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Abstract
Recently, group recommendations have gained much attention. Nevertheless, most
approaches consider only one round of recommendations. However, in a real-life scenario,
it is expected that the history of previous recommendations is exploited to tailor the recom-
mendations towards meeting the needs of the group members. Such history should include
not only which items the system suggested, but also the reaction of the members to these
items. This work introduces the problem of sequential group recommendations, by exploit-
ing the concept of satisfaction and disagreement. Satisfaction describes how well the group
received the suggested items. Disagreement describes the satisfaction bias among the group
members. We utilize these concepts in three new aggregation methods, SDAA, SIAA and
Average+, designed to address the specific challenges introduced by sequential group rec-
ommendations. We experimentally show the effectiveness of our methods using big real
datasets for both stable and ephemeral groups.
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1 Introduction

Recommendations have become a standard in many services that target a consumer. From
listening to music to health information, recommender systems are employed to make the
user experience better and smoother. One of the most widely used methods to produce a user
recommendation is the Collaborative Filtering (CF) method. Here, the system assumes that
if two users had previously interacted with a set of items in a similar way, then the patterns
of one user can be used to predict the other’s future interactions.

With the expansion of social media, another form of recommendations has emerged;
namely the group recommendations (Amer-Yahia et al., 2009; Ntoutsi et al., 2012; Ntoutsi
et al., 2014). It is often the case that a group of users asks a recommender system for sugges-
tions instead of a single user. A typical instance of group recommendations is the following.
A group of friends wants to see a movie. Each friend has his/her preferences for what kind
of movie he/she would like to watch. The recommender system needs to address these pref-
erences adequately and report a set of items that have a degree of relevance to each group
member. There is extensive research on the selection process of the items. Two approaches
are the most popular. The first is to create a pseudo user by combining each group mem-
ber’s data and then applying a standard recommendation method. The second and most
used approach is to apply a recommendation method to each member individually and then
aggregate the separate lists into one for the group.

One of the most common requirement that the aggregation phase of a group recom-
mender system needs to fulfill is fairness towards all the members of the group (Serbos
et al., 2017; Stratigi et al., 2017; 2018; Machado & Stefanidis, 2019). A rudimentary defini-
tion of fairness is to recommend to the group the item that has the best relevance. Intuitively,
a way to find such an item is to use the Average method on all group members’ preference
scores for it. In this case, all group members are considered equals. However, this method
has a big drawback. For example, consider the following scenario with a group that con-
sists of three users. Two of them have similar preferences to each other, while the third does
not. The average method is prone to ignore the opinion of the last user. Another option is
the Least Misery approach. Here, the user with the minimum preference score will act as a
veto to the rest of the group. This method has a drawback as well. It only takes the opinion
of one group member under consideration while ignoring the others. Subsequently, in most
cases, the system recommends an item that is acceptable for all members, but it will be an
item with a somehow low preference score.

In many works, a hidden assumption is that each time the group interacts with the recom-
mender system is distinct from the rest. In a real-life scenario, however, the system needs
to keep a history of the group’s interactions to tailor its suggestion accordingly. Returning
to the previous example, where the group meets every week for a movie night, the system
cannot suggest the same list of items each time, regardless of whether those items have the
best relevance for the group. Internally, the system needs to log all the items suggested to
the group and the members’ reaction to the proposed items (either with explicit feedback
from the users or with an implicit method). To illustrate this requirement of group history,
in our running example, one user has completely different preferences to the rest of the
members. So each time the group meets, the same user is dissatisfied with the recommender
system’s suggestions. To remedy that, we introduce the notion of sequential group recom-
mendations where the system considers the entire sequence of interactions for a group in
order to produce its recommendations.

The concept of multiple rounds of recommendations allows us to make a conjecture. If
a group member is dissatisfied with the proposed items at a specific iteration, he/she was
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either satisfied in the previous round or will be satisfied in the next. Subsequently, we exploit
the notion of satisfaction, which estimates the degree of satisfaction in the recommendations
for each group member, and disagreement which calculates the discrepancy among these
satisfaction scores. We incorporate these satisfaction and disagreement scores during the
group recommendation aggregation phase to ensure all members of a group are overall
satisfied with the system’s performance after several iterations.

Standard group recommendation approaches, such as Average and Least Misery, do not
work very well when applied in a sequential scenario (Stratigi et al., 2020). Average produce
good satisfaction scores but mediocre disagreement scores, while Least Misery produces
reasonable disagreement and poor satisfaction scores. In this work, we propose three new
aggregation methods.

The Sequential Dynamic Adaptation Aggregation, SDAA, method draws its inspirations
from the individual advantages of the Average and Least Misery methods, while mitigat-
ing their drawbacks. It considers the group as a whole and dynamically at each iteration,
estimates a weight based on the group members’ satisfaction scores, to combine the equal-
ity of the Average method and the inclusivity of the Least Misery method. In contrast, the
Sequential Individual Adaptation Aggregation, SIAA, method is user-centric. It calculates a
weight for each member based on his/her satisfaction and disagreement scores, and applies
this weight on the group members’ preference scores during the aggregation phase. Finally,
we propose a heuristic method, named Average+. Contrary to the others, which examine
each item individually, Average+ considers the entire list of data items. It builds upon the
average method to take advantage of the good satisfaction scores, but considers more than
the requested k items. It incrementally adds items to the group recommendation list that
produce the least disagreement scores when examined together with the rest of the list.

In a nutshell, the contributions of our work are the following:

– We introduce the problem of sequential group recommendations that targets to offer
results that maximize the overall group satisfaction, and minimize the variance between
the users satisfaction scores.

– We exploit the concept of satisfaction and disagreement for proposing three new
aggregation methods designed to address the challenges of sequential group recom-
mendations. Satisfaction describes each group member’s degree of satisfaction for the
items recommended at each iteration, and disagreement describes the degree of bias a
user and the group faces at each iteration.

– We experimentally evaluate our methods, using two big real datasets, MovieLens and
GoodReads, and test the methods for different types of groups. Furthermore, we study
the performance of stable groups, where the group members are the same for all itera-
tions, and ephemeral groups, where at the end of each iteration, a member of the group
leaves, and a new one enters it.

A preliminary version of this work appears in Stratigi et al. (2020), where we introduced
the SDAA method. In this article, we also propose the SIAA and Average+ methods. Fur-
thermore, we evaluate the methods using a second real dataset, GoodReads, in addition to
the MovieLens dataset used previously. Finally, we consider stable and ephemeral groups.
In stable groups, the members remain the same throughout all the system’s iterations. In
contrast, after each iteration in ephemeral groups, a member of the group leaves, and a new
one enters it.

The rest of the paper is structured as follows: Section 2 presents basic concepts
on recommender systems, and Section 3 introduces the problem of sequential group
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recommendations. Sections 4, 5 and 6 describe the SDAA, SIAA, and Average+ aggregation
methods, respectively. Section 7 presents our experimental setup, and Section 8 presents our
evaluation results. Finally, Section 9 reports the related work, and Section 10 concludes this
work with a summary of our contributions.

2 Basic concepts

In this section, we introduce a simple group recommendation process. It is a stand-alone
process and does not consider any past interactions that the group may have had with the
system. We use the group recommendation approach to aggregate the individual group
members’ preference lists into one group preference list. We define a preference list to be
the list we recommend to each member individually or the group.

