split each
node in random forest. This counterintuitive strategy is the best feature of random forest, which makes
it different from other classifiers as well as robust against overfitting. It is one of the most user-friendly
classifiers because it consists of only two parameters: the number of variables and number of trees.
However, it is not usually very sensitive to their values [40]. The final classification accuracy of random
forest is calculated by averaging, i.e., arithmetic mean of the probabilities of assigning classes related
to all the produced trees (e). Testing data (d) that is unknown to all the decision trees is used for
evaluation by the voting method (see Figure 3).

Figure 3. Classification phase of random forest classifier.

Specifically, let sensor data value vl
e have training sample lth in the arrived leaf node of the

decision tree e ∈ E, where l ∈ [1, ..., Le] and the number of training samples is Le in the current arrived
leaf node of decision tree e. The final prediction result is given by [41]:

μ =
∑e∈E ∑l∈[1,...,Le] vl

e

∑e∈E Le
(6)

All classification trees providing a final decision by voting method are given by [42]:

H(a) = arg max yj ∑
i∈[1,2,...,Z]

I(hi(a) = yj) (7)
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where j = 1, 2, ..., C and the combination model is H(a), the number of training subsets are Z depending
on which decision tree model is hi(a), i ∈ [1, 2, ..., Z] while output or labels of the P classes are yj,
j = 1, 2, ..., P and combined strategy is I(.) defined as:

I(x) =

{
1, hi(a) = yj

0, otherwise
(8)

where output of the decision tree is hi(a) and ith class label of the P classes is yj, j = 1, 2, ..., P .

2.4. Evaluation Parameters

Evaluation parameters used in this research are defined with the confusion matrix in Table 1.

Table 1. Confusion matrix.

Predicted (P) (N)

Actual (P) True positive (TP) False negative (FN)
(N) False positive (FP) True negative (TN)

The rate of positive test result is sensitivity,

Sensitivity =
TP

TP + FN
∗ 100% (9)

The ratio of a negative test result is specificity,

Speci f icity =
TN

TN + FP
∗ 100% (10)

The overall measure is accuracy,

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100% (11)

3. Results and Discussion

In this research, we first selected all floor patterns like floor 2–5, 3–8, and so on from the data,
some of which are shown in Table 2.

Table 2. Floor patterns.

Start Floor Stop Floor

0 1
2 5
3 8
4 6

The next step includes the selection of faulty rides from all floor patterns based on time periods
provided by the maintenance data. An equal number of healthy rides are also selected. Only the
vertical component of both acceleration and magnetic signal data is selected in this research because
it is the most informative aspect, consisting of significant changes in vibration levels as compared to
other components. Healthy and faulty rides are fed to the algorithm for profile extraction separately.
Start and stop profiles are of equal length, irrespective of floor combination.
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First, we have selected all floor patterns from the data and then divided the data into up and
down directions. Next, we selected the rides from healthy and faulty parts of the data and extracted
profiles from them. These profiles are fed to deep autoencoder model for feature extraction and based
on these feature faults are detected.

3.1. Up Movement

We have analyzed up and down movements separately because the traction-based elevator
usually produces slightly different levels of vibration in each direction. First, we have selected faulty
rides based on time periods provided by the maintenance data, including all floor patterns, which
is fed to the algorithm for profile extraction, as shown in Figure 4. Then, we have selected an equal
number of rides for healthy data, and the extracted profiles are shown in Figure 5. Visualization of the
profiles proved that our proposed algorithm extracted elevator start and stop events have equal length
irrespective of the floor combination as shown in Figures 4 and 5.
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Figure 4. Profiles from faulty rides (The figure shows first 10 rides from the combined version of elevator
start and stop events from magnetic signals in z-direction i.e., Mag vertical. Profiles are extracted from
all floor combinations during the time period of fault occurred and fixed by maintenance personal in
upward movement of elevator system. Color labelling is based on maximum number of rides available
in the data during this time period i.e., variable.).

The next step is to label both the healthy and faulty profiles with class labels 0 and 1, respectively.
Healthy and faulty profiles with class labels are fed to the deep autoencoder model and the generated
deep features are shown in Figure 6. These are called deep features or latent features in deep
autoencoder terminology, which shows hidden representations of the data. In Figure 6, we can
see from visualization that both features with class labels are perfectly separated, which results in
better fault detection.

