
Analytical Characterization of the Blockage Process in 3GPP New Radio Systems
with Trilateral Mobility and Multi-connectivity

Dmitri Moltchanov∗, Aleksandr Ometov, Yevgeni Koucharyavy

Tampere University of Technology, Tampere, Finland

Abstract

One of the recent major steps towards 5G cellular systems is standardization of 5G New Radio (NR) operating in the
millimeter wave (mmWave) frequency band. This radio access technology (RAT) will potentially provide extraordinary
rates at the access interface enabling the set of new bandwidth-greedy applications. However, the blockage of the line-
of-sight (LoS) path between 3GPP NR access point (AP) and the user equipment (UE) is known to drastically degrade
the performance of the NR communication links thus leading to potential outage conditions. Although the problem of
characterizing LoS blockage process has been addressed in the recent literature, the proposed models are mostly limited
to stationary locations of APs and UE. In our study, we characterize properties of the LoS blockage process under
simultaneous mobility of both blockers and UE. The model is then extended to the cases of Poisson AP deployment,
multi-connectivity, and mobility of AP representing ‘trilateral’ (three-sided) mobility model. We also specify a Markov-
based model of the blockage process that can be efficiently used in both system level simulations and analytical analysis
of 3GPP NR systems. Using this model we demonstrate how to derive various metrics of interest including (i) fraction
of time in blockage, (ii) SNR and capacity process dynamics, (iii) probability that at time t UE is at the blockage or
non-blockage state, (iv) mean and distribution of time to an outage.
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1. Introduction

One of the effective ways to satisfy continually grow-
ing user traffic demands is to move higher in the frequency
band from microwaves to millimeter waves (mmWave, 30−
300GHz) [1, 2, 3], and further to terahertz (THz, 0.3 −
3THz) band [4], where significant portions of the spectrum
are still available. Responding to these trends, 3GPP has
recently completed a standalone standardization of the NR
technology operating in lower frequencies of the mmWave
band. While vendors and network operators are currently
performing field trials of this new wireless access technol-
ogy, research continues their efforts on fine tuning of NR
systems making them applicable to various communica-
tions scenarios and use-cases [5, 6, 7].

The 3GPP NR systems are expected to be deployed
in indoor open spaces and outdoor environments, such
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as halls, lobbies, squares, crossroads, parks among oth-
ers [8, 9, 10]. One of the distinguishing features of commu-
nications systems operating in mmWave band is the prop-
agation paths blockage by the relatively small dynamic
objects, such as human bodies, vehicles, etc. Fundamen-
tally, as electromagnetic waves cannot “travel around” the
objects whose size is smaller than their wavelengths – the
human bodies serve as absorbers for the line-of-sign (LoS)
propagation path [11]. Thus, to understand and describe
the performance regimes of NR systems, it is essential to
characterize the LoS blockage dynamics.

As there is an extreme difference in the received signal
strength in LoS blocked and LoS non-blocked conditions,
blockage of LoS frequently leads to outages [12, 13, 14]. To
combat these consequences, 3GPP has recently proposed
the concept of multi-connectivity. According to it, UE is
allowed to maintain the links to several APs and dynami-
cally switch between them in case of outages. It has been
recently demonstrated that this technique might substan-
tially improve various UE-centric metrics including both
fraction of time in outage and throughput [15, 16, 17].

Many studies have addressed the problem of LoS block-
age modeling. The first class of models characterizes block-
age properties when both UE and AP are stationary. The
authors in [18] consider infinitesimal and point receivers
associated with UE in a field of stationary human block-
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ers represented by cylinders. In these settings, the LoS
blockage is fully characterized by a single metric – LoS
blockage probability. The blockage probability has been
shown to increase exponentially with distance. Similar re-
sults have been reported in [19, 20] for different shapes of
blockers. Several studies address the case of mobile UEs
in a field of stationary blockers. In this class of models,
the LoS state of UE changes in time forming a stochastic
process. Particularly, the authors in [21] derived condi-
tional probability of the UE being in blocked/non-blocked
state at time t + ∆t, ∆t > 0 given that UE has been in
blocked/non-blocked state at time t partially characteriz-
ing the LoS blockage process. The temporal effects caused
by the blockers mobility around stationary UE have been
studied in [22]. The authors have shown that the stochas-
tic properties of the LoS blockage process heavily depends
on UEs and blockers mobility parameters.

In many practical communications scenarios, UE and
blockers are both mobile. Despite significant efforts in-
vested to date, only little is known about the blockage pro-
cess with mobile blockers and UE. The underlying reason
is that the probabilistic characteristics of the LoS block-
age process may vary in time requiring complex models
and associated techniques to characterize this dependence
analytically. On the other hand, performance assessment
of NR deployments in system level simulations (SLS) is a
time-consuming task due to the need for tracking not only
locations of UEs but blockers as well [22]. Finally, modern
and future use-cases are likely to feature the mobile ac-
cess points, e.g., aerial APs based on the unmanned aerial
vehicles (UAVs) [23, 24], vehicular APs mounted on cars,
naturally leading to even more complex trilateral (three-
sided) mobility scenarios.

Following our previous work [25], this paper aims to
propose a model for LoS blockage process when UE and
blockers are both mobile. We characterize LoS blockage
process characteristics including the fraction of time LoS
is available and time intervals UE spends in LoS blocked
and non-blocked conditions. We then extend the baseline
model to the cases of homogeneous Poisson deployment
of APs, AP mobility, and multi-connectivity operation.
The resulting model is represented by an inhomogeneous
Markov chain whose transition intensities are explicit func-
tions of environmental variables. The Markov representa-
tion allows not only for usage of the developed model in
SLS studies of 3GPP NR technology but for analytical so-
lutions for a wide range of metrics of interest including
(i) SNR and capacity process characteristics, (ii) probabil-
ity that at time t UE is at the blockage or non-blockage
state, and (iii) fraction of time in blockage and (iv) mean
and distribution of time to outage.