Specifically, let U be a set of users and I be a set of items. Each user ui ∈ U has given a
rating from 1 to 5 to an item dz ∈ I represented as r(ui, dz). The subset of users that rated an
item dz ∈ I is denoted by U(dz), while the subset of items rated by a user ui ∈ U is denoted
by I (ui). Let’s assume also a group of users G of size n, G ⊆ U . Having applied a single
user recommendation algorithm to all group members in G and produced their preference
lists Au1 , . . . , Aun , the next step is to aggregate these lists into one. After the aggregation
phase, each item will have just one group preference score and the top k will be reported
back to the group as the final recommendations.

Typically, two well established aggregation methods are used (Baltrunas et al., 2010).
The first is the Average method. The basic concept of this approach is that all members
are considered equals. So, the group preference of an item will be given be averaging its

scores across all group members: avgG(dz,G) =
∑

ui∈G p(ui ,dz)

|G| , where p(ui, dz) gives us
the preference score of dz for user ui (computed by a standard single user recommendation
algorithm). The second is least misery aggregation method, where one member can act as
a veto for the rest of the group. In this case, the group preference score of an item dz is the
minimum score assigned to that item in all group members preference lists: minG(dz, G) =
minui∈Gp(ui, dz).

3 Sequential group recommendations

In this section, we introduce the notion of multiple rounds to the previous group recommen-
dation process. Consequently, we do not consider each group query to the system as a stand
alone process, but as a sequence of queries submitted to the system by the same group. We
call each group query to the system an iteration. Each iteration has the main components
of a standard group recommendation method: single user recommendations followed by the
aggregation phase. Formally, let GR be a sequence of μ group recommendations (Gr1, . . . ,

Grμ). We use pj (ui, dz) for the preference score of user ui for item dz at iteration j , 1 ≤ j

≤ μ. A single user recommendation algorithm estimates these scores.
In contrast to the previous one, this new model introduces the notion of multiple

iterations or sequence of recommendations. We use these interactions to modify the recom-
mender system’s output in such a way that if a user had a low satisfaction score in a previous
iteration, he/she will likely have a higher one during the current iteration.
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3.1 Satisfactionmeasure

To examine the effectiveness of our group recommender algorithm through a series of iter-
ations, we need to define a measure that will help us elevate the problem from examining
each iteration independently to examining a series of iterations. We introduce the notion of
satisfaction that represents each group member’s gratification for the recommended items
after each iteration of the system. We define two variations of satisfaction: single-user
satisfaction and group satisfaction.

For ease of reference, Table 1 holds all the symbols and notation used in the next sections.

3.1.1 Single user satisfaction

First, we want to provide a formal measure of the degree of each user’s satisfaction, ui ∈ G,
to the group recommendation Grj received at step j . We do so, by comparing the quality
of recommendations that the user receives as a member of the group with the quality of the
user’s recommendations as an individual. We consider the user’s individual recommenda-
tion list, as his/her ground truth because to the best of the system’s knowledge, this list is
the only information about the user.

Let A(ui, j) returns a list with the top-k items for user ui , that is, the k items with the
highest prediction scores for ui . Our goal is to directly compare the user’s satisfaction from
the group recommendation list with that user’s ideal case. Doing so gives us a clearer view
of the user’s satisfaction than the average method since we consider the top items for each
user, not only the top items for the group. Formally:

sat (ui,Grj , j) =
∑

dz∈Grj
pj (ui, dz)

∑
dz∈A(ui ,j) pj (ui, dz)

. (1)

In the nominator, we calculate the user’s satisfaction based on the group recommendation
list. For every item in Grj , we sum the score as they appear in each user’s top-k list. The
denominator, calculates the ideal case for the user, by simply sum the scores of the k top
items in the user’s individual recommendation list. This way, we are able to normalize the
user’s satisfaction score. For example, if a user gives mainly low scores to items, then (1)
can compensate for it.

Note that we do not use the scores as they appear in the group list, but as they appear in
the individual preference list of the user. Since the aggregation phase of the group recom-
mendation process somewhat distorts the group members’ individual opinions, we opt to
take into consideration only the personal preference scores of each group member.

Still, (1) remains static, in the sense that we calculate the satisfaction of a user for one
iteration only. As stated before, what we want is to define a measure that considers the
satisfaction scores from previous iterations of the system. Such a score will represent each
group member’s overall satisfaction with the entirety of the μ group recommendations.

Definition 1 (Overall Satisfaction) The overall satisfaction of user ui with respect to a
sequence GR of μ iterations is the average of the satisfaction scores after each iteration:

satO(ui,GR) =
∑μ

j=1 sat (ui,Grj , j)

μ
. (2)
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3.1.2 Group satisfaction

Having defined each group member’s satisfaction score, we can now define the satisfaction
score of the entire group. Specifically, we define group G satisfaction concerning a group
recommendation list Grj as the average of the satisfaction of the users in the group:

groupSat (G,Grj , j) =
∑

ui∈G sat (ui,Grj , j)

|G| . (3)

Subsequently, we define the overall group satisfaction of a group G for a recommenda-
tion sequence GR of μ group recommendations (Gr1, . . . , Grμ), as:

groupSatO(G,GR) =
∑

ui∈G satO(ui,GR)

|G| . (4)

This measure indicates if the items we report to the group are acceptable to its members.
Higher group satisfaction means that the group members are satisfied with the recommenda-
tions. However, since we average the members’ satisfaction scores, a user’s dissatisfaction
can probably be lost in the computations. To counter this problem, we focus on the potential
disagreements between the users in the group. For representing such group disagreement
for just one instance of recommendations, we define the groupDis measure:

groupDis(G,Grj , j) = maxui∈Gsat (ui,Grj , j) − minui∈Gsat (ui, Grj , j). (5)

Subsequently, we define the overall group disagreement of G for the entire recommen-
dation sequence as:

groupDisO(G,GR) = maxui∈GsatO(ui,GR) − minui∈GsatO(ui,GR). (6)

Intuitively, we define the group’s disagreement as the difference in the overall satisfac-
tion scores between the most satisfied and the least satisfied member in the group. Ideally,
we want this measure to take low values, indicating that the group members are all satisfied
to the same degree. Higher groupDis values will demonstrate that at least one member of
the group is biased against.

To further portray our system’s behavior, we define the user disagreement of a user to be
the difference between the satisfaction score of the most satisfied group member and his/her
satisfaction score. Formally:

userDis(ui,G,Grj , j) = max∀ul∈G
sat (ul,Grj , j) − sat (ui,Grj , j). (7)

This allows us to determine better if a group member is systematically being favored
(he/she will have very low user disagreement scores) or is disregarded (he/she has very high
user disagreement scores).

3.2 Problem definition

Our sequential group recommender system needs to achieve two independent objectives that
are critical to the success of the model. The first objective considers the group as an entity:
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we want to offer the best possible results for the group. The second objective considers the
group members independently: we want to behave as fairly as possible towards all members.

Definition 2 (Sequential Group Recommendations) Given a group G, the sequential group
recommender produces at the j th iteration a list of k items Grj , Grj ∈ GR, that:

1. Maximizes the overall group satisfaction, groupSatO(G,GR), and
2. Minimizes the overall variance between users satisfaction scores:

groupDisO(G,GR).

To achieve the first objective, we target to maximize the groupSatO value. For that,
we require the items with the highest preference scores for the group as a whole. Since
groupSatO expresses the average satisfaction of the group members, and the dissatisfac-
tion of just one member is easily lost, we also need to achieve the second objective, to
minimize groupDisO, which represents the degree of dissatisfaction between the members
of the group.

Depending on the similarity between the group members, these two objectives may be
conflicting with each other. A simple example is a group of three members, two are highly
similar to each other, and one is very dissimilar to them. To achieve high groupSatO val-
ues, we need to recommend items relevant to the two similar users to increase the average
satisfaction of the group. On the other hand, by doing so, groupDisO will take high val-
ues since we do not address the needs of the third member. Overall, we need to recommend
items that are not just good enough for all members, since that still returns low groupSatO

values, but items that have high relevance to the group, without sacrificing the opinions of
the minority.