Extracted deep features are fed to the random forest algorithm for classification, and the results
provide 90% accuracy in fault detection as shown in Table 3. We have compared accuracy in terms
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of avoiding false positives from both features and found that new deep features generated in this
research outperform the existing features. We have used the remaining healthy rides for extracting
profiles to analyze the number of false positives. These healthy profiles are labelled as class 0 and fed
to the deep autoencoder to extract new deep features from the profiles, as shown in Figure 7.
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Figure 5. Profiles from healthy rides (The figure shows first 10 rides from the combined version of
elevator start and stop events from magnetic signals in z-direction i.e., Mag vertical. Equal number of
profiles as in Figure 4 are extracted from all floor combinations before the time period of fault occurred
in upward movement of elevator system. Color labelling is based on number of rides available in the
data during this time period i.e., variable.).

These new deep features are then classified with the pre-trained deep autoencoder random forest
model to test the efficacy of the model in terms of false positives. Table 3 presents the results for upward
movement of the elevator in terms of accuracy, sensitivity, and specificity. We have also included the
accuracy of avoiding false positives as an evaluation parameter for this research. The results show that
the new deep features provide better accuracy in terms of fault detection and avoiding false positives
from the data, which is helpful in detecting false alarms for elevator predictive maintenance strategies.
It is extremely helpful in reducing unnecessary visits by maintenance personnel to installation sites.

Table 3. Fault detection analysis (False positives field related to analyzing remaining healthy profiles
after the training and testing phase).

Deep Features Existing Features

Accuracy 0.90 0.54
Sensitivity 0.92 0.50
Specificity 0.88 0.58

False positives 0.86 0.31
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Figure 6. Extracted deep autoencoder features (visualization of the features w.r.t class variable).
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Figure 7. Extracted deep features (only healthy profiles).
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3.2. Down Movement

For downward motion, we have repeated the same analysis procedure as in the case of upward
motion. First we have selected the faulty rides and an equal amount of healthy data rides for profile
extraction, as shown in Figures 8 and 9.
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Figure 8. Profiles from faulty rides (similar to Figure 4 but in downward movement of elevator system).

Again, we fed both healthy and faulty profiles with class labels to the deep autoencoder for the
extraction of new deep features, as shown in Figure 10.

Finally, the new extracted deep features are classified with random forest model and the results
are shown in Table 4. After this, the remaining healthy rides are used to analyze the number of false
positives. The extracted deep features are shown in Figure 11.

Table 4 presents the results for fault detection with deep autoencoder random forest model in the
downward direction. The results are similar to the upward direction, but we can see significant change
in terms of accuracy of fault detection and when analyzing the number of false positives with new
deep features.

Table 4. Fault detection analysis.

Deep Features Existing Features

Accuracy 0.95 0.59
Sensitivity 0.92 0.67
Specificity 0.97 0.50

False positives 1 0.61
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Figure 9. Profiles from healthy rides (similar to Figure 5 but in downward movement of elevator system).
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Figure 10. Extracted deep features.
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Figure 11. Extracted deep features (only healthy profiles).

4. Conclusions and Future Work

This research focuses on the health monitoring of elevator systems using a novel fault detection
technique. The goal of this research was to develop generic models for profile extraction and automated
feature extraction for fault detection in the health state monitoring of elevator systems. Our approach in
this research provided above 90% accuracy in fault detection and in the case of analyzing false positives
for all floor combinations with new extracted deep features from sensor data including both acceleration
and magnetic signals. The results support the goal of this research of developing generic models which
can be used in other machine systems for fault detection. The results are useful in terms of detecting
false alarms in elevator predictive maintenance. The approach will also reduce unnecessary visits
of maintenance personnel to installation sites if the analysis results are used to allocate maintenance
resources. Our developed models can also be used for different predictive maintenance solutions to
automatically generate highly informative deep features for solving diagnostics problems. Our models
outperform others because of new deep features extracted from the dataset as compared to existing
features calculated from the same raw sensor dataset. The automated feature extraction approach
does not require any prior domain knowledge. It also provides dimensionality reduction and is robust
against overfitting characteristics. The experimental results show the feasibility of our generic models,
which will increase the safety of passengers as well as serve the public interest. Visualization of the
extracted profiles and features support our goal of developing generic models for profile and feature
extraction for fault detection.