The main contributions of our study are:

• Characterization of the LoS blockage process prop-
erties including a fraction of time LoS is available
between AP and UE and time intervals UE spends
in LoS blocked and LoS non-blocked states when UE

and blockers are both mobile;

• Formalization of the simple Markov model capturing
basic properties of the LoS blockage process suitable
for both SLS and analytical performance assessment
of NR technology;

• Extension of the baseline model to various NR specifics
and use-cases including 3GPP multi-connectivity op-
tion, mobile APs, random AP deployments, arbi-
trary trajectories of UE, and random UE mobility.

The rest of the paper is organized as follows. Section 2
introduces the system model. Next, we characterize the
LoS blockage process and formalize its Markov model in
Section 3. Section 4 provides a set of the model extensions.
Further, Section 5 gives an overview of feasible applica-
tions. Section 6 provides numerical results. Conclusions
are drawn in the last section.

2. System Model

In our study, we first focus on both conventional infra-
structure-based case, where AP serves the tagged user and
the remaining ones act as potential blockers, and D2D sce-
nario, where two UEs form a direct link between each other
but other users could block it. The height of the AP is
constant and is set equal to hA. The corresponding com-
munications modes are illustrated in Fig. 2 while notation
is provided in Table 1.

2rB

y

x

O

hTx

r d(x)x

A

hRx

UE

AP Tx LoS path

hU
B

C

D

Rx

(a) LoS blockage for AP scenario

r

y

x

O

2rB

A

hB

hRx

UERx

Rx
B

UETx

hTx

Tx

x
C

D

(b) LoS blockage for D2D scenario

Figure 1: Considered scenarios with mobile UE and blockers.

UEs are assumed to be associated with humans or other
entities carrying communications equipment. Communi-
cations entities acts as blockers to LoS propagation path
and are modeled by cylinders with constant base radius
rB and height hB . The height of the UE is constant
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Table 1: Main notation used in this paper.

Notation Details

λA AP spatial density per m2

λB Blocker spatial density per m2

hRx UE heigth, m

hTx Transmitter height, m

hA AP height, m

hB Blocker heigth, m

hU UE heigth, m

rB Blocker base radius, m

vB Blocker speed, m/s

vU UE speed, m/s

τ Mean blocker movement duration in RDM, s

K Degree of multiconnectivity

N Number of blockers

wU (t) Trajectory of a moving UE

wA(t) Trajectory of a moving AP

g(t) Distance between AP and UE at time t

G Distance between AP and UE at time t0

α, β Intensity of blocked and non-blocked intervals, 1/s

δ(·) Kronecker delta function

γ Intensity of blockers entering LoS blockage zone

(~ρ, S) Phase-type distribution representation

Θ,Ω Blocked and non-blocked period durations

RO AP radius without outage, m

pB , pL Blockage and non-blockage probabilities

pi(t) Probability of state i at time t

pL,i LoS probability with i− s AP

C(t) Time-dependent Shannon capacity, bits/s

S(t) Time-dependent SNR at time t, dB

SO SNR reception threshold

SB Area of LoS blockage zone, m2

x Distance between AP and UE, m

[xi(t), yi(t)] Time-dependent UE coordinates

B Bandwidth, Hz

c Constant accounting for imperfection of MCSs

PT Transmit power, W

GT , GR Linear transmit and receive antenna gains

NF Noise level at bandwidth B, W

fX(x) Probability density function of X

FX(x) Cumulative distribution function of X

hU , hU < hB . Centers of cylinders are assumed to fol-
low the Poisson process in <2 with the spatial intensity of
λB blockers per square meter.

To capture blocked/non-blocked dynamics, we assume
that the obstacles move according to random direction
model (RDM, [26]) since it captures the essentials of ran-
dom movement and still allows for analytical tractability.
According to this model, a blocker first randomly chooses
the direction of movement uniformly in (0, 2π) and then
moves in this direction at constant speed vB for exponen-
tially distributed time with parameter µ = 1/E[τ ], where
τ is the mean movement duration. The process is restarted
at the stopping point. Whenever blockers cross the LoS

path between the tagged user and NR AP, the LoS is as-
sumed to be blocked. As the user movement is random,
and there could be more than a single user blocking LoS,
the non-blocked and blocked time intervals are random
variables (RV).

To capture the effects of the multi-connectivity opera-
tion of NR systems we then extend the single AP deploy-
ment to the case of homogeneous Poisson point process
deployment of APs and blockers with intensities λA and
λB , respectively. In this deployment, we consider various
types of UE mobility. The baseline model assumes that UE
with an active session moves along a deterministic trajec-
tory, wU (x) = ab+x, at constant speed vU . The height of
the UE is hU . Besides, we assume that UE may also move
according to RDM.

3. Blockage Characterization and Modeling

In this section, we analyze the baseline UE blockage
process with mobile UE and blockers. We first derive the
fraction of time UE is in LoS conditions and then proceed
characterizing blockage and non-blockage time intervals.
Finally, we formulate the Markov LoS blockage model cap-
turing essentials of the LoS blockage process.

3.1. LoS Blockage Fraction

Consider first, the LoS blockage fraction. Here, we
assume that UE moves according to RDM in a coverage
zone as illustrated in Fig. 2.
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Figure 2: Top view of the LoS blockage zone.