4 Sequential dynamic adaptation aggregationmethod

Generally speaking, both the Average and the Least Misery aggregation methods have draw-
backs when we consider them for sequential recommendations. Simultaneously, both have
advantages (namely, equality for Average and inclusion of all opinions for Least Misery)
that are assets for a recommender. Furthermore, it has been proven that to compute the best
suggestions for a group that minimizes the gap between the least and highest satisfied group
members is an NP-Hard problem (Xiao et al., 2017). We want to achieve that throughout
the multiple iterations of the system, to be equally fair to all members of the group.

The first method we examine, capitalizes on the advantages of the Average and the
Least Misery aggregation methods and proposes a novel aggregation method that is a
weighted combination of them. We call the method sequential dynamic adaptation aggre-
gation method, or shortly SDAA. The preference score of an item for a group in SDAA is
computed as follows:

score(G, dz, j) = (1 − αj ) ∗ avgG(G, dz, j) + αj ∗ leastG(G, dz, j). (8)

The function avgG(G, dz, j) returns the score of the item dz as it is computed by the
average aggregation method during iteration j , and function leastG(G, dz, j) returns the
least satisfied user’s score of dz at iteration j . The variable α takes values from 0 to 1. If
α = 0, then the sequential hybrid aggregation method becomes average aggregation. At the
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same time, when α = 1, it transforms to a modified least misery aggregation, and we only
consider the preferences of the least satisfied member.

Intuitively, when α = 0, our method satisfies the first part of the fair sequential group
recommendation problem since the average aggregation considers the best options for the
group as a whole. The benefits of α = 1 can be seen for higher values of μ. At the first
iterations, the group disagreement may remain high since it considers the users’ overall
satisfaction (2).

Given that our goal is to fulfill both the problem definition’s objectives, we need to set
the value of α between 0 and 1. Furthermore, we want this value to self-regulate, to describe
the consensus of the group more effectively. Thus, we set the value of α dynamically in each
iteration by subtracting the group members’ minimum satisfaction score in the previous
iteration from the maximum score.

αj = maxu∈Gsat (u,Grj−1, j − 1) − minu∈Gsat (u,Grj−1, j − 1), (9)

where j > 1. When j = 1 (the first iteration of the system), then α = 0, and the aggregation
method reverts to that of a classic average aggregation.

By having this dynamically calculated α, we counteract the average and least mis-
ery’s drawbacks. Intuitively, suppose the group members are equally satisfied at the last
round. In that case, α takes low values, and the aggregation will closely follow that of
an average, where everyone is treated as an equal. On the other hand, if one group mem-
ber is extremely unsatisfied in a specific iteration, α takes a high value and promotes that
member’s preferences on the next iteration. Formally:

Property 1 Let u be a user in a group G, such that,
sat (u,Grj−1, j − 1) < sat (ui, Grj−1, j − 1), ∀ui ∈ G\{u}. Then, ∃uy ∈ G\{u}, such
that, sat (uy,Grj , j) < sat (u,Grj , j).

Proof For the purpose of contradiction, assume that sat (u,Grj , j) < sat (uy, Grj , j),
∀uy ∈ G\{u}. Then, this means that u is the least satisfied user at iteration j , which in
turn means that α takes values not leading towards a least misery approach at this iteration,
meaning that u was not the least satisfied user at iteration j−1, which is a contradiction.

The SDAA method is described in Algorithm 1. The input to the algorithm is the group
G, the iteration j , and the size k of the group recommendation list Grj , which we report to
the group after each iteration is finished. n Line 1 we construct a set, Gl, that contains all
the items that appear in the group members individuals recommendation lists. In Lines 2–6,
we calculate the α; if it is the first iteration, meaning j = 1 (Line 2), then α = 0, otherwise,
we use (9) (Line 5) to calculate it. In Lines 7–10, we perform the SDAA method. For all the
items in Gl, we calculate the item score using (8) (Line 8) and insert them in the group list
Grj (Line 9). After we have examined all the items in Gl, we sort the items in the group list
(Line 11), and finally, we report the top-k of them to the group (Line 12). The complexity
of our algorithm is O(n log n) due to the time complexity of the sorting function, where
n = |Gl|.
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5 Sequential individual adaptation aggregationmethod

The goal of the SDAA method is to calculate a weight score in order to combine the average
and least misery methods. This weight was the same for all group members, and even though
it was calculated using all members’ satisfaction scores, we did not directly address each
individually. Thus a member’s interest can be ignored. As a result of this observation, we
propose a new aggregation method that concentrates on each group member individually.
We accomplish that by assign each member a weight score. This weight is based on each
user’s statistics, namely the satisfaction and disagreement scores, to calibrate the system for
each user independently.

Specifically, during the group recommender’s aggregation phase, we exploit the con-
cept of overall user satisfaction and user disagreement. Each group member is assigned an
individual weight, which is applied to an item’s relevance score given by the recommender
system (10). The final score of that item for the group is the summation of its weighted
relevance score for all group members.

score(G, dz, j) =
∑

ui∈G

wui,j ∗ pj (ui, dz). (10)

Taking into consideration the particulars of our problem, we pay attention to satisfaction
and disagreement values. Since we want them to be applied to each group member indi-
vidually, we do not use the group variant of these measures, but instead, we focus on the
individual ones (2 and 7).

The satisfaction score of a user offers a way to balance the recommendations for all
members of a group through a series of recommendation iterations. These members that
were not satisfied in the previous iterations are promoted for the next ones. A straightfor-
ward approach to accomplish this is to utilize the overall satisfaction of a user. We want the
users with a low overall satisfaction score to have a higher weight compared to those with
a high overall satisfaction score. More specifically, let assume that the group is in the j -th
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iteration. We calculate the overall satisfaction score for all j −1 iterations (2). Subsequently,
the weight that is assigned for each member at iteration j is:

wui,j = 1 − satO(ui,GRj−1). (11)

where GRj−1 are all previous recommendations at the j − 1 iterations of the system.
The users with high overall satisfaction are assigned a lower weight, while the users with

lower satisfaction scores are assigned a higher one. If the group members are satisfied to
the same degree, then they are assigned similar weights. Since we compute a user’s overall
satisfaction score, we ensure that a user that is systematically biased against will have the
highest weight.

Such an aggregation method is based only on the user’s overall satisfaction score, which
is his/her average satisfaction scores. As with any Average approach, it makes the aggrega-
tion method slow to react in extreme cases. Suppose a user was highly satisfied in the first
μ iterations and then extremely dissatisfied in the rest. In that case, the method will require
some iterations to assign him/her a higher weight to promote him/her. The same is also true
in the reverse case, where a user was dissatisfied and then became highly satisfied. This
leads to an aggregation method that promotes him/her even though he/she is satisfied during
some iterations.

A way to counter this drawback, is to shorten the iterations needed for a change in user’s
satisfaction to be reflected in the user’s assigned weight. To achieve this, we introduce the
sequential individual adaptation aggregation method, or SIAA, that considers not only the
overall satisfaction of a user, but also the user disagreement of the previous iteration.

wui,j = (1 − b) ∗ (1 − satO(ui,GRj−1)) + b ∗ userDis(ui,G,Grj−1, j − 1), (12)

where b is the weight we use to balance the overall satisfaction and user disagreement
scores. This is a constant variable and we found experimentally its best value. Given that
we are in the j -th iteration of the system, GRj−1 expresses the recommendations of all the
previous j − 1 iterations. Finally, Grj−1 includes the recommendations of the immediately
preceding iteration.