In future work, we will extend our approach on other real-world big data cases to validate its
potential for other applications and improve its efficacy.
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Abstract—In this research, we propose a generic multilayer
perceptron (MLP) neural network model based on deep learning
algorithm for automatic calculation of highly informative deep
features from the elevator time series data and based on extracted
deep features faults are detected. Sensor data are labelled as
healthy or faulty based on the maintenance actions recorded.
The remaining healthy data are used for validation of the
model to prove its efficacy in terms of avoiding false positives.
We have achieved nearly 100% accuracy in fault detection
along with avoiding false positives based on new extracted deep
features, which outperform the results using existing features.
Existing features are also classified with random forest (RF) to
compare results. Multilayer perceptron neural network model
based on deep learning approach provides better results due to
the new deep features extracted from the dataset compared to
existing features. Cross-validation method used with multilayer
perceptron plays a significant role in improving accuracy of fault
detection. Our model provides good classification and is robust
against overfitting characteristics. This research will help various
predictive maintenance systems to detect false alarms, which will
reduce unnecessary visits of service technicians to installation
sites.

Index Terms—Elevator System, Multilayer Perceptron, Fault
Detection, Feature Extraction, Random Forest

I. INTRODUCTION

In recent years, elevator systems have been used more
and more extensively in apartments, commercial facilities and
office buildings. Nowadays 54% of the worlds population lives
in urban areas [1]. Elevators transport 325 million passengers
every day in the United States and Canada alone [2]. There-
fore, elevator systems need proper maintenance and safety.
The next step for improving the safety of elevator systems is
the development of predictive and pre-emptive maintenance
strategies, which will also reduce repair costs and increase the
lifetime whilst maximizing the uptime of the system [3], [4].
Elevator production and service companies are now opting for
a predictive maintenance policy to provide better service to
customers. They are remotely monitoring faults in elevators
and estimating the remaining lifetime of the components
responsible for faults. Elevator systems require fault detection
and diagnosis for healthy operation [5].

Fault diagnosis methods based on deep neural networks [6],
[7], [8] and convolutional neural networks [9], [10] feature
extraction methodology are presented as state of the art for

rotatory machines similar to elevator systems. Linear discrim-
inant analysis [11], [12], artificial neural networks [13] and
kalman filter [14] are also used as fault detection methods for
rotatory machines. However, we have developed an intelligent
multilayer perceptron neural network model based on deep
learning feature extraction methodology for fault detection in
elevator systems to improve the performance of traditional
fault diagnosis methods.

In the last decade, neural networks [15] have extracted
highly meaningful statistical patterns from large-scale and
high-dimensional datasets. A neural network can self-learn the
relevant features from multiple signals [16]. Neural network
algorithms are frequently used in areas such as signal pro-
cessing [17], condition monitoring [18], fault detection [19],
image processing [20] and industrial systems [21]. Multilayer
perceptron neural network is one of the most commonly em-
ployed forms of artificial neural networks for fault diagnosis.
It is the trained with the back-propagation algorithm and is
also referred as the backpropagation neural network. The back
propagation neural network was proposed by McClelland and
Rumelhart [22]. A back-propagation neural network consists
of an input layer, one or more hidden layers and an output
layer. Synapses are the connecting links between neurons in
the different layers associated with a synaptic weight [23].
Dimensionality of the input feature vectors decide number
of neurons in the input layer while the number of classes
into which the dataset is to be classified are responsible
for the number of output neurons. Multilayer perceptron is
typically a simple artificial neural network having a linear
mapping between the input and output without a hidden layer.
Multilayer perceptron neural networks have been used for fault
detection from the data in systems like centrifugal pump [24],
brake system [25] and bearing system [26], different from
elevator systems as in our research.

In our previous research, raw sensor data, mainly accel-
eration signals, were used to calculate elevator key perfor-
mance and ride quality features, which we call here existing
features. Random forest was used for fault detection based
on these existing features. Existing domain specific features
are calculated from raw sensor data, but that requires expert
knowledge of the domain and results in a loss of information to
some extent. To avoid these implications, we have developed a



generic multilayer perceptron neural network model based on
deep learning approach for automated feature extraction from
elevator sensor data, and based on these deep features, faults
are detected. The rest of this paper is organized as follows.
Section II presents the methodology of the paper including
the data descriptions, multilayer perceptron neural network
model, random forest algorithm and evaluation parameters
used in this research. Then, section III includes the details of
experiments performed, results and discussion. Finally, section
IV concludes the paper and presents the future work.

II. METHODOLOGY

In this study, we have utilised 12 different existing features
derived from raw sensor data describing the motion and
vibration of an elevator for fault detection and diagnostics
of multiple faults. We have developed an automated feature
extraction technique in this research as an extension to the
work of our previous research [27] to compare the results
using new extracted deep features. We have analyzed almost
one year of the data from seven traction elevators in this
research. Each elevator usually produces around 200 rides
per day, which proves robustness of the algorithms over large
dataset. Every movement of the elevator generates existing
features from the vibration signal. We have used 70% of the
data for training and rest 30% for testing. Fig. 1 shows the fault
detection approach used in this paper, which includes elevator
sensor data extracted based on time periods provided by the
maintenance data. Data collected from the elevator systems
are fed to the multilayer perceptron neural network model
based on deep learning approach for new feature extraction.
Then, fault detection task is performed based on extracted deep
features. In addition, random forest is used for fault detection
based on the existing features to compare results.