3.1.1. AP Scenario

Let UE be located at the distance x from the AP at
time t. The LoS to the UE could be blocked by the blockers
that are located in the so-called LoS blockage zone, marked
in gray. The length of this zone is

d(x) =
x(hB − hRx)

hTx − hRx
. (1)

Observing the top view of the scenario, Fig. 2(a), note
that the area of the LoS blockage is more complicated than
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a rectangle. To prevent overlapping, a blocker cannot be
located closer than at 2rB to the user. The area of the
LoS blockage zone is then

SB = 2rB [x− d(x)]− 2r2
B −

1

2
πr2
B . (2)

The existence of the zone around the UE prohibiting
the presence of blockers implies that the minimum dis-
tance from the AP results in non-zero LoS blockage zone
is 2rB . Recall that the limiting RDM distribution is uni-
form over the area of interest [26]. Observing the system
in stationary regime, the probability of a point uniformly
distributed in the circle ‘hitting’ a LoS blockage area is
given by the ratio SB/πr

2. Generalizing to N blockers,
we arrive at

pB = 1−
(

1−
2rB [x− d(x)]− 2r2

B − 1
2πr

2
B

πr2

)N
. (3)

The probability density function (pdf) from a center
of the circle with radius r to a point uniformly distributed
in this circle is given by f(x) = 2x/r2 [27]. Thus, the
probability of having LoS at a random moment of time,
pL, coinciding with the fraction of LoS, is

pL = 1−
r∫

2rB

2x

[
1−

[
1− 2rB [x−d(x)]−2r2B− 1

2πr
2
B

πr2

]N]
r2

dx. (4)

Integrating (4), we arrive at the final result in the
closed-form of (5), where the shortcuts are

A =
(hB − hRx)

hTx − hRx
, B = 2r2

B −
πr2
B

2
. (6)

3.1.2. D2D Scenario

Since the heights of Tx and Rx are assumed to be equal,
hTx = hRx < hB , it suffices to consider a two-dimensional
case, whose top view is shown in Fig. 2(b). Given the dis-
tance x between Tx and Rx, the area of the LoS blockage
zone is given by

SB(x) = 2rBx− 4r2
B − πr2

B . (7)

Similarly to the AP blockage model, there is no block-
age when Tx and Rx are closer than 4rB . Recalling the
stationary property of RDM model and the fact that the
distance between two points uniformly distributed in the
circle of radius πr2 is given by [27] as

f(x) =
2x

r2

2 arccos
(
x
2r

)
π

−
x
√

1− x2

4r2

rπ

 , x ∈ (0, 2r), (8)

we have the following for the fraction of LoS

pL = 1−
r∫

4rB

f(x)

[
1−

[
1− 2rBx− 4r2

B − πr2
B

πr2

]N]
dx, (9)

that coincides with the LoS blockage probability. Note,
the integral cannot be expressed in elementary functions
but can be computed numerically for an arbitrary set of
input parameters.

3.1.3. PPP Deployment of APs and Multi-connectivity

The abovementioned results can also be obtained for
PPP deployment of APs and blockers moving according
to RDM with intensities λA and λB , respectively. In this
case, the distance between UE moving according to RDM
model and the nearest AP coincides with the distance be-
tween APs in PPP. The pdf of distance to i-s neighbor in
the Poisson field of APs is [27] as

fi(x) =
2(πλ)i

(i− 1)!
x2i−1e−πλx

2

, x > 0, i = 1, 2, . . . . (10)

We introduce the area of the LoS blockage zone sim-
ilarly to (2) and observe that there exists the LoS path
if there are no blockers currently in this zone. Since ran-
dom translation of the blockers PPP according to RDM
is still PPP the LoS probability coincides with the void
probability of PPP [28]. Thus, the LoS probability with
the nearest AP is given by

pL,1 = 1− e
∫∞
0

(2rB [x−d(x)]−2r2B− 1
2πr

2
B)f1(x)dx, (11)

that can be numerically estimated.
Using the similar approach one may obtain probability

of LoS with i-s nearest AP, pL,i. If UE simultaneously sup-
ports K connections to i nearest APs, the LoS probability
can be approximated by

pL = 1−
K∏
i=1

(1− pL,i). (12)

3.2. Blockage and Non-Blockage Intervals

We now proceed characterizing LoS blockage and non-
blockage intervals. As the principal difference between AP
and D2D scenarios is in the length of the LoS blockage
zone, in what follows, we address the AP scenario only.

We approach the problem as follows. First, we intro-
duce the movement trajectory. Then, we proceed with
specifying a Markov model for a randomly chosen instant
of time t. Without the loss of generality, we have cho-
sen t = 0. We then consequentially define the area of the
LoS blockage zone, the intensity of blockers entering it and
the mean duration of blocked and non-blocked intervals.
These latter quantities allow formulating an approximat-
ing Markov model of the blockage process. Finally, we
extend this model to time-dependent behavior incorporat-
ing previously defined movement trajectory.

Embed the coordinate system such that the position
of AP is at O, see Fig. 3(a) and let wU (x) = ax + b the
the trajectory of a moving UE. Let UE be at (x0, y0) such
that wU (x0) = ax0 + b at time instant t = 0. Let g(t) be
the function specifying the distance to the AP at time t.
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pL =

[
r(2(A−1)rB+πr)+B

r2

]N+1

[r(πr − 2(A− 1)(N + 1)rB) +B]

2πN (A− 1)2(N + 1)(N + 2)r2
B

−

− 4r2
B

r2
−

[
4(A−1)r2B+B+πr2

r2

]N+1

[πr2 − 4(A− 1)(N + 1)r2
B +B]

2πN (A− 1)2(N + 1)(N + 2)r2
B

. (5)
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Figure 3: LoS blockage with mobile blockers and AP.