To generalize, if a user was severely dissatisfied in the previous iteration and is overall
dissatisfied, then the weight is high. If the user was dissatisfied in the previous round but
overall has a high satisfaction score, then the weight is significantly lower. This is in accor-
dance with the previous method that disregards any disagreements. However, the added
variable of the user disagreement influences the next iteration. Specifically, suppose the
user was considerably biased against in the current iteration (has a low satisfaction score
while another member has a high one). In that case, he/she will be promoted faster than the
plain satisfaction weighted method. Furthermore, if a user is the most satisfied in the current
iteration, then his/her weight will be lowered to promote alternative group members.

The SIAA method is described in Algorithm 2. The output and Line 1 are the same as
Algorithm 1. Additionally, we have the same input as 1 but with the added variable b, which
is used to calculate the weight score (Line 5). This calculated weight is then applied to
group members’ preference score that the recommender system has predicted for each item
dz, denoted as pj (ui, dz), ui ∈ G, dz ∈ Gl. The final score of the item is the weighted sum
for all users (Line 6). Finally, as in Algorithm 1, we sort the group recommendation list Grj
and report to the group the top k items (Lines 10-11). The complexity of our algorithm is
O(n log n), due to the time complexity of the sorting function, where n = |Gl|.
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6 Average+ aggregationmethod

All the previous aggregation methods examine how good a single item is for the group
and add it in the group recommendation list, without taking into account the items already
present there. Since we examine the users’ satisfaction based on the entire list, adding to
the list each item individually may not produce the best suggestions. Based on this obser-
vation, we propose the Average+ aggregation method that exploits the Average method that
offers the best group satisfaction (Stratigi et al., 2020). Specifically, Average concentrates
on finding the items that will satisfy the majority of the group. At the same time, Average
also has high group disagreement scores because it is prone to ignore the outlier of a group.
If one group member is dissimilar to the rest of the group, due to the Average method,
he/she is almost always dissatisfied. This observation drives us to propose a new aggrega-
tion method, which not only secures the advantages of the Average method but, at the same
time, mitigates the problems that the drawback mentioned above creates.

This aggregation method has two phases. In the first phase, we capitalize on the advan-
tage of the average method, and, in the second phase, we counter its drawback. The first
phase is straight-forward. The average aggregation method does all the work for us. Since
it is the method with the best group satisfaction scores, we use a standard average aggrega-
tion method for the group. However, we do not take the last step of a group recommender
process: a group recommendation system produces a long list of potential items but it only
presents to the group the top ones with the highest predicted score. Instead of only keeping
that short list, we keep a significantly longer one that contains the items with the highest
scores.

After experimentation, the size of the list that provides the best results is 5k, where k is
the number of items we propose to the group. We denote this list as AvgListGj for group
G at iteration j . We do not want to take a longer list since the items further down typically
do not have good enough group relevance scores (meaning that the items are not relevant to
most of the group), and hence are not good enough for us to use to take advantage of the
performance of the average aggregation method.
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Having found the most relevant items for the group and subsequently have secured a high
group satisfaction, we next want to minimize the group disagreement. We first exploit a
simple idea. For each item in the AvgListGj list, we calculate the group disagreement score
they would have generated if they were the only item proposed to the group. Meaning that
Grj consists of only that item (13). We return to the group the k ones with the lowest group
disagreement.

Grj = Grj ∪ {dz | min∀dz∈AvgListGj
(groupDis(G, dz, j)) ∨ dz /∈ Grj }. (13)

This allows us not only to narrow our search to items that are relevant to the group, but
at the same time ensure that they have the lowest group disagreement possible.

This is a simple idea because it examined each item individually. However, the system
returns to the group a list of items, and we calculate the various satisfaction and dis-
agreement scores based on the entire list. We consider the list as a whole, not each item
independently. For example, a user may not be interested in one item but be excited for
another. These two items can balance each other out and offer better group satisfaction and
disagreement scores. Therefore, we propose a more sophisticated method.

To find the best k items to propose to the group based on the group satisfaction and group
disagreement scores they generate is a hard problem. It has been proven that to compute the
best suggestions for a group that minimizes the gap between the least and highest satisfied
group members is an NP-Hard problem (Xiao et al., 2017).

Thus, we propose an incremental heuristic method. This method consists of two steps.
In the first step, we include in the group recommendation list Grj the item with the highest
predicted score in AvgListGj . The second step of the method is recursive. At each step, we

examine one by one all the items in the AvgListGj . We include in the list the item that its
inclusion generates the lowest group disagreement score (14). We perform this step until we
have included k items in the group recommendation list.

Grj = Grj ∪
{
dz | min∀dz∈AvgListGj

(groupDis(G,Grj ∪ dz, j)) ∨ dz /∈ Grj

}
. (14)

By incrementally filling the group recommendation list, we can examine all the items
and the effects they collectively have for the group.

We describe this process in Algorithm 3. As input, we have the group G, the iteration j

of the system, the number k of the reported items, and the list AvgListGj , which contains the
5k items with the highest predicted scores after applying the average aggregation method.
The output of the algorithm is the group recommendation list Grj . In Line 1, we insert in
the group recommendation list Grj the item with the highest predicted score given by the
average aggregation. The recursion starts in Line 2 and stops when we have included in the
Grj the requested k items. In Line 3 we iterate over all the items in the AvgListGj list and
select the item dz that produces the minimum group disagreement score and it is not already
included in the group recommendation list Grj . In Line 4 we insert the selected item to
the list. Finally, we report to the group the recommendation list. The complexity of this
algorithm is O(n2) where n = |Grj |. We perform the inner loop n times, over 5n items.
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7 Experimental setup

7.1 Datasets

For the experimental evaluation of our sequential group recommender system, we do not
have access to any dataset that contain ratings for groups. We instead artificially created
groups using two real datasets, namely the 20M MovieLens Dataset (Harper & Konstan,
2015), and the 15M book reviews from GoodReads (Wan et al., 2019). MovieLens contains
20M ratings across 27,3K movies given by 138,5K users between 01.1995 and 03.2015. The
GoodReads dataset contains around 15M ratings from 465K users for about 2M books. To
simulate multiple iterations of suggestions, we split the datasets into chunks. Each chunk is
added to the system, representing new information, and along with the already existing data
in the system, is used for locating the suggestions for the next iteration.

MovieLens dataset Initially, we divide the dataset into two parts of roughly the same size.
The first part that contains the ratings given between 01.1994 and 12.2003, is the starting
dataset of the recommender. This gives us an initial dataset that consists of 8.381.255 rat-
ings, 73.519 users and 6.382 movies. We initiate the system with this starting dataset to
avoid any issues emanating from the cold start problem.1 The second part of the dataset
is further split into chunks based on timestamps. We create 22 chunks, where each one
includes information for a period of 6 months. During the first iteration, the system will have
access only to the initial dataset. When that iteration ends, the system will be enhanced with
one additional chunk, and after each subsequent iteration, the system will be given access
to the next chunk.

GoodReads dataset For GoodReads, we altered the splitting process due to the difference
in the ratings’ distribution over time. The distribution is skewed towards the latter years,
with the starting years having very few ratings. The starting data for MovieLens corre-
sponded to around 40% of the entire dataset. We take a comparable size for GoodReads,
which amounts to around 6.296.000 ratings, and split the rest into equal-sized chunks that

1The cold start problem in collaborative filtering appears when there is not enough information about a user
and we are unable to find similar other users to him/her. This problem is beyond the scope of this research,
and to overcome it, we initialize our system with a large enough dataset.
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contain 674.565 additional ratings each. It is worth noting that GoodReads is far more sparse
than MovieLens. Subsequently, this is going to have an adverse effect on the quality of the
recommendations.