Fig. 1. Fault detection approach

A. Multilayer Perceptron

Multilayer perceptron is a supervised learning algorithm,
which learns a non-linear function approximator [28]. Hidden
layers are non-linear layers situated between the input and
the output layer. Multilayer perceptron can have one or more
hidden layers, which makes it different from other algorithm

(see Fig. 2). Multilayer perceptron is a feedforward neural net-
work. It can distinguish nonlinearly separable patterns. Mul-
tilayer perceptron consists of several nodes called as neurons.
Neurons are arranged as a directed graph in multiple layers.
Each layer is fully connected to the next layer. Multilayer
perceptrons are also called as universal approximators. Any
given continuous function can be approximated by multilayer
perceptron having one hidden layer with enough neurons [29].
In our approach, we first feed the elevator sensor data from
each elevator movement in up and down directions separately
to the multilayer perceptron neural network model based on
deep learning approach for extracting new deep features from
the data and based on new deep features faults are detected. We
have combined healthy and faulty existing features as a vector
from all seven traction elevators before feature extraction.
In this paper, back propagation neural networks are trained
in supervised manner and have been applied successfully to
elevator fault diagnosis. We have used multilayer perceptron
neural network model with two hidden layers, each contains
20 neurons.

Fig. 2. Multilayer perceptron neural network approach

At first, preparing the training dataset D = {(xi,yi)}n
i=1,

xi∈ R
m*l, yi ∈ R . Where, n is the number of samples. xi

(i = 1,2,...,n) is m-dimensional phased feature vector Ii (i
=1,2,...,m) as the input of multilayer perceptron. yi is the label
of fault and the weighted input of j node in the hidden layer
can be expressed as [25]:

hj =
m∑
i=1

W ij ∗ I i + bj (1)

Where Wij is the connection weight which from the input
layer i node to the hidden layer j node, bj is bias for the
corresponding node, the output of the j node in the hidden
layer is Hj .

H j = tanh(hj) (2)

After several iterations, the input ok of output layer k note
from hidden layers is

ok =
J∑

j=1

W jk ∗H j + bk (3)

Where output layer contains K notes ( k =1,2,...,K ). The
output Ok of the k node in the output layer corresponding to
different activation functions.



B. Random Forest

Random forest includes an additional layer of randomness
to bagging. It uses different bootstrap samples of the data for
constructing each tree [30]. The best subset of predictors is
used to split each node in random forest. This counterintuitive
strategy is the best feature of random forest, which makes
it different from other classifiers as well as robust against
overfitting. It is one of the most user-friendly classifiers
because it consists of only two parameters: the number of
variables and number of trees. However, it is not usually very
sensitive to their values [31]. The final classification accuracy
of random forest is calculated by averaging, i.e. arithmetic
mean of the probabilities of assigning classes related to all
the produced trees (t). Testing data (d) that is unknown to all
the decision trees is used for evaluation by the voting method
(see Fig. 3).

Fig. 3. Classification phase of random forest classifier

Specifically, let sensor data value vl
t have training sample

lth in the arrived leaf node of the decision tree t∈ T , where
l∈ [1, ..., Lt] and the number of training samples is Lt in the
current arrived leaf node of decision tree t. The final prediction
result is given by [32]:

μ =

∑
t∈T

∑
l∈[1,...,Lt]

vl
t∑

t∈T Lt
(4)

All classification trees providing a final decision by voting
method are given by [33]:

H(a) = argmax yj

∑
i∈[1,2,...,Z]

I(hi(a) = yj) (5)

where j= 1,2,...,C and the combination model is H(a) , the
number of training subsets are Z depending on which decision
tree model is hi(a) , i∈ [1, 2, ..., Z] while output or labels of
the P classes are yj , j= 1,2,...,P and combined strategy is I(.)
defined as:

I(x) =

{
1, hi(a) = yj

0, otherwise
(6)

where output of the decision tree is hi(a) and ith class label
of the P classes is yj, j= 1,2,...,P .

C. Evaluation Parameters

Evaluation parameters used in this research are defined with
the confusion matrix in Table I.