Since at time t = 0 UE is at (x0, y0) and given a certain
speed of UE, vU , the coordinates of UE time t are{

x(t) = x0 + vU t cos a,

y(t) = y0 + vU t sin a,
(13)

leading to the distance to AP at t

g(t) =
√

(x0 + vU t cos a)2 + (y0 + vU t sin a). (14)

Consider the process of LoS blockage by a dynamically
moving blockers around the stationary user of interest at
t = 0 and an AP located at the distance g(x0) from the
UE. Similarly to the previous section, we identify the LoS
blockage zone as shown in Fig. 3. The LoS blockage zone
can be approximated by a rectangle with area

SB(g(t)) = 2rB

(
g(t)

hB − hU
hA − hU

+ rB

)
. (15)

To characterize the dynamics of the blockage process in
zone i, we first consider the intensity of blockers arrivals,

γ(x), to the LoS blockage zone. Extending the results
of [29], the inter-meeting time of a single blocker with the
LoS blockage zone is exponential with parameter

γ1(g(0)) = vSB(g(0))

∫∫
W

f2(s)ds =

= vESB(g(0))

2π∫
0

dφ

ri∫
ri−1

1

πR2
dr =

2vBSB(g(0))

πR3
, (16)

where W is the coverage area of AP, vB is the speed of
a moving blocker, and f(s) = 1/πR2 is the stationary
distribution of the RDM [26].

As the number of blockers in AP coverage area is Pois-
son with intensity of λBπR

2, the process of blockers oc-
cluding the LoS path is Poisson with the intensity

γ(g(0)) =
2vBλBSB(g(0))

R
. (17)

Following [29], the process of blockers entering LoS
blockage zone is Poisson with parameter γ(g(0)). Due
to the properties of RDM model, the entrance point of
a blocker is uniformly distributed over three sides of the
LoS blockage zone. Also, the process of blocked and non-
blocked periods forms an the alternative renewal process [30].
Let Θ(g(0)) and Ω(g(0)) be the RVs denoting the blocked
and non-blocked periods respectively. Since the block-
ers enter the zone according to a Poisson process with
the intensity γ(g(0)), the time spent in the unblocked
part, Ω(g(0)), is exponentially distributed, FΩ(τ ; g(0)) =
1− e−γ(g(0))τ [30] with mean

E[Ω(g(t))] =
R

2vBλBSB(g(t))
, (18)

that can be verified by observing that the left-hand sides of
the individual blockers entering the blockage zone follow
a Poisson process. Hence, the distance from the end of
the blocked part, considered as an arbitrary point, to the
starting point of the next blocked interval is exponential.

The mean blockage time can be found using the frac-
tion of time the UE is not blocked, pL. Recalling that the
flow in and flow out of the AP coverage zone are assumed
to be equal, the distribution of the number of blockers in
the coverage zone of AP is Poisson. Using the void prob-
ability of the Poisson process, we have [28]

pL(g(0)) = exp[−λBSB(g(0))]. (19)
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Using the property of the renewal process [30], we write

pL(g(0)) =
E[Ω(g(0))]

E[Θ(g(0))] + E[Ω(g(0))]
, (20)

immediately leading to

E[Θ(g(t))] =
Re−λBSB(g(t))

2λBvBSB(g(t))[1− e−λBSB(g(t))]
, (21)

where we substituted pL(g(0)) and E[Ω(g(0))].
The movement of UE does not change the structure

of the blockage process but affect the form of blockage
and non-blockage durations distributions. To characterize
the dynamics of the blockage process, we approximate the
blockage process at the time t = 0 using a continuous-time
Markov chain (CTMC) with two states and the following
infinitesimal generator

Λ(g(0)) =

[
−α(g(0)) α(g(0))
β(g(0)) −β(g(0))

]
, (22)

where α(g(0)) = 1/E[Θ(g(0))], β(g(0)) = 1/E[Ω(g(0))]
are the mean durations of blocked and non-blocked inter-
vals. Note that this model is approximate in nature as the
duration of the blockage period follows general distribu-
tion, as shown in [22].

To enable UE movement, we allow transition rates to
vary in time. Using previously obtained results, the time-
dependent intensities take the following form{

α(g(t)) = 2λBvBSB(g(t))[1−e−λBSB(g(t))]

Re−λBSB(g(t)) ,

β(g(t)) = 2λBvBSB(g(t))
R .

(23)

4. Extensions of the Baseline Model

The baseline model allows for a number of extensions.
Aside from the straightforward one to the case of more
complex UE trajectories, there are few principal exten-
sions. In this section, we address the following: (i) multi-
connectivity option of 3GPP NR technology, (ii) mobility
of AP, and (iii) random AP deployment.

4.1. Multi-Connectivity

The blockage of LoS path between UE and AP may
lead to the outage. Simultaneous support of multiple con-
nections with NR APs, known as multi-connectivity, is
considered as a way to reduce the number and duration of
outage events [15, 16].

As an example, consider the blockage process with two
APs, shown in Fig. 4(a). The associated CTMC model is
given by superposition of CTMCs modeling the blockage
processes with individual APs. Letting gi(t), i = 1, 2 to
denote the distance to the first and second APs at time t,
the infinitesimal generator takes the following form

Λi =

 −
∑

α(g1(t)) α(g1(t)) 0
β(g2(t)) −

∑
0 α(g1(t))

β(g1(t)) 0 −
∑

α(g2(t))
0 β(g1(t)) β(g2(t)) −

∑
 , (24)

where α(gi(t)), β(gi(t)) are the rates of the blockage pro-
cess with AP i, state 1 corresponds to the blockage state,
and

∑
sign denotes the sum of all row elements.

The extension to more than two APs is straightforward.

4.2. Mobile AP

Recently, several authors have proposed to use mobile
AP to improve the network capacity on-demand in places
where there is a spontaneous need for more capacity at the
air interface. One such option is to use unmanned aerial
vehicles (UAV), such as drones [31, 32]. UAV-based NR
AP can be mobile when providing service to UE inducing
three-sides mobility that can also be captured using the
proposed model.