7.2 Group formation

The experimental procedure of (Stratigi et al., 2020) was focused on stable groups. This
means that the group members do not change between iterations. We extend the experiments
for this work to also include ephemeral groups. We now allow group members to leave the
group and new ones to enter it. The users that have left a group are allowed to participate in
the group again.

We examine our recommender on three types of groups based on the similarity shared
between the members. We calculate the similarity between the group members, employing
the starting dataset, using Pearson Correlation (Resnick et al., 1994), which takes values
from −1 to 1. Higher values imply a higher similarity between the users, while negative
values indicate dissimilarity:

s(ui, ul) =

∑

dz∈X

(r(ui, dz) − r̄ui
)(r(ul, dz) − r̄ul

)

√
√
√
√

∑

dz∈X

(r(ui, dz) − r̄ui
)2

√
√
√
√

∑

dz∈X

(r(ul, dz) − r̄ul
)2

, where X = I (ui) ∩ I (ul)

and r̄ui
is the mean of the ratings in I (ui), i.e., the mean of ui’s ratings.

We consider two users to be highly similar to each other if they share an above 0.5
similarity score, while dissimilar when they have -0.5 or lower similarity score. The types
of groups we are considering are the following:

4 similar – 1 dissimilar (4+1): The four members of the group share a high similarity
score, while the dissimilar one shares a low similarity score with the rest of the group
members.
3 similar – 2 similar (3+2): We divide the group into two subgroups. The members
of each subgroup are similar to each other, while at the same time, the subgroups are
dissimilar to one another, i.e., all members of one subgroup are dissimilar to all members
of the other subgroup.
5 dissimilar: All members of the group are dissimilar with each other.

With these group formats, we want to simulate three different real-life scenarios. First,
when a new person enters an established group, and his/her interests may very well be
dissimilar to the rest of the group. For example, consider a working environment in which
a new colleague joins an existing project team. Second, when two different groups join
together for a single activity, such as two working groups that need to collaborate on a new
project. The final group type simulates the case when random people join together for an
activity, like in a business lunch or a tour offered by a travel agency.

We will also examine the performance of our aggregation methods for ephemeral groups.
The initial members of the group will be the same as the stable ones. To simulate the
ephemeral groups’ dynamic characteristics, we randomly remove a group member after
each iteration and randomly include a new user in the group so as the group size to remain
the same. The new member selected is such that the type of the group does not change.
For example, if we have a 4+1 group, and the one dissimilar user is removed, then the new
member has to be dissimilar to the four remaining group members.



Journal of Intelligent Information Systems

8 Experiments

8.1 Experimental procedure

In our experiments, we examine the behavior of the three types of groups. For each type, we
consider 100 different groups with five members. For all the groups in the set, we calculate
the average of groupSatO(G,GR) and groupDisO(G,GR) at the end of each iteration.
In the ephemeral groups, at each iteration, we focus only on the users that are currently
members of the group. Additionally, to examine the overall performance of the aggrega-
tion methods, we utilize the harmonic mean of groupSatO and groupDisO, namely their
F-score. Considering the input functions that F-score needs, we use 1 − groupDisO to
simulate the group agreement. F -score = 2 groupSatO∗(1−groupDisO)

groupSatO+(1−groupDisO)
.

To further analyze the methods’ quality, we use the Normalized Discounted Cumulative
Gain (NDCG), where we want the best possible items for a user to appear with the highest
ranking possible in the group recommendations:

NDCG(ui,G, j) = DCG(ui ,G,j)
IDCG(ui ,G)

, with DCG(ui,G, j) = ∑
dz∈Grj

|dz∩A(ui ,j)|
log2(r(dz,Grj )+1)

,
where r(dz.Grj ) is the rank of item dz in the group recommendation list Grj . IDCG is the
best possible outcome for user ui . We supplement the results from NDCG, with the Dis-
counted First Hit (DFH) metric that counts if a user has seen an item that is highly relevant to
him/her in the early ranks of the group recommendation list: DFH(ui,Grj ) = 1

log2(f h+1)
,

where f h is the rank of the first item that appears both in the group recommendation list
and the individual preference list of the user. Since NDCG and DFH refer to one user, we
apply them to the group by computing them for each member and then taking the average
over them. We do this at the end of each iteration.

We find similarities between users by utilizing the Pearson Correlation. We consider two
users as similar if the similarity is greater than a threshold and if they have rated more than
5 identical items. Due to the difference in each dataset’s semantics, the similarity threshold
we set for the MovieLens dataset is 0.8, and for the GoodReads dataset is 0.7. To predict
preference scores for a user, we use the Weighted Sum of Others Ratings (Su & Khoshgof-
taar, 2009), and take into account only the top 100 most similar users (denoted as Pui

) to

him/her: p(ui, dz) = r̄ui
+

∑
ul∈(Pui

∩U(dz)) s(ui ,ul )(r(ul ,dz)−r̄ul
)

∑
ul∈(Pui

∩U(dz)) |s(ui ,ul )| . We recommend to the group

the 10 items with the highest group preference score that are not previously recommended.
For the ephemeral groups, we simultaneously perform all aggregation methods with the

same group. Since the members’ exit and entry is done randomly, this ensures that the
experiment is as fair as possible for all different aggregation methods.

We consider six different aggregation methods.

– Avg is the classic Average aggregation method.
– RP80 (Amer-Yahia et al., 2009) combines group relevance and group disagreement

scores. As group relevance it utilizes the average method and as a group disagreement
method it uses the Average Pair-wise Disagreement:

dis(dz,G) = 2
|G|(|G|−1)

∑
(|p(ui, dz)−p(ul, dz)|), where ui, ul ∈ G, and ui �= ul .

The Average Pair-wise Disagreement reflects the degree of consensus in the relevance
scores for dz among group members. The final score for item dz for the group G is:
F(dz,G) = (1−w)∗avg(dz,G)+w∗dis(dz,G). We choose to set variable w to 0.8,
since it performs better based on the experiments presented in Amer-Yahia et al. (2009).
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Fig. 1 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for stable and
ephemeral groups, using MovieLens and GoodReads

– Par (Xiao et al., 2017) generates a group recommendation list by incrementally adding
to it items that have the best combination of Social Welfare (SW) and Fairness (F)
scores. The Social Welfare of an item is the average satisfaction of all members for

Fig. 2 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for stable and
ephemeral groups, using MovieLens and GoodReads
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Fig. 3 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for stable and
ephemeral groups, using MovieLens and GoodReads

that item. As Fairness it employs the variance over the member’s satisfaction. The final
score of an item for the group is: F(dz,G) = λ ∗ SW(dz, G) + (1 − λ) ∗ F(dz,G),
where λ = 0.8 according to (Xiao et al., 2017).

– SDAA is the Sequential Dynamic Adaptation Aggregation method proposed in this
work.

– SIAA is the Sequential Individual Adaptation Aggregation method proposed in this
work.