TABLE I
CONFUSION MATRIX

Predicted (P) (N)

Actual (P) True positive (TP) False negative (FN)
(N) False positive (FP) True negative (TN)

The overall measure is accuracy,

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100% (7)

III. RESULTS AND DISCUSSION

In this research, we first selected the faulty data based on
time periods provided by the maintenance data. In the next
step, an equal amount of healthy data was also selected and
labelled as class 0 for healthy, with class 1 for faulty data.
Finally, the multilayer perceptron neural network model based
on deep learning approach is used for feature extraction from
the data. Some of the existing features are shown in Fig. 4, 5
and 6

Fig. 4. Existing feature 1



Fig. 5. Existing feature 2

Fig. 6. Existing feature 3

A. Up Movement

We have analyzed up and down movements separately
because the traction based elevator usually produces slightly
different levels of vibration in each direction. Healthy and
faulty data with class labels are fed to the multilayer per-
ceptron model and the generated deep features are shown in
Fig. 7. In Fig. 7, we can see from visualization that both
features with class labels are perfectly separated, which results

in better fault detection. These are called deep features or latent
features in deep learning terminology, which shows hidden
representations of the data.

Fig. 7. Extracted multilayer perceptron features (visualization of the features
w.r.t class variable)

The extracted deep features are used for classification and
the results provide nearly 100% accuracy in fault detection, as
shown in Table II. We have also calculated accuracy in terms
of avoiding false positives from both features and found that
the new deep features generated in this research outperform the
existing features. We have used the remaining healthy data to
analyze the number of false positives. The remaining healthy
data are labelled as class 0 and classified with the pre-trained
multilayer perceptron model to test the efficacy of the model
in terms of false positives. Table II presents the results for
upward movement of the elevator in terms of accuracy of fault
detection. We have also included the accuracy of avoiding false
positives as evaluation parameters for this research. The results
show that the new deep features provide better accuracy in
terms of fault detection and avoiding false positives from the
data, which is helpful in detecting false alarms for elevator
predictive maintenance strategies. It is extremely helpful in
reducing the unnecessary visits of maintenance personnel to
installation sites.

TABLE II
FAULT DETECTION ANALYSIS (FALSE POSITIVES FIELD RELATED TO

ANALYZING THE REMAINING HEALTHY DATA AFTER THE TRAINING AND
TESTING PHASE)

MLP (Deep features) RF (Existing features)

Accuracy 0.99 0.65
False positives 1 0.61



B. Down Movement

For downward motion, just as in the case of up movement,
we feed both healthy and faulty data with class labels to the
multilayer perceptron model for the extraction of new deep
features, as shown in Fig. 8.

Fig. 8. Extracted deep features

Finally, the new extracted deep features are classified for
fault detection, and the results are shown in Table III. After
this, the remaining healthy data with class label 0 is used to
analyze the number of false positives. Table III presents the
results for fault detection with multilayer perceptron model
in the downward direction. The results are similar to the
upward direction, but we can see significant change in terms
of accuracy of fault detection and when analyzing the number
of false positives with new deep features.

TABLE III
FAULT DETECTION ANALYSIS

MLP (Deep features) RF (Existing features)

Accuracy 0.99 0.62
False positives 1 0.58

IV. CONCLUSIONS AND FUTURE WORK

This research focuses on the health monitoring of elevator
systems using a novel fault detection technique. The goal of
this research was to develop a generic model for automated
feature extraction and fault detection in the health state mon-
itoring of elevator systems. Our approach in this research
provided nearly 100% accuracy in the fault detection and also
in the case of analyzing false positives for new extracted deep

features. The results support our goal in this research of de-
veloping a generic model which can be used to other machine
systems for automated feature extraction and fault detection.
We have used almost one year of data from seven traction
elevators in this research, which proves the generalization
capability of our approach. The results are useful in terms of
detecting false alarms in elevator predictive maintenance. The
approach will also reduce unnecessary visits of maintenance
personnel to installation sites if the analysis results are utilized
to allocate maintenance resources. Our developed model can
also be used for different predictive maintenance solutions to
automatically generate highly informative deep features for
solving diagnostics problems. Our model outperforms others
because of new deep features extracted from the dataset as
compared to existing features calculated from the raw sensor
dataset of the same elevators. The automated feature extraction
approach does not require any prior domain knowledge. It
also provides dimensionality reduction and is robust against
overfitting characteristics. The experimental results show the
feasibility of our generic model, which will increase the safety
of passengers as well as serve the public interest. We have
tested the robustness of our model in the case of a large dataset,
which proves the efficacy of our model.

In future work, we will extend our approach on other
real-world big data cases to validate its potential for other
applications and improve its efficacy.
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