Assuming that the trajectory of AP is known and can
be represented by wA(x) = cx + d, the only extension
needed to construct the CTMC modeling of the blockage
process is to determine the time-dependent distance be-
tween AP and UE. Aligning OX with the direction of AP
movement and assuming that the distance between AP and
UE at time t0 is g(0) =

√
x2

0 − y2
0 , we see that the distance

between AP and UE at time t from Fig. 4(b), obeys

g(t) =
√

(x0 + cos avU t)2 + (y0 + sin avU t− vAt)2, (25)

and the rest of the procedure is similar to the baseline.

4.3. Random APs Deployment

It has been shown that positions APs may not be de-
terministic [33, 34]. The proposed model can be extended
to the case of random AP deployments as sketched below.

Let G be a RV denoting the distance between AP and
UE at time t0 and let fG(x), x > 0, be its pdf. The
probability of LoS at t0 is then

pL(g(0)) =

∫ ∞
0

fG(x)e−λBSB(g(0)). (26)

Recall that for each fixed distance x from AP to UE,
the LoS duration is exponentially distributed with param-
eter γ(g(0)). Thus, the mean LoS period is given by

E[Ω(x; t0)] =

∫ ∞
0

fG(x)
1

γ(g(0))
dx, (27)

while the mean blockage period is calculated using (21)
completing parameterization of the CTMC model.

To enable the movement of the UE, we need to calcu-
late the distance between UE and AP at time t > 0. This
can be done using (25), where the coordinates (x0, y0) are
now a function of RV G, X0 = G cos a, Y0 = G sin a leading
to the following random functions specifying the distance
between AP and UE at time t{

X(t) = cos a(G+ vU t),

Y (t) = sin a(G+ vU t),
(28)
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Figure 4: Illustrations of the baseline model feasible extensions.

resulting in the following distance to AP at time t

G(x; t) =
√

[cos a(x+ vU t)]2 + sin a(x+ vU t), (29)

where x follows RV G, and t is the parameter.
Thus, the pdf of the distance at time t can be estimated

using non-linear transformation of RV [35]. Recall that pdf
of a RV G(t), fG(y; t), expressed as a function y = g(x; t)
of another RV G with pdf fG(x), is [36]

fG(y; t) =
∑
∀i

fG(ψ(y))|ψ′(y)|, (30)

where x = ψ(y) = g−1(x; t) is the inverse function.
Considering the popular homogeneous PPP model of

AP locations with intensity of θ, the distance to the nearest
AP is provided by [27]

fG(x) = 2πθxe−πθx
2

, x > 0. (31)

The inverse of the positive branch of g(x; t) and the
modulo of its derivative are given by

ψ(y) =
sec4 a

√
cos4 a (4x2 cos2 a+ C − cos(2a) + 1)

2
,

|ψ′(y)| =
8
√

2x sin2(a) cos2(a)
C + 8x cos2(a)

4
√

cos4 a (4x2 cos2 a+ C − cos(2a) + 1)
, (32)

where the shortcut C is

C =

√
2 sin2 a (8x2 cos2 a− cos(2a) + 1), (33)

leading to the pdf of G(t) in closed-form of (34).
Now, the time-dependent LoS probability, and mean

durations of LoS blockage and non-blockage periods can
be calculated using (26) and (27).

The extension to the multi-connectivity case is straight-
forward since the distance to the ith nearest neighbor in
PPP is available in closed-form [27]. We specifically note
that once UE moves along its trajectory, the nearest AP
may change. Recall that the part of the plane where a
specific AP is nearest to the UE is given by Voronoi tes-
sellation of <2 [28]. Voronoi tessellation of i-s order can be
applied to define the plane partitioning to the cells where
each point of a UE trajectory is closer to i-s APs.

Note that additional elements of uncertainty can be
brought to the model assuming, e.g., random speeds of UE
and AP. In this case, (29) becomes a function of multiple
RVs. Nevertheless, the distribution of G(y; t) can still be
found using RV transformation technique [35].

4.4. Random UE Mobility

In some environments, e.g., parks or walking streets,
the mobility of UE may not be deterministic but is better
described by some random mobility process. The exten-
sion of the baseline model to this case can be performed
for a limited set of mobility processes having closed-form
distribution of the distance between a fixed point and a
randomly moving one. In what follows, we consider one
such process, a modified RDM model with constant flight
lengths, known as Pearson-Rayleigh walk [37].

Let (0, 0) be the coordinates of UE at time t = 0, that
is UE starts at origin, where AP is located. It has been
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fG(y; t) =
1

4
πθ sec4 a

(
8
√

2x sin2 a cos2 a

C
+ 8y cos2 a

)
exp

(
−1

4
πθ sec4(a)

(
4y2 cos2 a+ C − cos(2a) + 1

))
, y > 0. (34)

shown in [38] that the joint pdf of the distance from a
point moving according to Pearson-Rayleigh random walk
to the origin at the step i, conditioned on the traveled time
ti = li/vu is

fi(x|ti) =


1

2πti
δ
(
ti − r

vU

)
, i = 1

i
2πt2i

(
1− x2

t2i

)m−2
2

, i = 2, 3, . . .
(35)

where δ(·) is the Kronecker delta function, r is the length
of a single step.

Since the transition rates of the blockage process de-
pend on the distance between AP and UE, we can now
parameterize CTMC model at the stopping times of the
Pearson-Rayleigh model similarly to the previous subsec-
tion. Owning to the straight movement direction between
stopping times ti the transition rates at times t ∈ (ti, ti+1)
between stopping times can be linearly approximated.

Using recent results for RDM mobility model and spec-
ifying the distance between two points moving according to
RDM processes, we can further extend the baseline model
to the case of randomly moving AP [39].