Table 2 F-score for all aggregation methods for both stable and ephemeral groups

Stable Groups Ephemeral Groups

It Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

4+1 Groups / MovieLens Dataset

1 0.855 0.855 0.812 0.865 0.855 0.875 0.855 0.855 0.812 0.865 0.855 0.875

5 0.724 0.774 0.660 0.746 0.771 0.770 0.805 0.802 0.716 0.817 0.815 0.821

10 0.649 0.704 0.585 0.671 0.697 0.695 0.781 0.783 0.690 0.791 0.798 0.792

15 0.594 0.650 0.532 0.616 0.643 0.640 0.732 0.748 0.657 0.746 0.760 0.756

4+1 Groups / GoodReads Dataset

1 0.576 0.576 0.535 0.599 0.576 0.655 0.576 0.576 0.535 0.599 0.576 0.655

5 0.567 0.612 0.465 0.592 0.619 0.631 0.613 0.602 0.493 0.635 0.646 0.655

10 0.533 0.587 0.412 0.559 0.588 0.595 0.567 0.572 0.466 0.591 0.611 0.622

15 0.510 0.559 0.378 0.536 0.559 0.562 0.539 0.561 0.446 0.569 0.593 0.602

With bold is the best value and with italics the second best



Journal of Intelligent Information Systems

Table 3 F-score for all aggregation methods for both stable and ephemeral groups

Stable Groups Ephemeral Groups

It Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

3+2 Groups / MovieLens Dataset

1 0.885 0.885 0.855 0.889 0.886 0.891 0.885 0.885 0.855 0.889 0.886 0.891

5 0.743 0.784 0.678 0.767 0.787 0.790 0.826 0.827 0.759 0.840 0.831 0.844

10 0.654 0.706 0.575 0.676 0.702 0.700 0.790 0.791 0.708 0.803 0.810 0.809

15 0.592 0.648 0.510 0.614 0.641 0.637 0.768 0.762 0.673 0.782 0.787 0.787

3+2 Groups / GoodReads Dataset

1 0.493 0.493 0.458 0.506 0.493 0.565 0.493 0.493 0.458 0.506 0.493 0.565

5 0.473 0.510 0.398 0.490 0.519 0.537 0.522 0.526 0.454 0.537 0.548 0.578

10 0.455 0.493 0.371 0.473 0.502 0.521 0.495 0.515 0.436 0.516 0.538 0.558

15 0.444 0.486 0.343 0.466 0.493 0.502 0.487 0.498 0.413 0.512 0.537 0.546

With bold is the best value and with italics the second best

– Avg+ is the Average+ Aggregation method proposed in this work.

8.2 Experimental results

In Figs. 1, 2 and 3, we show the group satisfaction and group disagreement scores for the
varying group types for 15 iterations of the system. We want to achieve high group satisfac-
tion and low group disagreement scores. In Tables 2, 3 and 4, we depict their corresponding
F-scores. In Tables 5 and 6 we present the NDCG and DFH scores for each aggregation
method, for both stable and ephemeral groups, in the MovieLens and GoodReads datasets.
We calculate the average scores for all iterations of the system for each aggregation method.

Table 4 F-score for all aggregation methods for both stable and ephemeral groups

Stable Groups Ephemeral Groups

It Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

5 Dissimilar Groups / MovieLens Dataset

1 0.882 0.882 0.846 0.891 0.882 0.893 0.882 0.882 0.846 0.891 0.882 0.893

5 0.745 0.774 0.641 0.766 0.782 0.789 0.824 0.829 0.751 0.837 0.831 0.843

10 0.653 0.695 0.522 0.674 0.696 0.700 0.793 0.795 0.699 0.806 0.808 0.815

15 0.591 0.637 0.466 0.611 0.633 0.636 0.759 0.752 0.643 0.774 0.781 0.784

5 Dissimilar Groups / GoodReads Dataset

1 0.755 0.755 0.698 0.773 0.755 0.793 0.755 0.755 0.698 0.773 0.755 0.793

5 0.639 0.684 0.526 0.660 0.687 0.696 0.682 0.690 0.561 0.699 0.714 0.716

10 0.580 0.627 0.445 0.603 0.632 0.637 0.605 0.613 0.487 0.629 0.653 0.655

15 0.546 0.589 0.401 0.568 0.592 0.595 0.566 0.574 0.445 0.589 0.608 0.615

With bold is the best value and with italics the second best
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Table 5 NDCG and DFH scores for the stable groups

NDCG DFH

Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

MovieLens Dataset / Stable Groups

4+1 0.042 0.044 0.020 0.042 0.043 0.034 0.894 0.861 0.803 0.906 0.889 0.933

3+2 0.042 0.044 0.020 0.043 0.043 0.035 0.905 0.867 0.809 0.918 0.898 0.939

5 Dis 0.041 0.042 0.017 0.042 0.041 0.034 0.892 0.838 0.780 0.909 0.885 0.934

GoodReads Dataset / Stable Groups

4+1 0.055 0.062 0.014 0.057 0.057 0.045 0.829 0.759 0.696 0.847 0.826 0.887

3+2 0.053 0.057 0.013 0.055 0.055 0.042 0.784 0.742 0.607 0.796 0.782 0.829

5 Dis 0.057 0.062 0.018 0.058 0.058 0.047 0.861 0.777 0.766 0.877 0.859 0.919

With bold is the best value and with italics the second best

8.2.1 Stable groups

For the stable groups, we see from the overall performance of the methods (F-scores) that the
SDAA method outperforms the classic Average method for all group types. SDAA, SIAA,
and Average+ are the best three performing methods for all group types for both datasets.

In the MovieLens dataset, for the more homogeneous group types (4+1 and 3+2), SDAA
performs slightly better in the latter iterations, with our new proposed methods SIAA and
Average+ being a close second. The differences in performance between SDAA, SIAA, and
Average+ are very low for all group types. This especially apparent in the latter iterations,
where the differences in the scores are around 2%.

For the GoodReads dataset, Average+ is the most effective method for all group types.
Average+ offers the best group disagreement scores after the RP80 method. In contrast, in
the MovieLens dataset, SDAA performs better in group disagreement than Average+. At the
same time, for both datasets, the group satisfaction scores for both methods are comparable,
with SDAA clearly outperforming Average+ in the early iterations. This discrepancy in the

Table 6 NDCG and DFH scores for the ephemeral groups

NDCG DFH

Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

MovieLens Dataset / Ephemeral Groups

4+1 0.059 0.062 0.033 0.059 0.060 0.043 0.972 0.951 0.927 0.976 0.967 0.981

3+2 0.055 0.058 0.032 0.055 0.056 0.039 0.980 0.957 0.943 0.985 0.975 0.986

5 Dis 0.052 0.055 0.030 0.052 0.053 0.038 0.977 0.956 0.926 0.983 0.976 0.986

GoodReads Dataset / Ephemeral Groups

4+1 0.069 0.080 0.025 0.070 0.070 0.053 0.898 0.828 0.769 0.908 0.895 0.928

3+2 0.066 0.078 0.023 0.066 0.067 0.050 0.846 0.782 0.681 0.854 0.842 0.875

5 Dis 0.063 0.072 0.025 0.047 0.065 0.050 0.907 0.842 0.820 0.915 0.902 0.939

With bold is the best value and with italics the second best
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group disagreement values’ performance allows Average+ to be constantly better than the
rest of the methods in the GoodReads dataset. The discrepancy of performance between the
two datasets is because the GoodReads dataset is more sparse than the MovieLens dataset.
This negatively affects the single recommender system and reduces the number of items
that are equally good for all members. Subsequently, SDAA tends to use the Least Misery
approach, while Average+ considers the entire group recommendation list and overcomes
the sparse obstacle.

In more detail, we can see from Figs. 1a, c, 2a, c, 3a and c that depict the stables groups,
that Average and Par offer best group satisfaction scores but the worst group disagreement
scores. The high group disagreement scores culminate in the Average’s low overall perfor-
mance. The Par method suffers from the same problem as Average. This is understandable
since the Par method focuses more on the group satisfaction rather than disagreement. In
the opposite case, the best disagreement scores are achieved by RP80, which mainly focuses
on finding items with low disagreement, but at the same time, it also produces the worst
group satisfaction scores. SIAA achieves the same group satisfaction as the Average but
also produce lower group disagreement scores. Thus, out-performing Average.

For Average+, we can observe lower group satisfaction scores. This is expected since
we build the group recommendation list based on an expanded list provided by Average
aggregation. We do not limit ourselves on the items that are going to provide the best group
satisfaction score (those are the top k returned by Average) but also consider items that may
offer lower satisfaction but considerable better group disagreement scores. Consequently,
the satisfaction scores for Average+ are lower than the scores of the Average method.

8.2.2 Ephemeral groups

As we can observe in the F-score tables, the aggregation methods’ performance vastly dif-
fers in the ephemeral groups’ scenario. Overall, Average+ and SIAA are the best for all
cases, with the difference between them to be around 8% in the early iterations and dropping
to 1% in the latter ones.

We can observe a discrepancy on the performance of the SDAA method. The constant
change of members in the group has an adverse effect on the SDAA method, with its per-
formance dropping drastically. The addition of a new unknown member at each iteration
forces the SDAA to utilize higher α values. The new member has no previous satisfaction
score, which in turn makes the value of α to be the highest possible at each iteration (9).
SDAA does not perform well with high α values (Stratigi et al., 2020). With new members
repeatably being added to the group, SDAA cannot keep an optimal performance and is
outperformed by the classic Average method.

In the early iterations, Par has comparable results as SIAA and Average+, but in latter
iterations the difference becomes greater. This is because in the latter iterations, with a high
probability the most relevant items have already been suggested to the group (and cannot
be suggested again, per our experimental scenario), so the old members are disadvantaged.
Their items were suggested in the previous iterations and the interests of the new members
are more likely to be recommended. Additionally, the Par method only considers the current
iteration, without taking into account if a member was not satisfied in any of the previous
iterations. This culminates to the high disagreement scores, observed in the ephemeral group
scenario.

In Figs. 1b, d, 2b, d, 3b and d, we examine the performance of the methods in more detail.
As in the case with the stable groups, the best group satisfaction scores are achieved by the
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Average and Par methods and the best group disagreement scores by Average+. In contrast
to the stable groups scenario, Average+ now achieves better disagreement scores than RP80.

Although in the early iterations, Average+ has lower satisfaction scores than the rest of
the methods except RP80, in the latter ones, it manages to outperform SDAA. However,
it is considerably below both Average, Par and SIAA. SIAA has maintained exemplary
group satisfaction scores throughout all the scenarios, but with ephemeral groups, it can now
achieve good disagreement scores. This is due to the user-focused concept of SIAA. It can
cope better with the added new group member than a group-focused method like SDAA.

8.2.3 Stable versus ephemeral groups

In general, all aggregation methods perform better overall for ephemeral groups rather than
the stable ones. This can be seen in the latter iterations when comparing the ephemeral and
the stable groups scenarios. This is expected, since our group recommender system does
not suggest items to the group that it has already suggested before. In the stable groups, the
best items for each member were probably suggested in the early iterations. Now that the
members interchange, the system is able to suggest to the new members items that are the
best for them.

This can be further corroborated by the satisfaction scores shown in the figures. For the
ephemeral groups, we can observe that the group satisfaction scores tend to remain high
throughout the iterations, without the notable slope noted in the stable groups. Furthermore,
in correlation to the high satisfaction scores, the disagreement scores are again lower for
the ephemeral groups than the stable ones. The new interests that the added members rep-
resent in the sequential group recommendation help the system maintain high performance
throughout many iterations.

We can also observe that the stable groups’ disagreement scores tend to increase uni-
formly as the satisfaction scores drop. This again represents that the group recommender
system achieves increasingly lower quality suggestions for the group over the passage of the
iterations. Meanwhile, for the ephemeral groups, we can see high and low spikes in the dis-
agreement scores. These spikes represent the new group members and how their inclusion
slows down the overall disagreement scores’ deterioration.

8.2.4 Methods quality

In Tables 5 and 6, we show the NDCG and DFH scores for each aggregation method, for
the various test conditions. For both stable and ephemeral groups and both datasets, SDAA
is the best performing, as far as NDCG scores, while SIAA is the second best. Average+ has
low NDCG scores since we build the group recommendation list with items that can have
lower relevance to the group. It is able to report back items that are relevant (it generates
good satisfaction scores), but most of them are not the best for each user; thus, it has lower
NDCG scores. Once again, we observe a difference in the quality of the methods when
they are applied to stable and ephemeral groups. These results supplement the results from
before, where the methods perform better in the ephemeral group scenario.

In contrast to NDCG scores, Average+ has the best scores for DFH. This means that
Average+ succeeds in proposing at least one item in the group recommendation highly rel-
evant to each member. However, the rest of the list is composed of unsatisfactory items (in
terms of relevance), hence the low NDCG scores. On the other hand, the DFH scores for
SDAA are relatively low. This indicates that SDAA, although able to propose many items
relevant to the members, high NDCG scores, cannot suggest the best items for these users.
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Table 7 The percentage of time each scenario was enacted for all 100 groups

MovieLens GoodReads

Nothing 36.58% 35.45%

Insert 34.99% 35.98%

Remove 28.43% 28.57%

8.2.5 Fluctuating group size

In this final test case, we want to observe the performance of each aggregation method,
when the size of the group is not fixed. We examine the 4+1 group format. We want to keep
this group format for the duration of the experiment i.e., for all 15 iterations. Since the group
size is not fixed, we require that at each iteration 20% of the group members be dissimilar
to the rest. For example, when the group size is 7, then 6 members should be similar to each
other and 1 is dissimilar to them (20% of 7 is 1.4, which gives us 1 dissimilar user when
rounding down). If in the next iteration we add another user to the group, then that user will
have to be dissimilar to the 6 others (20% of 8 is 1.6, which gives us 2 dissimilar users when
rounding up).

With equal probability we enact one of the three scenarios:

– Nothing: No new members will enter or exit the group.
– Insert: Insert a new member to the group.
– Remove: Remove a member from the group.

In Table 7, we show the number of times each scenario was enacted for all 100 groups in
the two datasets. In Fig. 4, we show the group satisfaction and disagreement scores for the
15 iterations, and in Table 8 the average values after 15 iterations for the F-Score, NDCG
and DFH.

We can observe the same trend as the previous results in Fig. 1b and d. Meaning that the
Average and Par methods offer the best group satisfaction scores and simultaneously the
worst group disagreement scores. SIAA performs comparable good in satisfaction to Aver-
age and Par but has better group disagreement scores and finally Average+ has noticeable
lower satisfaction scores but far better disagreement scores.

This is further corroborated by the values in Table 8, where both SIAA and Average+
have the best F-Score. The high disagreement scores that Par produces lower its overall

Fig. 4 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for fluctuated group
size, using MovieLens and GoodReads
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Table 8 Average scores after 15 iterations

MovieLens GoodReads

F-Score NDCG DFH F-Score NDCG DFH

Avg 0.719 0.052 0.963 0.567 0.062 0.915

SDAA 0.734 0.055 0.920 0.579 0.069 0.827

RP80 0.629 0.025 0.801 0.459 0.020 0.710

Par 0.736 0.052 0.975 0.591 0.064 0.929

SIAA 0.749 0.052 0.963 0.608 0.063 0.914

Avg+ 0.749 0.039 1.000 0.618 0.050 0.969

With bold is the best value and with italics the second best

performance. SDAA identifies more relevant items to the group in terms of quantity, as
indicated by the highest NDCG score, but under-performs in terms of quality with low DFH
scores.