5. Applications and Time-Dependent Behavior

5.1. System Level Simulations

Although the considered CTMC is non-homogeneous,
it can be easily used in simulation studies based on well-
known methods for simulations of non-stationary Poisson
processes, see, e.g., [40, 41]. Particularly, assume that the
chain just entered the LoS state at time t0 = 0. The CCDF
of time until the blockage periods starts again is available
in closed-form (36), where the coefficients are

A =
√

2ab(tvU + x0) + (a+ 1)2(tvU + x0)2 + b2,

B = 4λBrBvB

(
hB − hU
hA − hU

+ rB

)
,

C =
√

2abx0 + (a+ 1)2x2
0 + b2. (37)

Note that although no generic expression is available
for CCDF of the blockage period, FB(t), t > 0, it can be
obtained in closed-form for a particular UE trajectory. For
example, assuming UE trajectory coinciding with the OX
axis, we arrive at

FB(t) = D −
x0

(
F (0,0)G(0,0)

E − x
)

2vUx0
+ (38)

+

√
(tvU + x0)2

[
F (t,vU )G(t,vU )

E − t2v2
u − 2tvUx0 − x2

0

]
2vU (tvU + x0)

,

where the coefficients are

D =
4λBrBvB [hArB + hB − hU (rB + 1)]

R(hA − hU )
, (39)

E = 2π2λ2
BR

4r2
B [hArB + hB − hU (rB + 1)]2,

F (x, y) = (hA − hU )e
2πλBR

2rB

√
xy+x20(hArB+hB−hU (rB+1))

hA−hU ,

G(x, y) =
2πλBR

2rB
√
xy + x2

0

(hUrB + hU − hArB − hB)−1
+ hA + hU .

5.2. Analytical Studies of 3GPP NR Technology

The developed CTMC model also allows for advanced
applications in analytical studies of NR technologies. This
is facilitated by the explicit closed-form structure of the
transition rates α(t) and β(t). Below, we obtain several
metrics of interest for the baseline model including (i) SNR
and rate process dynamics, (ii) state probability at time t,
pi(t), (iii) fraction of time in blockage, and (iv) distribution
and mean time to outage.

5.2.1. SNR and Rate Processes Dynamics

The blockage process does not provide valuable infor-
mation for system designers. The reason is that blockage
itself does not imply that UE is in outage conditions as
NR link may still be established using alternative propaga-
tion paths. The time-dependent structure of the proposed
modeling framework allows to specify the time-dependent
propagation, signal-to-noise ratio (SNR), and capacity pro-
cesses as UE moves using the framework of Markov modu-
lated processes. For example, assuming B Hz of allocated
resources, the time-dependent capacity is

C(t) = cB log[1 + S(t)], t > 0, (40)

where S(t) is the SNR at time t, c is a constant accounting
for imperfections of the modulation and coding schemes (MCS).
S(t), measured in dB, is expressed as a function of system
parameters and the blockage process,

S(t) =
PTGTGR

PL(t)NF (B)
, t > 0, (41)

where PT is the transmit power, GT and GR are the trans-
mit and receive antenna gains, NF is the noise level at
bandwidth B, PL(t) is the only time-dependent compo-
nent. PL(t) depends on (i) the distance to AP at time t,
g(t), and (ii) the propagation model. Thus, using appro-
priate propagation model, e.g., standardized 3GPP [12] or
simplified Nokia model [42], one can associate each state of
CTMC with the rate function Ri(t), i = 1, 2 that explicitly
accounts for performance degradation caused by dynamic
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FL(t) =
(a+ 1)A(a((a+ 2)(tvU + x0) + b) + tvU + x0) + (2a+ 1)b2 log

(
aA+A+ ab+ (a+ 1)2(tvU + x0)

)
2(a+ 1)3vURB−1

−
(a+ 1)

(
ab+ (a+ 1)2x0

)
C + (2a+ 1)b2 log (a (C + (a+ 2)x0 + b) + C + x0)

2(a+ 1)3vURB−1
, t > 0. (36)

blockage. When multi-connectivity of degree K > 1 is
considered, each state is associated with the rate function
Ri = max∀j Ri,j , where j is the index of AP.

5.2.2. State Probability at Time t, pi(t)

Let pi(t) time-dependent probabilities that the system
is in the state i at time t, pi(t). For CTMC blockage model
the latter satisfies the following system [36]{

dp1(t)
dt = p2(t)β1(t)− p1(t)α1(t),

dp2(t)
dt = p1(t)α1(t)− p1(t)β1(t),

(42)

with the normalizing condition p2(t) = 1− p1(t), t > 0.
The general solution of the linear differential equation

with time-varying coefficients and initial condition p1(0) =
1 is provided in [43]

p1(t) = exp

− t∫
0

[α(τ) + β(τ)]dτ

×
×

 t∫
0

β(τ) exp

 τ∫
0

[α(x) + β(x)]dx

 dτ + 1

 , (43)

that can be solved for any particular UE trajectory.
When multi-connectivity of degree K > 2 is consid-

ered, one needs to solve the system of 2K−1 non-linear
differential equations with time-varying coefficients. This
can be done using the method of parameters variations for
any realistic value of K [43].

5.2.3. Fraction of Time in Blockage

One of the applications of time-dependent blockage
probability is finding the fraction of time in blockage for a
given UE trajectory. Assuming that UE is at the distance
g(0) at time y = 0, it can be done by a direct integration
of p1(t) as follows

fB =

∫ T

0

p1(t)dt, (44)

that can be estimated for a particular UE trajectory.

5.2.4. Time to Outage

Generally, the outage could be defined as the event
when SNR falls below a certain SNR threshold, SO [44].
SO is often determined as the lowest value of SNR that
can be used for reliable communications between AP and
UE, i.e., there is still MCS that can maintain the required

block error probability. Note that blockage does not al-
ways lead to an outage. However, using the NR propaga-
tion model [42, 12], we can specify a circular area around
AP, RO where the loss of LoS does not lead to an outage.