The effect of the fluctuating group size can be observed in the lower group satisfac-
tion scores and the higher group disagreement scores. If we again compare these results to
Fig. 1b and d, we can see that all methods perform slightly worse when the size of the group
is not fixed. This is an expected result. As it has been shown in the literature, the size of the
group has an adverse effect in the performance of a group recommender system. The more
members a group has the more difficult is for the system to find items that are relevant to
all members. In Table 7, we show that in most cases we add a member to the group, which
results in groups bigger than 5; the size used in the previous experiments.

9 Related work

Group recommendations One of the most popular methodology to achieve group rec-
ommendations is to apply a standard recommendation algorithm to each group member
individually and aggregate their lists into one. During the aggregation phase, many crite-
ria can be taken into account. Yuan et al. (2014) proposes a group recommendation model
that considers the influence that each member has on the group’s final choice, stating that
a member has more influence on the group if he/she is more knowledgeable about the rec-
ommended items. In our work, we propose that if a group member is more dissatisfied than
the rest, then that member will have more influence in the group decision. Cao et al. (2018)
learns the aggregation strategy from data, which is based on the recent developments of
attention network and neural collaborative filtering (NCF), while we dynamically change
our proposed aggregation method based on the satisfaction of the group members. Yin
et al. (2019) also utilizes an attention mechanism as well as a Bipartite Graph Embedding
Model (BGEM) to learn the influence that each member has on the group decision. Salehi-
Abari and Boutilier (2015) exploits the social interactions between the group members, via
a preference-oriented social network, in order to make group decisions without complete
knowledge of the group members’ preferences. In our work, we require the full knowledge
of the group members’ preferences. Vinh Tran et al. (2019) learns the aggregation strategy
based on the interactions between group members. To simulate how a group consensus is
reached, they model these interactions as multiple voting processes, and proposed a stacked
social self-attention network to learn the voting scheme of group members. Qin et al. (2018)



Journal of Intelligent Information Systems

offers a novel approach to producing recommendations for a large group of people by divid-
ing the big group into different interest subgroups. For each subgroup, they find a potential
candidate set of media-user pairs and finally aggregate the CF produced recommendation
lists for each pair.

Recently, there is also some research work on ephemeral groups. Quintarelli et al. (2016)
determines the preference of a group that meets for the first time by combining the group
members’ individual preferences based on their contextual influence, where the contextual
influence represents the ability of a member to guide the decisions of the group. Liu et al.
(2012) proposes a probabilistic model, namely the personal impact topic (PIT) model. An
individual member’s preference is modeled as a distinct distribution over the system’s top-
ics. Each topic is expressed as a distinct distribution over all the items known to the system.
We explicitly use the users’ profiles (ratings) to provide the group with a group list.

Fairness in group recommendations Some of the first approaches to achieving fairness
Pitoura et al. (2021, 2020) in group recommendations, exploit ideas from voting theory.
For example, Naamani Dery et al. (2010) assumes that the recommender has probabilistic
knowledge about the distribution of users’ ratings, and through voting theory recommends
to the group a “winning” item. From a different perspective, Guzzi et al. (2011) proposes
a group recommendation method by allowing a group member to comment on the choices
of the rest of the group. This allows each user to get new recommendations similar to the
proposals made by other group members and to communicate the rationale behind their own
counter-proposals.

More recently, Serbos et al. (2017) proposes two definition of fairness: fairness propor-
tionality and envy-freeness. In the former, the user u considers the list of recommended items
fair for him/her, if there are at least m items that the user likes. In the latter, u considers the
package fair, if there are at least m items for which the user does not feel envious. Xiao et al.
(2017) presents yet another definition of fairness. It defines a utility score for each group
member based on how relevant are the recommended items to them. Then, it models fairness
as a proximity of how balanced the utilities of users are when group recommendations are
given. Sacharidis (2019) defines a user’s utility to be the similarity between the user’s indi-
vidual and the group recommendation lists. They construct the group recommendation list
by considering sets of N-level Pareto optimal items. Kaya et al. (2020) proposes the notion
of rank-sensitive balance in order to achieve fairness during the aggregation phase. All these
works, for achieving fairness, consider one instance of group recommendations and do not
take into account the sequential group recommendation problem, as we do in our work.

Sequential recommendations In general, there are three categories of sequential recom-
menders, and they are divided based on how many past user interactions they consider:
Last-N interactions-based recommendations, Session-based recommendations and Session-
aware recommendations (Quadrana et al., 2018). In the first approach, only the last N user
actions are considered (Cheng et al., 2013; Lian et al., 2013; Liu et al., 2016). This is because
the system has logged a huge amount of historical data for the user, with many of them be
duplicates, which do not offer relevant information to the system. In session-based recom-
mendations, only the last interaction of the user with the system is used. They are typically
found in news (Garcin et al., 2013) and advertisement (Hidasi et al., 2016) recommenders.
In the last category, we have information about both the last interaction of the user with the
system, as well as the history of the user. These recommenders are often implemented in e-
commerce or for app suggestions (Hariri et al., 2012; Jannach et al., 2015; Quadrana et al.,
2017). In our work, we use the last method to approach sequential group recommendations.
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Hansen et al. (2020) proposes another session-aware system for music recommendations. It
uses a neural network architecture that models users’ preferences as a sequence of embed-
dings, one for each session, suggesting that the user’s recent selections and the session-level
contextual variables (such as time and device used) are enough to predict the tracks a user
will listen to. Borges and Stefanidis (2019) presents a multi-round recommender system
using Variational Autoencoders (VAEs) and tries to achieve fairness during multiple rounds
by introducing randomness in the regular operation of VAE, while (Borges & Stefanidis,
2021; 2020) penalize scores given to items according to historical popularity for mitigating
the bias and promoting diversity in the results. The above works have been done for sin-
gle user recommenders, and to our knowledge, our work is the first one in sequential group
recommendations that handles the notion of fairness.

This article extends (Stratigi et al., 2020), where we first presented SDAA. We now
examine two more aggregation methods, SIAA and Average+, designed to deal with sequen-
tial group recommendations. Instead of focusing only on the group, like with SDAA, now
with SIAA, we focus more on the user side. We also examine a heuristic method, Average+,
where we try to find the best possible items to offer to the group based on the satisfaction
and disagreement score they generate. In addition, we also consider the ephemeral group
scenario, where at the end of each iteration, a group member leaves the group, and a new
one enters the group.

10 Conclusions

In this paper, we introduce the notion of sequential group recommendations. We treat the
single user recommender system as a black-box, and focus on aggregating the individual
group members’ recommendation lists into a group list. We propose three new methods
for aggregating group members’ recommendation lists. Specifically, SDAA focuses on the
group as a whole, and dynamically, based on the degree of users’ satisfaction, balances the
advantages of the average and least misery methods. With SIAA, we concentrate on sin-
gular members, focus on their needs, and assign personal weights. Finally, we propose the
Average+ method that takes advantage of the satisfaction scores that a classic average aggre-
gation can produce and mitigates the high disagreement scores by incrementally building
the group list with the best possible item. These aggregation methods focus on the sequen-
tial aspect of the group recommendation process and how we can achieve fairness for all
group members in multiple recommendation rounds. We evaluate the proposed methods
using two large real datasets, MovieLens and GoodReads, and test the methods for three
different group types for both stable and ephemeral groups. We experimentally show the
effectiveness of our methods. SDAA outperforms in the latter iterations for the stable group
scenario. However, in the ephemeral groups, SDAA cannot perform optimally primarily
due to the users’ transitory attitude. In contrast, SIAA and Average+ are the best for the
ephemeral groups and among the best in the stable groups’ scenario.
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