Let the UE at t = 0 be at the egress point from the
circle with radius RO, defined by the intersection of x2 +
y2 −R2

O = 0 and y − ax− b = 0, with coordinates{
x0 = −

√
a2R−b2+R±ab

a2+1 ,

y0 = −±a
√
a2R−b2+R
a2+1 − a2b

a2+1 + b.
(45)

Let fO(t), t > 0, be the pdf of the time to outage.
Observe that at the egress point UE can be in blocked
or non-blocked state. The blockage state probability is
1− pL(g(0)), see (19). The outage is immediately experi-
enced and the mass at zero is fO(0) = 1−pL(g(0)). Alter-
natively, the time to outage with the current AP is the first
passage time (FPT) of CTMC to the blocked state condi-
tioned that the model is in non-blocked state at t = 0. Let
fO|6=1(t) be the pdf of FPT from the set of non-blocking
states, {2, 3, . . . , 2K} to the blockage state 1, where K
is the degree of multi-connectivity. The sought distribu-
tion is of phase-type [45] with representation (~ρ, S), where
~ρ is the initial state distribution at t = 0 defined over
{2, 3, . . . , 2K}, and S is the rate matrix obtained from Λi
in (24) excluding the first row and column. The condi-
tional pdf is then given by

fO|6=1(t) = ~ρeSt~s0, t > 0, (46)

where ~s0 = −S~1, ~1 is the vector of ones of size 1× 2K − 1,
eSt is the matrix exponential.

The initial state probability vector ρ can be found from
the steady-state distribution, ~π of the time-homogeneous
CTMC blockage model of stationary UE at time t = 0
which is the solution of the system ~ρΛi = ~ρ, ρ~e = 1, where
~e is the unit vector. Particularly, we arrive at

ρi =
πi

1− pL(g(0))
,i = 1, 2, . . . . (47)

6. Numerical Analysis

In this section, we numerically illustrate the proposed
methodology by providing results for specific system de-
ployments. We consider examples related to the following
cases: (i) closed zone of interest with a finite number of
blockers for AP and D2D scenario, and (ii) random de-
ployments of APs in <2. Particularly, in Subsection 6.1,

9



(a) AP-UE: varying AP height (b) AP-UE: varying UE height (c) D2D: varying UE height

Figure 5: Fraction of LoS time in various considered scenarios.

we start addressing the fraction of time in blockage for
both AP-UE and D2D scenarios for a closed zone of inter-
est. Then, we turn the attention to the PPP deployment
and proceed with characterizing the local behavior of the
process considering time-series of the blockage process in
Subsection 6.2. The mean blockage and non-blockage in-
tervals as a function of system parameters for PPP deploy-
ment is analyzed in Subsection 6.3.

The main input parameters for both closed zone and
PPP deployments are summarized in Table 6. Unless ex-
plicitly specified, these parameters are assumed to be used
for numerical examples.

Table 2: Default parameters for numerical assessment.

Parameter Value

Height of AP, hA 4 m

Height of blockers, hB 1.7 m

Height of UE, hU 1.5 m

Blocker radius, rB 0.4 m

Speed of blockers, vB 1 m/s

Speed of UEs, vU 1 m/s

AP intensity, λA 0.001 AP/m2

Blockers intensity, λB 0.1 bl/m2

AP coverage radius, R 100 m

D2D zone radius, R 100 m

6.1. Time-Averaged Characterization

We first concentrate on time-averaged metric – a frac-
tion of LoS time, which is analyzed in Subsection 3.1 for
AP-UE and D2D scenarios, see (5) and (9). Note that be-
low we use λB to denote intensity of blockers in a zone of
interest. The actual number of blockers is given by πR2λB ,
where R is the radius of closed zone of interest.

Consider first the AP to UE communications scenario.
Fig. 5(a) and Fig. 5(b) illustrate the fraction of LoS time
as a function of systems parameters including AP height,
hA, and UE height, hU , respectively. Expectedly, as the
number of blockers increases the probability of LoS frac-
tion decreases exponentially. The height of both UE and

AP significantly affects the fraction of time in LoS state.
However, the effect of AP height is much more profound.
Particularly, for λB = 0.4 increasing the AP height from
3 to 10 meters allows improving the fraction of LoS from
around 0.5 to approximately 0.65. Thus, the AP height
is one of the critical parameters to improve NR systems
performance in relatively crowded places.

The effect of input parameters on the fraction of LoS
blockage time for the D2D scenario is illustrated in Fig. 5(c)
as the function of the blockers intensity for different radii
of the service area. Recall that in this scenario, the height
of communicating entities is the same and equal to 1.5 m
while the height of blockers is 1.7 m. Logically, the frac-

(a) Varying degree of multiconnectivity

(b) Varying intensity of APs

Figure 6: Effect of multiconnectivity on fraction of LoS time.
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(a) Blockers intensity λB = 0.001 bl/m2

(b) Blockers intensity λB = 0.01 bl/m2

(c) Blockers intensity λB = 0.5 bl/m2

Figure 7: Time-series of model for different blockers intensity.

tion of LoS blockage time increases as the distance between
communicating entities increases by keeping the number of
blockers constant and increasing the service area of inter-
est. By comparing the results in Fig. 5(c) with Fig. 5(a),
and 5(b), we observe that the fraction of the LoS time for
the D2D scenario is significantly lower. Indeed, since the
heights of communicating entities are the same, the area
of the LoS blockage zone is larger.

Next, for PPP deployment of APs and blockers in <2

with intensities λA and λB , respectively, we concentrate
on the effect of multi-connectivity on the fraction of time
at least one AP is not blocked. Here, the UE, as well as
blockers, are assumed to move in <2 according to RDM.
Fig. 6 shows the probability that at least one AP our of K
nearest is in non-blocked conditions. Analyzing the data
in Fig. 6(a), one may notice that the major improvement
stems from adding a single backup link, that is, maintain-
ing active links to two nearest APs. When K increases
further additional gains are visible, but they diminish as
K grows. Thus, Fig. 6(b) shows the response of the metric
for different intensities of AP in <2. Here, increasing the
density of AP has a hugely positive effect on the proba-
bility that at least one AP out of two nearest is in non-
blockage conditions that, indeed, makes multi-connectivity
an attractive option for future dense deployments of NR
cellular systems.

6.2. Local Characteristics of the Blockage Process

Time-averaged metrics, such as a fraction of time in
LoS state, do not entirely characterize performance ex-
perienced by moving UE in a field of blockers. Indeed,
several applications may tolerate abrupt rate drops and
even outages caused by blockage by implementing appli-
cation layer bufferization or rate adaptation. Thus, it is
critical to understand the local response of the blockage
process to system metrics of interest. We are particularly
interested in time-series of the model and mean durations
of the blocked and non-blocked periods.

To illustrate time series of the model, consider the sce-
nario, where UE moves according to RDM in <2 in a PPP
field of blockers and APs of intensities λB and λA. The
results demonstrated below have been obtained using com-
puter simulation of the Markov model specified in Subsec-
tion 3.2 and extended to the case of multi-connectivity in
Section 4. The time-series of the model for different inten-
sities of blockers in the environment and the blockers and
UE velocity is set to vB = vU = 1 m/s, shown in Fig. 7.
Here, state 1 corresponds to the blocked state while state
2 to the non-blocked state. The increase in the density of
blockers profoundly affects the time spend in the blocked
state. Furthermore, λB = 0.5 results in blocked periods of
exceptionally large durations for high blockers intensity.

(a) Degree of multiconnectivity K = 1

(b) Degree of multiconnectivity K = 2

(c) Degree of multiconnectivity K = 3

Figure 8: Time-series for different degrees of multiconnectivity.
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Figure 9: Means of blockage and non-blockage time intervals.

Consider now the effect of multi-connectivity on lo-
cal behavior of the blockage process. Fig. 8 shows the
time-series of the blockage process for different degrees of
multi-connectivity and λB = 1. Here, state 1 corresponds
to the case when LoS paths to all available APs are si-
multaneously blocked. Any other state implies there is at
least one non-blocked LoS path. As one may observe, the
use of two APs allows to reduce the time UE spends in
blocked conditions drastically. Adding one more link by
increasing the degree of multi-connectivity to K = 3 al-
lows improving the performance even further. However,
this effect is milder compared to the increase from one to
two simultaneously supported links.

6.3. Means of Blocked and Non-Blocked Intervals

Time-series observations provide intuition on the qual-
itative effects of the system parameters on local behav-
ior of the blockage process. Below, we complement this
knowledge with a quantitative analysis demonstrating the
means of blockage and non-blockage intervals. The results
reported below are obtained in Subsection 3.2.

Fig. 9 shows means of blockage and non-blockage inter-
vals as a function of blockers intensity for different speeds
of blockers, vB . First, the mean blockage interval in-
creases as the intensity of blockers increases, as depicted in
Fig. 9(a). The trend for the mean non-blockage interval is
reverse. It is essential that the mean non-blockage interval
decreases at a much higher rate compared to the increase in
the mean blockage interval. Then, when λB increases even
further, the durations of non-blockage intervals drastically
decreases while blockage intervals become long-lasting.

Fig. 9(b) and Fig. 9(c) show the effect of blockers speed,
vB , on mean durations of blockage and non-blockage inter-
vals. As one may expect, the response of these metrics to
the blockers speed is straightforward. Particularly, higher
values of vB lead to shorter duration of the non-blockage
periods and longer duration of the blockage intervals. The
magnitude of this effect is non-linear and heavily depends
on λB . Note that the effect of UE speed is similar and,
thus, not reported here.

We note that for realistic values of pedestrian speeds,
the mean duration of the blockage period is on the order of
a fraction of a second. This implies that applications that
do not rely on buffering (e.g., real-time streaming) will ex-
perience a significant degradation in service performance.
Applications utilizing buffering may adaptively choose the
duration of the prefetching period depending on the block-
ers intensity as well as speeds of UE and blockers.

7. Conclusions

Inspired by the need for efficient modeling approaches
of the propagation paths blockage process in 3GPP NR
systems operating in the mmWave frequency band, we
have developed a simple yet accurate model for LoS block-
age process that accounts for mobility of both UE and
blockers in this paper. Particularly, we first characterized
the LoS blockage process in two representative scenarios
deriving the fractions of time LoS is blocked as well as the
duration of the blockage and non-blockage intervals. We
then formulated a simple Markov chain model capturing
the dynamics of the LoS blockage process. The baseline
model allows for a number of extensions including (i) AP
mobility, (ii) random AP deployment, and (iii) 3GPP multi-
connectivity operation.

The applications scope of the proposed model includes
both system level simulations and analytical analysis of
3GPP NR systems. Specifically, the developed Markov
model can be efficiently used in simulations, where it can
abstract the process of the propagation paths blockage
that is known to affect the computational complexity sig-
nificantly. The model is also suitable for analytical studies
of 3GPP NR deployments providing a simple yet accurate
description of the LoS blockage process. In particular, we
have demonstrated how the model can be used to deter-
mine the following quantities: (i) SNR and capacity pro-
cess dynamics, (ii) probability that at time t the system
is at the blockage or non-blockage state, (iii) fraction of
time in blockage and (iv) mean and distribution of time to
outage.
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